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We study the behavior of a hadronic matter in the presence of an external magnetic field within the van
der Waals hadron resonance gas model, considering both attractive and repulsive interactions among the
hadrons. Various thermodynamic quantities like pressure (P), energy density (ε), magnetization (M),
entropy density (s), squared speed of sound (c2s ), and specific-heat capacity at constant volume (cv) are
calculated as functions of temperature (T) and static finite magnetic field (eB). We also consider the effect
of baryochemical potential (μB) on the above-mentioned thermodynamic observables in the presence of a
magnetic field. Further, we estimate the magnetic susceptibility (χ2M), relative permeability (μr), and
electrical susceptibility (χ2Q) which can help us to understand the system better. Through this model, we

quantify a liquid-gas phase transition in the T − eB − μB phase space.

DOI: 10.1103/PhysRevD.108.074028

I. INTRODUCTION

In the early stages of the evolution of the Universe, it was
supposed to be extremely hot and dense, possibly filled
with a unique state of matter called quark-gluon plasma
(QGP). We explore the ultrarelativistic heavy-ion collisions
in laboratories to probe such initial conditions. At extreme
temperatures and/or baryon densities, the hadronic degrees
of freedom transform into partonic degrees of freedom,
resulting in QGP formation. Quantum chromodynamics
(QCD) is the widely used theory to describe the behavior of
QGP. In addition, studying its thermodynamic properties is
of utmost importance to understand the behavior and
evolution of hot and dense QCD matter. Various thermo-
dynamic properties of strongly interacting nuclear matter
have been estimated from the first-principle lattice QCD
(lQCD) approach. However, the applicability of lQCD
breaks down at high baryochemical potential due to the
fermion sign problem [1,2]. An alternative to the lQCD
approach at low temperatures (up to 150 MeV) is the
hadron resonance gas (HRG) model. The HRG model has
been observed to agree with the lQCD results for temper-
atures up to T ≃ 140–150 MeV at zero baryochemical
potential [3–8]. The HRG model is thus a better alternative

to study the baryon-rich environments at low-temperature
regimes [9–12].
In an ideal HRG model [13–16], the hadrons are

assumed to be pointlike particles with no interaction
between them. However, this assumption is very simplistic
and fails to describe the lQCD data at temperatures above
T ≃ 150 MeV, where the hadrons melt down and the HRG
model reaches its limits. Although this shortcoming of the
HRG model can be easily ignored while studying the
thermodynamic properties, however, while estimating vari-
ous charge fluctuations at higher order, the shortcomings of
the HRG model are not trivial. Recently, much focus has
been diverting towards an interacting hadron resonance gas
model as they extend the region of agreement with lQCD
data due to the interactions between the hadrons. Excluded-
volume hadron resonance gas (EVHRG) model assumes an
eigenvolume parameter for the hadrons, which essentially
mimics a repulsive interaction in the hadron gas [17–27].
Unequal sizes of different hadron species are handled by
modified excluded-volume hadron resonance gas model
[28–30]. Similarly, the mean-field hadron resonance gas
model introduces a repulsive interaction potential in the
hadronic medium [31–33]. There are also various other
improvements to the HRG model in literature, such as the
Lorentz modified excluded-volume hadron resonance gas
model [34], where the hadrons are treated as Lorentz-
contracted particles, and the effective thermal mass hadron
resonance gas model [35], where the hadrons gain effective
mass with temperature. However, the most successful
improvement to the model which explains the lQCD results
is the van der Waals hadron resonance gas (VDWHRG)
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model [36–40]. This model assumes a van der Waals-type
interaction between the hadrons, having both attractive and
repulsive parts. The VDWHRG model effectively explains
the lQCD data up to T ≃ 180 MeV. From this, we can infer
that van der Waals interaction does play a crucial role in
the hadronic systems at high temperatures. Moreover, the
VDWHRGmodel has been recently used to estimate various
thermodynamic and transport properties [36,39,40], along
with fluctuations of conserved charges [36], which show a
good agreement with the lQCD estimations. In addition,
there are several studies exploring the liquid-gas phase
transition using the VDWHRG model, locating a possible
critical point for the phase transition [36,37,39].
A unique consequence of the peripheral heavy-ion

collisions is that a strong transient magnetic field
(∼m2

π ∼ 1018 G) is expected to be formed due to the motion
of the spectator protons. The strength of the magnetic field
may reach up to the order of 0.1m2

π, m2
π , 15m2

π for Super
Proton Synchrotron (SPS), Relativistic Heavy Ion Collider
(RHIC), and LHC energies, respectively [41]. This mag-
netic field decays with time and can, in principle, affect the
thermodynamic and transport properties of the evolving
partonic and hadronic matter [41–44]. The strong magnetic
field, which can reach hadronic scales, has a significant
effect on the transition properties and equation of state.
Such intense magnetic fields are predicted to occur in
compact neutron stars [45,46] and during the early
Universe’s electroweak transition [47,48]. The interaction
between the strong dynamics and the external magnetic
field leads to exciting new phenomena, such as the chiral
magnetic effect [49,50] and a reduction of the transition
temperature as the magnetic field increases [51]. Further-
more, magnetic catalysis [52] and inverse magnetic cataly-
sis [53,54] can affect the phase diagram of QCD matter.
Thus, it is crucial to study the effect of an external magnetic
field on both the deconfined and confined phases of the
matter formed in high-energy collisions. Thermodynamic
properties of the system, such as pressure (P), energy
density (ε), entropy density (s), speed of sound (cs), and
specific-heat capacity at constant volume (cv) will get
modified due to the effect of an external magnetic field. All
these observables help us characterize the systems pro-
duced in ultrarelativistic collisions. Moreover, the system
will also develop some magnetization (M), which will help
us to understand whether the system is diamagnetic or
paramagnetic. Apart from these, the magnetic susceptibility
(χ2M) and magnetic permeability (μr) are also essential
observables that can give us useful information about the
system under consideration [16,55–62]. Thus, one must
study the above-mentioned observables to better under-
stand the nature and behavior of both the hadronic and
partonic media formed in peripheral heavy-ion collisions.
Several works in literature concern with the study of the

matter formed in ultrarelativistic collisions in the presence
of a constant external magnetic field. In Ref. [61], a detailed
analysis of the hot and dense QCDmatter in the presence of

an external magnetic field has been done with the lQCD
approach. The results from the SUð3Þ Polyakov linear-
sigma model have also been contrasted with the existing
lQCD estimations [63]. In addition, in Refs. [64,65] the
authors use the HRG and EVHRG models in the presence
of constant external magnetic fields to estimate the funda-
mental thermodynamic quantities such as pressure, energy
density, and magnetization. Moreover, in Ref. [16], the
authors discuss the effect of external magnetic field on
the correlations and fluctuations of the hadron gas. An
interesting study has been conducted by assuming an
away-from-equilibrium scenario by employing the non-
extensive Tsallis statistics, and then the basic thermody-
namic quantities have been estimated [66]. In the present
study, we use the van der Waals hadron resonance gas
model, an improved and new approach to studying the
hadronic medium of high-energy collisions. Furthermore,
van der Waals interaction leads to a liquid-gas phase
transition in the system along with a critical point. We
can take advantage of this fact and study the QCD phase
diagram. In literature, the QCD phase transition in the T-μB
plane has been studied extensively from various models,
including the VDWHRG model [36,39]. A similar QCD
phase transition in the T-eB plane is also important to
understand the QCDmatter and its consequences. There are
few studies where the authors have used various models to
map the phase diagram. This study uses the hadron gas
with van der Waals interaction and explores the possible
critical point in the T-eB-μB plane. This paper is organized
as follows. Section II gives a detailed calculation of the
thermodynamic observables and susceptibilities within the
ambit of a VDWHRG model under an external magnetic
field. In Sec. III, we give the detailed calculation of the
vacuum contribution to the thermodynamic observables
due to the external magnetic field. We discuss the results in
Sec. IV and briefly summarize our work in Sec. V.

II. FORMULATION

The ideal HRG formalism considers hadrons to be point
particles with no interactions between them. Under this
formalism, the partition function of ith particle species in a
grand canonical ensemble (GCE) is given as [23]

lnZid
i ¼ �Vgi

Z
d3p
ð2πÞ3 ln

�
1� exp½−ðEi − μiÞ=T�

�
; ð1Þ

where T is the temperature of the system and V represents
the volume. The notations gi, Ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

p
, mi and μi

are for the degeneracy, energy, mass, and chemical poten-
tial of the ith hadron, respectively. Here, id refers to the
ideal. The plus and minus signs (�) correspond to baryons
and mesons, respectively. μi is further expanded in terms of
the baryonic, strangeness, and charge chemical potentials
(μB, μS and μQ, respectively) and the corresponding
conserved numbers (Bi, Si and Qi) as
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μi ¼ BiμB þ SiμS þQiμQ: ð2Þ

The total grand canonical partition function of noninteract-
ing hadron resonance gas is the sum of partition functions
of all hadrons and resonances [13,23],

lnZid ¼
X
i

lnZid
i : ð3Þ

The free-energy density of the ideal HRG model can be
written in terms of partition function as

fid ¼ −T lnZid: ð4Þ

The ideal pressure is defined as the negative of free-energy
density,

Pid ¼ −fid: ð5Þ

The explicit form of thermodynamic pressure Pi, energy
density εi, number density ni, and entropy density si in the
ideal HRG formalism can now be obtained as

Pid
i ðT; μiÞ ¼ �Tgi

Z
d3p
ð2πÞ3 ln

�
1� exp½−ðEi − μiÞ=T�

�
;

ð6Þ

εidi ðT; μiÞ ¼ gi

Z
d3p
ð2πÞ3

Ei

exp½ðEi − μiÞ=T� � 1
; ð7Þ

nidi ðT; μiÞ ¼ gi

Z
d3p
ð2πÞ3

1

exp½ðEi − μiÞ=T� � 1
; ð8Þ

sidi ðT; μiÞ ¼ �gi

Z
d3p
ð2πÞ3

�
ln
�
1� exp½−ðEi − μiÞ=T�

�
;

� ðEi − μiÞ=T
exp½ðEi − μiÞ=T� � 1

�
: ð9Þ

In the presence of a magnetic field (for simplicity,
suppose the magnetic field is pointing along z direction),
the single-particle energy for the charged and neutral
particles is given as [64,65,67]

Ez
c;iðpz;k;szÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

i þ2jQijB
�
kþ1

2
− sz

�s
; for

Qi ≠ 0 ð10Þ

En;iðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

q
; for Qi ¼ 0; ð11Þ

where Qi is the charge of the ith particle and sz is the
component of spin s in the direction of magnetic field B and

k is the Landau level. The subscripts “c” and “n” are for
charged and neutral particles.
In the presence of Landau level, one writes the three-

dimensional integral as one-dimensional integral [68,69],

Z
d3p
ð2πÞ3 ¼

jQjB
2π2

X
k

X
sz

Z
∞

0

dpz: ð12Þ

Now, in the presence of a finite magnetic field, the free
energy of the system can be written as [70,71]

f ¼ ε − Ts −QB:M; ð13Þ

where, M is the magnetization. Further, in the presence of
finite baryochemical potential, the above equation becomes

f ¼ ε − Ts −QB:M − μn: ð14Þ

The n is the number density. The above equation satisfies
the differential relations,

s ¼ −
∂f
∂T

; M ¼ −
∂f

∂ðQBÞ ; n ¼ −
∂f
∂μ

: ð15Þ

In general, the free-energy density of the system contains
contributions from both thermal and vacuum parts.

f ¼ fvac þ fth: ð16Þ

fvac and fth are the vacuum and thermal part of free-energy
density, respectively. fvac is defined as the free-energy
density at zero temperature and finite magnetic field,
and fth is the free energy at finite temperature and finite
magnetic field.
Furthermore, the total free-energy density of the HRG

model in the presence of a magnetic field is due to the
sum of independent contributions coming from all the
hadrons i [64],

f ¼
X
i

gi:fi
	fT;QiBg; fmi;Qi=e; szi; γig



: ð17Þ

Here, γi is the gyromagnetic ratio. To avoid the large
uncertainty in the experimental values of gyromagnetic
ratios (except for proton and neutron), it is chosen to be
γi ¼ 2Qi=e, as determined by the universal tree-level
arguments [72]. It is based upon the assumption that the
considered hadrons are pointlike objects and all the neutral
hadrons have a gyromagnetic ratio γi ¼ 0. To consider
the accurate gyromagnetic ratios, an improvement method
based on the generalized description of the anomalous
magnetic moments for spin-1=2 and spin-1 particles has
been developed in Refs. [73,74]. In Ref. [74], it is found
that in the presence of a homogeneous magnetic field, the
coupling of anomalous magnetic moments with the spin-1
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particles results in complex energy eigenvalues. This is due
to the fact that for spin-1 theory, the anomalous magnetic
moment does not vanish in a very strong magnetic field for
the constant value of the anomalous magnetic moment.
Thus the theory becomes inconsistent. The conditions for a
consistent theory are discussed in Ref. [73]. However, there
are no such limitations for spin-1=2 particles.
Now, the thermal part of the thermodynamic pressure,

energy density, number density, and entropy density, i.e.,
Eqs. (6)–(9) for charged particles in the presence of
magnetic field can be modified using Eq. (12),

Pid;z
c;i ðT; μi; BÞ ¼ �TgijQijB

2π2
X
k

X
sz

Z
∞

0

dpz

× ln
�
1� exp½−ðEz

c;i − μiÞ=T�
�
; ð18Þ

εid;zc;i ðT; μi; BÞ ¼
gijQijB
2π2

X
k

X
sz

Z
dpzE

z
c;i

×

�
1

exp½ðEz
c;i − μiÞ=T� � 1

�
; ð19Þ

nid;zc;i ðT; μi; BÞ ¼
gijQijB
2π2

X
k

X
sz

Z
dpz

×

�
1

exp½ðEz
c;i − μiÞ=T� � 1

�
; ð20Þ

sid;zc;i ðT; μi; BÞ ¼ � gijQijB
2π2

X
k

X
sz

Z
dpz

×

�
ln
�
1� exp½−ðEz

c;i − μiÞ=T�
�

� ðEz
c;i − μiÞ=T

exp½ðEz
c;i − μiÞ=T� � 1

�
: ð21Þ

For neutral particles, these thermodynamic variables are
calculated using Eqs. (6)–(9). The total pressure, energy
density, and entropy density of the system are due to the
sum of contributions from the charged particles and neutral
particles. Now, we can use the above basic thermodynamic
quantities to estimate other important observables.
The specific heat of the system is defined as the thermal

variation of energy density at constant volume. It is
defined as

cv ¼
�
∂ε

∂T

�
V
: ð22Þ

The squared speed of sound is defined as the change in
pressure of a system as a function of a change in energy
density at constant entropy density per number density, i.e.,
s=n. Mathematically, the adiabatic squared speed of sound
is defined as

c2s ¼
�
∂P
∂ε

�
s=n

¼ s
cv

: ð23Þ

In the presence of both magnetic field and chemical
potential, the squared speed of sound (c2s) is defined as

c2sðT; μ; QBÞ ¼
∂P
∂T þ ∂P

∂μ
∂μ
∂T þ ∂P

∂ðQBÞ
∂ðQBÞ
∂T

∂ε
∂T þ ∂ε

∂μ
∂μ
∂T þ ∂ε

∂ðQBÞ
∂ðQBÞ
∂T

; ð24Þ

where

∂ðQBÞ
∂T

¼ s ∂n
∂T − n ∂s

∂T

n ∂s
∂ðQBÞ − s ∂n

∂ðQBÞ
; ð25Þ

and

∂μ

∂T
¼ s ∂n

∂T − n ∂s
∂T

n ∂s
∂μ − s ∂n

∂μ

: ð26Þ

A detailed derivation of the squared speed of sound in the
presence of a finite baryochemical potential and an external
magnetic field is given in Appendix A.
The magnetization of the system can also be obtained

from the following equation:

M ¼ εtot − ε

QB
; ð27Þ

where, εtot ¼ εzc;i þ εn;i is the energy density of the system
in the presence of the magnetic field. εzc;i, and εn;i are the
energy density of charged and neutral particles in the
presence of a magnetic field, respectively. ε is the free-
energy density in the absence of a magnetic field.
We now proceed toward the estimation of the optical

properties of a hadronic system. The derivative of mag-
netization with respect to the magnetic field is called
magnetic susceptibility and is given by

χ2M ¼ ∂M
∂ðQBÞ ¼

∂
2P

∂ðQBÞ2 : ð28Þ

From heavy-ion collision (HIC) perspectives, fluctua-
tions of conserved charges have comparable importance as
magnetic susceptibility since they play a vital role in
describing QCD phase transition. The nth-order suscep-
tibility is defined as

χnB=Q=S ¼
∂
n
	
P
T4



∂
	μB=Q=S

T



n : ð29Þ

The second-order susceptibility corresponding to the
electric charge chemical potential is called electric charge
susceptibility, and is given by
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χ2Q ¼ 1

T2

∂
2P
∂μ2Q

: ð30Þ

The explicit forms of χ2M and χ2Q are shown in
Appendices B and C, respectively.
To include interactions in the hadronic system, we take

advantage of the van der Waals equation of state. The ideal
HRG model can be modified to include van der Waals
interactions between particles by the introduction of the
attractive and repulsive parameters a and b, respectively.
This modifies the pressure and number density obtained in
ideal HRG iteratively as follows [36,37,75]:

PðT; μÞ ¼ PidðT; μ�Þ − an2ðT; μÞ; ð31Þ

where, the nðT; μÞ is the VDW particle number density
given by

nðT; μÞ ¼
P

in
id
i ðT; μ�Þ

1þ b
P

in
id
i ðT; μ�Þ

: ð32Þ

Here, i runs over all hadrons and μ� is the modified
chemical potential given by

μ� ¼ μ − bPðT; μÞ − abn2ðT; μÞ þ 2anðT; μÞ: ð33Þ

The transcendental equation in Eqs. (31)–(33) can be
solved numerically. Starting with a given μ value, one
can obtain ideal pressure and ideal number density given by
Eqs. (6) and (8). Using this, the VDW pressure and number
density are calculated using Eqs. (31) and (32) to finally
obtain μ�. This μ� is now used to calculate again the ideal
pressure and number density, and the same process is
repeated until the value of μ� converges. Then Eq. (32)
gives the final VDW pressure, which can be used to obtain
other thermodynamical quantities.
It is to be noted that the repulsive parameter is usually

attributed to be related to the hard-core radius of the
particle, r, by the relation b ¼ 16πr3=3. At the same time,
the VDW parameter, a, represents the attractive interaction
at an intermediate range.
The entropy density sðT; μÞ and energy density εðT; μÞ

in VDWHRG can now be obtained as

sðT; μÞ ¼ sidðT; μ�Þ
1þ bnidðT; μ�Þ ; ð34Þ

εðT; μÞ ¼
P

iε
id
i ðT; μ�Þ

1þ b
P

in
id
i ðT; μ�Þ

− an2ðT; μÞ: ð35Þ

The initial form of VDWHRG excluded interactions
between baryon-antibaryon pairs and in between pairs
involving at least one meson [36–38,75]. The baryon-
antibaryon interactions were ignored under the assumption

that annihilation processes dominate [23,38]. Meson inter-
actions were ignored as their inclusion led to a suppression
of thermodynamic quantities and could not explain the
lQCD data at vanishing μB towards high temperatures [38].
The attractive and repulsive parameters, in this case, were
derived either from properties of the ground state of nuclear
matter [37] or by fitting the lQCD results for different
thermodynamic quantities [36,39]. A formalism including
the effect of meson-meson interactions through a hard-core
repulsive radius (rM) [39] was developed where a simulta-
neous fit to the lQCD values was done to obtain the values
of a and b. The VDW parameters were considered to be
fixed for all values of μB and T in each of these
implementations. The total pressure in the VDWHRG
model is then written as [36–39,75]

PðT; μÞ ¼ PMðT; μÞ þ PBðT; μÞ þ PB̄ðT; μÞ: ð36Þ

Here, the PMðT; μÞ; PBðB̄ÞðT; μÞ are the contributions to
pressure from mesons and (anti)baryons, respectively, and
are given by

PMðT; μÞ ¼
X
i∈M

Pid
i ðT; μ�MÞ; ð37Þ

PBðT; μÞ ¼
X
i∈B

Pid
i ðT; μ�BÞ − an2BðT; μÞ; ð38Þ

PB̄ðT; μÞ ¼
X
i∈ B̄

Pid
i ðT; μ�B̄Þ − an2B̄ðT; μÞ: ð39Þ

Here, M, B, and B̄ represent mesons, baryons, and
antibaryons, respectively. μ�M is the modified chemical
potential of mesons because of the excluded volume
correction, and μ�B and μ�B̄ are the modified chemical
potentials of baryons and antibaryons due to VDW inter-
actions [39]. Considering the simple case of vanishing
electric charge and strangeness chemical potentials,
μQ ¼ μS ¼ 0, the modified chemical potential for mesons
and (anti)baryons can be obtained from Eqs. (2) and (34) as

μ�M ¼ −bPMðT; μÞ; ð40Þ

μ�BðB̄Þ ¼ μBðB̄Þ − bPBðB̄ÞðT; μÞ − abn2BðB̄Þ þ 2anBðB̄Þ; ð41Þ

where nM, nB and nB̄ are the modified number densities of
mesons, baryons, and antibaryons, respectively, which are
given by

nMðT; μÞ ¼
P

i∈Mn
id
i ðT; μ�MÞ

1þ b
P

i∈Mn
id
i ðT; μ�MÞ

; ð42Þ

nBðB̄ÞðT; μÞ ¼
P

i∈BðB̄Þnidi ðT; μ�BðB̄ÞÞ
1þ b

P
i∈BðB̄Þnidi ðT; μ�BðB̄ÞÞ

: ð43Þ
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For this work, the parameters in the model are taken as
a ¼ 0.926 GeV fm3 and b ¼ ð16=3Þπr3, where the hard-
core radius r is replaced by rM ¼ 0.2 fm and rB;ðB̄Þ ¼
0.62 fm, respectively for mesons and (anti)baryons [39].
Now, we take the magnetic field-modified total ideal
pressure, energy density, and entropy density and use them
in the respective VDW equations to estimate the required
thermodynamic observables.

III. RENORMALIZATION OF VACUUM
PRESSURE

As we discussed in the previous section, the total
pressure (negative of the total free-energy density) of the
system is due to both the thermal and vacuum compo-
nents, i.e.,

Ptotal ¼ PthðT; eBÞ þ ΔPvacðT ¼ 0; eBÞ; ð44Þ

where PthðT; eBÞ is the thermal part of the pressure, which
is the sum of the pressure due to both charged and neutral
particles. In the presence of a magnetic field, the thermal
parts of the pressure for charged and neutral particles are
calculated using Eqs. (18) and (6), respectively. In this
section, we will calculate the vacuum contribution of
pressure in the presence of an external magnetic field
using a dimensional regularization method. The vacuum
pressure term is ultraviolet divergent, and it requires
appropriate regularization to extract meaningful physical
information [64,65,76]. As a result, magnetic field-
dependent and independent components must be distin-
guished using an appropriate regularization technique.
In the presence of an external magnetic field, the vacuum

pressure for a charged spin-1
2
particle is given by [64,65,76]

PvacðS ¼ 1=2; BÞ ¼ 1

2

X∞
k¼0

gk
jQjB
2π

Z
∞

−∞

dpz

2π
Ep;kðBÞ; ð45Þ

where gk ¼ 2 − δk0 is the degeneracy of the kth Landau
level. We have added and subtracted the lowest Landau-
level contribution (i.e., k ¼ 0) from the above equation, and
we get

PvacðS ¼ 1=2; BÞ ¼ 1

2

X∞
k¼0

2
jQjB
2π

Z
∞

−∞

dpz

2π

×

�
Ep;kðBÞ −

Ep;0ðBÞ
2

�
: ð46Þ

A dimensional regularization method [77] is used to
regularize the ultraviolet divergence of vacuum pressure.
In d − ε dimension Eq. (46) can be written as

PvacðS ¼ 1=2; BÞ ¼
X∞
k¼0

jQjB
2π

με
Z

∞

−∞

d1−εpz

ð2πÞ1−ε

×
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þm2 − 2jQjBk

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

q i
: ð47Þ

In the preceding equation, μ sets the dimension to 1. The
integration can be carried out using the usual d-dimensional
formulas [77,78].

Z
∞

−∞

ddp
ð2πÞd ½p

2 þm2�−A ¼ Γ
�
A − d

2

�
ð4πÞd=2Γ½A�ðm2ÞðA−d

2
Þ : ð48Þ

Integration of the first term in Eq. (47) gives

I1 ¼
X∞
k¼0

jQjB
2π

με
Z

∞

−∞

d1−εpz

ð2πÞ1−ε
�
p2
z þm2 − 2jQjBk�12

¼ −
ðjQjBÞ2
4π2

�
2jQjB
4πμ

�
−ε
2

Γ
h
−1þ ε

2

i
ζ
h
−1þ ε

2
; x
i
; ð49Þ

where we denote x≡ m2

2jQjB. The Landau infinite sum has

been illustrated in terms of the Riemann-Hurwitz ζ function

ζ½z; x� ¼
X∞
k¼0

1

½xþ k�z ; ð50Þ

with the expansion [79,80]

ζ
h
−1þ ε

2
; x
i
≈ −

1

12
−
x2

2
þ x
2
þ ε

2
ζ0ð−1; xÞ þOðε2Þ;

ð51Þ

and the asymptotic behavior of the derivative [79,80],

ζ0ð−1; xÞ ¼ 1

12
−
x2

4
þ
�
1

12
−
x
2
þ x2

2

�
lnðxÞ þOðx−2Þ:

ð52Þ

The expansion of the Γ function around some negative
integers is given by

Γ
h
−1þ ε

2

i
¼ −

2

ε
þ γ − 1þOðεÞ; ð53Þ

and

Γ
h
−2þ ε

2

i
¼ 1

ε
−
γ

2
þ 3

4
þOðεÞ: ð54Þ

Here, γ is the Euler constant. The limiting expression for
natural is
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lim
ε→0

a−ε=2 ≈ 1 −
ε

2
lnðaÞ: ð55Þ

Equation (49) can be written as expressed as using the
expansion of the Γ function and ζ function:

I1 ¼ −
ðjQjBÞ2
4π2

�
−
2

ε
þ γ − 1þ ln

�
2jQjB
4πμ2

��

×

�
−

1

12
−
x2

2
þ x
2
þ ε

2
ζ0ð−1; xÞ þOðε2Þ

�
: ð56Þ

The second term in Eq. (47) can be simplified in the
same way, and we obtain

I2 ¼
X∞
k¼0

jQjB
2π

με
Z

∞

−∞

d1−εpz

ð2πÞ1−ε ½p
2
z þm2�12

¼ ðjQjBÞ2
4π2

�
−
x
ε
−
ð1 − γÞ

2
xþ x

2
ln

�
2jQjB
4πμ2

�
þ x
2
lnðxÞ

�
:

ð57Þ

Hence, the vacuum pressure in the presence of an
external magnetic field becomes

PvacðS ¼ 1=2; BÞ ¼ ðjQjBÞ2
4π2

�
ζ0ð−1; xÞ − 2

12ε
−
ð1 − γÞ
12

−
x2

ε
−
ð1 − γÞ

2
x2 þ x

2
lnðxÞ

þ x2

2
ln

�
2jQjB
4πμ2

�
þ 1

12
ln

�
2jQjB
4πμ2

��
:

ð58Þ

Divergence is still evident in the preceding expression.
As a result, we add and deduct the B ¼ 0 contribution from
it. To carry out the renormalization of the B > 0 pressure,
the B ¼ 0 contribution must be determined. The vacuum
pressure in d ¼ 3 − ε dimensions at B ¼ 0 is given by

PvacðS ¼ 1=2; B ¼ 0Þ ¼ με
Z

d3−εp
ð2πÞ3−ε ðp

2 þm2Þ12

¼ ðjQjBÞ2
4π2

�
2jQjB
4πμ2

�
−ε
2

× Γ
�
−2þ ε

2

�
x2−

ε
2: ð59Þ

Above Eq. (59) can be further simplified by using
Γ-function expansion from Eq. (53),

PvacðS ¼ 1=2; B ¼ 0Þ ¼ −
ðjQjBÞ2
4π2

x2
�
1

ε
þ 3

4
−
γ

2

−
1

2
ln

�
2jQjB
4πμ2

�
−
1

2
lnðxÞ

�
: ð60Þ

Now, we add and subtract Eq. (60) from (58), we get the
regularized pressure with the vacuum part, and the mag-
netic field-dependent part separated as

PvacðS ¼ 1=2; BÞ ¼ Pvacð1=2; B ¼ 0Þ þ ΔPvacð1=2; BÞ;
ð61Þ

where

ΔPvacðS¼ 1=2;BÞ ¼ ðjQjBÞ2
4π2

�
−

2

12ε
þ γ

12
þ 1

12
ln
�

m2

4πμ2

�

þ x
2
lnðxÞ− x2

2
lnðxÞ þ x2

4

−
lnðxÞ þ 1

12
þ ζ0ð−1; xÞ

�
: ð62Þ

The field contribution given by the Eq. (62) is, however,
divergent due to the existence of the magnetic field-
dependent term B2

ε [81–83]. We eliminate this divergence
by redefining field-dependent pressure contribution to
include magnetic field contribution.

ΔPr
vac ¼ ΔPvacðBÞ −

B2

2
: ð63Þ

The divergences are absorbed into the renormalization of
the electric charge and the magnetic field strength [64],

B2 ¼ ZeB2
r ; e2 ¼ Z−1

e e2r ; erBr ¼ jQjB; ð64Þ

where the electric charge renormalization constant is

Ze

�
S ¼ 1

2

�
¼ 1þ 1

2
e2r

�
−

2

12ε
þ γ

12
þ 1

12
ln

�
m�
4πμ2

��
:

ð65Þ

We fix m� ¼ m, i.e., the particle’s physical mass. Thus,
the contribution of the renormalized field-dependent pres-
sure in the absence of a pure magnetic field (B

2

2
) is

ΔPr
vacðS ¼ 1=2; BÞ ¼ ðjQjBÞ2

4π2

�
ζ0ð−1; xÞ þ x

2
lnðxÞ

−
x2

2
lnðxÞ þ x2

4
−
lnðxÞ þ 1

12

�
: ð66Þ

Using a similar technique, the renormalized magnetic
field-dependent pressure for spin-zero and spin-one particles
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can be calculated. These terms are crucial in determining
the magnetization of hadronic matter. The vacuum pressure
is affected by the charge, mass, and spin of the particles. As
a result, the total vacuum pressure of a hadron gas is
calculated by adding the vacuum pressures of all particles
taken into account.
For spin-zero particles, the regularized vacuum pressure is

ΔPr
vacðs ¼ 0; BÞ ¼ −

ðjQjBÞ2
8π2

�
ζ0ð−1; xþ 1=2Þ − x2

2
lnðxÞ

þ x2

4
þ lnðxÞ þ 1

24

�
: ð67Þ

Similarly, for spin-one particles,

ΔPr
vacðs ¼ 1; BÞ ¼ −

3

8π2
ðjQjBÞ2

�
ζ0ð−1; x − 1=2Þ

þ ðxþ 1=2Þ
3

lnðxþ 1=2Þ

þ 2

3
ðx − 1=2Þ lnðx − 1=2Þ − x2

2
lnðxÞ

þ x2

4
−

7

24
ðlnðxÞ þ 1Þ

�
: ð68Þ

So, the total magnetic field-dependent vacuum pressure
becomes

ΔPvac ¼ ΔPr
vacðs ¼ 0; BÞ þ ΔPr

vacðS ¼ 1=2; BÞ
þ ΔPr

vacðs ¼ 1; BÞ: ð69Þ

After computing the total vacuum pressure, the system’s
vacuum magnetization can be computed as follows:

ΔMvac ¼
∂ðΔPvacÞ
∂ðjQjBÞ : ð70Þ

The explicit calculations of ΔMvac for spin-0, spin-1=2
and spin-1 particle are shown in Appendix D. By using
the formalism mentioned in the above two sections, we
estimate various thermodynamic observables for a hadron
gas with van der Waals interaction.

IV. RESULTS AND DISCUSSION

In the present section, we discuss the results obtained
from this study. It is important to note that we obtain all the
results at μQ ¼ 0 and μS ¼ 0. So the chemical potential of
the system is only due to μB. We explore the effect of the
magnetic field on thermodynamic observables at both zero
and finite baryon chemical potential values. This study
includes all hadrons and resonances of spin-0, spin-1=2,
and spin-1 up to a mass cutoff of 2.25 GeV according to
Particle Data Group [84]. For any nonzero magnetic field,

the spin-3=2 resonances give a negative contribution to
the pressure, indicating an instability in the theory. This
instability suggests that Eq. (10) which describes the
dispersion relation in the HRG model is not applicable
for spin-3=2 resonances. This is discussed in detail in
Ref. [64]. For the above-mentioned reason, we do not
consider resonances with spin-3=2 or higher in the present
model. One can obtain the van der Waals parameters by
fitting the thermodynamic quantities, such as energy
density, pressure, etc., in the VDWHRG model to the
available lattice QCD data at zero magnetic fields [39]. In
principle, the van der Waals parameters should change in
the presence of the magnetic field as well as the baryo-
chemical potential. However, changing a and b parameters
as a function of eB as well as μB is nontrivial. We have
neglected such dependencies in the current study. We
calculate the thermodynamic quantities such as pressure,
energy density, entropy density, specific heat, and squared
speed of sound using their corresponding formulas as given
in Sec. II at zero and finite magnetic fields in the ideal HRG
and VDWHRG models.
In the present work, we examine two different values of

magnetic fields, i.e., eB ¼ 0.2 GeV2 and eB ¼ 0.3 GeV2

for our study. In the presence of a finite magnetic field, the
system’s total pressure contains a contribution from both
the vacuum and the thermal part, while there is no such
vacuum-pressure contribution for a vanishing magnetic
field. So, at B ≠ 0 and T ¼ 0, the system has some
nonvanishing pressure called vacuum pressure [64,65].
The vacuum pressure for spin-0, spin-1=2, and spin-1
particles is calculated using Eqs. (66)–(68). It is found
that the vacuum pressure is positive for spin-0, spin-1=2,
and spin-1 particles. The total vacuum pressure is obtained
by summing over all spin states. In Fig. 1(a), we show the
scaled pressure as a function of temperature in ideal HRG
and VDWHRG for both zero and finite magnetic fields and
compare it with the lQCD data. We observe that the
pressure calculated in HRG and VDWHRG slightly devi-
ates from the lQCD calculation, but the temperature
dependence seems to be preserved. This deviation at high
temperatures may be due to the fact that we are not
considering higher-spin states in our calculations. One
can observe that the normalized pressure increases with
the temperature almost monotonically for a zero magnetic
field, while for a finite magnetic field, it diverges at a lower
temperature due to a finite vacuum contribution to the total
pressure, both for the HRG and VDWHRG models. The
pressure in the VDWHRG model is found to be suppressed
slightly compared to the HRG model. However, we found
that the total pressure of the system (without scaling with
T4) increases with temperature with an increase in a
magnetic field. The lightest spin-0 particles [mainly domi-
nated by pions (π�; π0)] have more contribution towards
pressure compared to heavier spin-1 (ρ�; ρ0) and spin-1=2
[proton(p), neutron(n)] particles. In addition, it is noteworthy
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(a) (b)

(c) (d)

(e) (f)

FIG. 1. The equation of state in the ideal HRG (VDWHRG) model is shown in a solid line (dotted line). The variation (from left to
right and downwards) of normalized pressure, energy density, trace anomaly, magnetization, entropy density, and squared speed of
sound as functions of temperature at zero baryochemical potential (μB ¼ 0 GeV), for eB ¼ 0 GeV2 (magenta), eB ¼ 0.2 GeV2(green),
and eB¼ 0.3 GeV2(blue). The lattice data are taken from Ref. [61].
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to mention that at lower temperatures, the thermal part of the
pressure in the presence of a magnetic field is smaller than
the pressure at a zero magnetic field. The vacuum pressure
increases with an increase in the magnetic field, which is
responsible for the monotonic increase in pressure with the
magnetic field.
The total energy density in the presence of a magnetic

field takes the form εtotal ¼ εþQB.M [42], where εtotal

and ε represent the total energy density in the presence and
absence of a magnetic field, respectively. Figure 1(b)
illustrates the variation of ε=T4 as a function of T along
with the magnetic field in the ideal HRG and VDWHRG
models. The ε=T4 is found to increase with magnetic field
for a fixed value of temperature. The ε=T4 also exhibits
divergence behavior at lower T similar to that of P=T4. It is
found that there is a significant contribution of interactions
after T ¼ 130 GeV, as shown in Fig. 1(b). The energy
density is found to be suppressed at higher temperatures
in the VDWHRG model due to dominating repulsive
interactions.
The variation of the interaction measure (or normalized

trace anomaly) as a function of temperature in the presence
of a magnetic field is shown in Fig. 1(c). It can be directly
derived from the energy-momentum tensor Tν

μ), and it is
sensitive to the massive hadronic states [26]. For a perfect
fluid, it is the sum of all diagonal elements of Tν

μ. This
parameter helps to determine the degrees of freedom of the
system. We observe that the normalized trace anomaly
diverges at a very low temperature, similar to the pressure
and energy density. The magnetic field dependence of
normalized trace anomaly is similar to normalized pressure
and energy density and is comparable with the lQCD
data [61].
Figure 1(d) depicts the variation of magnetization as a

function of temperature at zero μB. The sign of magneti-
zation defines the magnetic property of the system under
consideration. A positive value of magnetization indicates
the paramagnetic behavior of hadronic matter, which
indicates the attraction of hadronic matter in an external
magnetic field. This paramagnetic behavior of hadronic
matter is observed in both ideal HRG and VDWHRG
models. From Fig. 1(d), it is observed that magnetization
has a monotonic behavior with increasing temperature.
This magnetization contains contributions from both ther-
mal and vacuum parts. The vacuum part of magnetization is
calculated using Eq. (70). The magnetization obtained for
eB ¼ 0.2 GeV2 in HRG and VDWHRG model reasonably
agrees with that of the lQCD simulation. At very low
temperatures, the thermal part of magnetization is signifi-
cantly less because of the lower abundance of charged
hadrons. In addition to that, it is also important to note that
the magnetization of charged pseudoscalar mesons (spin 0)
is found to be negative. The magnetization of the hadronic
matter becomes positive when the vector mesons (spin-1)
and spin-1=2 baryons populate the hadronic matter at

higher temperatures. It is also noteworthy to point out that
we found even though the thermal part of magnetization is
negative at lower temperatures, the total value of magneti-
zation is always positive due to the vacuum contribution.
Figure 1(e) shows the change in entropy density as a

function of temperature at zero and a finite magnetic field.
Entropy being the first derivative of pressure with respect
to temperature, there is no vacuum contribution term in
entropy density. The value of entropy density is very small
(almost vanishes) at lower temperatures, and it starts to
increase with temperature. One can also notice that entropy
density shows minimal deviation with magnetic field even
at high temperatures. The entropy density is found to be
suppressed because of the magnetic field. The effect of
interactions also suppresses the value of entropy density.
This observation may be interesting for HIC experiments
since entropy acts as a proxy for particle multiplicity.
Although there is no significant dependence of the mag-
netic field on entropy density, the effect of the magnetic
field on the squared speed of sound can be clearly
visualized from Fig. 1(f). The variation of the squared
speed of sound as a function of temperature and the
magnetic field is depicted at μB ¼ 0, and we notice that
the c2s exhibits a dip towards lower temperatures with a
magnetic field. The minimum position of c2s indicates the
deconfinement transition temperature Tc.
Furthermore, we explore the variation of thermodynamic

quantities in the presence of a finite chemical potential and
a finite magnetic field. Figure 2 depicts the variation of
P=T4, ε=T4, M, s, cv and c2s , respectively as functions of
temperature for both finite values of chemical potential and
magnetic field in the VDWHRG model. We set different
values of μB, starting from 0.025 to 0.63 GeV, which
correspond to the LHC, RHIC, FAIR, and NICA experi-
ments [85–88] at external magnetic field eB ¼ 0.3 GeV2. It
should be noted that the strength of eB also decreases with
a decrease in collision energy. Here, we have not consid-
ered the variation of eB with collision energy, as it is not
straightforward. One can observe that for lower values of
chemical potential (up to 0.2 GeV), the behavior of
thermodynamic quantities in the VDWHRG model is
almost like that of the zero chemical potential, with a
slight variation in magnitude. But, there is a change in the
behavior of some thermodynamic quantities observed for
the higher value of chemical potential with magnetic field
eB ¼ 0.3 GeV2. From Fig. 2(a), it is observed that P=T4

decreases monotonically with temperature for different
values of chemical potential at eB ¼ 0.3 GeV2. A similar
kind of observation is made in the energy density, with a
slight variation in its trend. The magnetization, entropy
density, and specific heat are found to increase with
increasing temperature for lower values of chemical poten-
tial, as shown in Figs. 2(b)–2(e), respectively. But for
higher values of chemical potential, the trend seems very
interesting. The monotonic decreasing (increasing) behavior
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. The variation (from left to right and downwards) of normalized pressure, energy density, magnetization, entropy density,
specific heat, and squared speed of sound as functions of temperature at different baryochemical potentials for eB¼ 0.3 GeV2.
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starts deviating for chemical potential around 0.436GeVand
above, as depicted in energy density, magnetization, entropy
density, and specific-heat plots. Magnetization and entropy
density, being the first-order derivatives of pressure with
respect to magnetic field and temperature, respectively,
show the behavior approaching a first-order phase transition
at the higher chemical potential. The dependence of chemi-
cal potential on the squared speed of sound is quite
interesting, as shown in Fig. 2(f). The squared speed of
sound decreases with an increase in chemical potential,
showing a minimum. This minimum position shifts towards
lower temperatureswith higher values of chemical potential.
In addition to thermodynamic results, it is crucial

to understand the susceptibility of the medium under
consideration, which is a sensitive probe for QCD phase
transition. The magnetic susceptibility provides know-
ledge about the strength of the hadronic matter’s induced
magnetization. Its sign distinguishes diamagnet (χ2M < 0),
which expels the external field, from paramagnet (χ2M > 0),
which favors energetic exposure to the background field. In
literature, the magnetic susceptibility of the HRG model is
calculated through different approaches [56,61]. Magnetic
field dependence of magnetic susceptibility is also reported
in the Polyakov-loop extended Nambu Jona Lasinio
(PNJL) model [62]. Figure 3(a) shows the magnetic field
dependence of magnetic susceptibility with temperature.
Since many of the thermodynamic quantities, including the
fluctuation of conserved charges, are unaffected by the
vacuum part [16], we neglect the vacuum contribution of
susceptibilities in this study. One can observe that the
magnetic susceptibility is negative for a lower value of
magnetic field (e.g., eB¼ 0.1 GeV2 and eB¼ 0.2 GeV2),
and its value tends towards positive for a higher magnetic

field (eB¼ 0.3 GeV2) both for the ideal HRG and
VDWHRG models. So a clear observation of the diamag-
netic to paramagnetic transition happens in the VDWHRG
model. It is quite an exciting consequence of the study of
magnetic field dependence on magnetic susceptibility.
Taking magnetic susceptibility into account, one can

calculate the magnetic permeability of the medium. The
relative magnetic permeability is defined as μr ¼ μ

μ0
¼

1
1−e2χ2M

[60,61]. This combination is equivalent to the ratio

of the magnetic induction with the external field [60,61].
Figure 3(b) shows the magnetic field dependence of relative
magnetic permeability with temperature in the ideal HRG
and VDWHRG models. It is observed that the relative
magnetic permeability is close to unity at lower temper-
atures, and it starts deviating from unity (although the
deviation is very small in magnitude) while going toward
higher temperatures. The μr decreases with an increase in
temperature at the lower magnetic field. Further, it starts to
increase with the rise in the magnetic field.
We estimate the electric charge number susceptibility

in HRG and VDWHRG models using Eq. (30). Figure 4
shows the temperature dependence of electrical suscep-
tibility for different values of the magnetic field. One
observes that electric charge number susceptibility
increases with an increase in temperature. With a higher
magnetic field, the electric charge number susceptibility is
found to be suppressed at lower temperatures, and it starts
to increase beyond a certain value of temperature. This
limiting temperature was found to decrease with an increase
in the magnetic field. This is because the dominant
contribution to susceptibility comes from spin-0 particles
(π�; k�, etc.), and in the presence of a magnetic field, these

(a) (b)

FIG. 3. Magnetic susceptibility (left panel) and magnetic permeability (right panel) as functions of temperature for eB ¼ 0.1, 0.2,
and 0.3 GeV2.
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particles are suppressed and do not contribute to suscep-
tibility. As a result, the electric susceptibility decreases at
low temperatures with an increase in the magnetic field.
However, as temperature increases, the higher-spin nonzero
resonance particles (ρ�; k��;Δ, etc.) start contributing to
susceptibility, and hence susceptibility is found to increase
with the magnetic field at a higher temperature.
The ideal HRG model accounts only for the hadronic

degrees of freedom without any phase transition to QGP.
However, the inclusion of attractive and repulsive interaction
through the VDWHRG model allows us to study the liquid-
gas phase transition in the hadronic phase. In the literature,

there are investigations of this liquid-gas phase transition in
the VDWHRG model in the T-μB plane [36,37,39]. With
different interaction parameters a and b, the critical point of
the phase transition is found to be different. Here, we explore
the effect of the magnetic field on this critical point and
study the liquid-gas phase transition in the T-μB-eB plane
using the VDWHRG model. In this analysis, we use the
same van der Waals parameters as used in Ref. [39], where
the authors observed the critical point around T ≈ 65 MeV,
and μB ≈ 715 MeV. Taking the same baryochemical poten-
tial, we explore the effect of the magnetic field to see its
effect on the critical temperature. Figure 5(a) shows the
variation of the ð∂P=∂nÞT with eB for the same chemical
potential, μB ¼ 715 MeV. Each curve is for different
temperatures taken for the calculation. One can observe
that the ð∂P=∂nÞT becomes zero at T ¼ 64 MeV and μB ¼
715 MeV for eB ¼ 0.12 GeV2. This marks the critical
temperature below which the number density varies dis-
continuously, showing the first-order liquid-gas phase tran-
sition. To demonstrate the role of the magnetic field on the
critical point, we plot the critical points in the T-μB plane in
Fig. 5(b). The green square marker shows the critical point in
the absence of the magnetic field [39], whereas the magenta
circle marker shows the critical point in the presence of
a magnetic field. One can observe that in the presence of
the magnetic field, the critical point shifts towards lower
temperatures, i.e., at T ¼ 0.064 GeV, μB ¼ 0.715 GeV and
eB¼ 0.12 GeV2. This indicates that the magnetic field
delays the liquid-gas phase transition. It is also important
to note that the critical point now depends on three
parameters, namely, temperature, T, baryochemical poten-
tial, μB, and the magnitude of the magnetic field, eB. Hence

(a) (b)

FIG. 5. The left panel shows the variation of ð∂P=∂nÞT as a function of magnetic field eB. The right panel shows the critical point of
the liquid-gas phase transition in the QCD phase diagram in the presence of a magnetic field.

FIG. 4. Electrical susceptibility as a function of temperature for
eB ¼ 0.1, 0.2, and 0.3 GeV2.
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one can in principle be able to study the three-dimensional
variation of the critical point in the T-μB-eB plane.

V. SUMMARY

In this work, we explore the effect of a magnetic field on
the thermodynamic properties of an interacting hadron
resonance gas model at zero and finite chemical potential.
The static finite magnetic field significantly affects pressure,
energy density, trace anomaly, magnetization, and second-
order conserved charge fluctuations such as electric and
magnetic susceptibility. However, this effect is less signifi-
cant on entropy density, specific heat, etc. We found that all
thermodynamic quantities are suppressed because of inter-
actions. The effect of higher baryon chemical potential on
the thermodynamic variable is interesting. The magnetiza-
tion, entropy density, specific heat, and speed of sound may
indicate discontinuity behavior approaching a higher bar-
yochemical potential, which suggests a phase transition in
the VDWHRGmodel. A clear observation of diamagnetic to
paramagnetic transitions happens in our study. The electrical
susceptibility is found to be suppressed because of the
magnetic field at lower temperatures, and it slowly increases
at higher temperatures. A possible liquid-gas phase transition
is also explored in the presence of a finite magnetic field and
baryochemical potential.
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APPENDIX A: SQUARED SPEED OF SOUND

The squared speed of sound is given by

c2sðT; μ; QBÞ ¼
�
∂P
∂ϵ

�
s=n

: ðA1Þ

Using the variables T, μ and QB this can be rewritten as

c2sðT; μ; QBÞ ¼ dP
dϵ

¼
∂P
∂T þ ∂P

∂μ
dμ
dT þ ∂P

∂ðQBÞ
dðQBÞ
dT

∂ϵ
∂T þ ∂ϵ

∂μ
dμ
dT þ ∂ϵ

∂ðQBÞ
dðQBÞ
dT

: ðA2Þ

Number density(n) and entropy density (s) of a system is
a function of ðT; μ; QBÞ The first condition is keeping the
ratio (s=n) constant. From the derivative, one obtains

d

�
s
n

�
¼ 0; ðA3Þ

which implies

nds ¼ sdn: ðA4Þ

Divide both sides by dT so that the above Eq. (A4) can
be modified as

n

�
ds
dT

�
¼ s

�
dn
dT

�
: ðA5Þ

One can write nðT; μ; QBÞ and sðT; μ; QBÞ in the form
of differential as

dn ¼ ∂n
∂T

dT þ ∂n
∂μ

dμþ ∂n
∂ðQBÞ dðQBÞ: ðA6Þ

So if we divide both sides of the Eq. (A6) by dT, then we
have

dn
dT

¼ ∂n
∂T

þ ∂n
∂μ

dμ
dT

þ ∂n
∂ðQBÞ

dðQBÞ
dT

: ðA7Þ

Similarly for sðT; μ; QBÞ we can write

ds ¼ ∂s
∂T

dT þ ∂s
∂μ

dμþ ∂s
∂ðQBÞ dðQBÞ; ðA8Þ

ds
dT

¼ ∂s
∂T

þ ∂s
∂μ

dμ
dT

þ ∂s
∂ðQBÞ

dðQBÞ
dT

: ðA9Þ

Substituting Eqs. (A7) and (A9) in Eq. (A5), we get

n

�
∂s
∂T

þ ∂s
∂μ

dμ
dT

þ ∂s
∂ðQBÞ

dðQBÞ
dT

�

¼ s

�
∂n
∂T

þ ∂n
∂μ

dμ
dT

þ ∂n
∂ðQBÞ

dðQBÞ
dT

�
: ðA10Þ

dμ
dT

�
n
∂s
∂μ

− s
∂n
∂μ

�
¼ s

�
∂n
∂T

þ ∂n
∂ðQBÞ

dðQBÞ
dT

�

− n

�
∂s
∂T

þ ∂s
∂ðQBÞ

dðQBÞ
dT

�

⇒
dμ
dT

¼
	
s ∂n
∂T − n ∂s

∂T


þ 	s ∂n
∂ðQBÞ− n ∂s

∂ðQBÞ

 dðQBÞ

dT

n ∂s
∂μ− s ∂n

∂μ

:

ðA11Þ
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Similarly, one can evaluate dðQBÞ
dT from Eq. (A10) as

follows:

dðQBÞ
dT

¼
	
s ∂n
∂T − n ∂s

∂T


þ 	s ∂n
∂μ − n ∂s

∂μ


 dμ
dT

n ∂s
∂ðQBÞ − s ∂n

∂ðQBÞ
: ðA12Þ

For a finite baryon chemical potential and finite external
magnetic field, the above two transcendental equations can
be solved numerically to find the speed of sound of the
system.

APPENDIX B: MAGNETIC
SUSCEPTIBILITY ( χ 2M)

In this paper, the magnetic susceptibility is calculated
using Eq. (28),

χ2M;i ¼
�gi
2π2

Z
∞

0

dpz

"
QiB

 
−

ðkþ 1
2
− szÞ2

ðEzÞ2T�exp	Ez
i−μi
T


�1
�
2

� ðkþ 1
2
− szÞ2

ðEzÞ2T�exp	Ez
i−μi
T


�1
�� ðkþ 1

2
− szÞ2

ðEzÞ3�exp	Ez
i−μi
T


�1
�
!

∓ 2ðkþ 1
2
− szÞ

Ez
�
exp
	Ez

i−μi
T


�1
�
#
: ðB1Þ

APPENDIX C: ELECTRICAL
SUSCEPTIBILITY ( χ 2Q)

The electrical susceptibility is calculated using Eq. (30),

χ2Q;i ¼
giQ3

i B
2π2T3

Z
∞

0

dpz
expðEz

i−μi
T Þ�

exp
	Ez

i−μi
T


� 1
�
2
: ðC1Þ

APPENDIX D: VACUUM CONTRIBUTION
FOR MAGNETIZATION (ΔM)

The explicit form of vacuum contribution for magneti-
zation is obtained using Eq. (70).
For spin-0 particles,

ΔMr
vacðS ¼ 0; BÞ ¼ ∂ðΔPvacðS ¼ 0; BÞÞ

∂ðeBÞ : ðD1Þ

On simplifying,

ΔMr
vacðS ¼ 0; BÞ

¼ jQjB
8π2

�
x

12ðxþ 1=2Þ þ x2 lnðxþ 1=2Þ

−
ðxþ 1=2Þ−2

360

�
x

xþ 1=2
− 1

�
−
ð1þ ln xÞ

12

− 2

�
1

12
−
xþ 1=2

2
þ ðxþ 1=2Þ2

2

�
lnðxþ 1=2Þ

�
:

ðD2Þ

For spin-1=2 particles,

ΔMr
vacðS ¼ 1=2; BÞ ¼ ∂ðΔPvacðS ¼ 1=2; BÞÞ

∂ðeBÞ ; ðD3Þ

ΔMr
vacðS ¼ 1=2; BÞ ¼ −jQjB

720π2x2
: ðD4Þ

Similarly, for spin-1 particles, one can write

ΔMr
vacðS ¼ 1=2; BÞ ¼ ∂ðΔPvacðS ¼ 1; BÞÞ

∂ðeBÞ ; ðD5Þ

ΔMr
vacðS ¼ 1; BÞ ¼ 3jQjB

8π2

�
x

12ðx − 1=2Þ þ x2 lnðx − 1=2Þ − ðx − 1=2Þ−2
360

�
x

x − 1=2
− 1

�

− 2

�
1

12
−
x − 1=2

2
þ ðx − 1=2Þ2

2

�
lnðx − 1=2Þ − ðxþ 1Þ lnðxþ 1=2Þ

3

þ ð2 − 5xÞ lnðx − 1=2Þ
3

þ ð3þ 7 ln xÞ
12

�
; ðD6Þ

where x ¼ m2

2jQjB. Now, the total vacuum contribution consists of the contribution from the spin-0, spin-1=2 and spin-1
particles. So, we finally get

ΔMr
vac ¼ ΔMr

vacðS ¼ 0; BÞ þ ΔMr
vacðS ¼ 1=2; BÞ þ ΔMr

vacðS ¼ 1; BÞ: ðD7Þ
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