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We determine ag, m,., and m,, using the relativistic quarkonium sum rule and the renormalization group

summed perturbation theory. Theoretical uncertainties, especially originating from the variation of the

renormalization scale, are considerably reduced for the higher moments. Our determinations using the

renormalization group summed perturbation theory are also found to be stable with respect to the use of MS

quark mass for the condensate terms. We obtain o

iy, = 4174.3(9.5) MeV.
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I. INTRODUCTION

The strong interaction in the standard model (SM) of
particle physics describes the interactions of the quarks
and gluon. These interactions are very precisely studied
under quantum chromodynamics (QCD) which is non-
perturbative at low energy regions and has asymptotic
freedom [1,2] at high energies. The QCD scale, Agcp., is a
scale parameter that separates these energy regimes. At
low energies, where momentum transfer (g) is of the order
of Agcp, chiral perturbation theory (ChPT) and lattice
QCD are powerful methods to describe strong interactions.
ChPT describes the interactions of pion and kaons while
the lattice QCD computations are improving over the
years, and now predictions even for the bottom quark
systems are also available [3]. The perturbative nature of
QCD at high energies (¢ > Agcp) allows one to use
methods like operator product expansion (OPE) to sys-
tematically calculate the various quantities as an expansion
of a strong coupling constant (a,) by evaluating the
Feynman diagrams appearing at different orders of a.
The OPE also parametrizes the nonperturbative physics in
the condensates involving the quarks and gluon fields.
These condensates can be calculated using lattice QCD
and ChPT [4], optimized perturbation theory (OPT) [5], or
using powerful tools such as QCD sum rules [6,7]. For
more details about the applications of the QCD sum rules,
we refer to Refs. [8,9].

“alam.khan1909 @ gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010,/2023,/108(7)/074029(16)

074029-1

=MLY = 0.1171(7), i, = 1281.1(3.8) MeV, and

The effective field theories of the strong interactions play
a key role in studying systems ranging from a few MeV to
several GeV. For reviews, we refer to Refs. [10-16]. Since
effective field theories are formulated for a very specific
energy range, they are sensitive to fewer parameters than
full QCD. These features allow an efficient determination
of the parameters of the SM using QCD sum rules with the
experimental information taken as inputs.

The low energy moments (M) of the current correlators,
defined in Eq. (3), are important quantities that can be
theoretically calculated. The corresponding quantity is
obtained from the experimental data on the resonances,
which are only available for the vector channel (V). The
moments for the pseudoscalar channel (P) cannot be
obtained from real experiments but can be obtained using
the lattice QCD simulations [17-22]. From these simula-
tions, the dimensionless quantities such as M/ and the
ratios of the higher moments (R?), defined in Eq. (14), can
be reliably obtained. These results are used in the determi-
nation of a, bottom quark mass (m,), charm quark mass
(m..), and the nonperturbative quantities such as the gluon
condensates [23-35]. Other QCD sum rules-based deter-
minations can be found in Refs. [36-44] and for recent
lattice QCD determinations, we refer to Refs. [45,46].

The determination of these parameters using the tradi-
tional fixed-order perturbation theory (FOPT) series from
the lower moments is dominated by experimental uncer-
tainties, but higher moments are dominated by theoretical
uncertainties. Theoretical uncertainties arise when param-
eters such as ag, quark masses (mq), and the gluon
condensate ((% G?)) are taken as input, and the renormal-
ization scale (u) is varied in a certain range. Higher
moments are more sensitive to the renormalization scale
dependence and therefore dominated by its uncertainties.
Also, the MS definition of the quark mass for the vector
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channel, when used in the nonperturbative gluon condensate
terms, gives unreliable determinations for the strong cou-
pling and quark masses. This problem is cured by using the
on-shell mass taken as input [25,47].

In this article, we have addressed these issues by
summing the running logarithm using the renormalization
group summed perturbation theory (RGSPT). In this
scheme, the running logarithm arising from a given order
is summed to all orders in closed form using the renorm-
alization group equation (RGE). This scheme has already
been found to be useful in other processes in Refs. [48-57].

It should be noted that there is already an existing m,,
determination using RGSPT by Ahmady et al. in Ref. [30].
Special emphasis was given to the scale reduction in the MS
and its conversion to the pole mass scheme and the 1S
scheme. Since then, there has been a significant reduction in
the uncertainties in the experimental moments and the value
of the strong coupling constant. Also, the first four moments
to four loop (@) and the quark mass relations to four loop
(a?) are now available. This information can be used to
further reduce the theoretical uncertainties. With these
advantages in hand, we take one step further and extend
its application in the m, and a, determinations.

In Sec. II, we briefly discuss various quantities relevant
to this article. In Sec. III, we discuss the renormalization
group (RG) improvement of the moments using RGSPT.
Since the pseudoscalar and vector channel moments are
available for the charm case, we use these moments in the
determination of m, and a, in Secs. IV and VI, respectively.
In Sec. V, my, is obtained only from the vector moments. In
Sec. VII, we provide our final determination, and the
importance of the RGSPT is discussed in detail. The
supplementary material needed in this article is presented
in Appendixes A and B.

Before moving to the next section, it should be noted that
we use the following numerical inputs from PDG [58] in
this article:

M, = 1.67 +0.07 GeV,
M, = 4.78 £ 0.06 GeV,
"= (M) = 0.1179 + 0.0009,
m.(m.) =127 +£0.02 GeV,
my(my) = 4.18 £ 0.04 GeV, (1)

and decoupling and the running of «a, are performed at the
MS scheme values of the charm and bottom quark masses
using REvolver [59] and RunDec [60] packages.

II. THEORETICAL INPUTS

The normalized total hadronic cross section (Rg,),
defined as

olete” - qq+X)

2ot = qg +X)
=—-F0le e — ad
“ olete” »utp)

49 Aga?

(2)

is one of the most important observables sensitive to the
quark mass (m,). The inverse moment for the vector

channel (/\/l};'") is derived from R, as

n ds

It is evident from Eq. (3) that for higher moments,
significant contributions come from low energy resonan-
ces. To quantify these contributions, theoretical inputs from
the nonrelativistic QCD [61,62] play a crucial role. Their
results can be taken as input in the determination of the m,.
and my, [41,42] and the sum rules are usually referred to as
the nonrelativistic sum rule.

Using analyticity and unitarity, the moments are related
to the coefficients of the Taylor expansion for the quark-
heavy correlator evaluated around s = 0 as

122202 ",

Vih _
Ma™ = n! ds"H<S)

(4)

s=0
where Q, is the electric charge, s = / g is the e*e™ center

of mass energy, and ITy (s) are the current correlators of two
vector currents given by

(5 — 4u2)T1Y (5) = —i / dxe(0|T{j,(x)7,(0)}]0).
where

Ju = a(xX)r"q(x).
For the pseudoscalar channel, slightly different defini-

tions are used in Ref. [26] and are also adopted in this
article. The pseudoscalar current correlator is defined as

°(s) =i [ dxe O p()jp0)10). (5
where

Jjp = 2im,q(x)r’q(x), (6)

and the double subtracted polarization function is obtained
from Eq. (5) as

P(s) = (HP<s> ~TP(0) =5 | ST () ) o

N

from which the moments are obtained as
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127°Q2 a"
—P . 8
Ol (8)

MPth( )

Theoretical moments are calculated using the OPE and
have contributions from purely perturbative (Mj"") as
well as nonperturbative (M™Py origins. Therefore, we
can write the theoretical moments as follows:

Mff'th :Mg.pen_i_Mf,n‘p.. (9)

X pert

The fixed order perturbative series for M, have the

following form:

X, —2n irj
P = m2y " TX AL (10)
i=0

where m, = m,(u), x = a;(u)/z, and L = log(u?/q*).
The Tl.’(')Y are RG inaccessible terms calculated using the
perturbation theory by evaluating the Feynman diagrams
appearing in a given order. Their numerical values are
presented in Appendix A. Other T7:" coefficients can be

obtained using the RGE and are known as RG-accessible
terms. The two-loop correction to Mj ™" is calculated in
Ref. [63], three loops in Refs. [64—68], and the first four
moments at the four loop (or a?) in Refs. [69,70].
Predictions for higher moments using the analytic
reconstruction method can be found in Refs. [71,72] and
are used in Ref. [73] in the m, determination. Other
predictions using Padé approximants can be found in
Ref. [74]. A large-f, renormalon-based analysis for the
low energy moments of the current correlators can be found
in Ref. [75].

The MY ™ include the contributions from the conden-
sate terms and has the following form:

1 a
M;’l(,n‘p. — <_S G2>
(2mq)4n+4 T RGI

X (TX"p —|—x(mq)Txnp) + 0%, (11)

where Tf(’)n'P‘ are the perturbative corrections as prefactors
to the gluon condensate and are known to next-to-leading
order [76] and can be found in Appendix A. For the RG
invariant gluon condensate, we use the following numerical
value [4]:

<% G2> —0.006+0.012 GeV*.  (12)
7 RGI

In addition, we also need quark mass relations to convert it
from the MS scheme to the on-shell scheme. These
relations are now known to four loops [77-82]. The
one-loop relation relevant for this article is given by

mq(y):Mq<1—x(,u)<§+log<ﬁ'u4—2%1>>>+(9(x2), (13)

which will be used in Eq. (11) for the quark conden-
sate terms.

From theoretical moments, defined in Eq. (9), the ratio of
the moments (RY) can be obtained as

x (M)

Ry=—F T
(Mo )7

, (14)

which are more sensitive to the «, and less sensitive to the
quark masses. The mass dependence arises only from the
running logarithms present in the perturbative expansion.
This quantity is very useful in the determination of the a;.

With an introduction to these RG invariant quantities, we
are in a position to discuss their RG improvement using
RGSPT in the next section.

III. RG IMPROVEMENT OF MOMENTS

The FOPT expression for the MjP™", in Eq. (10), is a
RG invariant perturbative expansion quark mass and o;.
The evolution of the quark masses and a is dictated by
their RGE. There are also some studies where m,(u) is
expanded in the MS scheme, and an extra scale (u,,) is
introduced whose effects appear in O(a?) in the running
logarithm. Although this procedure is very general, inde-
pendent scale variations of (u, y1,,) give more renormaliza-
tion scale uncertainty as the RG invariance of the moments

Xpert 5o broken in the case of the finite order results.
Since this article only focuses on the RG improvement, we
restrict ourselves to the single renormalization scale (u),
known as a correlated choice of scale approach.

To obtain the closed for summed expression, we rewrite
the perturbative series in Eq. (10) as follows:

My = m;znz:xiS,»(xL), (15)
py

where the S;(xL) are the RG summed coefficients given by:

S;(xL) = ZTM ((xL)"= (16)

n=i

Since Mff’pm is an observable, Eq. (10) has a homo-
geneous RGE given by

= (B(x)0x + 7 (%), + 9 )M =0, (18)
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where f(x) and y,, are the QCD beta function [1,83-91]
and the quark mass anomalous dimension [77,92-98] is
given by

P =4 sl ==Y (19)

d
Ym = MZ )

a2 mq(/‘) = _mq(/")zi:}’ixi+1' (20)

Now, we can follow the steps described in Ref. [51] by
collecting coefficients corresponding to summed coeffi-
cients defined in Eq. (16). This process results in a set of
coupled differential equations for S;(xL), which can be
written in a compact form as

k

Z [ﬁi(5i,o +w=1)8_;(w)

i=0

+ Seilw)(=2ny; + (=i + k)| =0 (21)

where w = 1 — ffyxL. The solutions for the above differ-
ential equation are presented in Appendix B. We can obtain
various MX* from these solutions. It should be noted that
the corresponding expression in the on-shell scheme is
obtained by setting the quark mass anomalous dimension
vi=0.

After the RG improved perturbative series is obtained for
different M, we can study their scale dependence. For the

charm moments, we take !~ (3 GeV) = 0.2230 and
m.(3 GeV) =993.9 MeV. For the bottom moments,

we take ol ~(10 GeV) = 0.1780 and m;(10 GeV) =
3619.4 MeV. These values are obtained from Eq. (1) using
the REvolver package. The scale dependence of the first four
moments for the vector and pseudoscalar channel for the
charm case can be found in Figs. 1 and 2, respectively. We
only used vector moments for the bottom quark case, and the
scale dependence can be found in Fig. 3. It should be noted
that the agreement of various moments in the FOPT and
RGSPT prescription occurs at the MS value of the quark
masses, i.e., u = m,(u) = m,(m,). At this particular scale,
the RGSPT expressions reduce to FOPT expressions. It is
evident from these figures that the RGSPT has better control
of the scale variations compared to the FOPT. For the vector
moments, the third and fourth moments in the FOPT scheme
are very sensitive to scale variations and contribute to a large
theoretical uncertainty even though their experimental val-
ues are known more precisely. With these advantages in
hand, we have used FOPT and RGSPT in the determinations
of the ag, m,, and m,; in the next sections.
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FIG. 1. Renormalization scale dependence of the first four

vector moments for the charm quark.

IV. CHARM MASS DETERMINATION

The charm quark is very interesting for the low as well as
the high energy regime of the QCD. It is not heavy enough
that heavy quark effective theory can be used for precise
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vector moments for the bottom quark.
FIG. 2. Renormalization scale dependence of the first four
pseudoscalar moments for the charm quark.
lattice QCD methods have significantly developed over the
years, and now precise predictions for the charm quarks are
prediction nor close enough Agcp such that a formalism  available in the literature. We use experimental inputs as
like ChPT can be applied. Various technical issues arise  well as the results from the lattice QCD on the moments in
when it is used in quarkonium physics [10-16]. However, the extraction of the m, in this section.
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TABLE I. Moments for the vector channel for the charm case.
These moments are in the units of 107" GeV~2".

Moments Reference [25] Reference [47]
MY-GXP 2.121 £ 0.036 2.154 +0.023
M;/.exp 1.478 + 0.028 1.490 + 0.017
M;/,eXP 1.302 £ 0.027 1.308 £ 0.016
MX’eXP 1.243 £0.028 1.248 £ 0.016

In this section, we determine the m, from the vector
moments and pseudoscalar moments using FOPT and
RGSPT. As observed in Sec. III, these determinations
from higher moments in the vector channel are very
sensitive to scale variations, and the MS definition in the
condensate terms also causes trouble. The determination
from the pseudoscalar channel does not suffer very much
from these issues.

A. m, determination using experimental inputs
for the vector channel

For the vector channel, we use the experimental
moments provided in Refs. [25,47] in the m,. determination.
These moments are presented in Table I, and our results for
the m, determination in the MS scheme are presented in
Table II. A significant condensate contribution in the m,
determination using FOPT is found for MY and M} . This
is caused by quark mass in the MS scheme used in the
condensate terms for FOPT as pointed out in Refs. [25,29]
and they use the pole mass value in the condensate to avoid
such large contributions. However, this is not the case for
the RGSPT determinations, which are also stable with
respect to the scale variations. When we use the pole mass
in the condensate, the m, determination using FOPT and
RGSPT are presented in Table III. In this case, the situation
is a little bit improved for FOPT, but scale dependence is
still the major source of theoretical uncertainties.

TABLE II.  m,. determinations using FOPT and RGSPT in the MS scheme using experimental inputs from Table I. Results are in the
units of MeV and the scale dependence is calculated for the energy range u €[1,4] GeV.
FOPT RGSPT
Theo. Unc. Theo. Unc.
Sources Moments  m.(3 GeV)  « u n.p. Total Exp. Unc. m.(3GeV) «a pu np. Total Exp. Unc.
Reference [25] MY 1005.4(13.9) 3.2 7.6 0.2 8.3 11.2 1000.2(12.3) 3.7 1.9 23 48 11.3
MY 997.2(19.8) 4.7 113 144 189 6.1 988.5(9.2) 54 16 35 6.6 6.3
MY 1022.1(127.8) 3.4 41.8 120.6 127.7 4.0 983.49.2) 6.7 14 39 178 4.9
MY 1077.3(113.6) 1.0 100.5 52.9 113.6 2.8 980.58.9) 7.7 09 1.8 8.0 39
Reference [47] MY 995.4(10.8) 3.3 7.6 0.0 8.3 6.9 990.1(8.5) 3.6 20 23 438 7.0
MY 994.6(19.5) 4.7 113 147 19.1 3.7 985.8(7.7) 54 16 35 6.6 3.8
MY 1021.3(126.5) 3.4 419 126.5 1333 2.3 982.3(8.3) 6.7 14 39 178 2.8
MY 1076.8(113.8) 1.0 100.7 529 113.8 1.6 979.88.3) 7.7 09 1.8 8.0 22

TABLE III.

energy range u € [1,4] GeV.

m, determinations using FOPT and RGSPT using experimental inputs from Table I. The pole mass of the charm quark is
used as input in the nonperturbative condensate terms. Results are in the units of MeV, and the scale dependence is calculated for the

FOPT RGSPT
Theo. Unc. Theo. Unc.
Sources Moments m.(3 GeV) @  u n.p. Total Exp.Unc. m.3GeV) «a u np. Total Exp. Unc.
Reference [25] MY 1004.8(13.7) 33 7.1 14 79 11.2 1000.9(12.1) 3.7 19 09 43 11.3
M;/ 989.49.2) 54 35 20 6.7 6.3 989.6(8.6) 55 1.8 1.0 5.8 6.3
/\/l;/ 990.9(13.5) 54 109 25 126 4.7 984.8(8.7) 68 24 10 73 4.8
MY 1014.5(37.7) 3.8 372 29 375 3.4 980.9(9.8) 80 39 09 9.0 3.9
Reference [47] MY 995.1(10.3) 33 6.8 0.7 7.6 7.0 990.8(8.2) 3.8 20 09 43 7.0
M;/ 987.3(74) 54 32 08 6.3 3.8 986.9(7.0) 55 1.8 1.0 59 3.8
/\/lé/ 990.7(12.7) 5.8 109 27 124 2.7 983.7(7.8) 68 24 1.1 73 2.8
MY 1014.937.0)0 3.8 36.7 0.8 369 2.0 980.2(9.3) 81 39 1.0 9.0 2.2
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TABLE IV. Pseudoscalar moments calculated from lattice QCD for the charm case. These M? are in units of

107" GeV—2",

Moments Reference [17] Reference [18] Reference [20] Reference [21] Reference [22]
MP 1.404 +0.019 1.395 + 0.005 1.385 £ 0.007 1.386 £ 0.005 1.387 £ 0.004
ML 1.359 £ 0.041 1.365 +0.012 1.345 +0.032 1.349 + 0.012 1.344 + 0.010
ML 1.425 £ 0.059 1.415 +0.010 1.406 £ 0.048 1.461 £ 0.050 1.395 £0.022

B. m, determination using the lattice QCD inputs

The moments for the vector currents are obtained
using the experimental data on hadrons from the ete™
collision. However, this is not the case for the pseudoscalar
channel, which is not realized in nature but can be
computed using the lattice QCD simulations. We use
the results for the reduced moments (R,), and a dimen-
sionless quantity is reliably calculable from the lattice
QCD in Refs. [17,18,20-22]. The regular moments calcu-
lated in the perturbative QCD are related to these reduced
moments by the following relations [24,26]:

Ry \ 2"
M,}; == T;O (# N

Ne

(22)

and the results are collected in Table IV. The theoretical
uncertainties (abbreviated as theo. Unc.) are calculated
from uncertainties present in ag, varying p € [1,4]GeV,
and uncertainties which have nonperturbative (abbreviated
as n.p.) origins. Additional experimental uncertainties

(abbreviated as Exp.) are evaluated by from the uncertainties
present in the experimental values of the moments.

It should be noted that the reduced moments provided in
Refs. [17,18] are converted to regular moments using the
current PDG [58] value m, = 2.9839 4+ 0.0004 for the
7. meson.

The m, determination using FOPT and RGSPT from
the lattice QCD moments are presented in Table V. These
determinations do not suffer issues from the condensate
terms; the determinations from the first two moments are
precise and close. The RGSPT determinations are even
better for all three moments. Since the results from the
pseudoscalar channel in the MS scheme are good enough,
we do not find it necessary to give our determinations using
on-shell mass as input for the condensate terms.

Ne

V. BOTTOM QUARK MASS DETERMINATION

The bottom quark is heavy, and to the best of our
knowledge, there are no direct lattice data on the moments
in the case of the bottom quark. We use the experimental
information on the moments provided in Refs. [26,28,99] for

TABLE V. m, determinations using FOPT and RGSPT using experimental inputs from Table IV. The pole mass of the charm quark is
used as input in the nonperturbative condensate terms. Results are in the units of MeV and the scale dependence is calculated for the

energy range u € [1,4] GeV.

FOPT RGSPT
Theo. Unc. Theo. Unc.
Sources Moments m.(3 GeV) a, pu  np. Total Exp. Unc. m.(3GeV) a, u np. Total Exp. Unc.
Reference [17] /\/lf 983.6(10.0) 1.1 50 24 57 8.2 989.39.0) 14 35 0.7 38 8.1
Mé) 988.3(12.5) 1.7 6.8 3.6 125 9.8 990.5(11.4) 1.5 58 09 6.0 9.7
/\/l§ 998.9(29.9) 22 26.6 10.5 28.6 8.5 985.4(11.6) 32 64 20 74 9.0
Reference [18] MP 987.1(6.1) 1.1 50 23 55 2.4 992.8(4.5) 1.4 35 35 07 23
Mé) 986.983) 1.7 67 3.6 78 2.7 989.1(6.6) 15 58 09 6.0 2.7
./\/l§ 1000.2(28.6) 2.2 26.5 104 28.6 1.4 986.9(7.6) 32 64 20 74 1.5
Reference [20] MP 991.7(6.4) 1.1 49 22 55 3.2 997.3(5.0) 1.4 35 0.7 38 32
./\/lé) 991.5(109) 16 68 35 79 7.5 993.6(9.6) 1.5 58 09 6.1 7.5
ME 1001.5(29.4) 2.2 26.5 103 285 7.1 988.2(10.5) 32 64 20 74 7.5
Reference [21] MP 991.2(6.0) 1.1 49 23 55 2.4 996.8(4.5) 1.4 35 0.7 338 23
ML 990.58.3) 1.6 6.8 35 79 2.8 992.7(6.6) 15 58 09 6.0 2.7
ME 993.8(29.7) 2.2 26.7 109 289 7.0 980.0(10.5) 33 63 20 74 7.4
Reference [22] MP 990.6(5.9) 1.1 49 23 55 1.9 996.2(42) 14 35 07 38 1.9
ML 991.6(82) 1.6 35 79 23 9.8 993.7(6.5) 1.5 58 09 6.1 2.3
ME 1003.2(28.6) 2.2 265 102 28.6 3.2 989.98.2) 32 64 20 74 34
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TABLE VL

Vector moments from different sources used as

14

input for the bottom quark mass determination. These M, are in
units of 10-27+1) Gev-27,

Moments  Reference [26] Reference [28] Reference [99]
MY'EXP 4526 +0.112 4592 +£0.031  4.601 £ 0.043
M;”EXP 2.834 £0.052 2.8724+0.028  2.881 +0.037
M;’-EXP 2.338 £0.036  2.362+0.026  2.370 £ 0.034
MX-“P 2.154 +£0.030 2.170+0.026  2.178 £0.032
TABLE VII.

the vector channel in the bottom quark mass determinations.
These moments from different sources are tabulated in
Table VI. The m; determination using FOPT and RGSPT
in the MS scheme is presented in Table VII. Similar to the
charm case, FOPT again suffers from large nonperturbative
contributions and scale dependence. The uncertainty from
the condensate term is alone 70% of the central value for the
third and fourth moments. When bottom quark mass in the
on-shell scheme is used as input, this issue is resolved, and
our m,, determinations are presented in Table VIII.

m,, determinations using FOPT and RGSPT in the MS scheme using experimental inputs from Table VI. Results are in

units of MeV and the scale dependence is calculated for the energy range u € [2,20] GeV.

FOPT RGSPT
Theo. Unc. Theo. Unc.
Sources Moments  m,(10 GeV) o, u np. Total Exp. Unc. m,(10 GeV) «a, p n.p. Total Exp. Unc.
Reference [26] MY 3632.2(53.4) 32 54 0.0 6.3 53.0 3631.6(53.1) 3.2 0.7 00 33 53.0
MY 3632.8(21.0) 52 53 0.0 7.4 19.7  3633.1(20.4) 52 04 0.1 52 19.7
M¥ 3637.8(2746.7) 6.2 20.2 2746.6 2746.7 11.0 3634.1(12.8) 6.5 0.3 0.2 6.5 11.1
MY 3648.8(2491.7) 6.5 49.9 2491.2 2491.7 7.4 3635.0(10.5) 74 04 02 74 7.5
Reference [28] MY 3601.9(14.1) 32 53 0.0 6.2 14.1 3601.3(14.5) 3.2 0.7 00 33 14.1
/\/lg 3618.7(12.7) 52 52 0.0 7.4 10.4 3619.0(11.6) 52 04 0.1 52 10.4
My 3630.5(2739.5) 6.2 20.2 2739.4 2739.5 7.8 3626.8(10.2) 6.5 0.3 0.2 6.5 7.9
MY 3644.9(2487.8) 6.5 49.9 2487.3 2487.8 6.4 3631.009.8) 74 04 02 74 6.5
Reference [99] MY 3597.8(20.6) 32 53 0.0 6.2 19.6 3597.2(19.9) 32 0.7 00 33 19.6
/\/lg 3615.4(15.5) 52 52 0.0 7.4 13.7 3615.7(14.6) 52 04 0.1 52 13.7
My 3628.1(2737.1) 6.2 20.3 2737.0 2737.1 10.2 3624.4(12.1) 6.5 03 0.2 6.5 10.3
M 3642.9(2485.9) 6.5 50.0 2485.3 24853 7.8 3629.0(10.8) 74 04 02 74 7.9

TABLE VIIL

my, determinations using FOPT and RGSPT using experimental inputs from Table VI. The pole mass of the bottom quark

is used as input in the nonperturbative condensate terms. Results are in the units of MeV, and the scale dependence is calculated for the

energy range u € [2,20] GeV.

FOPT RGSPT
Theo. Unc. Theo. Unc.
Sources Moments m;(10 GeV) «a, x4 np. Total Exp. Unc. m,(10 GeV) « u n.p. Total Exp. Unc.
Reference [26] MY 3632.2(53.4) 32 54 0.0 6.3 53.0 3631.6(53.0) 3.2 0.7 00 33 53.0
M;’ 3632.8(21.0) 52 53 0.0 7.4 19.7 3633.2(20.4) 52 04 00 5.2 19.7
,/\/l%’ 3637.6(23.2) 6.2 195 0.0 205 11.0 3634.2(12.8) 6.5 03 0.0 6.5 11.1
MX 3648.3(48.8) 6.5 47.8 0.1 483 7.4 3635.1(10.5) 74 04 00 74 7.5
Reference [28] MY 3601.9(15.5) 3.2 53 0.0 6.2 14.1 3601.3(14.5) 3.2 0.7 00 33 14.1
,/\/lg 3618.7(12.7) 52 52 0.0 7.4 10.4 3619.1(11.6) 52 04 00 5.2 10.4
M;’ 3630.4(22.0) 6.2 19.6 0.0 20.5 7.8 3626.9(10.2) 6.5 03 0.0 6.5 7.9
MX 3644.3(48.7) 6.5 479 0.1 483 6.4 3631.19.8) 74 04 00 74 6.5
Reference [99] MY 3597.8(20.6) 3.2 53 0.0 6.2 19.6 3597.3(19.9) 32 0.7 0.0 33 19.6
,/\/lg 3615.4(15.5) 52 52 00 7.3 13.7 3615.8(14.6) 52 04 00 5.2 13.7
M;’ 3628.0(22.9) 6.2 19.6 0.0 205 10.2 3624.5(12.1) 6.5 03 0.0 6.5 10.3
MX 3642.4(489) 6.5 479 0.1 483 7.8 3629.1(10.8) 74 04 00 74 7.9
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TABLE IX. Ratio of the experimental moments for the vector
current obtained using the current PDG [58] value of the
(5)

as’' (M) = 0.1179 £ 0.0009.
n RY
1 1.770 £ 0.017
1.1173 £ 0.0023
3 1.03536 4+ 0.00084

VI. g DETERMINATION

For the a, determination, instead of the Mff , we use the
dimensionless quantities such as M{ and the ratio of
moments RY defined Eq. (14). Theoretical expressions
are sensitive to the a,, and the quark mass dependence
appears at next-to-next-to-leading order via running loga-
rithms. These quantities are very important observables for
a, determination. These ratios can also be calculated from
the lattice QCD for the charm case in the pseudoscalar
channel. We do not get any reliable determinations of the o
for the bottom moments in the vector channel. Therefore, our
determinations are only based on the charmonium sum rules.

We use the ratios of the moments for the vector channel
provided in Refs. [24,35] in the @, determinations. For the
pseudoscalar channel, we use results on the moments and
from Refs. [17-22].

It should be noted that the @, determination in this
section is first performed at charm quark mass scale
mq(m,) = 1.27 +0.02 GeV and then evolved to the boson
mass scale (M7 = 91.18 GeV) by performing the matching

and decoupling at the bottom quark mass scale using
my(m,) = 4.18 GeV in the MS scheme [58]. We have
used the REvolver package to perform the running and
decoupling once a,(/m,..) is obtained.

Another technical point is the evolution of quark mass
when uncertainties coming from scale variation are calcu-
lated. For this, we have taken our x(m.) = a(m.)/n
determination as input and numerically solved for x(q)
at a different scale, g, using the following relation:

x(q)
me(q) = i, /
x(im.)

r(x)
dxe') (23)

where y(x) and f(x) are the five-loop quark mass anoma-
lous dimension and QCD beta function.

A. a from the vector channel

For the vector channel moments, one needs the exper-
imental information about the resonances, and additional
continuum contributions are modeled using the theoretical
expression for the hadronic R ratio for e*e™ in Eq. (2). We
do not calculate these moments in this section, instead using
very recent results provided in Refs. [24,35]. We have
collected experimental inputs in Table IX. We have tabu-
lated our determinations in the MS scheme in Table X.
Contrary to the previous sections, the effects of the non-
perturbative terms in the MS scheme are the same for a
determinations from FOPT and RGSPT. Even though
RGSPT has significant control over the renormalization

TABLE X. a, determination using FOPT and RGSPT for the vector channel and sources of uncertainties from different sources. The
scale dependence is calculated for the energy range u € [1,4] GeV. The MS scheme value for the charm quark is used in condensate
terms.
FOPT RGSPT
Theo. Unc. Theo. Unc.

Moment a,(My) m, U n.p. Total  Exp. Unc. a,(My) m. u np. Total  Exp. Unc.
RY 0.1167(39) 3 13 8 16 36 0.1167(38) 3 7 8 11 36
RY 0.1163(31) 4 27 12 29 11 0.1163(18) 3 8 12 15 11
RY 0.1159(60) 4 58 14 60 5 0.1159(17) 3 6 14 16 5
TABLE XI. a4 determination using FOPT and RGSPT for the vector channel and sources of uncertainties from different sources. The

scale dependence is calculated for the energy range u € [1,4] GeV. The on-shell mass of the charm quark is used in condensate terms.

FOPT RGSPT
Theo. Unc. Theo. Unc.
Moment a,(My) m. u n.p. Total  Exp. Unc. a,(My) m. u np. Total  Exp. Unc.
RY 0.1169(38) 3 13 5 15 35 0.1169(36) 2 6 5 8 35
Rg 0.1164(28) 4 24 9 26 10 0.1164(15) 2 5 6 8 10
RX 0.1159(30) 3 27 13 30 5 0.1159(14) 2 2 6 6 5

074029-9



M.S. A. ALAM KHAN

PHYS. REV. D 108, 074029 (2023)

as(Mz) from RY
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FIG. 4. a, determination from the R) using the MS value of the

charm quark mass as input in the condensate term. The bands
represent the total uncertainty in the determinations.

scale uncertainties, uncertainties arising from the nonper-
turbative contributions dominate in the higher moments.

We also perform a, determinations to control these
uncertainties using the numerical value of the on-shell
mass for the charm quark in the condensate terms. The
results obtained are presented in Table XI. We have found
that using the on-shell mass in the nonperturbative term
significantly improves our «, determination. It is remark-
able to note that the theoretical uncertainties are of similar
size to the experimental ones for RGSPT.

as(Mz) from RY
0430 [ 1+

0125 3

0120

0.115]

as(Mz)

o.110[
o0 === RGSPT

[ 1] N S S S
1.0 1.5 2.0 25 3.0 3.5 4.0

M (in GeV)
as(Mz) from RY
0.130'yvvvvyvvvvyvvvvyvvvvyvvvvyvvvvyA

0125 3

0120 i

as(Mz)

0115 T

0110

—e— FOPT

o0 === RGSPT

o000 ]
1.0 1.5 2.0 25 3.0 3.5 4.0

M (in GeV)
as(Mz) from RY
0.14 -7 T T T T T T T T T T T T T T T T T

013 4

as(Mz)

0_10'““‘A““‘“““““““A““‘
1.0 1.5 2.0 25 3.0 3.5 4.0

M (in GeV)

FIG. 5. @ determination from the R} using the on-shell value
of the charm quark mass as input in the condensate term. The
bands represent the total uncertainty in the determinations.

We can also notice that our determination in Tables X
and XI have the same central value for both RGSPT
and FOPT. Because of the choice of scale u = ., FOPT
and RGSPT have the same expressions for the moments.
Different scale choices result in different central values
and uncertainties. This behavior can be seen in Figs. 4
and 5 for the two scenarios considered above for the
treatment of the nonperturbative terms. These plots also
show remarkable stability in the a, determinations from
the RGSPT.
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TABLE XII. Pseudoscalar moment calculated from lattice QCD for the charm case. These MZ are in units of 10" GeV~2".
Moments Reference [17] Reference [18] Reference [20] Reference [19] Reference [21] Reference [22]
ME 1.708 £ 0.007 1.708 £ 0.005 o 1.699 + 0.008 1.705 £ 0.005 1.7037 + 0.0027
R 1.197 £ 0.004 1.188 £ 0.004 1.199 £ 0.004 1.1886 +0.013 1.1881 + 0.0007
R 1.033 £ 0.004 1.0341 + 0.0018 1.0344 + 0.0013 1.0324 +0.0016 .

B. a, determination using the lattice QCD data

The lattice QCD is the only source where the simulations
can calculate pseudoscalar moments, and then the results
are extrapolated to the continuum limits. Their results have
their limits as the dimensionless moments and their ratios
RP for the higher moments suffer from the lattice artifacts.
Despite these limitations, lower moments can still be used
in the @, determination. The lattice QCD simulations
calculate the reduced moments R,,, 4, which will be
transformed into the regular moments from the perturbative
QCD. In addition to Eq. (22), we also need the zeroth
moment and dimensionless R’ using Eq. (14) are obtained
as [24,26]

Mg = T0P,0R4’
RP — (Th )" <R2n+4> 2 (24)
n ( ,[;+l’0)1/(n+1) R2n+6

Using above relations, the results of Refs. [17,18,20-22]
are tabulated in Table XII. We use these results in the a;
determination from the pseudoscalar moments, and the
results in the MS scheme are presented in Table XIII.

The nonperturbative effects are under control since only the
first few moments are used as input. They do not cause any
issues in our determination, so there is no need to reiterate
the exercise using the on-shell mass for the charm quark in
condensate terms. Again, our determinations from the
FOPT are dominated by theoretical uncertainties, especially
the scale variation, but RGSPT gives very stable results.
Interestingly, the determinations of o from R} give smaller
central values than the other moments considered.

VII. SUMMARY AND CONCLUSION

In Sec. II, the perturbative quantities related to the low
energy moments of the current correlators are RG improved
using RGSPT in Sec. III. The scale dependence of these RG
invariant quantities using FOPT and RGSPT are plotted in
Figs. 1-3. It is evident from these plots that a more precise
determination of the m,, m,, and a, can be obtained.

In Sec. IV, the determination of the m, is performed
using experimental vector and lattice pseudoscalar
moments. The m,. determinations using FOPT from the
vector moments suffer from large uncertainties originating
from the nonperturbative terms. This problem is not
encountered with RGSPT; results are presented in

TABLE XIII.  a, determination from the pseudoscalar channel in the MS scheme from various sources as input from Table XII.
FOPT RGSPT
Theo. Unc. Theo. Unc.
Sources Moments o (M) m, u np. Total Exp. Unc. a,(My) m, u np. Total Exp. Unc.
Reference [17] /\/lg 0.117220) 3 19 3 19 6 0.1172(8) 3 3 3 5 6
RP 0.1182(43) 4 42 5 43 6 0.1181(15) 3 12 5 13 6
RE 0.1150(53) 4 50 9 51 15 0.1149(18) 3 7 9 11 15
Reference [18] ME 0.1172200 3 19 3 19 5 0.1172(7) 33 3 5 5
Reference [20] Mb 0.1168(48) 3 8 6 47 7 0.1168(13) 3 9 6 11 7
RP 0.1152(51) 4 50 8 50 6 0.1152(13) 3 7 8 11 6
Reference [19] ME 0.1164200 3 18 4 19 7 0.1164(9) 3 3 4 5 7
RP 0.1182(43) 4 42 5 43 6 0.1184(15) 3 13 5 14 6
RY 0.1153(50) 4 49 8 50 5 0.1153(12) 3 7 8 7 5
Reference [21] ME 0.1169200 3 19 3 19 5 0.1169(7) 3 13 3 5 5
RP 0.116947) 4 47 6 47 2 0.1169(12) 3 10 6 12 2
RY 0.1146(53) 4 52 9 53 6 0.1146(13) 3 6 9 11 6
Reference [22] ME 0.1168(19) 3 19 3 19 2 0.1168(13) 3 9 6 11 7
R 0.1168(47) 4 47 6 47 1 0.1168(12) 3 1 6 11 1
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Table II. To improve FOPT determination, we take quark
mass in the on-shell scheme as input for the nonperturbative
terms. This choice leads to improved determinations and
results in Table III. The nonperturbative effects are not as
problematic for the pseudoscalar moments as for the vector
case. Slightly more precise values are obtained from the
lattice moments than vector moments. These results are
presented in Table V.

In Sec. V, the m;, determination only using the vector
moments is performed using FOPT and RGSPT. The
condensate terms are more troubling in this case than in
the m,. determination. For the third and fourth moments, the
determinations using FOPT suffer largely from the uncer-
tainty from nonperturbative terms, which are nearly 70% of
the central value. These results are presented in Table VII.
When the numerical value of the bottom quark mass in the
on-shell scheme is taken as input in the nonperturbative
term, this problem for FOPT determination disappears.
These results are presented in Table VIII.

In Sec. VI, the a, determination is performed using
dimensionless moments and ratios of the moments for the
charm vector and pseudoscalar moments. The values
obtained using the vector moments have similar issues
from the nonperturbative terms as in the case of the m, and
my, determination. These are again solved using the on-
shell charm quark mass. These results are presented in
Tables X and XI. Determinations using the pseudoscalar
moments are presented in Table XIII.

In addition, it is worth mentioning that the RGSPT can
also be used to calculate the continuum contributions to
experimental moments where the electromagnetic R ratio is
taken as input. In Ref. [100], a significant reduction in the
theoretical uncertainties originating from renormalization
scale variation and truncation of the perturbation series is
obtained for the R ratio. As an application of the method
developed, light quark masses determined in Ref. [101] are
more precise compared to the FOPT. These results can also
be used for the method used in Refs. [33,34] for the
continuum contributions.

Now, we turn to the final values for the m,., m,, and o
determination. We take the most precise values obtained in
this article. Interestingly, all of them are obtained using
RGSPT and lattice inputs except for the bottom quark mass,
for which no lattice moments are available. For the charm
mass, we give our final determination that is obtained from
Table V using Ref. [22] as

m.(3 GeV) = 0.9962(42) GeV, (25)
= m,(m,) = 1.2811(38) GeV. (26)

For the bottom quark mass, we take the most precise
value obtained in Table VIII from Ref. [28] as

my, (10 GeV) = 3.6311(98) GeV, (27)

= my(m,) = 4.1743(95) GeV. (28)

We have the two most precise determinations for a strong
coupling constant in Table XIII from Refs. [18,21]. We
average out these values and obtain the final determination:

a (M) = {0.1172(7),0.1169(7)}, (29)
= (M) = 0.1171(7). (30)

These values are in full agreement with the current
PDG [58] values which read

a (M) = 0.1179(9), 31)
m.(m,) = 1.27 +0.02 GeV, (32)
my(my,) = 4.18 £ 0.03 GeV. (33)
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APPENDIX A: PERTURBATIVE COEFFICIENTS
OF THE MOMENTS

The perturbative coefficients of the vector and pseudo-
scalar moments for the charm case are presented in
Tables XIV and XV, respectively. For the bottom case,
only vector moments are used and their coefficients are
presented in Table XVI.

TABLE XIV. The perturbative coefficients of the vector mo-
ments for the charm case in the MS scheme.

Moments Ty, TV, TY, TV,  Too® Tio®
MY 1.067 2.555 2497 -5.640 -0.251 -0.235
MY 0.457 1.110 2.777 -=3.494 -0.104  0.051
MY 0271 0.519 1.639 -2.840 -0.038  0.077
MY 0.185 0.203 0.796 -3.348 —0.013  0.047
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TABLE XV. The perturbative coefficients of the pseudoscalar TABLE XVI. The perturbative coefficients of the vector mo-

moments for the charm case in the MS scheme. ments for the bottom case in the MS scheme.

Moments T4, TF, T%, 5, Too™ Tio® Moments Ty, TV, TY, TY, Teo® T{o®
Mg 0.333 0.778 0.183 —-1.806 0.877 —0.045 MY 0.267 0.639 0.790 -1.941 -0.110 -0.271
Mf 0.133 0.516 1.881 1.515 0.125 -0.391 M;/ 0.114 0.277 0.808 -0.661 —-0.063 -0.076
Mf 0.076  0.303 1.567 3711 0.0 -0.142 M¥ 0.068 0.130 0.517 -0.294 —-0.026 0.005
M§ 0.051 0.178 1.138 3.583 —0.009 -0.022 MX 0.046 0.051 0.305 -0.346 —0.009 0.017

APPENDIX B: SOLUTION TO SUMMED COEFFICIENTS

The solution to the differential equation in Eq. (21) is obtained as

2y

So(w) =wh, (B1)
S, (w) = (T}f.o n 2”Lw}’0(ﬁ12— 2Bov0) n 2”(/}1702—/}071>>W2;’° L 2n(Bori —flyo)w%’ (B2)
Po P P
$200) =" [ra = (o + 12 (B = 2005 + Buraly — o -+ 20833
0
n Wz;;;" ) {Tfo n Ly,(By = 2Boro) (=B5(Bo — 2nyo) T ‘;44”(”,31 — B35 + 2nBo(Bo — 2nyo)r1)
0
ﬂ“ (( 201 TY o + 4vory — 12)B3 + 20yt = Pavo + Bi(v1 + 2r0(TY o — 270))) 55
L2 -2 -2 2
+ Brro(Bry — dnyy)fo + 2nﬂ1y0> nLiyo(Bo ";2)(& Boro) }
0
201 (2n
Fwh L}o (}’1( = 270)3 + (ro(Ba + 1 (270 — o)) = 2ny)B5 — Privo(Br — 4ny1)fBo
_ Znﬂ%y%) _ 4n’L,yo(B) = Zﬁ(f’o)(ﬁl?’o — Bor )} ’ (B3)
Po
Sy(0) = 2 o) w1 (w) w2 () w85 s, (B4)

345
where

S30(w) = [Ysﬂg = (Bsvo + Bori + (Br = 3ny1)12)B8 — Bivo (BT — 6ny 11 + 6n%yT — 3npay) b}

+ (71,5% + (28270 — 3”(7% +7072))B1 + nyy (2”7’% - 3ﬁ2}’0))ﬁ3 + 3”,3%7’%(2”71 = BP0 — 2"2,3170} (BS)
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(1285 = (Bavo + v1(Br = 2n71))B5 + Brro(Br — 4ny1)fo + 2npiv5)

S3’1(W) — |:2n2Lw7/0(ﬂ1 - Zﬂo}/o)

B
+% (J/z(T’f.o = 210)B5 + Biro(B + 2n(roTY o — 4(r§ + 71))B1 + 6n(2ny} — Paro)) B3
0

+ (=4n%y; + 6npayors + Biro(T¥ o — 2v0) + 2681 (n(8y17v§ + (r2 — 2?’1T}1(,o)70 +73) = bar0)) B
+ (=((Baro + 1r1(Br = 2ny1))TY ) + Bsvo + 2ro(Bavo + v1(Br — 4nyy)) = 2ny172) B4

+ 6npivi(By — 2ny1)po + 4n2ﬁ?y8)] ,

S32(w) =

2n2L2 2 -2
[_ il ((ﬂo - 2”70)(ﬂ071 —ﬂl}’o)(ﬁl - 2,3070)2) - nLW(ﬁl ﬁo}’o)

55 B
X (71(Tfo = 270)B8 + (Baro + Br(2vo — TXo)vo = 2ny1 (v1 + 10(TY g — 470)))B3 + 4n*B3r}
—70(BT 4 2n(=roTY + 415 — v1)B1 + 2n(Bayo — 2ny7))B5 + 2nP 175 (B1 — 4”71),50)
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1
+ 3_,36 3(T%, - 271T{0)ﬂ8 + (3(Ba — ny2) Ty — 6011 TX,
0
+ 12ny7 = 24ny5y, = 2ny3 + 6yo((B1 + 20y )Ty + ny2))Bg + Bo(=301TY o — 120817577
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+ 6n(2ny? — Paro)) + 6n*Bivi(B1 — 2ny1)Po + 4n’ B3]

where we have taken the T3, = 1 in Eq. (10).

074029-14

(B6)

(B7)

(B8)



RENORMALIZATION GROUP IMPROVED DETERMINATION OF ...

PHYS. REV. D 108, 074029 (2023)

[1] D.J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343
(1973).

[2] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).

[3] Y. Aoki et al. (Flavour Lattice Averaging Group (FLAG)),
Eur. Phys. J. C 82, 869 (2022).

[4] B. L. Ioffe, Prog. Part. Nucl. Phys. 56, 232 (2006).

[5] J.L. Kneur and A. Neveu, Phys. Rev. D 101, 074009
(2020).

[6] M. A. Shifman, A. 1. Vainshtein, and V. I. Zakharov, Nucl.
Phys. B147, 385 (1979).

[7] M. A. Shifman, A. 1. Vainshtein, and V. I. Zakharov, Nucl.
Phys. B147, 448 (1979).

[8] C. A. Dominguez, Quantum Chromodynamics Sum Rules
(Springer International Publishing, New York, 2018),
https://doi.org/10.1007/978-3-319-97722-5.

[9] S. Narison, Nucl. Part. Phys. Proc. 324-329, 94 (2023).

[10] B. Ananthanarayan, M.S. A. A. Khan, and D. Wyler,
Indian J. Phys. 97, 3245 (2023)..

[11] L. Meng, B. Wang, G.J. Wang, and S. L. Zhu, Phys. Rep.
1019, 1 (2023).

[12] R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto,
F. Feruglio, and G. Nardulli, Phys. Rep. 281, 145 (1997).

[13] N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt, G. T.
Bodwin, E. Eichten, A.D. Frawley, A.B. Meyer, R.E.
Mitchell, V. Papadimitriou et al., Eur. Phys. J. C 71, 1534
(2011).

[14] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Nucl. Phys.
B566, 275 (2000).

[15] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Rev. Mod.
Phys. 77, 1423 (2005).

[16] T. Mannel, Effective field theories for heavy quarks: Heavy
quark effective theory and heavy quark expansion, in
Effective Field Theory in Particle Physics and Cosmology:
Lecture Notes of the Les Houches Summer School, 2017
(Oxford Academic, Oxford, 2020), https://doi.org/10
.1093/0s0/9780198855743.003.0009.

[17] 1. Allison et al. (HPQCD Collaboration), Phys. Rev. D 78,
054513 (2008).

[18] C. McNeile, C. T. H. Davies, E. Follana, K. Hornbostel,
and G. P. Lepage, Phys. Rev. D 82, 034512 (2010).

[19] K. Nakayama, B. Fahy, and S. Hashimoto, Phys. Rev. D
94, 054507 (2016).

[20] Y. Maezawa and P. Petreczky, Phys. Rev. D 94, 034507
(2016).

[21] P. Petreczky and J. H. Weber, Phys. Rev. D 100, 034519
(2019).

[22] P. Petreczky and J.H. Weber, Eur. Phys. J. C 82, 64
(2022).

[23] J.H. Kuhn and M. Steinhauser, Nucl. Phys. B619, 588
(2001); B640, 415(E) (2002).

[24] D. Boito and V. Mateu, J. High Energy Phys. 03 (2020)
094.

[25] B. Dehnadi, A. H. Hoang, V. Mateu, and S. M. Zebarjad,
J. High Energy Phys. 09 (2013) 103.

[26] B. Dehnadi, A. H. Hoang, and V. Mateu, J. High Energy
Phys. 08 (2015) 155.

[27] M. Beneke, A. Maier, J. Piclum, and T. Rauh, Nucl. Phys.
B891, 42 (2015).

[28] K. G. Chetyrkin, J. H. Kuhn, A. Maier, P. Maierhofer,
P. Marquard, M. Steinhauser, and C. Sturm, Phys. Rev. D
80, 074010 (2009).

[29] K. Chetyrkin, J.H. Kuhn, A. Maier, P. Maierhofer,
P. Marquard, M. Steinhauser, and C. Sturm, Theor. Math.
Phys. 170, 217 (2012).

[30] M.R. Ahmady, V. Elias, A. Squires, T.G. Steele, and
A. Zhang, Int. J. Mod. Phys. E 15, 571 (2006).

[31] S. Narison, Phys. Lett. B 693, 559 (2010); 705, 544(E)
(2011).

[32] S. Narison, Phys. Lett. B 706, 412 (2012).

[33] J. Erler, P. Masjuan, and H. Spiesberger, Eur. Phys. J. C 82,
1023 (2022).

[34] J. Erler, P. Masjuan, and H. Spiesberger, Eur. Phys. J. C 77,
99 (2017).

[35] D. Boito and V. Mateu, Phys. Lett. B 806, 135482 (2020).

[36] S. Narison, Phys. Lett. B 802, 135221 (2020).

[37] S. Bodenstein, J. Bordes, C. A. Dominguez, J. Penarrocha,
and K. Schilcher, Phys. Rev. D 85, 034003 (2012).

[38] S. Bodenstein, J. Bordes, C. A. Dominguez, J. Penarrocha,
and K. Schilcher, Phys. Rev. D 82, 114013 (2010).

[39] S. Bodenstein, J. Bordes, C. A. Dominguez, J. Penarrocha,
and K. Schilcher, Phys. Rev. D 83, 074014 (2011).

[40] C. Peset, A. Pineda, and J. Segovia, J. High Energy Phys.
09 (2018) 167.

[41] A. Signer, Phys. Lett. B 654, 206 (2007).

[42] A. Signer, Phys. Lett. B 672, 333 (2009).

[43] C. A. Dominguez, L.A. Hernandez, and K. Schilcher,
J. High Energy Phys. 07 (2015) 110.

[44] Y. Kiyo, G. Mishima, and Y. Sumino, Phys. Lett. B 752,
122 (2016); 772, 878(E) (2017).

[45] J. Komijani, P. Petreczky, and J. H. Weber, Prog. Part.
Nucl. Phys. 113, 103788 (2020).

[46] A. Bazavov er al. (Fermilab Lattice, MILC, and TUMQCD
Collaborations), Phys. Rev. D 98, 054517 (2018).

[47] K. G. Chetyrkin, J. H. Kuhn, A. Maier, P. Maierhofer,
P. Marquard, M. Steinhauser, and C. Sturm, Phys. Rev. D
96, 116007 (2017).

[48] G. Abbas, B. Ananthanarayan, and I. Caprini, Phys. Rev. D
85, 094018 (2012).

[49] B. Ananthanarayan and D. Das, Phys. Rev. D 94, 116014
(2016).

[50] B. Ananthanarayan, D. Das, and M. S. A. Alam Khan,
Phys. Rev. D 106, 114036 (2022).

[51] M.R. Ahmady, F. A. Chishtie, V. Elias, A.H. Fariborz,
N. Fattahi, D.G.C. McKeon, T.N. Sherry, and T.G.
Steele, Phys. Rev. D 66, 014010 (2002).

[52] M.R. Ahmady, F. A. Chishtie, V. Elias, A. H. Fariborz,
D.G.C. McKeon, T.N. Sherry, A. Squires, and T.G.
Steele, Phys. Rev. D 67, 034017 (2003).

[53] B. Ananthanarayan, D. Das, and M. S. A. Alam Khan,
Phys. Rev. D 102, 076008 (2020).

[54] T. Ahmed, G. Das, M.C. Kumar, N. Rana, and
V. Ravindran, arXiv:1505.07422.

[55] G. Abbas, A. Jain, V. Singh, and N. Singh, arXiv:2205
.06061.

[56] F. A. Chishtie, D. G. C. Mckeon, and T. N. Sherry, Mod.
Phys. Lett. A 34, 1950047 (2019).

074029-15


https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1140/epjc/s10052-022-10536-1
https://doi.org/10.1016/j.ppnp.2005.05.001
https://doi.org/10.1103/PhysRevD.101.074009
https://doi.org/10.1103/PhysRevD.101.074009
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1016/0550-3213(79)90023-3
https://doi.org/10.1016/0550-3213(79)90023-3
https://doi.org/10.1007/978-3-319-97722-5
https://doi.org/10.1007/978-3-319-97722-5
https://doi.org/10.1007/978-3-319-97722-5
https://doi.org/10.1016/j.nuclphysbps.2023.01.021
https://doi.org/10.1007/s12648-023-02591-5
https://doi.org/10.1016/j.physrep.2023.04.003
https://doi.org/10.1016/j.physrep.2023.04.003
https://doi.org/10.1016/S0370-1573(96)00027-0
https://doi.org/10.1140/epjc/s10052-010-1534-9
https://doi.org/10.1140/epjc/s10052-010-1534-9
https://doi.org/10.1016/S0550-3213(99)00693-8
https://doi.org/10.1016/S0550-3213(99)00693-8
https://doi.org/10.1103/RevModPhys.77.1423
https://doi.org/10.1103/RevModPhys.77.1423
https://doi.org/10.1093/oso/9780198855743.003.0009
https://doi.org/10.1093/oso/9780198855743.003.0009
https://doi.org/10.1093/oso/9780198855743.003.0009
https://doi.org/10.1093/oso/9780198855743.003.0009
https://doi.org/10.1093/oso/9780198855743.003.0009
https://doi.org/10.1103/PhysRevD.78.054513
https://doi.org/10.1103/PhysRevD.78.054513
https://doi.org/10.1103/PhysRevD.82.034512
https://doi.org/10.1103/PhysRevD.94.054507
https://doi.org/10.1103/PhysRevD.94.054507
https://doi.org/10.1103/PhysRevD.94.034507
https://doi.org/10.1103/PhysRevD.94.034507
https://doi.org/10.1103/PhysRevD.100.034519
https://doi.org/10.1103/PhysRevD.100.034519
https://doi.org/10.1140/epjc/s10052-022-09998-0
https://doi.org/10.1140/epjc/s10052-022-09998-0
https://doi.org/10.1016/S0550-3213(01)00499-0
https://doi.org/10.1016/S0550-3213(01)00499-0
https://doi.org/10.1016/S0550-3213(02)00578-3
https://doi.org/10.1007/JHEP03(2020)094
https://doi.org/10.1007/JHEP03(2020)094
https://doi.org/10.1007/JHEP09(2013)103
https://doi.org/10.1007/JHEP08(2015)155
https://doi.org/10.1007/JHEP08(2015)155
https://doi.org/10.1016/j.nuclphysb.2014.12.001
https://doi.org/10.1016/j.nuclphysb.2014.12.001
https://doi.org/10.1103/PhysRevD.80.074010
https://doi.org/10.1103/PhysRevD.80.074010
https://doi.org/10.1007/s11232-012-0024-7
https://doi.org/10.1007/s11232-012-0024-7
https://doi.org/10.1142/S0218301306004065
https://doi.org/10.1016/j.physletb.2010.09.007
https://doi.org/10.1016/j.physletb.2011.09.116
https://doi.org/10.1016/j.physletb.2011.09.116
https://doi.org/10.1016/j.physletb.2011.11.058
https://doi.org/10.1140/epjc/s10052-022-10982-x
https://doi.org/10.1140/epjc/s10052-022-10982-x
https://doi.org/10.1140/epjc/s10052-017-4667-2
https://doi.org/10.1140/epjc/s10052-017-4667-2
https://doi.org/10.1016/j.physletb.2020.135482
https://doi.org/10.1016/j.physletb.2020.135221
https://doi.org/10.1103/PhysRevD.85.034003
https://doi.org/10.1103/PhysRevD.82.114013
https://doi.org/10.1103/PhysRevD.83.074014
https://doi.org/10.1007/JHEP09(2018)167
https://doi.org/10.1007/JHEP09(2018)167
https://doi.org/10.1016/j.physletb.2007.08.069
https://doi.org/10.1016/j.physletb.2009.01.028
https://doi.org/10.1007/JHEP07(2015)110
https://doi.org/10.1016/j.physletb.2015.11.040
https://doi.org/10.1016/j.physletb.2015.11.040
https://doi.org/10.1016/j.physletb.2017.09.024
https://doi.org/10.1016/j.ppnp.2020.103788
https://doi.org/10.1016/j.ppnp.2020.103788
https://doi.org/10.1103/PhysRevD.98.054517
https://doi.org/10.1103/PhysRevD.96.116007
https://doi.org/10.1103/PhysRevD.96.116007
https://doi.org/10.1103/PhysRevD.85.094018
https://doi.org/10.1103/PhysRevD.85.094018
https://doi.org/10.1103/PhysRevD.94.116014
https://doi.org/10.1103/PhysRevD.94.116014
https://doi.org/10.1103/PhysRevD.106.114036
https://doi.org/10.1103/PhysRevD.66.014010
https://doi.org/10.1103/PhysRevD.67.034017
https://doi.org/10.1103/PhysRevD.102.076008
https://arXiv.org/abs/1505.07422
https://arXiv.org/abs/2205.06061
https://arXiv.org/abs/2205.06061
https://doi.org/10.1142/S0217732319500470
https://doi.org/10.1142/S0217732319500470

M.S. A. ALAM KHAN

PHYS. REV. D 108, 074029 (2023)

[57] G. Abbas, M.S. A. Alam Khan, and V. Singh (to be
published).

[58] R. L. Workman et al. (Particle Data Group), Prog. Theor.
Exp. Phys. 2022, 083CO01 (2022).

[59] A.H. Hoang, C. Lepenik, and V. Mateu, Comput. Phys.
Commun. 270, 108145 (2022).

[60] F. Herren and M. Steinhauser, Comput. Phys. Commun.
224, 333 (2018).

[61] W.E. Caswell and G.P. Lepage, Phys. Lett. 167B, 437
(1986).

[62] G.T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D
51, 1125 (1995); 55, 5853(E) (1997).

[63] A.O.G. Kallen and A. Sabry, Kong. Dan. Vid. Sel. Mat.
Fys. Med. 29, 1 (1955).

[64] K. G. Chetyrkin, J. H. Kuhn, and M. Steinhauser, Phys.
Lett. B 371, 93 (1996).

[65] K. G. Chetyrkin, J. H. Kuhn, and M. Steinhauser, Nucl.
Phys. B482, 213 (1996).

[66] R. Boughezal, M. Czakon, and T. Schutzmeier, Nucl. Phys.
B, Proc. Suppl. 160, 160 (2006).

[67] M. Czakon and T. Schutzmeier, J. High Energy Phys. 07
(2008) 001.

[68] A. Maier, P. Maierhofer, and P. Marquard, Nucl. Phys.
B797, 218 (2008).

[69] A. Maier, P. Maierhofer, P. Marquard, and A. V. Smirnov,
Nucl. Phys. B824, 1 (2010).

[70] A.H. Hoang, V. Mateu, and S. Mohammad Zebarjad,
Nucl. Phys. B813, 349 (2009).

[71] D. Greynat, P. Masjuan, and S. Peris, Phys. Rev. D 85,
054008 (2012).

[72] D. Greynat and S. Peris, Phys. Rev. D 82, 034030 (2010);
82, 119907(E) (2010).

[73] D. Greynat and P. Masjuan, Proc. Sci. ConfinementX
(2012) 162.

[74] Y. Kiyo, A. Maier, P. Maierhofer, and P. Marquard, Nucl.
Phys. B823, 269 (2009).

[75] D. Boito, V. Mateu, and M. V. Rodrigues, J. High Energy
Phys. 08 (2021) 027.

[76] D.J. Broadhurst, P. A. Baikov, V. A. Ilyin, J. Fleischer,
O. V. Tarasov, and V. A. Smirnov, Phys. Lett. B 329, 103
(1994).

[77] R. Tarrach, Nucl. Phys. B183, 384 (1981).

[78] N. Gray, D.J. Broadhurst, W. Grafe, and K. Schilcher, Z.
Phys. C 48, 673 (1990).

[79] J. Fleischer, F. Jegerlehner, O.V. Tarasov, and O.L.
Veretin, Nucl. Phys. B539, 671 (1999); 571, 511(E)
(2000).

[80] K. G. Chetyrkin and M. Steinhauser, Nucl. Phys. B573,
617 (2000).

[81] P. Marquard, A.V. Smirnov, V.A. Smirnov, and M.
Steinhauser, Phys. Rev. Lett. 114, 142002 (2015).

[82] P. Marquard, A.V. Smirnov, V.A. Smirnov, M.
Steinhauser, and D. Wellmann, Phys. Rev. D 94, 074025
(2016).

[83] W.E. Caswell, Phys. Rev. Lett. 33, 244 (1974).

[84] D.R.T. Jones, Nucl. Phys. B75, 531 (1974).

[85] O. V. Tarasov, A. A. Vladimirov, and A. Y. Zharkov, Phys.
Lett. 93B, 429 (1980).

[86] S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B 303,
334 (1993).

[87] T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin,
Phys. Lett. B 400, 379 (1997).

[88] M. Czakon, Nucl. Phys. B710, 485 (2005).

[89] P. A. Baikov, K. G. Chetyrkin, and J. H. Kiihn, Phys. Rev.
Lett. 118, 082002 (2017).

[90] T. Luthe, A. Maier, P. Marquard, and Y. Schroder, J. High
Energy Phys. 07 (2016) 127.

[91] F. Herzog, B. Ruijl, T. Ueda, J. Vermaseren, and A. Vogt,
J. High Energy Phys. 02 (2017) 090.

[92] T. Luthe, A. Maier, P. Marquard, and Y. Schroder, J. High
Energy Phys. 01 (2017) 081.

[93] O. V. Tarasov, Phys. Part. Nucl. Lett. 17, 109 (2020).

[94] S. A. Larin, Phys. Lett. B 303, 113 (1993).

[95] J. A.M. Vermaseren, S. A. Larin, and T. van Ritbergen,
Phys. Lett. B 405, 327 (1997).

[96] K. G. Chetyrkin, Phys. Lett. B 404, 161 (1997).

[97] P. A. Baikov, K. G. Chetyrkin, and J. H. Kiihn, J. High
Energy Phys. 10 (2014) 076.

[98] P. A. Baikov, K. G. Chetyrkin, and J. H. Kiihn, J. High
Energy Phys. 04 (2017) 119.

[99] J.H. Kuhn, M. Steinhauser, and C. Sturm, Nucl. Phys.
B778, 192 (2007).

[100] M. S. A. Alam Khan, Phys. Rev. D 108, 014028 (2023).
[101] M. S. A. Alam Khan, arXiv:2306.10266.

074029-16


https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1016/j.cpc.2021.108145
https://doi.org/10.1016/j.cpc.2021.108145
https://doi.org/10.1016/j.cpc.2017.11.014
https://doi.org/10.1016/j.cpc.2017.11.014
https://doi.org/10.1016/0370-2693(86)91297-9
https://doi.org/10.1016/0370-2693(86)91297-9
https://doi.org/10.1103/PhysRevD.51.1125
https://doi.org/10.1103/PhysRevD.51.1125
https://doi.org/10.1103/PhysRevD.55.5853
https://doi.org/10.1007/978-3-319-00627-7_93
https://doi.org/10.1007/978-3-319-00627-7_93
https://doi.org/10.1016/0370-2693(95)01593-0
https://doi.org/10.1016/0370-2693(95)01593-0
https://doi.org/10.1016/S0550-3213(96)00534-2
https://doi.org/10.1016/S0550-3213(96)00534-2
https://doi.org/10.1016/j.nuclphysbps.2006.09.041
https://doi.org/10.1016/j.nuclphysbps.2006.09.041
https://doi.org/10.1088/1126-6708/2008/07/001
https://doi.org/10.1088/1126-6708/2008/07/001
https://doi.org/10.1016/j.nuclphysb.2007.12.035
https://doi.org/10.1016/j.nuclphysb.2007.12.035
https://doi.org/10.1016/j.nuclphysb.2009.08.011
https://doi.org/10.1016/j.nuclphysb.2008.12.005
https://doi.org/10.1103/PhysRevD.85.054008
https://doi.org/10.1103/PhysRevD.85.054008
https://doi.org/10.1103/PhysRevD.82.034030
https://doi.org/10.1103/PhysRevD.82.119907
https://doi.org/10.22323/1.171.0162
https://doi.org/10.22323/1.171.0162
https://doi.org/10.1016/j.nuclphysb.2009.08.010
https://doi.org/10.1016/j.nuclphysb.2009.08.010
https://doi.org/10.1007/JHEP08(2021)027
https://doi.org/10.1007/JHEP08(2021)027
https://doi.org/10.1016/0370-2693(94)90524-X
https://doi.org/10.1016/0370-2693(94)90524-X
https://doi.org/10.1016/0550-3213(81)90140-1
https://doi.org/10.1007/BF01614703
https://doi.org/10.1007/BF01614703
https://doi.org/10.1016/S0550-3213(98)00705-6
https://doi.org/10.1016/S0550-3213(99)00794-4
https://doi.org/10.1016/S0550-3213(99)00794-4
https://doi.org/10.1016/S0550-3213(99)00784-1
https://doi.org/10.1016/S0550-3213(99)00784-1
https://doi.org/10.1103/PhysRevLett.114.142002
https://doi.org/10.1103/PhysRevD.94.074025
https://doi.org/10.1103/PhysRevD.94.074025
https://doi.org/10.1103/PhysRevLett.33.244
https://doi.org/10.1016/0550-3213(74)90093-5
https://doi.org/10.1016/0370-2693(80)90358-5
https://doi.org/10.1016/0370-2693(80)90358-5
https://doi.org/10.1016/0370-2693(93)91441-O
https://doi.org/10.1016/0370-2693(93)91441-O
https://doi.org/10.1016/S0370-2693(97)00370-5
https://doi.org/10.1016/j.nuclphysb.2005.01.012
https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1007/JHEP07(2016)127
https://doi.org/10.1007/JHEP07(2016)127
https://doi.org/10.1007/JHEP02(2017)090
https://doi.org/10.1007/JHEP01(2017)081
https://doi.org/10.1007/JHEP01(2017)081
https://doi.org/10.1134/S1547477120020223
https://doi.org/10.1016/0370-2693(93)90053-K
https://doi.org/10.1016/S0370-2693(97)00660-6
https://doi.org/10.1016/S0370-2693(97)00535-2
https://doi.org/10.1007/JHEP10(2014)076
https://doi.org/10.1007/JHEP10(2014)076
https://doi.org/10.1007/JHEP04(2017)119
https://doi.org/10.1007/JHEP04(2017)119
https://doi.org/10.1016/j.nuclphysb.2007.04.036
https://doi.org/10.1016/j.nuclphysb.2007.04.036
https://doi.org/10.1103/PhysRevD.108.014028
https://arXiv.org/abs/2306.10266

