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We apply dilaton chiral perturbation theory (dChPT) at next-to-leading order to lattice data from the
LatKMI Collaboration for the eight-flavor SU(3) gauge theory. In previous work, we found that leading-
order dChPT does not account for these data, but that a model extension of leading-order dChPT with a
varying mass anomalous dimension describes these data well. Here we calculate the next-to-leading order
corrections for the pion mass and decay constant. We focus on these quantities, as data for the dilaton mass
are of poorer quality. The application of next-to-leading order dChPT is difficult because of the large
number of new low-energy constants, and the results of our fits turn out to be inconclusive. They suggest—
yet cannot firmly establish—that the LatKMI mass range might be outside the scope of dChPT.
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I. INTRODUCTION

Gauge theories with a large number of light fermion
degrees of freedom have attracted a lot of attention in recent
years. Notable examples include the SU(3) theory with
eight fundamental Dirac fermions [1–4], or with two sextet
Dirac fermions [5–9]. While it has not been firmly
established whether chiral symmetry is broken in the
massless limit or that, alternatively, there is an infrared
fixed point for either of these fermion contents, both
theories share a number of interesting features. First, for
the accessible fermion masses, the spectrum contains light
pions. Second, in the same fermion mass range, the
spectrum of both theories also contains a flavor-singlet
scalar meson which is roughly degenerate with the pions,
and is thus much lighter than all other excitations. Last, the
spectrum shows signs of approximate hyperscaling, with a
roughly constant or slowly varying ratio of hadron masses
to the pion decay constant. The latter two features are
qualitatively different from QCD, and suggest that both
theories are either inside the conformal window, or alter-
natively, below the sill but relatively close to it.
In a series of papers [10–14] we proposed an effective

field theory (EFT) framework which extends ordinary
chiral perturbation theory (ChPT) to account systematically
for both the pions and the light scalar state. The new EFT,

called dilaton chiral perturbation theory, or dChPT for
short, applies to confining theories close to the sill of the
conformal window. Intuitively, the coupling of these
theories is “walking,” instead of running, and therefore
such theories exhibit approximate scale symmetry. dChPT
is based on the assumption that the light singlet scalar is a
pseudo Nambu-Goldstone boson arising from the sponta-
neous breaking of the approximate scale symmetry, much
like pions are pseudo Nambu-Goldstone bosons of a
spontaneously broken approximate chiral symmetry when
the fermion mass is nonzero. Two small parameters control
the systematic low-energy expansion: one is the fermion
mass, as in ordinary ChPT; the other is the distance to the
sill of the conformal window in theory space.
We have found that dChPT has a large-mass regime in

which the theory predicts approximate hyperscaling. This
might explain the unique features of the spectrum of the
theories described above. In marked distinction from
ordinary ChPT, in the large-mass regime the fermion mass
need not be small compared with the confinement and
chiral symmetry breaking scale of the massless theory. Yet
dChPT still admits a systematic expansion, now thanks
only to the smallness of the theory-space parameter con-
trolling the distance to the conformal sill [13].
In Ref. [15] we applied dChPT to data of the LSD

Collaboration [4] for the Nf ¼ 8, SU(3) gauge theory
(assuming that this theory is below the sill of the conformal
window). We found that at leading order (LO), dChPT
provides a good description of these data, with a mass
anomalous dimension ≃0.93. We also tried to fit data of the
LatKMI Collaboration [1] for the same theory. This dataset
spans a wider range of larger fermion masses. We found
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that the full LatKMI mass range cannot be described by LO
dChPT, but that a model extension of LO dChPT with a
variable mass anomalous dimension accounts well for these
data [16].
This model description of the LatKMI data may be

regarded as an ad hoc partial resummation of higher orders
in dChPT. An obvious question is whether dChPT can
describe the LatKMI data systematically. In order to
address this question, the next task is to go to next-to-
leading order (NLO) in dChPT. This is the main goal of this
paper. We focus on the NLO expressions for the pion mass
and decay constant, because existing data for the dilaton
mass are much less precise while data for the dilaton decay
constant are not available at all.
This paper is organized as follows. In Sec. II we review

dChPTat leading order, limiting ourselves to the elementswe
will need in this paper. The vacuum expectationvalue (VEV)
of the dilaton field is a function of the fermion mass. In
comparisonwith ordinary ChPTat LO, this entails a stronger
dependence of hadronic quantities on the fermion mass,
notably including the pion (and dilaton) decay constants.
In Sec. III we calculate the NLO corrections for the pion

mass Mπ and decay constant Fπ . We introduce an external
gauge field aμ which serves as a source for the nonsinglet
axial current, and calculate the effective action at NLO as a
function of aμ, following the strategy of Ref. [17]. This
allows us to extract the axial-vector two-point function,
from which both Fπ and Mπ may be obtained. In addition,
we consider the dilaton effective potential to NLO, in order
to determine the dilaton VEV at this order, which in turn
leads to additional corrections to Fπ and Mπ . Some
technical details are relegated to Appendix A.
In Sec. IV we employ the NLO expressions to fit the

LatKMI data. This turns out to be difficult, and rather
inconclusive, because of the large number of low-energy
constants (LECs) that appear in dChPT at NLO. We further
discuss our findings in the concluding section, Sec. V, and
comment on what will be needed to make progress beyond
the current state of the art.
dChPT at LO was also applied to the sextet model in

Refs. [8,9], and to the splitmass ten-flavor theory inRef. [18].
Extensions at NLO of ordinary ChPT which include a

singlet scalar were also considered in Refs. [19,20]. The
approach followed in these works differs from our
approach, and therefore a direct comparison is not useful.
In particular, Refs. [19,20] do not appear to establish a
systematic power counting. Also, the key role of the dilaton
VEV in determining the dependence of physical quantities
on the fermion mass (already at tree level) is not consid-
ered. In addition, the primary application of Ref. [19] is to a
possible alternative EFT for QCD, in which the f0ð500Þ is
assumed to be a dilaton. To consider this proposal, we
address in Appendix B the question of whether dChPT
might be valid for two-flavor QCD. Our estimate for the
dChPT decay width of a dilaton into two pions turns out to

be smaller than the actual QCD decay width by about a
factor of 25. This casts serious doubt on the interpretation
of the f0ð500Þ as a dilaton.
A framework which is somewhat closer to our work was

discussed in Refs. [21–23]. However, as we pointed out in
Ref. [16], the power counting introduced in Ref. [22] is
incorrect. For a recent application of this approach,
see Ref. [24].

II. DILATON ChPT AT LEADING ORDER

In this section we review dChPT at LO. In Sec. II A we
present and discuss the tree-level Lagrangian, and define
our power counting. In Sec. II B we consider the dilaton
potential, and show how it leads to a dilaton VEV that
depends on the fermion massm. In Sec. II C we give the LO
results for the fermion-mass dependence ofMπ and Fπ , the
pion mass and decay constant, and Mτ and Fτ, the dilaton
mass and decay constant. We use these results to review the
existence of the large-mass regime. In Sec. II D we rederive
the LO results for Mπ and Fπ from the axial-current two-
point function, using this to set the stage for Sec. III.

A. Leading-order Lagrangian

We consider an SU(Nc) gauge theory with Nf fermions
in the fundamental representation. At LO, the Lagrangian
for dChPT is given by1

LLO ¼ 1

4
f2πe2τtrð∂μΣ†

∂μΣÞ þ
1

2
f2τe2τ∂μτ∂μτ

−
1

2
f2πBπmeð3−γ�ÞτtrðΣþ Σ†Þ

þ f2τc1Bτe4τ
�
−
1

4
þ τ

�
: ð2:1Þ

Here Σ∈SUðNfÞ is the usual nonlinear pion field,

Σ ¼ e2iπ=fπ ; π ¼ πaTa; ð2:2Þ
with πa representing the N2

f − 1 pions,2 while τ is the
(dimensionless) dilaton field. There are altogether five LO
LECs. Four of them include fπ and Bπ , the familiar LO
parameters of ordinary ChPT, and fτ and c1Bτ, which play
a parallel role for the dilaton field. In writing Eq. (2.1) we
assume that the dilaton field τ has been shifted such that, at
tree level, its expectation value vanishes in the chiral limit,
m → 0 (see Sec. II B).
The effective theory is defined in the Veneziano limit

[25], in which Nf; Nc → ∞ holding nf ¼ Nf=Nc constant.
We assume the following power counting:

p2=Λ2 ∼m=Λ ∼ ðn�f − nfÞ ∼ 1=Nc; ð2:3Þ

1Throughout this paper we use the Euclidean metric.
2The SUðNfÞ generators are normalized by trðTaTbÞ ¼ 1

2
δab.
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where p is a typical pion or dilaton momentum (e.g., in a
scattering process). As in ordinary ChPT, Λ is a parameter
with dimension of mass measuring the scale of chiral
symmetry breaking in the massless limit. n�f is the value of
nf at the sill of the conformal window in the Veneziano
limit. Since infrared conformality is recovered above the
sill, the small parameter n�f − nf controls deviations from
conformality below the sill, where the coupling “walks,”
but the theory ultimately confines. Defining the theory in
the Veneziano limit allows us to treat n�f − nf as a
continuous parameter. This technicality will not play an
important role in the present paper, as we will only consider
dChPT for a fixed choice of Nf and Nc. In the LO
Lagrangian, this small parameter occurs in the form of

c1Bτ ∝ n�f − nf: ð2:4Þ

The fifth LO parameter, γ�, is interpreted as the mass
anomalous dimension at the infrared fixed point at the
nearby sill of the conformal window. For a detailed
discussion of the assumptions underlying the construction
of this EFT, the proof that Eq. (2.3) defines a systematic
power counting, and the resulting form of the LO
Lagrangian (2.1) we refer to Refs. [10–13].
With m the renormalized fermion mass defined at some

renormalization scale μ in the underlying gauge theory,
only the combination Bπm is renormalization-group invari-
ant. Physical quantities can thus depend only on this
combination. In practice, when we will fit lattice data in
Sec. IV, it will be convenient to choose a renormalization
scale μ ¼ Oð1=aÞ, where a is the lattice spacing.
Consistent with this choice, we will identify m with the
(staggered) bare fermion mass.

B. Dilaton potential and vacuum expectation value

Let us consider the classical potential for the dilaton
field τ. Assuming m > 0, the term proportional to m in
Eq. (2.1) is minimized by setting Σ ¼ 1, and the dilaton
potential takes the form

VLO ¼ f2τc1Bτ

�
e4τ

�
−
1

4
þ τ

�
−

m
c1M

eð3−γ�Þτ
�
: ð2:5Þ

For VLO to be bound from below, we need c1Bτ > 0 and
γ� > −1. Here

M ¼ f2τBτ

Nff2πBπ
: ð2:6Þ

c1M defines a quantity of order Λ, and is order 1 in the
Veneziano limit, since fπ ∼

ffiffiffiffiffiffi
Nc

p
and fτ ∼ Nc [10].

Minimizing VLO as a function of v ¼ hτi leads to the
saddle-point equation

4veð1þγ�Þv ¼ ð3 − γ�Þm
c1M

: ð2:7Þ

This equation determines the classical solution v0 ¼ v0ðmÞ
as a monotonically increasing function of m with
v0ð0Þ ¼ 0. The solution v0ðmÞ can be expressed in terms
of the Lambert W function [15].
The right-hand side of Eq. (2.7) is of order 1 in the power

counting defined in Eq. (2.3). The numerical value of the
right-hand side can be small, in which case the approximate
solution is

v0ðmÞ ≈ ð3 − γ�Þm
4c1M

; ð2:8Þ

which defines the small-mass regime. The right-hand side
of Eq. (2.7) can also be large, leading to a different
approximate solution

v0ðmÞ ≈ 1

1þ γ�
log

�ð3 − γ�Þm
4c1M

�
; ð2:9Þ

which defines the large-mass regime. We discuss the
physical relevance of these two regimes in the following
subsection.

C. Masses and decay constants at LO

The tree-level masses and decay constants are given by

M2
π ¼ 2Bπmeð1−γ�Þv0 ¼ 8c1MBπv

3 − γ�
e2v0 ; ð2:10aÞ

M2
τ ¼ 4c1Bτe2v0ð1þ ð1þ γ�Þv0Þ; ð2:10bÞ

Fπ ¼ fπev0 ; ð2:10cÞ

Fτ ¼ fτev0 : ð2:10dÞ

The predictions for Mπ and Mτ are obtained using the
saddle-point equation, while the expressions for Fπ and Fτ

are read off from the LO Lagrangian. Unlike in ordinary
ChPT, the tree-level decay constants depend on the fermion
mass via the dependence of the classical solution for the
dilaton VEV, v0, on m.
In the small-mass regime, where v0 ∼m, the dilaton

decouples in the sense that Mπ=Mτ ≪ 1, and we recover
the usual predictions of standard ChPTat LO. In contrast, in
the large-mass regime, in which v0 is approximated by
Eq. (2.9), we find

Mπ ∼Mτ ∼ Fπ ∼ Fτ ∼
�

m
c1M

�
1=ð1þγ�Þ

; ð2:11Þ

i.e., the theory exhibits approximate hyperscaling [13].
Intuitively, the breaking of scale invariance is dominated by
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the fermion mass m, which, in turn, is large compared with
the confinement (and chiral symmetry breaking) scale of
the theory, Λ ∼ c1M. If we consider the typical expansion
parameter of ChPT, then, using Eq. (2.9),

M2
π

ð4πFπÞ2
¼ c1MBπv0
2π2ð3− γ�Þf2π

≈
c1MBπ

2π2ð1þ γ�Þð3− γ�Þf2π
log

�ð3− γ�Þm
4c1M

�
: ð2:12Þ

The expansion parameter is small provided that

c1MBπ

8π2f2π
log

�
m

2c1M

�
ð2:13Þ

is small (for definiteness we assumed γ� ≈ 1). Hence, as
long as c1 ∝ n�f − nf is small, the fermion mass can be
large compared with the dynamical scale of the massless
theory, characterized by c1M. The systematic expansion on
which dChPT is based is then an expansion in terms of the
only small parameter n�f − nf. In particular, this ensures
that Mπ and Mτ are still parametrically small compared
with Fπ and Fτ in the large-mass regime [13].

D. The axial-current two-point function

It will be useful to review how to obtain the LO pion
mass and decay constant from the nonsinglet axial-current
two-point function, as we will employ this method at NLO,
following Ref. [17]. The axial-current two-point function
can be obtained by coupling the theory to a Hermitian
external source aμ for the axial current, and taking the
second derivative of the effective action with respect to aμ.
At LO, the effective action is obtained by solving the
equations of motion in the presence of aμ, and substituting
the solution back into the tree-level action.
We couple LLO to aμ through the introduction of the

covariant derivative

DμΣ ¼ ∂μΣ − ifaμ;Σg;
DμΣ† ¼ ðDμΣÞ† ¼ ∂μΣ† þ ifaμ;Σ†g; ð2:14Þ

where

aμ ¼ aaμTa: ð2:15Þ

The natural power counting is obtained by taking aμ ∼ ∂μ.
The equations of motion for the classical fields Σ ¼ U and
τ ¼ v in the presence of the external field aμ are then

0¼ e2vðDμDμUU†−UDμDμU†Þ
þ2e2v∂μvðDμUU†−UDμU†Þ

−2BπmeyvðU−U†Þþ2Bπm
Nf

eyvtrðU−U†Þ; ð2:16aÞ

0 ¼ 4c1f2τBτe4vv − f2τe2vð∂μvÞ2 − f2τe2v∂2v

þ 1

2
f2πe2vtrðDμUDμU†Þ

−
1

2
f2πBπymeyvtrðU þ U†Þ; ð2:16bÞ

where

y ¼ 3 − γ�: ð2:17Þ

Under “intrinsic” parity,

U → U†; v → v; aμ → −aμ; ð2:18Þ

the LO Lagrangian and Eq. (2.16b) are even while
Eq. (2.16a) is odd. If we wish to obtain the effective action
to quadratic order in aμ, it is thus sufficient to expand
Eq. (2.16a) to linear order in aμ and π [using Eq. (2.2) with
Σ ¼ U]. Intrinsic parity implies also that ∂μv is of order a2μ;
hence the second term in Eq. (2.16a) can be dropped. The
last term does not contribute either, and the equation
simplifies to

e2vð∂2π − ∂μaμÞ − 2Bπmeð3−γ�Þvπ ¼ 0: ð2:19Þ

We can rewrite Eq. (2.16b) as an equation for δv ¼ v − v0,
with v0 the solution of Eq. (2.7). This will lead to a solution
for δv which is at least quadratic in aμ. However, since δv
solves the equation of motion, its contribution to the action
will be of order ðδvÞ2, i.e., order a4μ, and we can thus ignore
δv. Therefore we can set v equal to v0 [verifying that
Eq. (2.16b) recovers Eq. (2.7)], and, using Eq. (2.10a),
Eq. (2.19) thus leads to

πa ¼ ∂μaaμ
∂
2 −M2

π
⇒ πaðpÞ ¼ −ipμaaμðpÞ

p2 þM2
π

; ð2:20Þ

in momentum space. Substituting v ¼ v0 and Eq. (2.20)
back into the leading-order action SLO we obtain

SLO¼
1

2
F2
π

Z
d4p
ð2πÞ4a

a
μð−pÞ

�
δμν−

pμpν

p2þM2
π

�
aaνðpÞ; ð2:21Þ

where we used Eqs. (2.10a) and (2.10c). Equation (2.21)
yields the expected form for the pion contribution to the
axial-current two-point function. This means that we have
recovered the expressions forMπ and Fπ from the quadratic

FREEMAN, GOLTERMAN, and SHAMIR PHYS. REV. D 108, 074506 (2023)

074506-4



term in aμ in the effective action at LO. In the next section,
we will extend this approach to obtain Fπ and Mπ at NLO.

III. DILATON ChPT AT NEXT-TO-LEADING
ORDER

There are three parts to the NLO calculation of Mπ and
Fπ . First, as in ordinary ChPT, we need to calculate the one-
loop diagrams obtained from the LO Lagrangian. We will
do so in Sec. III A by calculating the one-loop corrections
to Eq. (2.21) following the method of Ref. [17]. The UV
divergences encountered in this calculation are renormal-
ized by the NLO Lagrangian, which constitutes the second
part. We will identify the relevant NLO operators and
obtain their contributions toMπ and Fπ in Sec. III B. These
parts of the calculation are similar to ordinary ChPT. The
last step, which has no counterpart in ordinary ChPT, is to
calculate the NLO corrections to the dilaton VEV, v. This
also influences Mπ and Fπ , as we have already seen at tree
level; cf. Eq. (2.10). We will obtain the corrections to v
from the effective potential for a constant dilaton field at
NLO in Sec. III C, where we also discuss the necessary
counterterms. In Sec. III D we introduced the renormalized

LECs, while in Sec. III E we assemble all the NLO
contributions toMπ and Fπ , as well as to the dilaton’s VEV.
As usual, the LO Lagrangian is Oðp2Þ in the power

counting (2.3), and the NLO Lagrangian will be Oðp4Þ.

A. Axial-current two-point function

We begin with expanding the fields Σ and τ as

Σ ¼ ueiξu;

ξ ¼ 2πaTa=fπ;

τ ¼ vþ τ̃ ¼ vþ τ̂=fτ: ð3:1Þ

Here u2 ¼ U, where U is the solution of the equations of
motion (2.16) in the presence of the axial gauge field aμ,
while v is the corresponding dilaton VEV. As explained in
Sec. II D, however, we can take v ¼ v0, namely, constant
and equal to its LO value, if we are interested in the
effective action to NLO and to order a2μ. Expanding the
action to second order in the fluctuation fields ξ and τ̃, we
obtain

S2 ¼
1

2

Z
d4x

�
−
1

4
f2πe2v0 tr½DμUDμðu†ξ2u†Þ þDμðuξ2uÞDμU† − 2DμðuξuÞDμðu†ξu†Þ�

− if2πe2v0 tr½DμUDμðu†ξu†Þ −DμðuξuÞDμU†�τ̃ þ f2πe2v0 ½DμUDμU†�τ̃2 þ f2τe2v0ð∂μτ̃Þ2

þ 1

2
f2πBπmeyv0 tr½ðU þ U†Þξ2� − if2πBπmyeyv0 tr½ðU −U†Þξ�τ̃

−
1

2
f2πBπmy2eyv0 tr½U þU†�τ̃2 þ 4f2τBτc1e4v0 ½1þ 4v0�τ̃2

�
¼ Sπ þ Sτ þ Smix: ð3:2Þ

Following Ref. [17], and using Eq. (3.1), the “pionic” part
Sπ can be written as

Sπ ¼
1

2
e2v0

Z
d4xπaDab

π πb; ð3:3Þ

with

Dab
π πb ¼ −dμdμπa þ 4σ̂abπ πb; ð3:4aÞ

dμπa ¼ ∂μπ
a þ Γ̂ab

μ πb; ð3:4bÞ

Γ̂ab
μ ¼ −2tr½½Ta; Tb�Γμ�; ð3:4cÞ

σ̂abπ ¼−
1

2
tr½½Ta;Δμ�½Tb;Δμ��þ

1

4
eðy−2Þv0 tr½fTa;Tbgσ�;

ð3:4dÞ

in which

Γμ ¼
1

2
ðu†∂μu − ∂μuu† − iu†aμuþ iuaμu†Þ; ð3:5aÞ

Δμ ¼
1

2
ðu†∂μuþ ∂μuu† − iu†aμu − iuaμu†Þ; ð3:5bÞ

σ ¼ BπmðU þ U†Þ: ð3:5cÞ

The mixed part containing the terms bilinear in πa and τ̂ can
be written as

Smix ¼
1

2

fπ
fτ

e2v0
Z

d4xτ̂Da
mixπ

a; ð3:6Þ

with

Da
mixπ

a ¼ ð−2itr½ΔμTa�dμ þ σamixÞπa; ð3:7aÞ

σamix ¼ −
i
2
Bπmyeðy−2Þv0 tr½TaðU −U†Þ�: ð3:7bÞ
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Finally, the terms quadratic in τ̂ can be written as

Sτ ¼
1

2
e2v0

Z
d4xτ̂Dττ̂; ð3:8Þ

with

Dττ̂ ¼ −∂2τ̂ − σττ̂;

στ ¼ −4Bτc1e2v0ð1þ 4v0Þ þ
1

2
y2eðy−2Þv0

f2π
f2τ

trðσÞ

−
f2π
f2τ

trðDμUDμU†Þ: ð3:9Þ

Defining for convenience τ̂ as the zeroth component of
πa, the one-loop effective action Sð1Þ ¼ Sð1ÞðaμÞ is now
defined by a Gaussian integral

e−S
ð1Þ ¼

Z
½dπ� exp

�
−
1

2
e2v0

Z
d4xπTDπ

�
; ð3:10Þ

in which

D ¼
�

Dτ DT
mix

Dmix Dπ

�
; ð3:11Þ

and thus

Sð1Þ ¼ 1

2
Tr logD; ð3:12Þ

up to an irrelevant constant.
What we need is Sð1Þ2 , the part of Sð1Þ which is quadratic

in aμ. To obtain it, we write

D¼
�
−∂2þM2

τ 0

0 ð−∂2þM2
πÞ1

�
þ
�

δτ δTmix

δmix δπ

�
; ð3:13Þ

where δ ¼ 0 for aμ ¼ 0, and 1 is the ðN2
f − 1Þ × ðN2

f − 1Þ
unit matrix. δπ and δτ both start at quadratic order in aμ,
while δmix starts at linear order in aμ. By expanding
the logarithm in Eq. (3.12) to quadratic order in aμ,
we find

Sð1Þ2 ¼ 1

2
D−1

0τ ð0Þ
Z

d4xδτðxÞþ
1

2
D−1

0π ð0Þ
Z

d4xtrðδπðxÞÞ

−
1

2

Z
d4x

Z
d4yδamixðxÞD−1

0τ ðx−yÞδamixðyÞD−1
0π ðy−xÞ;

ð3:14Þ

where D−1
0τ ðx − yÞ and D−1

0π ðx − yÞ are the tree-level dilaton
and pion propagators, respectively. Defining

∇μπ
a ¼ ∂μπ

a − aaμ; ð3:15Þ

we have to leading order in πa ∼ aaμ [cf. Eq. (2.20)]

trδπ ¼ −Nf∇μπ
a∇μπ

a −
N2

f − 1

Nf
M2

ππ
aπa;

δamix ¼ −
Fπ

Fτ

�
∇μπ

a
∂μ −

1

4
yM2

ππ
a

�
;

δτ ¼
F2
π

F2
τ

�
2∇μπ

a∇μπ
a þ 1

2
y2M2

ππ
aπa

�
: ð3:16Þ

The first two terms in Eq. (3.14) give tadpole contributions

SπðaμÞ ¼−
1

2
KðM2

πÞ
Z

d4q
ð2πÞ4 a

a
μð−qÞ

�
Nf

�
δμν −

qμqν
q2þM2

π

�

−
1

Nf

M2
πqμqν

ðq2þM2
πÞ2

�
aaνðqÞ; ð3:17Þ

and

SτðaμÞ ¼
F2
π

F2
τ
KðM2

τÞ
Z

d4q
ð2πÞ4 a

a
μð−qÞ

�
δμν −

qμqν
q2 þM2

π

þ
�
y2

4
− 1

�
M2

πqμqν
ðq2 þM2

πÞ2
�
aaνðqÞ; ð3:18Þ

in which

KðM2Þ ¼
Z

ddp
ð2πÞd

1

p2 þM2
¼ M2

16π2

�
−λþ log

�
M2

μ2

��
;

ð3:19aÞ

λ ¼ 2

ϵ
− γ þ logð4πÞ þ 1; ð3:19bÞ

where d ¼ 4 − ϵ and γ is the Euler constant. The mixed
contribution in Eq. (3.14) has two insertions of δmix, which is

linear inaμ. There is no contribution toS
ð1Þ
2 linear inaμ, while

the quadratic contribution is given by
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SmixðaμÞ ¼ −
F2
π

F2
τ

Z
d4q
ð2πÞ4 a

a
μð−qÞ

×

��
qμqρ

q2 þM2
π
− δμρ

�
Iρσðq;M2

π;M2
τÞ
�

qσqν
q2 þM2

π
− δσν

�
þ 1

4

qμyM2
π

q2 þM2
π
Iρðq;M2

π;M2
τÞ
�

qρqν
q2 þM2

π
− δρν

�

−
1

4

�
qμqρ

q2 þM2
π
− δμρ

�
Iρðq;M2

τ ;M2
πÞ

qνyM2
π

q2 þM2
π
þ 1

16

qμyM2
π

q2 þM2
π

qνyM2
π

q2 þM2
π
Iðq2;M2

π;M2
τÞ
�
aaνðqÞ; ð3:20Þ

in which

Iρσðq;M2
π;M2

τÞ¼
Z

d4p
ð2πÞ4

qρðpþqÞσ
ðpþqÞ2þM2

τ

1

p2þM2
π
;

Iρðq;M2
π;M2

τÞ¼
Z

d4p
ð2πÞ4

qρ
ðpþqÞ2þM2

τ

1

p2þM2
π
;

Iðq2;M2
π;M2

τÞ¼
Z

d4p
ð2πÞ4

1

ðpþqÞ2þM2
τ

1

p2þM2
π
: ð3:21Þ

All integrals can be evaluated using dimensional regulari-
zation. We find that

Iρσðq;M2
π;M2

τÞ¼Bðq2;M2
π;M2

τÞδρσþCðq2;M2
π;M2

τÞqρqσ;
Iρðq;M2

π;M2
τÞ¼Aðq2;M2

π;M2
τÞqρ; ð3:22Þ

with

Iðq2;M2
π;M2

τÞ¼
1

16π2

Z
1

0

dx

�
λ− log

�
D
μ2

�
−1

�
;

Aðq2;M2
π;M2

τÞ¼−
1

16π2

Z
1

0

dxx

�
λ− log

�
D
μ2

�
−1

�
;

Bðq2;M2
π;M2

τÞ¼−
1

2

1

16π2

Z
1

0

dxD
�
λ− log

�
D
μ2

��
;

Cðq2;M2
π;M2

τÞ¼−
1

16π2

Z
1

0

dxxð1−xÞ
�
λ− log

�
D
μ2

�
−1

�
;

ð3:23Þ

and

D≡Dðq2;M2
π;M2

τÞ
¼ xð1 − xÞq2 þ ð1 − xÞM2

π þ xM2
τ : ð3:24Þ

Collecting these results, we obtain

Sð1Þ2 ðaμÞ ¼ SπðaμÞ þ SτðaμÞ þ SmixðaμÞ

¼
Z

d4q
ð2πÞ4 a

a
μð−qÞaaνðqÞ

��
F2
π

F2
τ
ðKðM2

τÞ − Bðq2;M2
π;M2

τÞÞ −
1

2
NfKðM2

πÞ
��

δμν −
qμqν

q2 þM2
π

�

þ
�
F2
π

F2
τ

�
y2

4
− 1

�
KðM2

τÞ þ
1

2Nf
KðM2

πÞ −
F2
π

F2
τ

�
y2M2

π

16
Iðq2;M2

π;M2
τÞ − Bðq2;M2

π;M2
τÞ þM2

πCðq2;M2
π;M2

τÞ

þ yM2
π

4
ðAðq2;M2

τ ;M2
πÞ − Aðq2;M2

π;M2
τÞÞ

��
M2

πqμqν
ðq2 þM2

πÞ2
�
: ð3:25Þ

Returning to SLO, Eq. (2.21), if we vary Fπ → Fπ þ δFπ and M2
π → M2

π þ δM2
π we find for the variation

δSLO ¼
Z

d4p
ð2πÞ4 a

a
μð−pÞ

�
δFπFπ

�
δμν −

pμpν

p2 þM2
π

�
þ 1

2
F2
π

δM2
πpμpν

ðp2 þM2
πÞ2

�
aaνðpÞ: ð3:26Þ

Comparing with Eqs. (3.25) and (3.26) we finally obtain

δFπ

Fπ

����
1-loop

¼ −
1

2

Nf

F2
π
KðMπÞ þ

1

F2
τ
ðKðM2

τÞ − Bð−M2
π;M2

π;M2
τÞÞ; ð3:27Þ
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and

δM2
π

M2
π

����
1-loop

¼ 1

NfF2
π
KðM2

πÞ þ
2

F2
τ

�
y2

4
− 1

�
KðM2

τÞ −
2

F2
τ

�
y2M2

π

16
Ið−M2

π;M2
π;M2

τÞ

þ yM2
π

4
ðAð−M2

π;M2
τ ;M2

πÞ − Að−M2
π;M2

π;M2
τÞÞ − Bð−M2

π;M2
π;M2

τÞ þM2
πCð−M2

π;M2
π;M2

τÞ
�
: ð3:28Þ

B. Oðp4Þ Lagrangian
The Oðp4Þ Lagrangian for dChPT was constructed in

Ref. [10]. Here we will list only those operators that
contribute to the axial-current two-point function.
The first class of operators corresponds to the standard

Oðp4Þ Lagrangian [17]. Their coupling to the dilaton field
is detailed in Ref. [10]. Those that are relevant here are

Qπ
4 ¼ 2BπmL4eðy−2Þv0 trðDμU†DμUÞtrðU þ U†Þ; ð3:29aÞ

Qπ
5 ¼ 2BπmL5eðy−2Þv0 trðDμU†DμUðU þ U†ÞÞ; ð3:29bÞ

Qπ
6 ¼ −ð2BπmÞ2L6e2ðy−2Þv0ðtrðU þU†ÞÞ2; ð3:29cÞ

Qπ
8 ¼ −ð2BπmÞ2L8e2ðy−2Þv0 trðUU þU†U†Þ; ð3:29dÞ

where we already substituted the classical VEV v0 for τ. To
quadratic order in aμ, these lead to the contribution

SLðaμÞ ¼ 4M2
π

Z
d4q
ð2πÞ4 a

a
μð−qÞ

�
L45

�
δμν −

qμqν
q2 þM2

π

�

þ ð2L68 − L45Þ
M2

πqμqν
ðq2 þM2

πÞ2
�
aνðqÞ; ð3:30Þ

in which

L45 ¼ NfL4 þ L5; L68 ¼ NfL6 þ L8: ð3:31Þ

Next, we consider the “mixed” operators of Ref. [10].
The relevant ones are

Qmix
1 ¼ 1

4
f2πcπ01e

2v0 trðDμU†DμUÞ; ð3:32aÞ

Qmix
2 ¼ 1

4
f2πcπ11v0e

2v0 trðDμU†DμUÞ; ð3:32bÞ

Qmix
3 ¼ −

1

2
f2πBπmcM01e

yv0 trðU þ U†Þ; ð3:32cÞ

Qmix
4 ¼ −

1

2
f2πBπmcM11v0e

yv0 trðU þ U†Þ: ð3:32dÞ

Again, we already substituted v0 for τ. The first index of
cnk, namely n, refers to the power of τ multiplying the

exponential containing τ; the second index, k, is the power
of n�f − nf contained in cnk. Hence the new LECs cπ01, c

π
11,

cM01 and cM11 all contain one power of n�f − nf (like c1).
These operators appear at Oðp4Þ because, in addition to
one power of n�f − nf, they contain also one power of the
fermion mass m or two derivatives.3 To quadratic order in
aμ, these operators lead to the contribution

SmixðaμÞ¼
1

2
F2
π

Z
d4q
ð2πÞ4a

a
μð−qÞaνðqÞ

×

�
ðcπ01þv0cπ11Þ

�
δμν−

qμqν
q2þM2

π

�

þðcM01−cπ01þðcM11−cπ11Þv0Þ
M2

πqμqν
ðq2þM2

πÞ2
�
: ð3:33Þ

Equations (3.30) and (3.33) together give rise to the
corrections

δFπ

Fπ

����
Oðp4Þ

¼ 4M2
πL45 þ

1

2
ðcπ01 þ v0cπ11Þ; ð3:34Þ

and

δM2
π

M2
π

����
Oðp4Þ

¼ 8
M2

π

F2
π
ð2L68 − L45Þ þ cM01 − cπ01

þ ðcM11 − cπ11Þv0: ð3:35Þ

We have listed all the Oðp4Þ operators which contribute
to the NLO part of the effective action at quadratic order in
aμ. OtherOðp4Þ operators contribute to the NLO correction
of the dilaton VEV v, and ultimately toM2

π and Fπ at NLO,
as we discuss in the next subsection.

C. Dilaton effective potential

In this subsection we calculate VNLO, the effective
potential for the constant mode v of the dilaton field τ,
at NLO. The saddle-point equation that follows from this
effective potential, to be discussed in Sec. III E below,
yields the NLO correction v1 to the dilaton VEV. This

3Apart from their dependence on Nf and Nc, the operators in
Eqs. (3.32a) and (3.32c) are identical to the corresponding tree-
level operators. We return to this point in Sec. IVA below.
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correction, in turn, contributes to M2
π and Fπ at NLO, as

follows from Eq. (2.10).
The NLO effective potential consists of three parts,

VNLO ¼ VLO þ Vð1Þ þ VOðp4Þ; ð3:36Þ

where the tree-level potential VLO is given in Eq. (2.5). In
order to derive the one-loop contribution, Vð1Þ, we expand
the LO action to quadratic order in τ̂ and π, using
τ ¼ vþ τ̂=fτ and Eq. (2.2), obtaining

S2 ¼
1

2

Z
d4xðe2v∂μπa∂μπa þ 2Bπmeyvπaπa

þ e2vð∂μτ̂Þ2 þ V 00
LOðvÞτ̂2Þ; ð3:37Þ

where V 00
LO is the second derivative of VLO with respect

to v.4 Integrating over π and τ̂ yields the one-loop effective
potential

Vð1Þ ¼ −
1

64π2

�
ðe−2vV 00ðvÞÞ2

�
λþ 1

2
− log

�
e−2vV 00ðvÞ

μ2

��
þ ðN2

f − 1Þð2Bπmeðy−2ÞvÞ2

×

�
λþ 1

2
− log

�
2Bπmeðy−2Þv

μ2

���
: ð3:38Þ

The first term on the right-hand side was already obtained
in Ref. [10].
Next, we consider the contribution ofOðp4Þ operators to

the dilaton effective potential. There are three pure-dilaton
operators,

Qτ
1 ¼ c02f2τBτe4τ;

Qτ
2 ¼ c12τf2τBτe4τ;

Qτ
3 ¼ c22ðτ2=2Þf2τBτe4τ; ð3:39Þ

where the coefficients cn2 are of order ðn�f − nfÞ2. Additional
contributions come from Eqs. (3.32c) and (3.32d), as well as
fromEqs. (3.29c) and (3.29d). Finally, there is a contribution
from the Oðp4Þ operator

Qπ
H2

¼ −ð2BπmÞ2H2Nfe2ðy−2Þv: ð3:40Þ

In ordinary ChPT the corresponding operator derives from a
contact term; but in dChPT this operator becomes dependent
on the dilaton field, and thus contributes to the dilaton
effective potential. The contribution of all these operators
yields

VOðp4Þ ¼ −8B2
πL̂Nfm2e2ðy−2Þv

þ f2τBτe4v
�
c02 þ c12vþ

1

2
c22v2

�
− Nff2πBπmeyvðcM01 þ vcM11Þ; ð3:41Þ

where

L̂ ¼ L8 þ 2NfL6 þ
1

2
H2: ð3:42Þ

D. Renormalization

We define the following renormalized Oðp4Þ LECs:

c02 ¼ cr02 þ
c21Bτ

4π2f2τ
λ; ð3:43aÞ

c12 ¼ cr12 þ
2c21Bτ

π2f2τ
λ; ð3:43bÞ

c22 ¼ cr22 þ
8c21Bτ

π2f2τ
λ; ð3:43cÞ

cπ01 ¼ cπ;r01 þ 3c1Bτ

8π2f2τ
λ; ð3:43dÞ

cπ11 ¼ cπ;r11 þ 3c1Bτ

2π2f2τ
λ; ð3:43eÞ

cM01 ¼ cM;r
01 þ c1Bτy2

8π2f2τ
λ; ð3:43fÞ

cM11 ¼ cM;r
11 þ c1Bτy2

2π2f2τ
λ; ð3:43gÞ

L45 ¼ Lr
45 −

1

128π2

�
Nf þ

f2π
3f2τ

þ 3Nfy2f4π
4f4τ

�
λ; ð3:43hÞ

L68 ¼ Lr
68 −

1

256π2

�
N2

f − 1

Nf
−
ð3y2 − 8Þf2π

24f2τ
þ Nfy4f4π

4f4τ

�
λ;

ð3:43iÞ

L̂ ¼ L̂r −
1

128π2

�
N2

f − 1

Nf
þ Nfy4f4π

4f4τ

�
λ; ð3:43jÞ

where λ is defined in Eq. (3.19b). This amounts to using the
so-called “MSþ 1” scheme of Ref. [17]. Employing these
expressions removes all divergences from Eqs. (3.27),
(3.28) and (3.38), and replaces bare LECs by renormalized
LECs in Eqs. (3.34), (3.35) and (3.41).

4In the calculation of VNLO we set aμ to zero. Equation (3.37)
may be obtained by setting aμ ¼ 0 and (thus) u ¼ 1 in Eq. (3.2),
while keeping v arbitrary.
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E. M2
π and Fπ at Oðp4Þ

The saddle-point equation at NLO is obtained by
minimizing the effective potential (3.36) with respect to
v. In the derivatives of Vð1Þ and VOðp4Þ we can set v ¼ v0
immediately. In the tree-level term we substitute v ¼
v0 þ v1 and expand to linear order in v1, using that v0

solves the tree-level equation (2.7). We obtain an equation
for v1, the NLO correction for the dilaton VEV, viz.,

∂
2VLO

∂v2

����
v¼v0

v1 þ
∂Vð1Þ

∂v

����
v¼v0

þ ∂VOðp4Þ
∂v

����
v¼v0

¼ 0: ð3:44Þ

The solution is

v1 ¼ −
1

F2
τM2

τ

�
M2

τ

64π2F2
τ
Nfyðy − 4Þ2F2

πM2
π þ

M2
τ

16π2F2
τ
ð3F2

τM2
τ −

1

4
Nfyðy − 4Þ2F2

πM2
πÞ log

�
M2

τ

μ2

�

þ BτF2
τe2v0ð4cr02 þ cr12ð1þ 4v0Þ þ cr22v0ð2v0 þ 1ÞÞ − 1

2
NM2

πF2
πðcM;r

01 yþ cM;r
11 ðyv0 þ 1ÞÞ

þ ðN2
f − 1Þðy − 2ÞM4

π

32π2
log

�
M2

π

μ2

�
− 4Nfðy − 2ÞL̂rM4

π

�
: ð3:45Þ

At NLO, v1 contributes to Fπ and M2
π through the dependence of the LO expressions on the dilaton VEV. Technically, we

need to restore v0 → v in Eq. (2.10), substitute v ¼ v0 þ v1, and then expand to linear order in v1.
The final expressions for Fπ and M2

π to NLO are given by

FNLO
π

Fπ
¼ 1þ v1 −

Nf

32π2
M2

π

F2
π
log

�
M2

π

μ2

�
þ M2

τ

16π2F2
τ
log

�
M2

τ

μ2

�
þ 4M2

π

F2
π
Lr
45 þ

1

2
ðcπ;r01 þ cπ;r11 v0Þ

−
1

32π2F2
τ
ðM2

πðJ0ðMπ;MτÞ − 2J1ðMπ;MτÞ þ J2ðMπ;MτÞÞ þM2
τJ1ðMπ;MτÞÞ; ð3:46Þ

and

�
MNLO

π

Mπ

�
2

¼ 1þ ð1 − γ�Þv1 þ
M2

π

16π2NfF2
π
log

�
M2

π

μ2

�
þ ðy2 − 4ÞM2

τ

32π2F2
τ

log

�
M2

τ

μ2

�
þ cM;r

01 − cπ;r01 þ v0ðcM;r
11 − cπ;r11 Þ

−
8M2

π

F2
π
ðLr

45 − 2Lr
68Þ þ

1

16π2F2
τ

�
1

24
ð3y2 − 8ÞM2

π þ
1

8
ðy2 − 4yþ 8ÞM2

πJ0ðMπ;MτÞ

þ ðM2
τ þ ðy − 4ÞM2

πÞJ1ðMπ;MτÞ þ 3M2
πJ2ðMπ;MτÞ

�
; ð3:47Þ

where

JnðM1;M2Þ ¼
Z

1

0

dxxn log

�
M2

1ð1− xÞ2þM2
2x

μ2

�
: ð3:48Þ

These results follow from combining Eqs. (2.10), (3.27),
(3.28), (3.34), (3.35), (3.43), and (3.45). Explicit expres-
sions for the Jn integrals for n ¼ 0, 1, 2 are given in
Appendix A.

IV. FITS OF NLO dChPT TO LatKMI DATA

In previous work we applied LO dChPT to lattice data
for the pion mass Mπ and decay constant Fπ in the eight-
flavor SU(3) gauge theory. In Ref. [15] we fitted data
obtained by the LSD Collaboration [4], finding that LO
dChPT describes these data well, with a mass anomalous
dimension γ� ¼ 0.93ð2Þ. In Ref. [16] we attempted to fit

data from the LatKMI Collaboration [1]. The fermion
masses considered by LatKMI span a wider range than
those considered by LSD. In addition, when measured in
units of the gradient flow scale t0 [26], the LatKMI mass
range lies well above that of LSD.5 We found that LO
dChPT cannot describe the LatKMI data over the full
fermion mass range. But we also showed that extending LO
dChPT with a model for a varying mass anomalous
dimension can describe these data reasonably well.
Both LSD and LatKMI measured also the dilaton mass

Mτ (in the case of LatKMI, for a subset of their fermion
masses). But the quality of these data is significantly
poorer, and thus the dilaton mass data have little effect
on the fit results. No measurements of the dilaton decay
constant Fτ exist to date.

5As t0 itself is strongly mass dependent, this statement
amounts to the use of a mass-dependent scale setting.
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In view of the inability to describe the LatKMI data
using LO dChPT, the question arises whether NLO dChPT
will do better. This question will be addressed in this
section. In Sec. IVA we recast the NLO results of Sec. III
in a form which is more convenient for the fits. We also
discuss redundancies among the parameters that arise
when one considers a theory with fixed Nf and Nc.
Then, in Sec. IV B we will present and discuss the results
of our fits.

A. Fit form and parameters

We introduce the following combinations of the LO
parameter [15]:

d1 ¼
ð3− γ�Þf2π
8Bπc1M

; d2 ¼
f2π
2Bπ

; d3 ¼
4c1Bτ

f2π
; ð4:1Þ

with M defined in Eq. (2.6). In terms of these parameters,
the LO results (2.10) can be re-expressed as

Fπ ¼ fπev0 ; ð4:2aÞ

M2
π ¼

f2π
d1

v0e2v0 ; ð4:2bÞ

M2
τ ¼ f2πd3ð1þ ð1þ γ�Þv0Þe2v0 ; ð4:2cÞ

θ≡ F2
π

F2
τ
¼ f2π

f2τ
¼ 2d1d3

ð3 − γ�ÞNf
; ð4:2dÞ

where in the last equation we defined the decay-constant
ratio θ in terms of the parameters (4.1), substituting
Eq. (2.10d) for Fτ. The LO VEV v0 solves Eq. (2.7)
and can be written as a function of the fermion mass m in
terms of the Lambert function W0 as

v0ðmÞ ¼ 1

1þ γ�
W0

�ð1þ γ�Þd1
d2

m

�
: ð4:3Þ

Using Eqs. (4.2) and (4.3) we recast the NLO results of
Eqs. (3.46), (3.47) and (3.45) as

FNLO
π

Fπ
¼ 1þ v1 −

Nfv0
32π2d1

log

�
M2

π

μ2

�
þ θd3ð1þ ð4 − yÞv0Þ

16π2
log

�
M2

τ

μ2

�
þ 4v0

d1
Lr
45 þ

1

2
ðcπ;r01 þ cπ;r11 v0Þ

−
θ

32π2

�
v0
d1

ðJ0ðMπ;MτÞ − 2J1ðMπ;MτÞ þ J2ðMπ;MτÞÞ þ d3ð1þ ð4 − yÞv0ÞJ1ðMπ;MτÞ
�
; ð4:4Þ

�
MNLO

π

Mπ

�
2

¼ 1þ ðy − 2Þv1 þ
v0

16π2Nfd1
log

�
M2

π

μ2

�
þ ðy2 − 4Þθd3ð1þ ð4 − yÞv0Þ

32π2
log

�
M2

τ

μ2

�

þ cM;r
01 − cπ;r01 þ v0ðcM;r

11 − cπ;r11 Þ −
8v0
d1

ðLr
45 − 2Lr

68Þ

þ θ

16π2

�
1

24
ð3y2 − 8Þ v0

d1
þ 1

8
ðy2 − 4yþ 8Þ v0

d1
J0ðMπ;MτÞ

þ
�
d3ð1þ ð4 − yÞv0Þ þ ðy − 4Þ v0

d1

�
J1ðMπ;MτÞ þ 3

v0
d1

J2ðMπ;MτÞ
�
; ð4:5Þ

and

v1 ¼
Nfyðy − 4Þ2θ2v0

64π2d1

�
log

�
M2

τ

μ2

�
− 1

�
−
3θd3ð1þ ð4 − yÞv0Þ

16π2
log

�
M2

τ

μ2

�

−
1

d3ð1þ ð4 − yÞv0Þf2π
ð4c̄r02 þ c̄r12ð1þ 4v0Þ þ c̄r22v0ð1þ 2v0ÞÞ þ

1

2

Nfθv0
d1d3ð1þ ð4 − yÞv0Þ

ðcM;r
01 yþ cM;r

11 ð1þ yv0ÞÞ

−
ðN2

f − 1Þðy − 2Þθv20
32π2d21d3ð1þ ð4 − yÞv0Þ

log

�
M2

π

μ2

�
þ 4Nfðy − 2Þθv20
d21d3ð1þ ð4 − yÞv0Þ

L̂r; ð4:6Þ

where

c̄ri2 ¼ Bτcri2; i ¼ 0; 1; 2: ð4:7Þ

Inside the logarithms, Eqs. (4.2b) and (4.2c) should be used
for M2

π and M2
τ .

We next consider possible redundancies among the
parameters appearing in the NLO predictions. These
redundancies occur because we have data only from the
eight-flavor SU(3) theory, and thus we do not get to vary
Nf or Nc. We start with Eq. (3.32c), which is identical to
the tree-level pion mass term [cf. Eq. (2.1)], except that it
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contains an extra factor of cM01. In principle, the LEC cM01 is
Oðp2Þ in the power counting (2.3), having in general an
Oðnf − n�fÞ piece plus an Oð1=NcÞ piece. But since our
data come from a single theory, the fit cannot resolve
Eq. (3.32c) from the tree-level pion mass term. Hence we
must not include cM01 in the fit. Similarly, the operator in
Eq. (3.32a) is identical to the tree-level pion kinetic term;
hence cπ01 must not be included in a single-theory fit either.
Finally, after the τ shift that fixed the form of the dilaton

potential in Eq. (2.1) [10], this potential is a linear
combination of the operators f2τBτe4τ and f2τBττe4τ [com-
pare Eq. (3.39)]. Therefore, only one additional linear
combination of these operators should be kept in the fit. In
the actual fits discussed below, c̄r02 was kept.
In summary, to eliminate the single-theory redundancies

we set cπ;r01 , c
M;r
01 and c̄r12 to zero in Eqs. (4.4)–(4.6). This

leaves us with seven independent NLO parameters, in
addition to the five parameters that appear in LO dChPT.
The total number of parameters to be considered at NLO is
thus twelve.

B. Fit results

As we will see, a complete, meaningful NLO fit to the
LatKMI data [1] turns out to be impossible. We thus begin
by describing our strategy.
In order to keep the mass dependence fully explicit in our

application of dChPT, we assume a mass-independent
scheme for setting the scale. The ensembles of Ref. [1]
share a common bare coupling, and thus, by definition, a
common lattice spacing a as well. The LatKMI calculations
were done for 10 different bare fermion masses,

am ¼ f0.012; 0.015; 0.02; 0.03; 0.04; 0.05; 0.06;
0.07; 0.08; 0.1g: ð4:8Þ

In Ref. [16] we fitted data for M2
π=F2

π and aFπ to LO
dChPT in “sliding windows” of five successive fermion

masses, ranging from f0.012; 0.015; 0.02; 0.03; 0.04g to
f0.05; 0.06; 0.07; 0.08; 0.1g. Trying to add more fermion
masses to a given LO fit led to a rapid deterioration of the
quality of these fits, and an LO fit to all ten masses yielded
an unacceptably low p value (of about 10−11).
We reproduce the LO fits in Table I. In the new LO fits

we also included data forM2
τ=F2

π. The dilaton massMτ was
computed for only a subset of the fermion masses,
am∈ f0.012; 0.015; 0.02; 0.03; 0.04; 0.06g. Moreover, the
errors of Mτ are significantly larger than those of Fπ and
Mπ . Thus, the inclusion of Mτ data in the LO fits results in
negligible changes in the previous fit predictions.6 But it
constrains the LO parameter d3, which does not occur in the
LO expressions for aMπ and aFπ (more below).
Moving on to NLO, the primary quantities that we fit are

aFπ and aMπ .
7 The LatKMI dataset thus provides 20 data

points. While we have 12 parameters in the NLO fit, it turns
out that a fit with all of them is unable to determine even the
LO parameters. In fact, the fit’s predictions for most of the
LO parameters contain huge errors on a logarithmic scale.
Our first conclusion is thus that significantly better data will
be needed to carry out a complete NLO dChPT fit.
Facing this situation, we narrowed the scope of our fits.

First, while d3 is a LO fit parameter, it appears in the
expressions for aFπ and aMπ only at NLO. In order to
better constrain d3, we included also data forM2

τ=F2
π in the

fit, which we fitted to the corresponding LO expression. We
did not include NLO corrections for M2

τ=F2
π, both because

of the low quality of Mτ data, and because this would
introduce even more NLO parameters than already present
in expressions (4.4), (4.5) and (4.6).
In addition, we attempted to find good fits to the data at a

fixed renormalization scale aμ ¼ 1 using only a few of the

TABLE I. Reproduction of LO fits of the LatKMI data [16]. Each fit is done in a “window” of five successive
fermion masses.

Fit A B C D E F
Range 0.012–0.04 0.015–0.05 0.02–0.06 0.03–0.07 0.04–0.08 0.05–0.1

χ2=d:o:f: 11.7=10 12.2=9 7.2=9 4.8=8 4.7=7 4.0=6
p value 0.30 0.20 0.62 0.77 0.69 0.68

γ� 0.608(8) 0.589(10) 0.543(10) 0.534(12) 0.527(8) 0.498(13)
102afπ 0.50(7) 0.67(6) 0.89(8) 1.0(2) 1.07(13) 1.12(14)
10aBπ 4.7(2) 4.99(14) 5.09(14) 5.3(4) 5.3(2) 5.1(2)
10afτ 0.23(4) 0.31(4) 0.41(4) 0.44(11) 0.44(7) 0.47(11)
104c1a2Bτ 0.16(6) 0.33(9) 0.70(17) 1.1(6) 1.3(5) 1.5(7)

10d1 1.72(10) 1.52(6) 1.34(5) 1.27(13) 1.24(6) 1.21(7)
− logðad2Þ 10.5(3) 10.0(2) 9.45(15) 9.2(4) 9.1(2) 9.0(2)
d3 2.6(3) 3.0(4) 3.5(5) 4.2(7) 4.7(10) 4.7(1.9)

6The p values of the new LO fits are substantially higher,
because the χ2 increases by only a little, while the number
of degrees of freedom is larger.

7More precisely, the fitted quantities are aFπ and ðaMπÞ2.
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NLO parameters, setting the remaining NLO parameters to
zero.8 After considerable experimentation, we found that
keeping only the NLO parameters c̄r22 and L̂r, we are able
to obtain good fits to the LatKMI data over essentially the
entire mass range. We note that these two NLO parameters
appear in the expression for v1, Eq. (4.6), while aFπ and
aMπ depend on these parameters only indirectly, through
the dependence of the NLO corrections on v1 [Eqs. (4.4)
and (4.5)].
The NLO fits with the parameters c̄r22 and L̂r are shown

in Table II, and we will next discuss them in detail. Fit C
includes data from all ten masses in Eq. (4.8), while in fit B
we omitted the highest mass, and in fit A the highest two.
The p values of fits A and B are good; fit C is marginal, but
still drastically better than the LO fit for the entire mass
range. Inspecting differences between data and fit predic-
tions, what stands out in fit C is a 3σ discrepancy for aFπ at
am ¼ 0.02. The same data point is also relatively poorly
fitted in fits A and B as well (albeit with a smaller
discrepancy). This suggests a possible issue with the data
at am ¼ 0.02. We thus repeated fits A, B and C omitting
the data at am ¼ 0.02, obtaining fits D, E, and F of Table II.
The new fits have a higher p value than their companion fits
in which the am ¼ 0.02 data are kept. Notably, fit F, which
includes data from all masses except am ¼ 0.02 is now also
a good fit. We thus find that the expressions predicted by
NLO dChPT can describe the data of Ref. [1].
While the NLO fits of Table II are technically good,

nonetheless this is not the behavior expected from a
systematic order-by-order expansion, for several reasons.
First, as already discussed above, we could not fit all the

NLO parameters simultaneously. Instead, wewere driven to
include only a small subset of the NLO parameters in the fit
in an essentially ad hoc way. The origin of this problem is
clearly that the data are not good enough.
A different problem surfaces when we compare the LO

“sliding window” fits of Table I with the values for the LO
parameters predicted by the NLO fits of Table II. This
problem has two facets. First, if LO dChPT is to provide
a reasonable first approximation of the data, we would
expect the variation of the LO parameters across the
collection of window fits to be modest. A caveat is that
LatKMI’s full mass range is large: the ratio of the largest to
the smallest mass is about 10. An examination of the actual
results reveals that γ� and Bπ vary by about 20% or less
across the window fits, which is certainly a small variation.
Next, fπ and fτ vary by about a factor of 2, which,
considering the wide range of LatKMI masses, might not be
entirely unreasonable.
The last LO parameter, c1Bτ, varies by a factor of

10 in the window fits.9 This is a huge variation, which,
already by itself, indicates that there is no way that the NLO
contribution can be a small correction in comparison with
LO. The reason is, simply, that the predictions of the
different LO window fits for c1Bτ are already in gross
disagreement with each other. Hence, any given NLO result
for this parameter cannot be in agreement with all the fits of
Table I simultaneously. To make things worse, while the
values of c1Bτ in the fits of Table II are quite stable, they are
yet larger than the largest value obtained in Table I by at
least another order of magnitude. The values of afπ in
Table II are also larger by about a factor of 4 or more in

TABLE II. Fits to aFπ ,M2
π=F2

π (NLO) andM2
τ=F2

π (LO, see text). Fits D, E and F are the same as fits A, B and C,
respectively, but with the data at am ¼ 0.02 omitted from the fit. The last column shows the range of each parameter
in the LO fits of Table I.

Fit A B C D E F
LO rangeMasses 0.012–0.07 0.012–0.08 0.012–0.1 A no 0.02 B no 0.02 C no 0.02

χ2=d:o:f: 13.0=15 20.5=17 37.6=19 8.0=12 9.6=14 20.2=16
p value 0.61 0.25 0.007 0.79 0.79 0.21

γ� 0.658(7) 0.654(10) 0.650(13) 0.659(10) 0.659(12) 0.656(13) 0.5–0.6
102afπ 3.8(2) 4.33(18) 4.70(17) 4.2(3) 4.54(18) 4.86 (17) 0.5–1.1
aBπ 1.17(5) 1.138(44) 1.13(4) 1.18(5) 1.17(4) 1.17(3) 0.47–0.53
10afτ 1.06(15) 0.98(14) 0.99(13) 1.03(15) 1.01(14) 1.03(13) 0.23–0.47
103c1a2Bτ 1.6(3) 1.9(3) 2.2(4) 2.1(4) 2.4(4) 2.7(5) 0.016–0.15

d1 0.29(9) 0.44(13) 0.52(15) 0.33(11) 0.41(11) 0.45(11) 0.12–0.17
− log ðad2Þ 7.37(12) 7.10(8) 6.94(8) 7.20(15) 7.03(8) 6.90(7) 9–10.5
d3 4.4(6) 4.2(5) 4.1(5) 4.7(6) 4.7(6) 4.6(6) 2.6–4.7
c̄r22 0.023(5) 0.026(5) 0.030(6) 0.030(7) 0.033(7) 0.038(8)
L̂r 2.0(5) 2.9(8) 3.4(9) 2.3(7) 2.8(7) 3.1(8)

8The values of all NLO parameters at a different renormaliza-
tion scale can be obtained using Eqs. (3.45)–(3.47).

9The values of c1Bτ were not reported in the fits of Ref. [16], in
which Mτ data were not included.
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comparison with the largest value obtained in the LO
window fits.
Another acute problem has to do with the predictions of

the NLO fits for the dilaton vacuum expectation value,
vðmÞ. This is illustrated in Table III. We compare values
obtained in NLO fit A (Table II), with those from the LO fit
A (Table I), at selected mass values: am ¼ 0.012, which is
the smallest mass used by LatKMI, and also in both fits;
am ¼ 0.04, the largest mass in the LO fit; and am ¼ 0.07,
the largest mass in the NLO fit. The results for other masses
fall in between the values shown in the table.
Examining the first two rows of Table III, one can see

that the results for v0 disagree by roughly a factor of 2
between the LO and NLO fits. Another problem is that v1 is
large and negative,10 leading to a large cancellation in the
sum v0 þ v1. The discrepancy between that sum and the
value of v0 in the LO fit is even larger. In fact, v1 is so large,
that the question arises if it should be resummed, given that
the difference between 1þ v1 and expðv1Þ is substantial.
We note that jv1=v0j is largest for the smallest mass.
However, this by itself is not necessarily a problem,
because we enforced v0 → 0 for m → 0 via the τ shift,
but we do not readjust the τ shift at NLO.11

Finally, the NLO corrections for Mπ and Fπ are
dominated by the contribution of the v1 term, and are also
by themselves too big to be comfortable with.
In summary, we conclude that dChPT, as a systematic

order-by-order expansion, with the bulk of the physics
captured at LO, cannot account for the LatKMI mass range.
If we were dealing with ordinary ChPT, the natural

conclusion would have been that the data come from a mass
range which is too high, at least in part. However, in
dChPT, large masses per se do not necessarily lead to a
failure of the expansion. As we showed in Ref. [13], dChPT
has a large-mass regime in which the fermion masses are
not small in comparison with the chiral symmetry breaking
scale of the massless theory; and yet, dChPT still provides a

systematic expansion, now thanks (only) to the smallness
of the other expansion parameter, nf − n�f.
The reason why dChPT fails to account systematically

for the LatKMI data is thus probably that the LatKMI mass
range is too far from the influence of the fixed point at the
sill of the conformal window. In more concrete terms, it
suggests a too-large beta function and/or a mass anomalous
dimension that varies too fast over the LatKMI mass range.
By contrast, for the LSD data, which also come from the
Nf ¼ 8 theory but at a lower mass range, we were able to
obtain good LO fits for the entire mass range, indicating
that dChPT is applicable in that range [15].
In spite of all the issues discussed above, the goodness of

the NLO fits we presented in this section means that the
corresponding NLO expressions provide a good model of
the full LatKMI dataset. For completeness, we briefly
mention here the alternative model we proposed in
Ref. [16], which centers around a variable mass anomalous
dimension that goes beyond dChPT.
The model of Ref. [16] replaces γ�τ in Eq. (2.1) by a

function

FðτÞ ¼ γ0τ −
1

2
bτ2 þ 1

3
cτ3; ð4:9Þ

where γ0, b and c are phenomenological parameters. The
corresponding mass anomalous dimension is

γm ¼ ∂F
∂τ

¼ γ0 − bτ þ cτ2; ð4:10Þ

which eventually becomes a function of m, when vðmÞ is
substituted for the τ field. Expanding

e3τ−FðτÞ ¼ eð3−γ0Þτ
�
1þ 1

2
bτ2 þOðτ3Þ

�
; ð4:11Þ

we see that formally γ0 can be identified with γ�, and that b
can be interpreted as a next-to-next-to-leading order
(NNLO) LEC, etc. This model therefore amounts to a
specific resummation of dChPT. However, while the model
provides good fits to the LatKMI data (see Table 2 of
Ref. [16]), the values of γ0 obtained in such fits are very
different from any of the values for γ� in both Tables I and II.
We conclude this section by recalling that Ref. [1]

considered only one lattice spacing, and thus we are not
in the position to discuss the continuum limit, or say much
about lattice spacing effects. As discussed in more detail in
Refs. [1,16], the pion taste splittings are significant, sug-
gesting that lattice spacing effects are not small. While in
Refs. [15,16] we considered the extension of dChPT to
staggered dChPT at LO, it is not possible to do so with the
available LatKMI data at NLO. In our present analysis, we
assumed that lattice spacing effects for the staggered
Goldstone pion, as well as finite-volume effects, are small
enough to apply continuum, infinite-volume dChPT.

TABLE III. Comparison of values of v0 and v1 from an NLO fit
(Table II), with the value of v0 from a LO fit (Table I).

NLO fit A
LO fit A

am v0 v1 v0 þ v1 v0

0.012 1.01(11) −0.847ð19Þ 0.16(11) 2.21(14)
0.04 1.50(12) −0.7631ð15Þ 0.74(12) 2.81(15)
0.07 1.75(13) −0.697ð15Þ 1.05(13) � � �

10Interestingly, the bulk of the contribution to v1 comes from
the two NLO LECs, c̄r22 and L̂r.

11In principle, we might consider shifting τ again to achieve
v0 þ v1 ¼ 0 for m ¼ 0. However, for the fits of Table II, we find,
using Eq. (4.6), that v1ðm ¼ 0Þ is very small compared with the
values shown in Table III. Such a shift would thus have very little
impact in practice.
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V. CONCLUSION

We have extended dChPT to next-to-leading order, and
calculated the NLO corrections to the pion mass Mπ and
decay constant Fπ . These quantities have been computed
on the lattice with relatively high precision in the eight-
flavor SU(3) theory by the LatKMI [1] and LSD [4]
Collaborations. While both collaborations also reported
results for the dilaton mass Mτ, these results have much
larger errors in comparison with the pionic quantities.
Our main goal in this paper was to investigate to what

extent NLO dChPT can account for the LatKMI data. While
we found [15] that LO dChPT provides a very good
description of the LSD data,12 the same is not true for the
LatKMI data [16]. The LatKMI simulations were performed
at much larger fermion masses (in physical units) than the
LSD ones, and cover a wider range of fermion masses. Both
factors ostensibly play a role in the failure of LO dChPT to
describe theLatKMI data. It is thus natural to askwhether the
situation might improve when dChPT is extended to NLO.
The results of our investigation are somewhat inconclu-

sive. The LatKMI data are not precise enough to carry out a
full-fledged NLO fit of the pion mass and decay constant.
Instead, we found that “truncated”NLO fits, inwhich several
of the NLO LECs are arbitrarily set to zero (at a given
renormalization scale) can describe theMπ and Fπ data over
the full LatKMI mass range. However, a more detailed
analysis of the LO fits, in which we also considered the
(limited) data for Mτ, as well as further scrutiny of the
nominally successful but truncatedNLO fits, suggest that the
LatKMIdatamight beoutside the scope of dChPT.The likely
reason is that these data live at a scale at which the
renormalized coupling runs too fast, and the same goes
for the mass anomalous dimension (more below). This
conclusion would be in line with our previous work [16],
where we found that a model based on LO dChPT with a
varying mass anomalous dimension successfully describes
the LatKMI data over the entire mass range. That said, given
the quality of the LatKMI data on the one hand, and the
difficulty of carrying out dChPT fits beyond LO on the other
hand, we cannot rule out that the LatKMI mass range could
still liewithin the domain of validity of dChPT, and thatmore
precise data from the samemass range could be described by
NLO dChPT, with potentially small NNLO corrections.
We end with a few remarks. First, we are using the distance

to the conformal sill, jnf−n�fj, as the small parameter con-
trolling the hard breaking of scale invariance. But as we
explained indetail inour firstpaper [10] (seealsoappendixBof
Ref. [16]), this parameter is actually a proxy for themagnitude
of the trace anomaly, hence, of the beta function. Thus,

regardless of the behavior of the Nf ¼ 8 theory in the deep
infrared, it is possible that at the scale probed by the LatKMI
data the beta function is just too large for dChPT to work.
Second, we did not consider the dilaton mass at NLO in

dChPT, even though both LatKMI and LSD reported results
forMτ. The reasonsare thatMτ dataaremuch lessprecise than
Mπ andFπ data, and, additionally, that evenmoreNLOLECs
would be required if we include the NLO expression forMτ.
Clearly, more precise data, preferably at smaller fermion

masses, will be needed in order to continue investigating
whether dChPT is the correct EFT for the light meson
sector of the eight-flavor SU(3) theory. We are looking
forward to analyzing the new refined data recently obtained
by the LSD Collaboration [27].
Finally, both the LatKMI and LSD Collaborations

reported results at only one value of the bare coupling,
i.e., at only a single lattice spacing. It is thus very difficult
to investigate the effects of scaling violations. Lattice
results for the staggered taste splittings, obtained by both
collaborations, suggest that scaling violations are not small.
While in Refs. [15,16] we were able to extend the LO fits to
explore the inclusion of taste splittings, this is not feasible
at NLO. Results at a different lattice spacing would be very
helpful, but may not be easy to obtain in the face of
potentially slow running of the coupling, if indeed the
eight-flavor theory is close to the conformal sill.
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APPENDIX A: INTEGRALS

The integrals defined in Eq. (3.48) for n ¼ 0, 1, 2 are
given by

J0ðM1;M2Þ ¼ −2 −
1

2

M2
2

M2
1

log
M2

1

M2
2

þ log
M2

1

μ2
þ fðM1;M2Þ;

ðA1aÞ

J1ðM1;M2Þ¼−
3
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þ M2

2

2M2
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1−M2

2Þ
3M4

1

fðM1;M2Þ: ðA1cÞ

12Other approaches provide a good description of these data as
well. In particular, Refs. [21–23] considered a model generali-
zation of LO dChPTwhich involves a new continuous parameter
Δ, and this approach was successfully applied to the LSD data;
see Refs. [8,16].
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The function f is defined by

fðM1;M2Þ ¼
M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

1 −M2
2

p
M2

1

�
arctan

�
M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2
1 −M2

2

p �
− arctan

�
M2

2 − 2M2
1

M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

1 −M2
2

p ��
ðA2Þ

for M1 ≥ M2=2. The same expression can be used by analytic continuation for M1 < M2=2, which yields

fðM1;M2Þ ¼
1

2

M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

2 − 4M2
1

p
M2

1

log

�
M2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

2 − 4M2
1

p
M2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

2 − 4M2
1

p �
: ðA3Þ

For q2 ¼ −M2
π, the integrals of Eq. (3.23) can be expressed in terms of the J functions (A1) as

Ið−M2
π;M2

π;M2
τÞ ¼

1

16π2
ðλ − 1 − J0ðMπ;MτÞÞ;

Að−M2
π;M2

π;M2
τÞ ¼ −

1

32π2
ðλ − 1 − 2J1ðMπ;MτÞÞ;

Að−M2
π;M2

τ ;M2
πÞ ¼ −

1

32π2
ðλ − 1þ 2ðJ1ðMπ;MτÞ − J0ðMπ;MτÞÞÞ;

Bð−M2
π;M2

π;M2
τÞ ¼ −

1

192π2
ðð2M2

π þ 3M2
τÞλ − 6M2

τJ1ðMπ;MτÞ−6M2
πðJ0ðMπ;MτÞ − 2J1ðMπ;MτÞ þ J2ðMπ;MτÞÞÞ;

Cð−M2
π;M2

π;M2
τÞ ¼ −

1

96π2
ðλ − 1 − 6ðJ1ðMπ;MτÞ − J2ðMπ;MτÞÞÞ: ðA4Þ

APPENDIX B: τ → ππ DECAY

An interesting question is whether two-flavor QCD
might be close enough to the conformal window to be
within the domain of dChPT. Identifying the dilaton with
the f0ð500Þ resonance, one would then expect LO dChPT
to give a reasonably accurate prediction of the f0ð500Þ
decay width into two pions.
The τ → ππ decay rate is fixed in terms of the LO

quantities: the pion and dilaton masses and decay constants,
and the mass anomalous dimension γ�. The τππ vertex can
be read off from the LO Lagrangian (2.1). In terms of the
rescaled fields

τr ¼ τ=Fτ; πr ¼ ev0π ¼ ðFπ=fπÞπ; ðB1Þ

this 3-point vertex is

1

Fτ
τr

�
∂μπ

a
r∂μπ

a
r þ

1

2
ð3 − γ�ÞM2

ππ
a
rπ

a
r

�
: ðB2Þ

The amplitude for τ → πaπb decay is

Mab ¼ −
1

Fτ
δabðM2

τ þ ð1 − γ�ÞM2
πÞ; ðB3Þ

and the total decay width is

Γτ→ππ ¼
1

32π

N2
f−1

MτF2
τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4M2
π

M2
τ

s
ðM2

τ þð1− γ�ÞM2
πÞ2: ðB4Þ

Let us try to apply this result to Nf ¼ 2 QCD, using
Mπ ¼ 135 MeV, Fπ ¼ 92.2 MeV and Mτ ¼ 441 MeV
[28]. Assuming that γ� is in the range 0.5–1.0, this yields

Γτ→ππ ¼ 249ð11Þ
�
Fπ

Fτ

�
2

MeV; ðB5Þ

where the “error” in the prefactor accounts for the assumed
range of γ�. Fτ has not been computed directly on the
lattice. But the ratio F2

π=F2
τ ¼ f2π=f2τ is independent of the

fermion mass. Also, while the decay constants exhibit
scaling with Nc, they are not expected to depend on Nf in a
significant way. Our successful LO dChPT fits [15] to the
Nf ¼ 8 data of Ref. [4] suggest that f2π=f2τ ≈ 0.09. Using
this estimate, we obtain

Γτ→ππ ≈ 22 MeV: ðB6Þ

This result is to be compared to the predicted width in
QCD, which is 544(22) MeV [28]. Our estimate for the
width predicted by LO dChPT is thus roughly 25 times
smaller than the actual width! We conclude that two-flavor
QCD must be too far from the conformal sill to be
described by dChPT.
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