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Lattice QCD in the strong coupling regime can be formulated in dual variables, which are integer-valued.
It can be efficiently simulated for modest finite temperatures and finite densities via the worm algorithm,
circumventing the finite density sign problem in this regime. However, the low temperature regime is more
expensive to address. As the partition function is solely expressed in terms of integers, it can be cast as a
combinatorial optimization problem that can be solved on a quantum annealer. We will first explain the
setup of the system wewant to study and then present its reformulation suitable for a quantum annealer, and
in particular the D wave. As a proof of concept, we present first results obtained on D wave for gauge group
U(1) and U(3), and outline the next steps towards gauge groups SUð3Þ. We find that in addition, histogram
reweighting greatly improves the accuracy of our observables when compared to analytic results.
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I. INTRODUCTION

The goal of applying quantum computing to physically
interesting quantum theories to obtain results that are
too expensive on a classical computer is one of the great
challenges of our time, and many groups worldwide are
contributing to this endeavor. While some groups target
gate-based multipurpose quantum computers, many inter-
esting physical questions can as well be reformulated as a
optimization problem that can be addressed on a quantum
annealer. For example, the lattice gauge theory for the non-
Abelian dihedral groups D3, D4 [1], and SUð2Þ pure gauge
theory [2] have recently been studied on the D-wave
quantum annealer. In this work, we add another interesting
lattice model that is an effective theory inspired by QCD
and includes fermions.
This paper is organized as follows: we first introduce the

effective theory of QCD and identify the regime that is
computationally expensive and requires alternative strate-
gies such as quantum computing. We introduce the D-wave
quantum annealer as our method of choice to address the
physics of our theory. We then derive the formalism for
the general gauge group UðNcÞ in terms of a quadratic

unconstrained binary optimization (QUBO) matrix. Finally,
we present first results obtained on the D-wave machine
at FZ Jülich for gauge group U(1) and U(3) on various
small lattices. We also outline the next steps towards larger
lattices and gauge group SUð3Þ.

A. Lattice gauge theory at strong coupling

The theory of strong interactions between quarks and
gluons can be studied nonperturbatively via lattice QCD.
One of the fundamental questions that after many decades
of research is still unanswered is whether the QCD phase
diagram has a chiral critical end point. To answer this
question requires investigating lattice QCD at nonzero
baryon density μB [3]. Unfortunately, lattice QCD at
μB ≠ 0 cannot be directly simulated via conventional
hybrid Monte Carlo because of the infamous numerical
sign problem [4,5]: the fermion determinant becomes
complex-valued, prohibiting importance sampling.
A possible solution is to reexpress the partition function

in terms of dual variables. This results in a much milder
sign problem and in some specific limits, makes it sign
problem-free. This is the case in the strong coupling limit of
lattice QCD with staggered fermions (SC-LQCD), and it is
by now a well-established effective theory of QCD. It has
been studied in the last decades by many authors, both
via mean-field theory [6–10] and Monte Carlo simulations
[11], with the first study establishing the mean-field theory
using the 1=d expansion [12] and the first Monte Carlo
study [13], which introduced dimers as dual variables for
mesons. It took however another 20 years before this
effective theory could be studied efficiently, evaluated
numerically via the worm algorithm [14–17].
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We will briefly describe the dual representation of
SC-LQCD first—see [18,19] for more details—before
we will address the shortcomings that might require
alternative strategies such as quantum computing. In the
strong coupling limit, the inverse gauge coupling
β ¼ 2

Nc
→ 0; hence, the gauge action is absent. The essen-

tial idea is then to change the order of integration (first
gauge links, then Grassmann variables) and use the fact that
the integration over the gauge links factorizes. The final

degrees of freedom are mesons and baryons, which are the
dual variables of this approach. In this representation, the
sign problem is essentially solved. Despite the fact that in
this limit the lattice is maximally coarse, this effective
theory shares important features with full QCD, such as
chiral symmetry breaking and confinement.
When generalizing lattice QCD in the strong coupling

limit with gauge groups UðNcÞ or SUðNcÞ, the action for
staggered fermions χ̄, χ becomes [20]

SF ¼
X
x;ν

γδν0

2
ηνðxÞðeμδν0 χ̄ðxÞUνðxÞχðxþ ν̂Þ − e−μδν0 χ̄ðxþ ν̂ÞU†

νðxÞχðxÞÞ þ amq

X
x

χ̄xχx: ð1Þ

Here, amq is the bare quark mass, and γ is the bare anisotropy, which favors temporal gauge links in order to have a
temperature that can be continuously varied. From Z ¼ R dχ̄dχdUe−SF ½χ̄;χ;U�, one can derive the partition function in the
dual representation by integrating out the gauge links U and Grassmann variables χ̄, χ,

Z ¼
X

fk;n;lg

Y
b¼ðx;μ̂Þ

ðNc − kbÞ!
Nc!kb!

γ2kbδ0̂;μ̂

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
meson hops

Y
x

Nc!

nx!
ð2amqÞnx|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

chiral condensate

Y
l

wðl; μÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
baryon hops

: ð2Þ

This partition function describes a system of mesons and
baryons, as every configuration is given by a set of dual
variables kb, nx, and l: (1) The mesons live on the bonds
b≡ ðx; μ̂Þ, where they hop to a nearest neighbor y ¼ xþ μ̂,
and the hopping multiplicities are given by so-called
dimers, which take the integer values kb ∈ f0;…; Ncg.
Likewise, the so-called monomers are mesonic contribu-
tions located on the sites x and also take values
nx ∈ f0;…; Ncg, which is due to the Grassmann nature
of the underlying quarks: there are Nc independent Grass-
mann variables per site, and all combinatorial weight
factors on sites and bonds arise from invariant integration
over the gauge group. (2) The baryons live also live on the
bonds and form self-avoiding loops. For each loop, the
following weight is assigned:

wðl; μÞ ¼ 1Q
x∈lNc!

σðlÞγNcN0̂ exp ðNcNtωlatμÞ;

σðlÞ ¼ ð−1ÞωlþN−ðlÞþ1
Y

b¼ðx;μ̂Þ∈l

ημ̂ðxÞ; ð3Þ

where l denotes a baryon loop and N 0̂ is the number of
baryons in the temporal direction. Nt and ωl are the
number of temporal lattice sites and baryon winding
number, respectively, in the temporal direction. Finally,
σðlÞ ¼ �1 is the sign which depends on the geometry of
the baryon loop l. By the Grassmann constraint, the
summation over configurations

P
fk;n;lg in Eq. (1) is

constrained by the following condition:

nx þ
X

μ¼�0;…;�d

�
kμðxÞ þ

Nc

2
jlμðxÞj

�
¼ Nc: ð4Þ

The dual variable nx is the number of monomers that gives
an explicit contribution to the chiral condensate. In the
chiral limit, monomers are absent, but as the quark mass
increases, more monomers become present.
Two observables are particularly of interest, the chiral

condensate hψ̄ψi and energy density hϵi,

ad−1hψ̄ψi ¼ ad−1
T
V
∂ logZ
∂mq

¼ 1

Ω
1

2amq
hMi ð5Þ

adhϵi ¼ −
ad

V
∂ logZ
∂T−1 ¼ 1

Ω

�
ξ

γ

dγ
dξ

h2Dti − hMi
�

¼ 1

Ω
ðhDti − hMiÞ ð6Þ

with

M ¼
X
x∈Ω

nx; Dt ¼
X
x∈Ω

k0ðxÞ; ð7Þ

the total monomer number and temporal dimers, respec-
tively, of a configuration on the d-dimensional lattice
volumeΩ ¼ Nd−1

s × Nt, and aT ¼ ξðγÞ=Nt, corresponding
to a physical volume V × T−1. In the last equation for hϵi,
we used that ξðγÞ ¼ κγ2 at strong coupling (see [21] for
details). The lattice spacing a does not take a specific value:
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the lattice is coarse at strong coupling. Instead of setting a
scale, we consider dimensionless ratios. We will drop the
lattice spacing when denoting hψ̄ψi and hϵi in the follow-
ing, always implying that our observables are expressed in
lattice units.
Some of us contributed to this effective theory by

extending it in various ways: by extending the phase
diagram from the chiral limit to large quark masses [22],
by including gauge corrections to the strong coupling
limit [18,23], i.e., by a strong coupling expansion of the
Wilson gauge action, and by formulating the theory as a
quantum Hamiltonian system based on the continuous
time limit [24,25]. To obtain the full μB-T phase
diagram unambiguously, and study its properties, we had
to overcome various technical issues such as the non-
perturbative determination the temperature at fixed lattice
spacing [21,26].
The finite density sign problem will get reintroduced as

the lattice becomes finer, away from the strong coupling
limit. Our findings show that in a regime where the sign
problem is still manageable, the nuclear transition depends
weakly on the inverse gauge coupling but strongly on the
quark mass [19,27].
The dual representation sampled by the worm algorithm

works well to unravel the phase diagram, but the worm
algorithm is highly inefficient at low temperatures: as the
worm algorithm is based on a high temperature expansion,
it requires longer simulation times as one goes to lower
temperatures, which in turn requires larger temporal
lattice extents Nτ. This ultimately becomes too prohibitive
numerically.
Thus, the low-temperature regime in which the first order

nuclear transition occurs remains particularly challenging,
as well as determining the zero temperature observables
such as the hadron spectrum. Our goal is to use our novel
algorithm on the D-wave quantum computer to simulate at
these low temperatures and on large volume, allowing us to
investigate the first order phase chiral and nuclear transition
with heavy quark masses. The algorithm we propose to use
in conjunction with D wave is immune to this temperature
constraint, and parallelization is intrinsically built in, which
cannot be achieved in the worm algorithm. The dual
representation of the strong coupling partition function
Eq. (2) is an exact rewriting in terms of integer valued dual
variables, which resembles a monomer-dimer system for
the meson dynamics, with additional baryonic world lines.
All these dual degrees of freedom can be cast into binary
numbers, which makes this effective theory of QCD
suitable to be studied on a quantum annealer, and the D
wave in particular.

B. D-wave quantum annealer

The D-wave quantum annealer consists of an array of
metal loops with Josephson junctions that are cooled to a
point that the loops are superconducting. The two-state

level scheme of each superconducting loop constitutes a
single superconducting flux qubit [28]. The qubits are then
placed in an array and coupled pairwise inductively. This
forms D-wave’s quantum processing unit (QPU). The
inductances between qubits, as well as the intrinsic induct-
ance within each qubit, can be tuned in situ [29]. The array
of qubits can then be modeled as an Ising spin glass,

HI sin g ¼ −
X
i<j

Kijσ
i
zσ

j
z þ

X
i

hiσiz; ð8Þ

where σz is a Pauli spin matrix. An application of an
external magnetic field equates to introducing a noncom-
muting transverse field σx at each site i, while diminishing
the strength of the original “target” Ising Hamiltonian. This
competition between the transverse field and the Ising
Hamiltonian is expressed by time-dependent coefficients
AðtÞ and BðtÞ,

HðsÞ ¼ −AðtÞ
X
i

σix þ BðtÞHI sin g: ð9Þ

Thus, the full Hamiltonian is that of the transverse
(quantum) Ising model, but with coefficients AðtÞ and
BðtÞ that depend on the strength and time dependence t of
the external magnetic field. The profile of the magnetic
field is such that when t ¼ 0, one has A=B ≫ 1, and the
transverse field is dominant, while at some later “anneal
time” tf, A=B ≈ 0, and one recovers only the Ising
Hamiltonian. D wave prepares the system to be in the
(nearly) ground state of the transverse field at t ¼ 0 and by
the process of quantum annealing, smoothly evolves the
system to the (nearly) ground state of the Ising model at tf.
Figure 1 shows annealing profiles for BðtÞ (and ones

which we actually use in our calculations). The top profile
is one of the default profiles D wave provides [30].
Changing the annealing schedule can influence the number
of samples that D wave produces during a specified total
run time. For example, when we choose a profile with
a shorter anneal time, as shown in the bottom profile,

FIG. 1. Our choice of annealing profiles [30]. The behavior of
AðtÞ (described in text) is roughly inversely proportional to BðtÞ.
The x axis represents time in μ-secs. Top profile was used for
U(1) simulations, bottom was used for U(3) simulations.
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the number of solution vectors is increased. With the
top profile, 500 solution vectors are measured whereas
1500 solution vectors are obtained from the bottom profile.
However, for the small systems considered here, we find
that the results from either anneal profiles have no
significant differences.
The D-wave advantage system at FZJ has 5000 physical

qubits, each of which can be coupled to a maximum of
15 other physical qubits. Typically, problems will require
qubits with connectivities greater than 15, and in this case,
physical qubits are “chained” together to form logical
qubits that have the requisite connectivity. The physical
qubits that constitute a logical qubit must act synchro-
nously. The degree in which they act in unison is controlled
by a user-defined parameter chain_strength. Though
this parameter does not change the physics of the system
that we investigate, it does influence the level of quality of
solutions that D wave obtains. We will return to this topic in
later sections.

II. NUMERICAL METHODS AND TECHNICAL
DEVELOPMENTS

In this section, we first explain the general structure of the
quadratic unconstrained binary optimization (QUBO) matrix
and then proceed to map the lattice model in mind, i.e.,
strong coupling lattice QCD and modifications thereof with
gauge group UðNcÞ, to the QUBO matrix. We consider two
parts: the action Eq. (1) and the Grassmann constraint
Eq. (4). As we demonstrate in greater detail below, the
constraints are incorporated into the QUBO matrix Q by
introducing penalty terms p. This matrixQ then serves as an
objective function that is minimized or optimized. The
resulting optimization is therefore unconstrained.

A. How to construct the QUBO matrix

For our lattice model, we want to make use of the
following minimization procedure:

χ2 ¼ xTWxþ pjjAxþ bjj2; ð10Þ

which combines the action S ¼ xTWx of the underlying
lattice theory and the constraint of its variables Axþ b ¼ 0,
with the penalty factor p. This factor needs to be suffi-
ciently large. The aim is to find the solution vector x, which
minimizes χ2. Note that under the optimization, if the
constraints are satisfied, then the terms proportional to the
penalty terms p vanish, resulting in a lower value for χ2.
Thus, finding the absolute minimum of χ2 requires satisfy-
ing the original constraints.
The matrix formulation required by the D-wave API is

χ2 ¼ xTQxþ C: ð11Þ

Hence, the QUBO matrix Q and the constant C is

Q ¼ W þ pðATAþ diagð2bTAÞÞ; C ¼ pbTb: ð12Þ

It remains to determine the weight W and the constraint
ðA; bÞ for our lattice model, which in terms of integer
valued dual variables can always be cast into a vector of
binary numbers x whose properties satisfy x2i ¼ xi.
For this exploratory study, we restrict ourselves to the

gauge groups UðNcÞ, Nc ¼ 1, 2, 3, where the effective
degrees of freedom correspond to only mesons since
baryons are absent [they only occur for gauge group
SUðNcÞ]. Based on Eq. (2), the action takes the form of
a logarithm,

Z ¼
X
fk;ng

exp½−S�;

S ¼ −
X

b¼ðx;μ̂Þ
log

�ðNc − kbÞ!
Nc!kb!

�
− 2kbδ0̂;μ̂ logðγÞ

−
X
x

log

�
Nc!

nx!

�
− nx logð2amqÞ: ð13Þ

We will denote the contributions from the dimers DNc

and from the monomers MNc

DNc
ðkbÞ ¼ − log

�ðNc − kbÞ!
Nc!kb!

�
− 2kbδ0̂;μ̂ logðγÞ;

MNc
ðnxÞ ¼ − log

�
Nc!

nx!

�
− nx logð2amqÞ þ c: ð14Þ

The action can be shifted by a constant c without loss of
generality,

S ¼
X

b¼ðx;μ̂Þ
DNc

ðkbÞ þ
X
x

MNc
ðnxÞ: ð15Þ

The action S, so far expressed as a function of only integers
kb and nx, can also be expressed in bilinear form by

defining the binary vector x⃗ ¼ ð ⃗k̃b; ⃗ñxÞ. This gives the
following block structure:

S ¼ xTWx

¼ ð ⃗k̃Tb ; ⃗ñTx Þ
 
D̃1E×E 0Ω×E
0E×Ω M̃1Ω×Ω

! 
⃗k̃b
⃗ñx

!
; ð16Þ

where Ω is the number of lattice sites and E ¼ Ω × d the
number of bonds on a d-dimensional hypercubic lattice.
The weight matrixW is the one that shows up in the QUBO
matrix Eq. (12). It remains to specify D̃ and M̃ in the binary
basis for the specific gauge group under consideration.
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1. Gauge group U(1)

Let us first consider Nc ¼ 1. Since kbðxÞ∈ 0, 1 and
nðxÞ∈ 0, 1, we already have a binary format from the start.
The entries in the weight matrix W are

D1ð0Þ ¼ 0; D1ð1Þ ¼ −2δ0̂;μ̂ logðγÞ;
M1ð0Þ ¼ 0; M1ð1Þ ¼ − logð2amqÞ;

c ¼ 0: ð17Þ

This implies that D̃ and M̃ in Eq. (16) are just real
numbers: D̃ ¼ D1ð1Þ, M̃ ¼ M1ð1Þ, asD1ð0Þ ¼ 0 and when
kb ¼ 0, no weight is picked up. The same occurs when
mx ¼ 0.

In order to discuss the constraint ðA; bÞ in Eq. (10)
explicitly, we now restrict ourselves to a small 2 × 2
lattice, where

k⃗Tb ¼ ðk1; k2; k3; k4; k5; k6; k7; k8Þ;
n⃗Tx ¼ ðn1; n2; n3; n4Þ: ð18Þ

The Grassmann constraint Eq. (4) for Nc ¼ 1 readsX
μ¼�0;…;�d

kμðxÞ þ nx ¼ 1; ð19Þ

where the sum is over all bonds attached to a lattice site.
This gives four equations, one for each lattice site, with the
labels of dimers and monomers as in Fig. 2.

The matrix form of this constraint is

A · xþ b ¼

0
BBBBB@

1 1 1 0 0 1 0 0 1 0 0 0

1 0 1 1 0 0 0 1 0 1 0 0

0 1 0 0 1 1 1 0 0 0 1 0

0 0 0 1 1 0 1 1 0 0 0 1

1
CCCCCA

0
BBBBBBBBBB@

k1

..

.

k8
n1

..

.

n4

1
CCCCCCCCCCA

þ

0
BBB@

−1
−1
−1
−1

1
CCCA ¼ 0: ð20Þ

The binary solution vector x has dimension EþΩ ¼ 12
on this 2 × 2 lattice. Clearly, the computation of ðA; bÞ
generalizes to arbitrary hypercubic lattices. The resulting
QUBO matrix Q in Eq. (12) is specified by

2bTA ¼ −ð4; 4; 4; 4; 4; 4; 4; 4; 2; 2; 2; 2Þ; C ¼ 4p: ð21Þ

The weight matrix W and the constraint ðA; bÞ can be
similarly constructed for any lattice volumes. In particular,
the lattices 4 × 4 and 2 × 2 × 2 have been already simu-
lated on D wave, as we will discuss in Sec. III.

2. Gauge group U(2) and U(3)

In the case of Nc > 1, we have kb ∈ f0; 1;…Ncg and
nx ∈ f0; 1;…Ncg. In order to express these as binary
vectors, we define each component of x in terms of a
vector of binary numbers,

k̃b ¼
�
kð1Þb ;…kðrÞb

�
; ñx ¼

�
nð1Þx ;…nðrÞx

�
; ð22Þ

kðiÞb ∈ f0; 1g; nðiÞx ∈ f0; 1g; ð23Þ

with r ¼ ⌈ logðNc þ 1Þ= logð2Þ⌉, i.e., r ¼ 2 for Nc ¼ 2
and Nc ¼ 3, r ¼ 3 for Nc ∈ f4; 5; 6; 7g. We restrict here to
the physically interesting cases of gauge groups U(2) and
U(3), where the assignments are

0↦ ð0;0Þ; 1↦ ð0;1Þ; 2↦ ð1;0Þ 3↦ ð1;1Þ; ð24Þ

n1 n2

n3 n4

3k1k

k5 k7

k2 k4

k6 k8

FIG. 2. 2 × 2 lattice with indexing the sites and bonds as used in
the QUBO matrix.
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where for Nc ¼ 2 the last assignment must vanish.
The entries in the weight matrix W for Nc ¼ 2 and
Nc ¼ 3 are

D2ð0Þ ¼ 0;

D2ð1Þ ¼ logð2Þ − 2δ0̂;μ̂ logðγÞ;
D2ð2Þ ¼ logð4Þ − 4δ0̂;μ̂ logðγÞ;
M2ð0Þ ¼ − logð2Þ þ c;

M2ð1Þ ¼ − logð2Þ − logð2amqÞ þ c;

M2ð2Þ ¼ −2 logð2amqÞ þ c;

c ¼ logð2Þ; ð25Þ

D3ð0Þ ¼ 0;

D3ð1Þ ¼ logð3Þ − 2δ0̂;μ̂ logðγÞ;
D3ð2Þ ¼ logð12Þ − 4δ0̂;μ̂ logðγÞ;
D3ð3Þ ¼ logð36Þ − 6δ0̂;μ̂ logðγÞ;
M3ð0Þ ¼ − logð6Þ þ c;

M3ð1Þ ¼ − logð6Þ − logð2amqÞ þ c;

M3ð2Þ ¼ − logð3Þ − 2 logð2amqÞ þ c;

M3ð3Þ ¼ −3 logð2amqÞ þ c;

c ¼ logð6Þ: ð26Þ

Hence, forNc ¼ 2, 3, both D̃ and M̃ in Eq. (16) are 2 × 2
matrices given by

D̃Nc¼2 ¼
�
D2ð2Þ −D2ð1Þ −D2ð2Þ
0 D2ð1Þ

�
; ð27Þ

D̃Nc¼3 ¼
�
D3ð2Þ 0

0 D3ð1Þ

�
: ð28Þ

For Nc ¼ 3, it happens that D3ð3Þ ¼ D3ð1Þ þD3ð2Þ, and
k̃Tb ¼ ð1; 1Þ picks up this sum, whereas for Nc ¼ 2, the off
diagonal term is introduced in order to cancel the unphys-
ical contribution k̃Tb ¼ ð1; 1Þ.
In the same fashion,

M̃Nc¼2 ¼
�
M2ð2Þ −M2ð1Þ −M2ð2Þ

0 M2ð1Þ

�
; ð29Þ

M̃Nc¼3 ¼
�
M3ð2Þ M3ð3Þ −M3ð1Þ −M3ð2Þ

0 M3ð1Þ

�
; ð30Þ

where the off diagonal term in M̃ does not vanish
as M3ð3Þ ≠ M3ð1Þ þM3ð2Þ.
Again, we determine the constraint ðA; bÞ from the

Grassmann constraint Eq. (4), which for illustration is
given for U(3) on a 2 × 2 lattice,

A ·xþb¼

0
BBBBB@

2 1 2 1 2 1 0 0 0 0 2 1 0 0 0 0 2 1 0 0 0 0 0 0

2 1 0 0 2 1 2 1 0 0 0 0 0 0 2 1 0 0 2 1 0 0 0 0

0 0 2 1 0 0 0 0 2 1 2 1 2 1 0 0 0 0 0 0 2 1 0 0

0 0 0 0 0 0 2 1 2 1 0 0 2 1 2 1 0 0 0 0 0 0 2 1

1
CCCCCA

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

kð1Þ1

kð2Þ1

..

.

kð1Þ8

kð2Þ8

nð1Þ1

nð2Þ1

..

.

nð1Þ4

nð2Þ4

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

−

0
BBB@
3

3

3

3

1
CCCA¼0: ð31Þ

The size of the solution vector x for U(2) and U(3) is twice of that of U(1).
The QUBO matrix Q in Eq. (12) is now specified by

2bTA ¼ −ð24; 12; 24; 12; 24; 12; 24; 12; 24; 12; 24; 12; 24; 12; 24; 12; 12; 6; 12; 6; 12; 6; 12; 6Þ; C ¼ 36p: ð32Þ

B. How physical parameters enter the QUBO matrix

The QUBO matrix Q discussed above depends on the bare quark mass amq and the bare anisotropy γ, which at
strong coupling is related to the temperature via aT ¼ κγ2=Nt. In the previous section, we restricted ourselves to gauge
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groups UðNcÞ, which do not depend on the baryon
chemical potential μB. Also, as we are in the strong
coupling limit, where β ¼ 0, we have no dependence on
the lattice spacing aðβÞ. Since both bare parameters γ and
amq enter Q logarithmically, the special choice γ ¼ 1 and
amq ¼ 1=2 simplifies Q considerably. For the gauge
group U(1), the weight matrix W in Eq. (14) is zero, as
all configurations have equal weight and are purely
governed by the constraint ðA; bÞ, which is independent
of the parameters and remains nontrivial.
Other choices ofamq and γwill be also interesting to study.

For example, towards the chiral limit amq → 0 theweights in
M̃ of Eq. (16) will diverge logarithmically. Also, in the low-
temperature limit γ → 0, the minimization will disfavor
temporal meson hoppings over spatial meson hoppings,
resulting in a chirally broken phase at low temperatures.
The zero temperature limit is usually addressed on

isotropic lattices γ ¼ 1 by taking Nτ large. In this regime,
it is interesting to consider the free energy density of the
vacuum and related properties. In Monte Carlo simulations
that use the Worm algorithm, this limit is quite expensive,
with simulations using Nτ ¼ 16 taking days to obtain
sufficient statistics. On the other hand, we expect that on
D wave such low temperature simulations should be readily
accessible. In the next section, we however fix the lattice
volume and choose a low temperature by setting γ ¼ 0.5.

III. RESULTS

In this section, we provide an explicit example on an
extremely small problem to make our description cogent
and where we can compare with analytic results. Our
example generalizes to more degrees of freedom (larger
volumes, larger dimensions, larger gauge groups) where D
wave is applicable as well and may outperform the classical
Monte Carlo simulations.
We have tested our setup for the gauge group U(1)

on 2 × 2, 4 × 4, and 2 × 2 × 2 lattices. The physical
parameters are

amq ¼ 0.3; 0.6; γ ¼ 0.5; 1.0 for Uð1Þ; ð33Þ

amq ¼ 0.5; 1.0; γ ¼ 0.5; 1.0 for Uð3Þ; ð34Þ

which correspond to intermediate quark masses and rather
low temperatures.

A. Parameter tuning

One tunable parameter is the penalty factor p given in
Eq. (12). It controls the balance between the action Eq. (16)
and the Grassmann constraint Eq. (20) in the QUBO
matrix Q. Another free parameter is the chain_
strength introduced in Sec. I B. As its name suggests,
it controls the strengths of chains used to build physical
qubits into logical qubits, ensuring that physical qubits act

in unison [31]. Varying this parameter also changes the
relative size of the elements of Q in relation to the
chain_strength [31]. Since our problem graph, cor-
responding to the adjacency graph of our QUBO matrix,
see Fig. 3, does not necessarily have the same topology as
the QPU, such that no one-to-one embedding can be found,
a nontrivial chain_strength is required in order to
retain the logical qubits. Too weak a value results in “chain
breaks”, meaning the physical qubits within a logical qubit
do not act in unison, and our topology is broken. On the
other hand, too strong a value overwhelms the QUBO
matrix and essentially makes its contribution to the min-
imization negligible. In this case, one obtains purely
random solutions with no connection to the system under
investigation.
Therefore, it is important to find the optimal chain_

strength that ensures the correct topology dictated by
the adjacency matrix of our system while providing the
maximum rate of valid solutions. Solution vectors that
satisfy the Grassmann constraint Eq. (4) are deemed “valid
solutions”. Since the run-time on D wave to generate
500 samples is constantly about 600 msec when we use the
annealing schedule of the top panel in Fig. 1, a higher rate
of valid solution vectors corresponds to more statistics.
After a single simulation, the D-wave system provides the
chain_break_fraction, which is the ratio of the
number of broken chains over the total number of chains.
If this value is nonzero, then the solution vector encodes
mostly invalid configurations which does not satisfy the
Grassmann constraint. We never observed a valid solution
in the case when there was a nonzero chain_break_
fraction, but we note that valid solutions may be
possible in this case, albeit with extremely small probability
as given in Table VI.
We define the chain_break_rate by the

percentage of the broken chains to the solutions vectors

FIG. 3. The problem graph for gauge group U(1) on the 2 × 2
lattice, every site is connected to itself and two dimers, every
bond is connected itself, to two sites and five other bonds.
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returned from D wave. The unbroken_chain_rate
is 1—chain_break_rate.
For small values of chain_strength, we find

that the validity rate, i.e,. the percentage of valid solution
vectors, is identical to the unbroken_chain_rate.
This behavior persists up to some specific value of
chain_strength, after which the validity rate drops
again and hence starts deviating from unbroken_
chain_rate. This correlation is shown in Fig. 4, where
we compare the validity rate and unbroken_chain_
rate for amq ¼ 0.3, 0.6 and γ ¼ 0.5, 1.0 at p ¼ 4. We
find that the correlation is almost independent of the
physical parameters. The unbroken_chain_rate
approaches 1 as the chain_strength becomes larger
than ≃p, after which the validity rate drops. The optimal
value of chain_strength can thus be selected as
the point of maximal validity rate, which is typically
slightly below p.
By determining the optimal chain_strength

for various values of p, we find their correlation to be

proportional. For our physical parameters, amq ¼ 0.3, 0.6
and γ ¼ 0.5, 1.0, the maximum absolute value of the weight
matrix W Eq. (16) is smaller than 2. Thus, the maximum
absolute value of QUBO matrix is always 2p since we
use p values greater than 1. Once the QUBO matrix is
submitted to the QPU, D wave automatically scales the
elements of Q into the range of ½−1; 1� using the maximum
absolute value of all Q elements. If chain_strength is
larger than the largest weight in Q, chain_strength
is used for this scaling. Hence, if chain_strength is
too large, the weight of Q shrinks to near zero. Ideally,
chain_strength should be 2p in our system. We found
that when unbroken_chain_rate is smaller than 1,
the validity rate is maximal and the corresponding
chain_strength is smaller than 2p. This explains
the data shown in Fig. 5 for the three different volumes
under consideration.
In Fig. 6, we present the rate of produced valid

configurations at the optimal chain_strength at each
p for three volumes. There is no strong dependence on p.

FIG. 4. Comparing the valid configuration rate and unbroken chain rate at amq ¼ 0.3, 0.6, γ ¼ 0.5, 1.0, p ¼ 4 on 2 × 2. The
unbroken_chain_rate is the percentage of unbroken chains to the solutions from D wave. The validity rate and unbroken_
chain_rate are the same for small values of chain_strength and starts deviating with increasing chain_strength. We
select the optimal value of chain_strength that corresponds to the validity rate being maximal.

FIG. 5. p dependence of chain_strength for U(1) on 2 × 2, 4 × 4 and 2 × 2 × 2 and U(3) on 2 × 2. The optimal
chain_strength is proportional to p because the maximum absolute element of our QUBO matrix for the selected physical
parameters in the paper is itself proportional to p. However, we need stronger chain_strength for larger volumes and larger Nc to
find the best validity rate.
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For the 2 × 2 lattice, there are 17 valid configurations
and the total configuration space is 2EþΩ ¼ 4096. The
probability to find the valid configuration randomly is
17=4096 ¼ 0.42%. Other cases have, for example,
689=232 ¼ 0.000016042% for the 2 × 2 × 2 lattice and
41025=248 for the 4 × 4 volume. Hence, finding valid
configurations is much more difficult on larger volumes.
The probability to find valid configurations from random
picking in configuration space for other gauge groups and
volumes are provided in Table VI. Here, we can get a hint
of a quantum advantage. In order to find a few important
configurations, one must loop through the entire configu-
ration space and check the constraint to filter out invalid
configurations. One must then calculate the weight of each
valid configuration to determine the important configura-
tions. This processing time increases exponentially as the
volume and color increases. However, D wave can find a
few important configurations in a few msec. In the case
of U(3), it requires much larger chain_strength since
the structure of the Q matrix is much more complicated.
Even with stronger chain_strength and higher prob-
ability to find valid configurations 695=224, the validity rate
is about 5%.
The finding that this is roughly independent of the

physical parameters suggests that some sort of importance
sampling, in a manner similar to Monte Carlo algorithms, is
being done by the D wave. The number of valid configu-
rations for other gauge groups and volumes are given
in Table: VI.

B. Observables and histogram reweighting

D-wave attempts to find solutions which minimize the
χ2 ¼ xTQx Eq. (11). In Fig. 7, we show the distribution of
χ2 for all possible x (blue histogram) for U(1) on 2 × 2

volume. The number of possible x is 2EþΩ ¼ 212 ¼ 4096,
and the distribution depends on the physical parameters γ,
amq, and the penalty term p. The number of data generated

by D wave (orange histogram) is 14000. Since the orange
peak does not follow the blue distribution and forms around
the minimum, the QUBO matrix we implement is being
taken into account for D-wave sampling. The detailed
distribution of the D-wave samples are presented in Fig. 8.
Since the output of D wave also includes invalid configu-
rations, a postprocess check of valid configurations that
satisfy the Grassmann constraint, A · xþ b ¼ 0, is neces-
sary. This check is efficient and simple to perform.
With the coordinate convention in Fig. 2, we provide a

list of all valid configurations in Table I. In this table, the
configuration with index (0–3) have two temporal dimers,
and index (4–7) have one temporal dimer and two mono-
mers. Four monomer configuration is index (8), and index
(9–12) represent one spatial dimer and two monomers
configurations. Index (13–16) have two spatial dimers.

FIG. 6. p dependence of the validity rate on 2 × 2, 4 × 4 and 2 × 2 × 2 systems. The validity rate is almost 90% for 2 × 2 volume, but
for the larger volumes this decreases to about 40%. The lower validation rates for the larger volumes is due to the fact that the ratio of the
total number of valid configurations to total number of binary-vector solutions that D wave can generate is very small: 0.000016042%
for 2 × 2 × 2 and 41025=248 for 4 × 4. In contrast, in the smallest volume, 2 × 2, the valid solutions span 0.42% of all possible solutions.
We find that the validity rate is small for U(3), about 5%.

FIG. 7. Histogram of xTQx at amq ¼ 0.6, γ ¼ 1, p ¼ 3,
chain strength ¼ 3 on the 2 × 2 lattice. Blue histogram
shows all possible 4096 configurations and orange comes from
the D-wave samples. The D-wave samples show solutions x,
which minimize xTQx. This indicates that D wave generates
samples that take into account the QUBO matrix Q.
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For example, at large quark mass, the configurations which
have many monomers have larger weight. This configura-
tion index convention is applied to Fig. 8.
We compare the distribution of the valid configurations

obtained from D wave with its corresponding weight e−S

in Fig. 8. Because of low statistics and suboptimal tuned
parameters, chain_strength, and p, this distribution
has some fluctuations from the analytic solution e−S,
though there is qualitative agreement. Once we find all
valid configurations, reconstructing the exact same distri-
bution with the analytic solution is possible by the single
histogram reweighting method [32]. The quark mass
amq ¼ 0.3 is small so the configurations which do not

contain monomers are preferred and in the case of γ ¼ 1,
spatial and temporal dimers have the same weight (left in
Fig. 8). If γ ¼ 0.5, spatial dimers are more preferred than
temporal dimers (right in Fig. 8).
In Figs. 9–11, and 12, we present two independent

observables Eq. (7) hMi and hDti for several p values
with optimal chain_strength. If p is very small, the
action in the QUBO matrix is emphasized. Hence, D wave
samples the distribution very near to the global minimum.
However, D wave does not find all 17 valid configurations
and the reweighting method works poorly here. For large
enough p, D wave finds all 17 valid configurations
and reweighting method adequately produces the correct

TABLE I. List of valid configurations for U(1) on 2 × 2. Dt: the number of temporal direction dimers,
Ds: the number of spatial direction dimers, M: the number of monomers.

Index (k1, k2, k3, k4, k5, k6, k7, k8, n1, n2, n3, n4) Dt Ds M

0 (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 2 0 0
1 (0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0) 2 0 0
2 (0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0) 2 0 0
3 (0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0) 2 0 0

4 (0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1) 1 0 2
5 (0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0) 1 0 2
6 (0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1) 1 0 2
7 (0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0) 1 0 2

8 (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1) 0 0 4

9 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) 0 1 2
10 (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) 0 1 2
11 (0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0) 0 1 2
12 (0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0) 0 1 2

13 (1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) 0 2 0
14 (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) 0 2 0
15 (0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) 0 2 0
16 (0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) 0 2 0

FIG. 8. Histogram of D-wave output for the known valid configurations at amq ¼ 0.3, γ ¼ 1, p ¼ 3 (left), chain strength ¼ 3
and amq ¼ 0.3, γ ¼ 0.5, p ¼ 4, chain strength ¼ 5 (right) on 2 × 2 lattice. The orange distribution is not exactly same with the
blue distribution but similar by considering the statistical fluctuation. Using the reweighting method, the orange distribution can be
reconstructed to green distribution without knowing the analytic solutions.
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FIG. 9. p dependence of monomer density and temporal dimer density. The cross points are the raw data of D wave, and circle points
are reweighted data. The raw data are connected by dotted line to guide the eyes, and the solid line is the analytic solutions on 2 × 2.
When p is greater than 2, D wave find all valid configurations, so reweighting method can reconstruct the distribution exactly same with
the ideal distribution of the analytic solution.

FIG. 10. Wmax=Qmax dependence of monomer density and temporal dimer density. The cross points are the raw data of D wave, and
circle points are reweighted data. The raw data are connected by dotted line to guide the eyes, and the solid line is the analytic solutions
on 4 × 4. Here, we have the statistics about Oð700–1800Þ valid configurations in 40125 total which is 1.7%–4.3%.

FIG. 11. Wmax=Qmax dependence of monomer density and temporal dimer density. The cross points are the raw data of D wave, and
circle points are reweighted data. The raw data are connected by dotted line to guide the eyes, and the solid line is the analytic solutions
on 2 × 2 × 2. We have about 40%–65% of valid configurations of 689 total, so the reweighting method guides the observables toward
the analytic solution.
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distribution. Since the 2 × 2 lattice is very small, finding
all valid configuration is not difficult. For large volumes,
the number of valid configurations is much larger and
therefore finding all valid configurations with finite number
of samplings is not possible. For example, the 4 × 4 volume
has 41025 valid configurations, of which Oð700–1800Þ
valid configurations (1.7%–4.3%) are produced during our
D-wave simulations thus far. As such, it is not enough to
evaluate the correct values of observables even with the
reweighting method. This situation will improve, however,
as we perform repeated runs of this system with D wave.
On the other hand, the 2 × 2 × 2 reweighted results have
better agreement with exact results. Here, the total number
of valid configurations is 689 and Oð280–450Þ configura-
tions are produced during each D-wave simulation, repre-
senting between 40%–65% of the total. We stress, however,
that in all cases considered so far, reweighted data gives

better estimations, as shown in Fig. 11. In Fig. 12, we show
that our formalism for Nc ¼ 3 II A 2 works as well.
In Figs. 10 and 11, we show the dependence of our

observables as a function of the ratio Wmax=Qmax, where
Wmax is the maximum absolute element of the weight
matrixW andQmax ¼ 2p is the maximum absolute element
ofQmatrix. These plots show howW is scaled by D-wave.
We find that when 0.005≲Wmax=Qmax ≲ 0.01, importance
sampling works well. For both 2 × 2 × 2 and 4 × 4
volumes, where 0.005≲Wmax=Qmax≲0.01, the reweighted
data points agree with the analytic solution. Wmax is
1.38,1.38,0.51,0.18 for ðamq; γÞ is (0.3,0.5), (0.6,0.5),
(0.3,1.0), and (0.6,1.0). Wmax=Qmax ∼ 0.01 corresponds
to p ¼ 70, 70, 25, 9. In this manner, we can find the
proper p value for any physical parameters.
Originally, the single histogram reweighting method was

developed as a means to change the physical parameters

FIG. 12. Wmax=Qmax dependence of monomer density and temporal dimer density. The cross points are the raw data of D wave, and
circle points are reweighted data. The raw data are connected by dotted line to guide the eyes, and the solid line is the analytic solutions
for U(3) on 2 × 2. We have about 38%–86% of valid configurations of 695 total, so the reweighting method guides the observables
toward the analytic solution.

FIG. 13. Chiral condensate by single histogram reweighting method from D-wave data points. Since we have all 17 valid
configurations for the 2 × 2 lattice, the reweighting method can calculate this observable in any range of physical parameters. For U(1)
larger volumes, we present the reweighting results from physical parameters amq ¼ 0.6 with fixed γ ¼ 0.5. For the 4 × 4 lattice, we
have ∼4% of the total number of configurations, and the 16 monomer configuration is missing. Therefore, the reweighting method does
not describe well the large quark mass region. We have ∼72% of the configurations in the U(1) 2 × 2 × 2 and 38%–86% for U(3) 2 × 2
lattices, so the reweighting works for a much longer range. The error bars are purely statistical, so it does not explain the systematic
uncertainty coming from the overlap problem.
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of the system without the need to perform new simulations.
Thus, we also apply the reweighting method to change the
quark mass and present these results in Fig. 13. For the
2 × 2 lattice, because D wave finds all 17 valid configu-
rations, the exact values of observables can be calculated
for any choice of physical parameters by simply reweight-
ing. For 4 × 4 and 2 × 2 × 2 lattices, we fix
γ ¼ 0.5 and quark masses amq ¼ 0.6 for reweighted data
point (orange dots). The blue cross points are D-wave raw
data. We generate a very limited number of samples for the
4 × 4 system, and so the reweighting method works only
for a range of the quark mass which still have overlap with
the distribution that has been generated on D wave. In
particular, the configuration with the maximal number of
monomer M ¼ 16 is not sampled. This further enhances
the mismatch with the analytic solutions in the large quark
mass region. The 2 × 2 × 2 system has a larger percentage
of sampled valid configurations compared to the 4 × 4 case,
and therefore, the reweighted data agree with the analytic
solutions for a much broader range of quark masses. We
also confirm that our U(3) formulation works as well but
the validity rate of this case is about 5%.

IV. CONCLUSION

In this paper, we have demonstrated that lattice gauge
theory in the strong coupling limit, and for now restricting
to gauge group U(1) as a proof of principle, can be
successfully simulated by the D-wave quantum annealer.
Our results suggest that importance sampling is feasible
on the D wave and with quantum annealing in general.
With some fine tuning of the D-wave simulation param-
eters and using the raw data distribution from D wave, we
find that the distribution of valid configurations is
roughly produced according to the weight matrix, which
in turn is dictated by the physical parameters of the
system. The accuracy is greatly enhanced by the histo-
gram reweighting method. In that case, the tuning of D-
wave parameters is less crucial. We have generated and
compared results for the lattice volumes 2 × 2, 4 × 4, and
2 × 2 × 2 for U(1) and U(3) on 2 × 2.
In order to deal with a more realistic, and thus physical

problem, we need to address larger volumes. To do this, we
propose an iterative scheme by decomposing local updates
on even and odd sites. We expect that the solution vectors
will converge to the equilibrium distributions after some
number of iterations, and this can be thought of as a
thermalization time. Such a procedure would involve
coupling the D-wave system with classical computing,
providing a means for an hybrid classical/quantum com-
puting approach for simulation. We are currently preparing
this strategy to be tested on a 8 × 8 lattice.
We optimize the annealing schedule (bottom panel in

Fig. 1) and use this annealing schedule for our U(3) runs.
For the other runs, we used the annealing schedule shown
in the top panel in Fig. 1. Here we generated 500 samples

within 600 msec, corresponding to 1.2 msec per sample.
For the optimized annealing schedule, we generated 1500
samples within 1 second, corresponding to 0.6 msec per
sample. By reducing the sampling time, we increased
statistics while using the same compute resources.
From a computational aspect, we will also make com-

parisons for our lattice model concerning the performance
on D wave, as compared to a classical Monte Carlo
algorithms. Questions we want to address are: how fast
D wave equilibrate in comparison to the worm algorithm, in
particular on large volumes and low temperatures? How do
the autocorrelation times compare?
It is then straightforward to go to higher dimensions, and

the strategy can also be extended to the more interesting
gauge group SUðNcÞ, where the baryon chemical potential
enters as an additional physical parameters. The corre-
sponding QUBO matrix has already been worked out and
will be presented in a forthcoming publication. Although
the sign problem in particular present away from the strong
coupling limit was beyond the scope of this paper, it poses
an important direction of study. It still remains true at finite
β that the dual degrees of freedom are integers. Whether the
QUBO formalism can be extended to incorporate negative
signs is an open question. We however want to point out
that strong coupling QCD already shares important features
with full QCD, thus it is of interest in its own right.
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APPENDIX

1. Exact enumeration

We provide the results from exact enumeration on the
lattices 2 × 2, 4 × 4 and 2 × 2 × 2 for gauge group U(1)
and 2 × 2 for gauge group U(3), by listing the number of
configurations C. Since for the U(1) gauge group, the
combinatorical factor for every configuration has weight 1
(this is not the case for other gauge groups), the partition
function in a finite volume is a polynomial,
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Z ¼
X
M

X
Dt

wM;Dt
γ2Dt

X
M

ð2amqÞM; ðA1Þ

where the coefficients wM;Dt
are given by the sum of

weights of configurations zM;Dt
in each sector ðM;DtÞ.

TABLE III. Contributions to the partition function of U(1) on a
periodic 4 × 4 lattice.

M Dt z ¼ w

0 0 16
0 2 64
0 4 112
0 6 64
0 8 16
2 0 128
2 1 256
2 2 640
2 3 832
2 4 832
2 5 640
2 6 256
2 7 128
4 0 416
4 1 1280
4 2 2592
4 3 3072
4 4 2592
4 5 1280
4 6 416
6 0 704
6 1 2368
6 2 4032
6 3 4032
6 4 2368
6 5 704
8 0 664
8 1 2048
8 2 2832
8 3 2048
8 4 664
10 0 352
10 1 896
10 2 896
10 3 352
12 0 104
12 1 192
12 2 104
14 0 16
14 1 16
16 0 1

Σ 41025

TABLE II. Contributions to the partition function of U(1) on a
periodic 2 × 2 lattice.

M Dt z ¼ w

0 0 4
0 2 4
2 0 4
2 1 4
4 0 1

Σ 17

TABLE IV. Contributions to the partition function of U(1) on a
periodic 2 × 2 × 2 lattice.

M Dt z ¼ w

0 0 64
0 2 64
0 4 16
2 0 128
2 1 128
2 2 64
2 3 32
4 0 80
4 1 64
4 2 24
6 0 16
6 1 8
8 0 1

Σ 689

TABLE V. Contributions to the partition function of U(3) on a
periodic 2 × 2 lattice.

M Dt z w

0 0 16 16
0 2 36 44.44
0 4 36 44.44
0 6 16 16
2 0 24 80
2 1 36 133.33
2 2 48 213.33
2 3 48 213.33
2 4 36 133.33
2 5 24 80
4 0 25 148
4 1 48 320
4 2 64 416
4 3 48 320
4 4 25 148
6 0 20 128
6 1 40 272
6 2 40 272
6 3 20 128
8 0 10 56
8 1 16 96
8 2 10 56

10 0 4 12
10 1 4 12
12 0 1 1

Σ 695
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For gauge group U(1), wM;Dt
¼ zM;Dt

, for other gauge
groups that is not the case. They are given for the
various lattice volumes in the Tables II–IV, and V. The
number of valid configurations including other volumes
and models, obtained from exact enumeration, is given
in Table VI.

2. Statistics of solution vectors

We provide the information of the runs with the optimal
chain_strength, validity rate, and the number of
independent configurations for each physical parameters
γ, amq, and penalty term p for three volumes in the
Tables VII–X.

TABLE VI. Table of the number of valid configurations, degrees of freedom of the solution vector, and the
percentages of valid configuration in all possible binary vector for various gauge groups and volumes.

Group Lattice Valid configurations Configuration space Percentage (%)

U(1) 2 × 2 17 212 0.4
U(1) 4 × 4 41025 248 1.5 × 10−8

U(1) 6 × 6 23079663560 2108 7 × 10−21

U(1) 2 × 2 × 2 689 232 0.00002
U(1) 2 × 2 × 2 × 2 1898625 280 1.6 × 10−16

U(2) 2 × 2 135 224 0.0008

U(3) 2 × 2 695 224 0.004
U(3) 2 × 2 × 2 8750060 264 4.7 × 10−11

TABLE VII. Table of total number of runs on 2 × 2. Each run generates 500 solutions.

U(1) 2 × 2 amq ¼ 0.3, γ ¼ 0.5 amq ¼ 0.6, γ ¼ 0.5

p 1 2 3 4 5 1 2 3 4 5
Optimal chain_strength 1 2 3.5 4.5 6.5 1 2 3 5 5.5
Validity rate 0.90 0.91 0.95 0.93 0.93 0.91 0.89 0.88 0.91 0.89
Independent configurations 8 12 17 17 17 10 13 14 17 17
Runs 1 2 2 2 2 1 2 2 2 2

amq ¼ 0.3, γ ¼ 1 amq ¼ 0.6, γ ¼ 1

p 1 2 3 4 5 1 2 3 4 5
Optimal chain_strength 1 2 3 4.5 5 1 2 3 4.5 5
validity rate 0.92 0.92 0.91 0.93 0.92 0.92 0.92 0.91 0.94 0.91
Independent configurations 16 17 17 17 17 17 17 17 17 17
Runs 8 8 28 1 8 8 8 28 1 8

TABLE VIII. Table of total number of runs on 4 × 4. Each run generates 500 solutions.

U(1) 4 × 4 amq ¼ 0.3, γ ¼ 0.5 amq ¼ 0.6, γ ¼ 0.5

p 3 16 70 120 60 70 120
Optimal chain_strength 5 24 100 170 80 100 175
Validity rate 0.31 0.29 0.36 0.39 0.40 0.38 0.37
Independent configurations 1230 712 1564 1313 1777 1632 1593
Runs 8 4 8 6 8 8 8

amq ¼ 0.3, γ ¼ 1 amq ¼ 0.6, γ ¼ 1

p 12 16 45 2 12 16
Optimal chain_strength 17 24 65 2.5 16 21.5
Validity rate 0.37 0.37 0.37 0.24 0.38 0.39
Independent configurations 1635 1633 1264 1059 1679 1685
Runs 8 8 6 8 8 8
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