PHYSICAL REVIEW D 108, 074025 (2023)

Semileptonic decays ") — z°2*¢~ and 5§ — n¢* ¢~ in the standard model
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We perform a theoretical analysis of the semileptonic decays ) — z°¢¢~ and 5/ — y¢+¢~, where
¢ = e, j, via a charge-conjugation-conserving two-photon mechanism. The underlying form factors are
modeled using vector-meson dominance, phenomenological input, and U(3) flavor symmetry. We consider
both a monopole and a dipole model, the latter tailored such that the expected high-energy behavior is
ensured. Furthermore, we benchmark the effect of S-wave rescattering contributions to the decays. We infer
significant effects of the form factors neglected in the literature so far, still finding branching ratios of the
various decays well below the current experimental upper limits.
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I. INTRODUCTION

Within the standard model (SM) of particle physics,
the strong and electromagnetic interactions conserve the
symmetries parity (P), charge conjugation (C), and time
reversal (T) separately. For this reason, the decays ") —
2’¢+¢~ andyy — nf* ¢~ can—mediated via the strong and
electromagnetic force—only proceed via a C-even two-
photon mechanism due to C(3")) = C(2°) = +1; i.e., they
appear as one-loop processes at lowest order." As a result,
the SM contribution to those decays is strongly suppressed,
rendering them well-suited candidates for searches for
physics beyond the SM (BSM). In fact, BSM contributions
to the discussed decays, either mediated via a C-odd one-
photon exchange [1-4] or due to other BSM mechanisms
such as new light scalars [5] and unconventional sources
of CP violation [6], are themselves subject to ongoing
analyses.

Historically, calculations of 5 — z°/+#~ were based
on different models for the n — z%*y* vertex function, as
the conversion y*y* — "¢~ depends solely on quantum
electrodynamics (QED) and is, hence, in principle straight-
forward. This is not unlike the rare dilepton decays of the
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lightest flavor-neutral pseudoscalars, P — £*¢~, P = 7",

n, 1, similarly loop-induced and completely calculable
once the corresponding transition form factors P — y*y*
are known; see Refs. [7-9] for recent work and references
therein. For these decays, a reasonable behavior of the
transition form factors for large photon virtualities is not
only a requirement for a precision calculation, but a
necessity to regularize the otherwise ultraviolet-divergent
loop integral. This was similarly realized in early theoreti-
cal work on 5 = 7z°/*#~ in the late 1960s, which was
based on the simplest possible, pointlike effective operator
for n — #%y [10,11]: the loop was rendered finite either
with an ad hoc form factor [10] or reconstructed disper-
sively from the unambiguously calculable imaginary
part, using a finite energy cutoff [11]. As the effective
operator only contained S-wave interactions in either case—
leading to helicity suppression of the resulting dilepton
mechanism—these calculations only determined a sub-
dominant contribution, underestimating in particular the n —
n'e*e™ rate by orders of magnitude.

On the other hand, a first vector-meson-dominance
(VMD) model calculation [12], which based the n — 7%y
amplitude on p and @ exchange, p = p°(770), © = w(782),
required no such further regularization: the additional
vector-meson propagators, singularities in the crossed
channels providing so-called left-hand cuts, dampen the
high-energy behavior sufficiently such that the loop integral
is convergent; see Fig. 1. The coupling constants for the
V — Py transitions, V = p, w, P = 1, 7, largely unknown
at the time, had to be estimated in a quark model. In this
way, realistic rates B(n — n’ete™)/B(n — n'yy) ~ 1073
were obtained. In the 1990s, the two decays n — mlete
and 7 — 7%* u~ were reconsidered by calculating unitarity
bounds [13,14]. These are based on the observation that the

Published by the American Physical Society
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t(py)

FIG. 1. The - (top) and u-channel (bottom) diagrams that
contribute to #") — [z°/5]¢* ¢~ under the assumption that the
underlying two-photon amplitudes are dominated by the ex-
change of the vector mesons V = p, w, ¢.

amplitude 5 — 7%y (with real photons) model independ-
ently determines the imaginary part of the dilepton ampli-
tudes, thus providing a lower limit to the corresponding
rates. The diphoton decays were calculated in VMD,
supplemented with scalar a,(980) exchange [13] or based
on a constituent-quark-box model [14]. The numerical
results of these older calculations are collected in Table 1.

Today, we understand the mechanism for 7 — 7%y (and
the related 7' decays) much better, while precision calcu-
lations are still a challenge. Chiral perturbation theory [19]
allows us to understand this reaction in terms of a

TABLE L

systematic expansion at low momenta: the dominant
contribution originates from a set of next-to-next-to-
leading-order counterterms [20,21], whose size can phe-
nomenologically be estimated in terms of vector-meson
exchanges. The resulting predictions agree with the data
[22-24] rather well [25], and rescattering corrections in the
scalar channel [26,27] are moderate in size [28]. Similarly,
vector-meson exchanges dominate the decays 1’ — 7%y
and ' — nyy [29], with only minor S-wave corrections to
the yy spectra.

The most recent theoretical work on the decays ;") —
2%¢t ¢~ and f — ¢+ ¢~ [30] employs this modern knowl-
edge to a large extent. It once more models the two-photon
amplitudes with a VMD ansatz, superseding Ref. [12] by
retaining all lepton mass effects and Ref. [13] by calculat-
ing the real parts of the amplitudes explicitly; the current
phenomenological information on vector-pseudoscalar-
photon couplings is used therein. Perhaps surprisingly,
what has still not been implemented is the dependence
on the photon virtualities, i.e., the vector-to-pseudoscalar
transition form factors [31,32]. These have garnered
significant interest in the last few years, both phenomeno-
logically [33-36] and, in particular for the p — = transition
form factor, on the lattice [37-40]. Furthermore, the
behavior of these form factors for asymptotically large
momentum transfers is known [41-45]. This is the major
novelty of this article and the main advance compared to
Ref. [30]: by providing a realistic model for ) — z%*y*
and ' — ny*y*, including the dependence on the photon
virtualities, we are able to give a more reliable prediction
for the rates of the corresponding dilepton decays in the
SM. Furthermore, by lifting the (somewhat artificial)
dependence of the loop regularization on the left-hand
cuts, we can, for the first time, also test the effect of S-wave

Historical theoretical results on the branching ratios for 7 — z°¢+#~ and experimental upper limits for the different decay

channels 7" — [7°/n]¢* ¢, the latter all at 90% confidence level. Note that, for reasons of consistency with the experimental upper
limits, we converted the theoretical results from decay widths to branching ratios by using an up-to-date central value [15] for the 5

width; see also Table XIII.

Branching ratio Ancillary information References
n— nlete” 9.9 x 10~ VMD model [12]
n— ndete” 8.4148 x 10710 Unitarity bounds, VMD model [13]
n— nlete” 9.2(1.5) x 10710 Quark-box model, m, = 330 MeV [14]
0+ — 3.8773 x 10710 Unitarity bounds, VMD model
1T EEE 6.9748 x 10710 As above, supplemented by « (131
n— moutpu 3.3(5) x 107 Quark-box model, m, = 330 MeV [14]
n— nlete <75%x10°° 3 x 107 n events WASA-at-COSY [16]
n— nutu <35x107° 2 x 107 5 events Dzhelyadin et al. [17]
0 = nlete” <14x1073 1.3 x 10° %/ events CLEO [18]
0= 2utu <6x107 107 i’ events Dzhelyadin et al. [17]
7 — nete” <24x1073 1.3 x 10° #' events CLEO [18]
0 = nutu <15x%x107 107 # events Dzhelyadin et al. [17]
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rescattering contributions. Varying the form-factor models
allows us to assess the remaining theoretical uncertainties
of our predictions.

Experimentally, the decay # — 7’¢*e~ has been
searched for since the 1960s [46—48], motivated by the
search for possible C violation in the strong and electro-
magnetic interactions. To date, only upper limits have
been established for all decays studied in this article, the
most rigorous ones being collected in Table L. The most
stringent upper limits, those for # — 7%+ e~ from WASA-
at-COSY [16] and for # — 2% u~ from Lepton-G [17],
are still more than 3 orders of magnitude above the
theoretical SM branching ratios; for the # decays, this
margin is even larger. There is, even so, the prospect
of improved experimental results by the REDTOP
Collaboration [49,50], which plans to search for rare decays
with an unprecedented number of 7 and #’ events.

This article is structured as follows. In Sec. II, we
construct the amplitudes for the decays ") — z07+¢~
and ' — n£ ¢~ as well as the corresponding two-photon
analogs, with the latter serving as normalization channels.
For the semileptonic decays, a set of form factors that
incorporate the nonperturbative physics of the process is
introduced and their normalizations are determined from
phenomenological input. These form factors are then
parametrized in Sec. III by means of two distinct VMD
models, including the construction of dispersively
improved variants. In Sec. IV, we discuss the calculation
of observables—branching ratios as well as differential
distributions—yvia a Passarino—Veltman (PV) decomposi-
tion. Scalar rescattering contributions are analyzed in
Sec. V. Our numerical results are discussed in Sec. VI,
and we summarize our findings in Sec. VII. Further details
are provided in the appendixes.

II. AMPLITUDES

The construction of the C-even decay amplitudes for

n")(P) = 2°(po)¢* (p )¢~ (p-).
n'(P) = n(po)¢*(p1)¢(p-), (1)

where £ = e, u, is based on the assumption that the
underlying 7} — z%*y* and 5’ — yy*y* amplitudes are
dominated by the exchange of the vector mesons
|

TABLE II. The normalizations |Fyp(0)| at the real-photon
point obtained from Eq. (3) and phenomenological input deter-
mined from Ref. [15]; see also Table XIII.

I'/keV [15] | Fvp(0)]/GeV!
p — 1% 69(12) 0.73(6)
w — 7' 725(26) 2.33(4)
¢ — 5.61(21) 0.1355(26)
p =y 44.2(3.1) 1.58(6)
w = ny 3.91(35) 0.449(20)
¢ - ny 55.3(1.1) 0.691(7)
n - py 55.5(1.9) 1.299(23)
n - wy 4.74(20) 0.401(9)
¢—ny 0.264(9) 0.712(12)

V=p,m, ¢, p=¢p(1020); see Fig. 1. For our analysis,
we define the Mandelstam variables s = (p. + p_)?,
t=(p_+ po)? and u = (p, + py)?, which describe the
invariant mass squares of the lepton pair and the lepton-
pseudoscalar subsystems, respectively; they fulfill the rela-
tion X =s+¢+u=M), +M,, +2m; The relevant
vector-to-pseudoscalar transition form factors Fyp(g?) are
defined according to

(P(P)1Jn0)IV(pv)) = euape’ (Pv)P* A" Fve(a®).  (2)

where j, = e(2iy,u — Zlyﬂd — 57,5)/3 denotes the electro-
magnetic current, and g = py — p. The normalizations
|Fyp(0)| at the real-photon point can be derived from
phenomenological input in a straightforward manner,

a1} - M3)?

F(V - P}’) = BYVYE |~7:VP(O)|2v
|4
a M2 _M2 3
rp— vy ="MW op )
P

where a = ¢ /(4x) is the fine-structure constant, leading to
Table II with input from Ref. [15].

Using Eq. (2) and summing over the - and u-channel
diagrams shown in Fig. 1 as well as V = p, w, ¢, we find

the amplitude M = M(n") - [z°/5]¢*¢7) to be

2 7 . . .
M = 1;2/d4kQﬁﬂé'ﬂyaﬁGﬁa&/}Pakﬂ(Pakﬂ - Pl + kalﬂ)P\%W((P - k)z)Pr(kz)Pr((l - k)z)
4

X ]:V”(/) (k2>‘7:V[7r0/}7] ((l — k)z)ﬁs }/ﬂ (

k—py)? —my

K=pot+me g —ftmy

R ) P 4
2 7(p__k)2_m§7 Ur (4)

Note that those upper limits were obtained assuming a flat Dalitz-plot distribution, which our results indicate to be an insufficient

assumption; see the discussion in Sec. VI A below.
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with &, = y(p_) and v, = v,(p..). Here, we defined [ =
p+ + p_ and the [Breit—-Wigner (BW)] propagators

1 1
PBW 2\ — . ,
v (q°) p —M%, TiM,Ty

where M\, is the mass of the respective vector meson and
I'y its width. Due to their narrowness, a constant-width
approximation is well justified for the w and ¢, whereas the
broad p meson necessitates an energy-dependent width to
avoid sizable unphysical imaginary parts below threshold.
We will implement such a parametrization for the p in
Sec. III C, where we will use a dispersively improved BW
propagator. Our final results will be quoted for both a
variant with constant widths for all vector mesons (CW)
and a variant that instead employs an energy-dependent
width for the p (VW).

For the eventual computations, it will turn out useful to
apply the Dirac equation and make the replacements

U, = ﬁs(2p’iyﬂ - yvk},ﬂ)vr (6)

in Eq. (4).
The branching ratios of the semileptonic decays are
commonly normalized to the two-photon analogs,

n")(P) = 7°(po)r(q1)r(q2).
' (P) = n(po)yr(q1)r(q2); (7)

see also Fig. 2. For these decays, we define the Mandelstam
variables’

u, = (q1 + po)*.
(8)

which fulfil X, = s+ 17, +u, =M i(,) + Mio I and denote
the corresponding helicity amplitudes by H,,

s=(q1+q2)* t,=(q2+ po)*

(r(q1, (g2, XISV (P)[=° /n) (po))
= i(4”a)(2”)45(4)(P +DPo—4q1— %)ei('{_w”HM- )

Here, A") are the helicities of the photons, and we factored
out the dependence on the electric charge (4za) and the
azimuthal angle ¢ for convenience. Using Eq. (2) and the
normalization of the form factors, |Cyp,| = |Fyp(0)], as
will be introduced in Sec. III, we express the VMD helicity
amplitudes as

*Note that the Mandelstam variable s = (P — p,)? is identical
in the semileptonic and the diphoton case.

v(q1)
O (P) v(42)
v
N
770/77(170)
7(@)
4O(P) ¥(q1)
v
AN
7T0/77(p0)

FIG. 2. The two diagrams contributing to the two-photon decay
n") — [z°/n]yy, which are related via g, < g».

Hyy = 631*(611)5(}2*(Clz)zcv,,o)ycv[no/q]y
v
X [PEW(IV)Httllaz + P\%w<u}’)Hglaz]’ (10)

where ¢;(g;) denote the polarization vectors of the out-
going photons and

— v, B v P
Hé’laz - gﬂlﬂzeﬂllﬂal/}]eﬂz”zaz/)’zp\)qllp() q22’
Hgl“Z = gﬂlﬂzeﬂlvlalﬂleﬂzvzazﬂzpl(;l qlflﬁp/l‘//zqu’ (11)

with py = ¢, + pg and py = ¢; + p, the momenta of the
intermediate vector mesons.

III. FORM FACTORS

In order to parametrize the form factors Fyp(g?), we use
the VMD framework. As a consequence, the photon
couplings at the VPy* vertices of the diagrams in Fig. 1
are mediated via two intermediate vector mesons V; and
V,; see Fig. 3. We will construct two distinct such models: a

n® Vi ®

0 a
7 /n T

FIG. 3. The modeling of the two-photon decay mechanism in
the VMD framework via two vector mesons V; and V,.
Constraints on (V,,V,) in dependence of the initial and final
state as well as V are given in Table III.
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monopole (MP) parametrization with V; = p,»,¢ and a
dipole (DP) ansatz with V; = p!) &), p"), p/ = p°(1450),
o' = w(1420), and ¢ = $(1680), that ensures the
expected high-energy behavior of the form factors [41-45].
For reference, we also include a model calculation with
constant form factors, i.e., a pointlike (PL) interaction,
which closely resembles the parametrization of Ref. [30].

The conservation of isospin—and thus G parity com-
bined with C—imposes constraints on V; and V, in
dependence on the initial and final states as well as the
t- or u-channel vector meson V. However, some of the
couplings, namely 7"V "), ) p"), 2°pp"), and z°¢pp""),
are, although isospin-allowed, vanishing under the
assumption of U(3) flavor symmetry and ideally mixed
vector-meson multiplets; see Appendix A. Since the
contribution of V = ¢ would otherwise vanish entirely
for ) = z%¢*¢~, we nonetheless include the Okubo—
Zweig-lizuka-suppressed (OZI-suppressed) [51-53] cou-
plings 7°%pp") in our calculations; the remaining vector
mesons V; are collected in Table III.

A. Monopole model

The MP model only takes the lowest-lying vector
mesons p, @, and ¢ into account, so that the form factors
are parametrized according to

]:VP(‘IZ) = CVPyM%/[P\%,W(qz)’ (12)

with the assignments of V;€{p,w,¢} according to
Table III. Here, we assume |Cyp,|= |Fyp(0)| at the
real-photon point, see Table II, which determines the
coupling constants Cyp, up to an overall phase. This
assumption omits corrections due to the constant, nonzero
widths in the BW propagators, which are negligible for
V = w, ¢ but potentially significant for V = p.* Since the
energy-dependent width of the p meson will be chosen to
have the proper threshold behavior, these complications
only exist for the variant CW but not for VW. All coupling
constants are assumed to be real in the following. In order
to fix the relative signs between them, we resort to U(3)
flavor symmetry and analyses of e"e™ — 37 and e*e™ —
my [54-56]; see Appendix A. Without loss of generality, we
adopt a positive sign for the coupling C,,,, and establish the
consistent sign convention collected in Table IV.

B. Dipole model

Given that the asymptotic behavior of the vector-to-
pseudoscalar transition form factors is expected to be
Fyvp(q?) < g=* [41-45], we can additionally include the
next-higher multiplet of vector mesons, p/, @', and ¢/, to

“Note that PEV(0)~—1/M3}, so that Fyp(0) = —Cyp,,
which, however, corresponds to an unobservable overall phase.

TABLEIII. The constraints on the vector mesons V; of Fig. 3 in
dependence of V derived from isospin conservation and U(3)
flavor symmetry with ideally mixed vector-meson multiplets. We
include the OZI-suppressed couplings ¢z°p"); see text and
Appendix A for more information.

Valy vy
14 P w ¢ P o &
v, ) o0 o0 o0 W 0

TABLE 1IV. The signs sgn[Cyp,] of the couplings constants
defined in Eq. (12). Here, we fixed the global sign of C,,, to be
positive; see Appendix A for details.

szroy Cwﬂoy C¢”Oy
+ + -
er/ war/ Cqu'
+ + -
Cpﬂ’r Cwn’r Cdm’r
+ + +

achieve this property by tuning a free parameter eV.5 For the
DP model, we thus make the ansatz

%VP<q2) = Cvpy[(l - €v,-)M%/,»PxB?}V(CIZ)
+ey, M3, PN (47)]. (13)

where we assume the excited vector states to couple
according to the exact same symmetry restrictions as the
ground-state multiplet; cf. Table III. Here, PB,W(qz) is
defined as in Eq. (5), with My, and I}, the mass and width
of the respective excited vector meson. Due to the large
widths of the excited vector mesons, a constant-width
approximation leads to a rather poor description of these
mesons, however. We will therefore, analogously to the p,
construct dispersively improved BW propagators for p’, o',
and ¢’ based on energy-dependent widths in Sec. III C,
leading to replacements of the kind P} (¢*) — P(‘i,',S P(q?).
Similarly to the MP, our final results for the DP will be
quoted for both the variant CW with constant widths for all
vector mesons and the variant VW, i.e., using constant
widths for the @ and ¢ but energy-dependent ones for p!),
@', and ¢'. The form factors in Eq. (13) are assumed to be
normalized such that Fyp(0) = —C vpy» Which, as for the
MP, holds up to potential corrections due to the constant
widths in the propagators. In order to achieve the desired

Data both on e*e™ — wa’ [57] and ete™ — p% [58-60]
suggest that the required cancellation indeed largely occurs
between the contributions of the two lowest vector states, p
and p’ in those cases.
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high-energy behavior, the free parameter needs to be
chosen as ey = M3} /(M3 — M3,).

C. Spectral representation

While the variant CW has its own raison d’étre as a
simple approximate description, the large widths of the
mesons p!'), ', and ¢’ actually require an energy-dependent
parametrization to avoid significant unphysical imaginary
parts below threshold.® In this section, we construct these
energy-dependent widths; to ensure the correct analytic
properties when inserting the form factors into the ampli-
tude, Eq. (4), we will furthermore introduce dispersively
improved variants [68] of the form factors that contain a p{/)-,
'-, or ¢'-meson propagator, which lay the foundation for
the variant VW in both the MP and DP model.

For the p meson, we will use the energy-dependent
width [69]

T,(q%) = 0(q” —4M; )y”L’f(qz)f(qz)F
g g YVp-rtn (M/Z)) "
(qz _ 4M2i)3/2

Yoontn (qZ) = 2 s (14)

q

where the so-called barrier factor [70,71]

V@ M;—4M2, + 4pg
M, q>—4M>. +4py’

() = (15)

pr = 202.4 MeV, has been introduced to ensure conver-

gence of the superconvergence relations evaluated in

Eq. (24) below. We calculate the dispersive p propagator via
Im[PYY (x)]

. 1 0
LY Nl
Y (q) T S s qz—X—l-ie

—Vly (x)

Im[PEW(x)] = (x — M%/)Z +xFV(x)2 >

(16)

where sy, = 4M? >, is the threshold for p — z*z~. The

spectral representations of the form factors Fyp(g*) for
VP e {pm"), wn®, ¢pz°} are thus given by
T 2\ CVPy 2 pdisp, 2
Fvp(q®) = N M;P, (g°) (17)
P

where the normalization constant

®In principle, such unphysical imaginary parts could be
avoided for the p exchange by reconstructing the latter in terms
of dlspersmn relations for y(*>7r — zr [40,61,62] and 7 (RN
mry ) [60,63-65]; cf. also Refs. [66,67]. We here refrain from
further refining the amplitude in such a way.

g
N, =-M3P,”(0) ~ 0.898 (18)
is introduced in order to retain F vp(0) = =Cyp,, ie., to
ensure that the coupling constants have the same meaning in
the original and the dispersively improved VMD paramet-
rization. For reasons of consistency, we also replace the p
propagator in the left-hand cuts, P5V(4¢?) in Eq. (4), by a
dispersively improved variant, i.e.,

PP(q*) —

dis
e o P(4%), (19)

where the normalization constant
NEHC = iM T, PO (M2) ~ 1 (20)

is introduced in order to retain PBW(Mz) =1/(iM,I',), in

line with the VMD assumption. 7 With these conventions, we
will drop the distinction between Fyp(g?) and Fyp(g?) in
the following, and it will always be clear from context which
representation is used.

For the dipole variant, the widths of the excited vector
mesons p', @', ¢’ are modeled using the dominant quasi-
two-particle thresholds. We condense the decays p' — wx,
' — pr, and ¢ - K*K, K* = K*(892), in the notation
V' — VP, such that

7\/’—»\/1)( )

= 0lg? = (My -+ Mp)?) =M

Tyvi(q?) 'y,

Mq? M3y M3)%?
(3?7

7V’—>VP(q2) = (21)

where A(x,y,z) = x> +y? + 7> — 2xy — 2xz — 2yz is the
Killén function. Here, we disregard any distinction
between the various charge channels and use the neutral
masses for numerical evaluation. The dispersive p’, @', and
¢ propagators and spectral functions are defined similarly
to Eq. (16), with sy, = (M + Mp)? for the thresholds. In
analogy to Eq. (13), the dipole form factors read

C
%) = A;/Py (1 —ey,)M3, Pv.(q )+€v,-M%/;Pv;(q2>]v
Vi

-7~:VP(q
(22)

where the simplifying assumption of constant widths for @
and ¢ propagators is always implicitly understood, with

Py (q )e{PBW( H, P d“p(qz)}. Here, we introduced the

normalization constants

"We ignore the fact that the p pole in the complex plane does
not exactly agree with the Breit—-Wigner parameters.
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TABLE V. The values of the parameter ¢ derived from the
superconvergence relations, Eq. (25), and the normalization
constants of Eq. (23). Here, tiny imaginary parts in the normali-
zation constants have been neglected. The uncertainties refer to
the variations of Iy, I,/ and 'y, see Table XIII, and are omitted
in the subsequent analy51s.

€ (—0.47)75%% N, 0.99+0.04
€o (—0.43)79% N, 1107047
€ (—0.42)79.06 N, 1.031005

Ny = =[(1 - ey)M}Py(0) + eyM2, Py (0)].  (23)

which, once more, ensure Fyp(0) = —Cyp,. The param-
eters ey have to be tuned differently in the dispersively
improved variant, namely via the superconvergence
relations

0= (1-ey)M}P) +eyM3,PY,,
L, V=w4¢,
1 o
——/ dxIm[PEY (x)]. V =p") . ¢,

Sthr

Py = (24)

such that the terms of O(1/¢?) in the form factors cancel.
We collect the numerical results for

M3 Py

25
M3 P — M3, PY, (25)

€y =

and N v in Table V, where we include the uncertainties due
to the large errors on I'y; in the following, their effect is,
however, assumed to be insignificant and thus discarded.

IV. OBSERVABLES

The phenomenological analysis in this article will be
performed in terms of doubly and singly differential decay
widths as well as integrated branching ratios. We define
v = t — u for the Mandelstam variables r and u, in terms of
which the twofold differential decay width dI" = dI"(3"") —
[7°/n)¢+¢7) is given by [15]

Here, | M|? is the spin-summed square of the amplitude,
Eq. (4), and the integration region is bounded by the
available phase space,

S [4mb2ﬂ, (Mrl(/) - M”O/,l)z],
v e [_ymam I/max]ﬂ I/maX = O-(s) A’(s)’ (27)
with
4m§;
o(s) = - A(s) = A(s, M M [,/”) (28)

The singly differential decay width dI"/ds follows from an
integration of Eq. (26) over v and the branching ratio

r
r

B(n") — [/t e7) = (29)

7"

is obtained after performing the full three-body phase-space
integration, i.e., by also integrating over s.

In order to calculate W 2 we perform a PV decom-
position of Eq. (4) with FeynCalc [72-74] after inserting
explicit expressions for the form factors. For both the MP
and DP model and in both variants CW and VW, this results
in an expression of the generic form

M = 1677 |

uv — oy
MGep = meiigv,,

QEDM + M?)%DMMOL]’
MQED = Uspov;,
0)v u(0)v
=T MY Cy = o, Cupyye (30)
v

where the quantities M%”" account for the different
vector-meson contributions in the result of the PV decom-
position, cf. the sum in Eq. (4); they amount to cumbersome
expressions containing PV functions.® The numerical
values of the process-specific coupling constants Cy are
provided in Table VI. Upon squaring and spin summing,
the above amplitude leads to

|m|2 = 256”4(14[C%|Mp.p|2 + C%)lmw,wl2 + Ci|m¢,¢|2

+ C,Cop[ M, > + C,Chl M, 4
+ C,Cyl M, 4. (31)

(S T,
(27) 64Mr1(’) where we defined
|
Ry = (Moo LAY + VAP + 20t Rel gy M),

|MV,,V2| — 2|M6%D|2R6[MMLMMI/*] + 2|m6%UD|2RC[MMODMMOH} + ZMgE]lg()vR [MupMqu)* +Mu0vMuv*] (32)

$These expressions are attached as a text file to this article [75].
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TABLE VI. Numerical values of the coupling constants defined
in Eq. (30) for the different processes.

C,/GeV™ C,/GevV— C,/GeV™?
n— n¢ten 1.16(11) 1.05(5) 0.0936(20)
0 = 2t 0.95(8) 0.937(26) —0.0965(25)
W —ntte 2.05(8) 0.180(9) —0.492(10)
for V| # V,, with
[Mip? = 2m3(s —4mz).  [Mipl* = 5[A(s) =27,
A Auv,ulv
MGen " = —2mjv. (33)

Similarly to the semileptonic decays, the branching ratio
of the two-photon analogs is defined by

B — [2/nlyy) =~ (34)

where T, = (") - [2°/n]yy) and

I (4na)?
dr, = H|*dsd 35
14 ( )3 64M3 | | U ( )
with the phase space bounded by
se [0, (Mn(/) - Mno/n>2],
v, € [y, 1], VP = £/ A(s). (36)

Due to the indistinguishability of the two photons in the
final state, an additional factor of 1/2 has to be taken into
account upon integration. From Eq. (10), one finds the
polarization-summed amplitude squared

AP = [Z@ (1P (1) PLH? + [Py (i, P H2 4 2RelPy (1) Py ] )

+ Y 2Cy,Cy, (Re[}’vl(fy)P*vz(fy)]lHt’tP+Re[Pvl(uy)P*vz(My)]|H”’“|2

{Vi.Va}
- RelPy, ()P, (1) + Py, ()P, 1 1) | @)
I
where the second sum extends over {V,V,}= |HP? = 0/’7 (s2 4 2 + u2 + 2st, + 2su, + 4t,u,)
{p, o}, {p,d},{w, $}, and we introduced . ¢
— M2, S tu, = 2MS, 5, + MY, (40)
|H"|* = gn@g=®H,  H . Finally, we consider the normalized semileptonic
|Hu,u|2 ala] gazazHa]azHg]az branching ratios
Hi|2 = g gmd fyt ppu 38 . B N = 70 a7
[HM |2 = g g Hy, o, H g, (38) B = o) — U - [ /011} ). (1)
B(n" — [2°/ulrr)

As in Eq. (22), the propagators Py (x) are to be understood
as BW propagators for all V in the CW approximation and
BW propagators for V = w, ¢ but dispersively improved
variants for V =p in the variant VW. Inserting the
kinematics of the process, these expressions simplify to

|H"|? = |H0|2—|—t2(s +u )
|H"“* = |H? + w3 (s* + 13),
|H"™|* = |H°)> + t,u,(s* + t,u,), (39)

where we defined

which are particularly useful from the theoretical point of
view, since they reduce the effect of the uncertainties from
the coupling constants.

We perform the phase-space integrations of the differ-
ential decay widths, Egs. (26) and (35), numerically with the
Cuhre and Vegas algorithm from the Cuba library [76].
For the numerical evaluation of the PV functions contained

in the quantities M'\‘,(O)", see Eq. (30), we use Collier [77-80].

A C++ interface to the native Fortran library Collier written for
this purpose, including an executable demo file, is attached as
Supplemental Material to this article [75].
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The integration is carried out following the decomposition of

Egs. (31) and (37),

— o) 21(r) 2(7)
Loy = Clpp + Collnw + Cyly

+C,CTY . (42)

+ Cﬂca)r/(},/) + CpC(,,Fm o

Xy
Numerical results for the auxiliary quantities F@Vl),vz are listed
in Appendix B.!"

V. SCALAR RESCATTERING CONTRIBUTIONS

While there are good reasons to assume that the VMD
model captures the most significant contributions to the
semileptonic ") decays, we will assess scalar rescattering
contributions explicitly by calculating them for the n —
7°¢* ¢~ channels. For the 5/ channels, the vector mesons
have sufficient energy to go quasi on shell, so that an even
stronger dominance of the VMD mechanism is expected.

A. Isolating the S wave in the hadronic subamplitude

With the decay n — #°£*#~ being driven by the two-
photon intermediate state, as discussed in Sec. I, the
hadronic subprocess we consider is again 7 — 7°yy. The
corresponding subamplitude H;, defined in Eq. (9), can be
expressed in terms of the tensor amplitude H,, according to

AP H = 5,*114(41)63}'(612)H/4u- (43)
In the following, we choose

1 .
€(q1) = —(0.¥1.-i,0),

-5

&(q2) = E(O, F1,1,0) (44)

as the explicit form for the polarization vectors. In the
context of the hadronic process 7 — 7’yy, we use the

Mandelstam variables s, z,, and u, as defined in Eq. (8). For

on shell photons, the tensor amplitude H** can be written in
terms of two independent tensor structures T’l";z [28],

l()Using LoopTools [81] for the evaluation of the PV functions,
we observed severe numerical instabilities for some integrations
in the variant VW. These issues were most extreme in I'y y, with
at least one V; = ¢ for the decays ) — z%* e~ but also notably
problematic in T, ,, for # — z’e*e™. They can be traced back to
problems with the evaluation in certain regions of the phase space
and might be related to vanishing Gram determinants in the PV
reduction procedure, but their exact origin remains obscure to us,
in particular because a decomposition into coefficient functions
does not improve this behavior and the evaluation with Collier
using scalar functions does not suffer from such instabilities.

o1
TV =539" — 42t
Th = 2sAFAY 4-4(q,8)(g20) 9"
—4(q2A) A gt — 4(qA)gH A", (45)

with A* = (P + po)*, which manifestly fulfill the neces-
sary Ward identities. The expansion of the tensor amplitude
in this basis involves two scalar amplitudes A and B and
reads

H® = A(s.1,)T" + B(s,1,)T%. (46)

Contracting the tensor amplitude (46) with the polarization
vectors gives an expression for the helicity amplitudes in
terms of the scalar amplitudes,

s
H, . (s.t,) = —EA(S, t,) = s2(M} + Mio) —5|B(s.1,),
H+—(S’ ty) = [(ty - M}/)z - ’17z°r/<s)]B(sv ty)' (47)
Here and in the following, we use the abbreviation
2y, (5) = As. M3, M3,). (48)

To isolate the S wave, we will neglect D and higher partial
waves, including the whole H,_ contribution, since its
partial-wave expansion starts with D waves. Consequently,
we are required to set the scalar amplitude B to zero, which
leads to the S wave contributing only through the tensor
structure 7. Furthermore, setting B to zero allows us to
use the S-wave amplitude h4=0 to fix the scalar amplitude A
via Eq. (47),

2
A(s) = =K (s). (49)
Note that the (+4) helicity amplitude has a soft-photon
zero at s = 0, such that A%(s) has no singularity at that
point despite the factor 1/s.

B. Rescattering effects in the hadronic subprocess

In Ref. [28], the rescattering effects in # — 7yy are
described by means of a coupled-channel analysis, taking
into account 7% and KK intermediate states; cf. Fig. 4.

n/K n/K g

70 / K 70 / K 0

FIG. 4. The two intermediate states 7°;/KK contributing to the
two-photon amplitudes. The dispersive representation of those
amplitudes is constructed in Ref. [28].
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Using the Omneés matrix Q(s) for the z%/(KK),_, system
constructed therein, one can write a dispersive representa-
tion for the S-wave amplitudes,

() = ()2 (S 555
)

K@) ), C2G)

" (ﬁ;i@%)) } 30

with s, = (M, + M»)? the threshold for the 7% inter-
mediate state and

sy == (M = M) (M = M2)  (51)
4
the onset of the left-hand cut. Here, we include the VMD
contributions from the p, w, and ¢ mesons for the 7%
channel (h) and the K* for the KK channel (k") in the
zero-width approximation. Using the polarization vectors
(44) and the coupling constants Cy defined in Eq. (30), the
VMD amplitude for the 7% channel for photons with
polarization (++) as well as the corresponding S-wave
amplitude are given by

Cv sty
4 M} —t, —ie

Cy [ sM} Xy(s)+1
WY (s) = =X Vlog[v }—s ,
++( ) 2 ﬂ:[é;(s) Xv(s) - 1
_2M — (M + M%) + s

XV(S) - lléz(s)

HY (s.1,) = + (¢, < u,),

(52)

The logarithm in Eq. (52) induces the left-hand cut starting
from sy. The VMD contribution to the KK channel, KY
can be treated in complete analogy. In the KK channel, the
QED Born term projected onto isospin / = 1 is included in
addition,

2sM>
Koo (s, 1y) = — VM
' (ty_MK)(uy_MK)
2V2M2 1+ ok(s)
k().Bom _ Kl K . 33
e =L e o] o
with oy (s) =+/1 —4M%/s. In Eq. (50), the soft-photon

zero is already taken care of; the remaining subtraction
constants @ and b are determined in accordance with

Ref. [28], where an Adler zero at s, = M, % is implemented
to fix one of these and the other one is fit to experimen-
tal data.

Subtracting the VMD contributions (52) from the com-
plete S-wave amplitude 4%, (50) allows us to isolate the
rescattering effects in Eq. (49),

A96sc<s>:—§<h3+<s>— > hms)). (54

V=p.0.

With this, we can now construct the S-wave tensor
amplitude containing only the rescattering contributions,

ﬁyb = A?esc(s)Tlfb' (55)

C. Loop calculation

In order to calculate the contribution of S-wave rescat-
tering effects to the decay 7 — 7%+ #~, we retain the tensor
amplitude (55) for the # — 7%y vertex. This reduces the
loop from a box to a triangle topology; see Fig. 5. We
denote the tensor QED subamplitude for yy — £7£~ by
L*. At tree level, the construction is straightforward, and
after simplifying with Eq. (6), one finds

I ph —
L' = —ig Pe = 7Y, (56)

(po—q1)* —mZ+ie

Note that we do not have to concern ourselves with
calculating the S-wave projection of the QED subamplitude
y*y* — £T¢7, since the loop integration will take care of
the projection automatically. Furthermore, to avoid double
counting, we do not include the crossed channel, which is
described by the same amplitude due to the symmetry of
the triangle loop.

When taking into account the photon virtualities, the
gauge-invariant tensor structure 7%, in particular, acquires
additional terms [82—-84],

1
T (q1.43) = (s = - @) g —dhat.  (57)
" -
i
2
\
v,
70 VA

FIG. 5. The triangle loop contributing to 7% — #+#~, which
contains the tensor amplitude H" that captures the rescattering
effects in 7% — yy, with the photon virtualities modeled via
vector-meson propagators. This process is related to the corre-
sponding # decay via crossing symmetry.
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The impact of the photon virtualities is then further
modeled by including factors M3 PEW(g?) for both pho-
tons, resulting in a hadronic tensor amplitude for off shell
photons on the basis of the on shell one,

H"(q1, 43) = My, PYY (q7) M5, PPV (43)
X Aese ()T (41, 45)- (58)

This is a naive generalization to virtual photons that
corresponds to a scalar-resonance approximation. It avoids
the known complications, e.g., from the modified partial-
wave projections of the VMD amplitudes; see Refs. [85,86]
for a more rigorous treatment. We deem this approximation
sufficient in the context of the semileptonic decays. The
prescription in Eq. (58) is consistent with the monopole
model for the form factors constructed in Sec. III.

The rescattering contribution to the n — z°£*#~ ampli-
tude is then given by

e = (%) [¢a

with g, = p, +p_—q;.

Understanding the S-wave amplitude as an enhancement
due to the a((980) resonance with I¢(JF€) = 17-(0*),
only the combination of p and w is allowed for the vector
mesons V; and V,. With that, the S-wave rescattering
contribution is given by

H"(q%.43) Ly
@ +ie g3 +ie’

(59)

. a\2
M) = =i( ) MM ARLS) [ PGP @2

(43, 43)L,,
(q1 +i€)(q3 +ie)

(60)

Note that with 74" o« O(g?), the integral is convergent only
due to the dependence on the photon virtualities introduced
in Eq. (58). This is a consequence of the reduction from a
box to a triangle loop. Contracting the tensor structures and
performing a PV decomposition allows us to separate a
factor of m,s/(M3MZ) with only the i, v, spinor structure
from Eq. (30) contributing,

M(s) = i(4na)?sAfe (s) M () M. (61)
Here, M}{ (s) contains the remaining PV master integrals.

VI. RESULTS AND DISCUSSION

We present the results for the semileptonic decays in the
form of branching ratios as well as singly and doubly
differential decay widths. The branching ratios are particu-
larly apt to demonstrate the effects of the different form-
factor models. Furthermore, we examine the contribution
of scalar rescattering effects to the branching ratios and

normalize these to the corresponding two-photon analogs.
For all of our results, the quoted uncertainties stem from
the experimental uncertainties that enter via the coupling
constants and amount to ~10%. The uncertainties from the
numerical integration, on the other hand, are at least 1 order
of magnitude smaller and therefore omitted.

A. Differential decay widths

The doubly and singly differential distributions of the
semileptonic decays exhibit distinct characteristics, with
the most prominent differences being observable between
the decays with electrons and muons in the final state; see
Figs. 6-8. While the majority of the doubly differential
distribution for the electron channels is contained in a small
fraction close to the threshold in the invariant lepton mass,
the decays with muons in the final state display a spread-out
distribution that covers large parts of the available phase
space. For the electron final state, in particular, it is
important to take account of the region close to the
threshold in the invariant lepton mass both when integrat-
ing over the phase space and when performing a meas-
urement, as significant parts of the decay width are readily
missed otherwise. Furthermore, the logarithmic scale
shows that the distributions possess a minimum for v = 0,
where v « cos 0, with 6 the s-channel scattering angle.
With only even partial waves contributing to the decays,
this feature can be attributed to the dominance of D waves
over the helicity-suppressed S waves—which do not show
such an angular distribution—whereas for the muon
channels, this suppression is less pronounced. Beyond
the difference in the final-state leptons, the principal visible
differentiations concern the size of the phase space, which
is significantly larger for ' — z°/*¢~ than for 5 —
2 ¢ and i — nftem.

For all decay channels, the obtained Dalitz plots do not
follow a flat distribution, which was assumed for the
experimental analysis of # — 7’¢Te™ in Ref. [16]. This
assumption is justified for a potential C-violating contri-
bution [4] but inaccurate for the standard-model result; we
therefore propose a reevaluation of the experimental data
and a reassessment of the reported upper limit.

The singly differential distributions for the electron
channels explicitly resolve a strongly peaked structure
for invariant lepton masses close to the threshold and a
subsequent rapid decrease. For muons in the final state,
the singly differential distribution is much different, with a
broad peak that is situated more centrally in the phase
space. This behavior is in correspondence with the obser-
vation that for m, = 0, the threshold in s approximately
collapses to the threshold of the two-photon intermediate
state, s = 0, where the two-photon cut induces a behavior
o log(s) [12]. Hence, for the electron final state, this
logarithmic divergence manifests itself as a peak close to
the threshold in s, regularized by a phase-space factor and
forced to zero at s = 4m§, see Eq. (27), whereas the muon
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FIG. 6. Dalitz plots for the MP model in the variant CW, normalized to the maximum value within the available phase space of the
respective channel, df"/dsdv = [d'/dsdy]/[max dI"/dsd].

074025-12



SEMILEPTONIC DECAYS #) — z%¢*¢~ AND 5/ - n¢*¢~ IN THE ...

PHYS. REV. D 108, 074025 (2023)

dr
dsdr
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FIG. 7. Logarithmic Dalitz plots for the electron channels with the MP model in the variant CW, normalized to the respective

maximum value within the available phase space; see Fig. 6.

channels have a much higher threshold, far from the
logarithmic divergence.

B. Branching ratios in the different models

The sensitivity of the semileptonic decays to the different
form-factor parametrizations, i.e., a pointlike, monopole, or
dipole interaction, each with constant or energy-dependent
widths, can be probed by comparing the results for the
branching ratios collected in Table VII.

Our results for the decays # — 7% ¢~ obtained with
constant form factors and widths are compatible with the
results of Ref. [30], which similarly assumed a pointlike
interaction. Instead of determining the coupling constants
purely from phenomenology, the authors modeled these
using a symmetry-driven quark model, which results in
only slightly different numerical values. For the #' decays,
on the other hand, we find significant disagreement, which
might be due to numerical difficulties when calculating
the box diagrams in a nonautomated way via Feynman
parameters.

Implementing nontrivial form factors leads to a signifi-
cant decrease of the branching ratio for all decays, with the
muon channels being subject to a larger reduction than the
electron channels and the 7 decays to less reduction than
the 7 decays. More specifically, the decrease amounts to
~35% for n — n’e*e” and ~50% for n — z°u* . For
7' — n°¢*¢~, the branching ratios are reduced by ~20%
for electrons and ~35% for muons in the final state.
Regarding n' — n£*¢~, the branching ratios decrease by
~10% for electrons and ~25% for muons in the final state.
This gives strong indication that the photon virtualities
cannot be neglected in the analyzed processes, since constant
form factors are likely to overestimate the decay widths.

The dipole form factors, which feature the expected
high-energy behavior ~1/¢*, further assess the sensitivity
on the precise parametrization of the form factors.
Compared to the variation observed between constant form
factors and the monopole parametrization, their effect is,
however, negligible, leading to a further decrease for
n— ¢ ¢, 5 - 2’ and ' — qutu~ and a slight
increase for ' — 7’¢*e™ and i — ne*e~, both at most at
the level of 5%.

Using spectral representations to implement energy-
dependent widths for the broad vector mesons, i.e., p),
o', and ¢', leads to a decrease in the branching ratio of less
than 4% for all decays with constant form factors and an
increase of not more than 8% both in the monopole and
dipole models, with the exception of ' — nu*u~, where
the increase even reaches ~15%.

All these variations are small compared to the difference
between the results in the PL. model and any other model
and mostly even small compared to the phenomenological
uncertainties. We thus infer the semileptonic decays to be
rather insensitive to the precise parametrization of the
photon virtualities in the form factors. Therefore, we
restricted our discussion of the Dalitz and singly differential
plots in Sec. VI A to the monopole model, as finer details
would not be discernible.

C. Scalar rescattering contributions

We have calculated the S-wave rescattering contributions
exemplarily for the 7 — 7% #~ decay channels. Adding
these to the VMD amplitude leads to two additional terms
on the level of the squared amplitude in the branching ratio:
one pure rescattering term and one term mixing rescattering
and VMD effects,
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FIG. 8. Singly differential decay widths in the Mandelstam variable s, obtained with the MP model in the variant CW. Here, the inlays
amplify the behavior close to the lower threshold of the phase space, where the distribution shows a strong peak for the channels with
electrons in the final state. The uncertainty is entirely due to the dominant phenomenological uncertainty of |Fyp(0)|; see Table II.

|IM + ;\71|2 = |M>+ |7\;1|2 + 2Re( M/\N/l*) (62)  VMD result. This seems plausible, given that a spin flip is
necessary to couple a scalar resonance to two leptons,

The two contributions to the branching ratios can be found  resulting in an amplitude proportional to m,. For n —
in Table VIIL. For 7 — 7%¢*e™, both the rescattering and 7%y, the rescattering and mixed contributions are at the
the mixed contribution are of O(107*) compared to the  level of 5% in comparison to the VMD contributions, still
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TABLE VIIL

The branching ratios of the semileptonic decays, Eq. (29), resulting for the models PL, MP, and DP in

both variants CW and VW. The uncertainty is entirely due to the dominant experimental uncertainty of |Fy»(0)]; see
Table II. For reference, we also give the corresponding results from Ref. [30], where we added the quoted

uncertainties in quadrature.

Branching ratio/107°

PL MP DP Reference [30]
n— nlete” CwW 2.10(23) 1.35(15) 1.33(15) 2.0(2)
\AY 2.06(22) 1.40(15) 1.36(15)
n— CWwW 1.37(15) 0.70(8) 0.66(7) 1.1(2)
VW 1.32(14) 0.71(8) 0.67(7)
N — nlete” CwW 3.82(33) 3.08(27) 3.14(27) 4.5(6)
VW 3.81(33) 3.30(28) 3.30(28)
0 = 2utu CW 2.57(23) 1.69(15) 1.68(15) 1.7(3)
\AV 2.53(23) 1.81(16) 1.81(16)
7 = nete” CW 0.53(4) 0.48(4) 0.49(4) 0.4(2)
VW 0.51(4) 0.50(4) 0.504)
N —nutu CcwW 0.287(26) 0.213(18) 0.207(18) 0.15(5)
VW 0.280(25) 0.225(20) 0.240(21)
TABLE VIII. The scalar rescattering contributions to the TABLE IX. The branching ratios of the two-photon decays,

branching ratios of # — z%¢%¢~, Eq. (62), separated into the
pure rescattering and mixed term, as well as the corresponding
VMD contributions from Table VII for comparison.

Eq. (34), in both variants CW and VW. The uncertainty is entirely
due to the dominant experimental uncertainty of |Fy»(0)|; see
Table II.

Branching ratio

Branching ratio/107*

VMD Rescattering Mixed CwW VW
n— nlete 1.36(15) x 107 25x1071 4.6 x 10713 n— yy 1.21(13) 1.18(13)
n— 2ty 0.67(7)x 1070 28x 107" —2.6x 107" i = 2y 27.8(1.7) 28.1(1.8)
n = nyy 1.10(8) 1.10(8)

notably below the uncertainties of the latter. In addition,
the two contributions have opposite signs, such that they
largely cancel, leading to a suppression of O(1073). In light
of the negligible contributions of the rescattering effects,
we consider it unnecessary to calculate errors on them.
Apart from the impact of the uncertainties on the coupling
constants Cy within the dispersive integral in Eq. (50), such
a calculation would also have to take into account the
uncertainties from fixing the subtraction constants as
estimated in Ref. [28].

A similar order of magnitude is expected for the
respective corrections to the other decay channels
7 — [z°/n)¢* ¢, an explicit demonstration of which is,
however, beyond the scope of this article.

D. Photonic decays and normalized branching ratios

The primary motivation for calculating the branching
ratios for the two-photon decays ") — [z°/5]yy within our
VMD framework is the normalization (41) of the corre-
sponding semileptonic decays. Numerical results for these
are collected in Tables IX and X, respectively. Currently,

however, there is also thriving interest in resolving a
discrepancy arising from an updated experimental meas-
urement of the 7 — 7%y decay [87]. The effect of imple-
menting dispersively improved p propagators amounts to
less than 2% and is therefore insignificant, as the phenom-
enological uncertainties range between (6—11)%.

Our branching ratios with constant widths are in agree-
ment with the VMD results of Ref. [29]; supplementing
those with a linear-c-model scalar contribution and chiral
loops, the authors quote B(n — n%y) = 1.35(8) x 1074,
By — n%y) =291(21) x 1073, and B(y — nyy) =
1.17(8) x 10~ based on empirical couplings. These results
are slightly larger than the plain VMD numbers but still
compatible within uncertainties, indicating that the effects
of these model extensions are insignificant at the current
level of precision [29].

The dispersive analysis of # — 7%y [28] referenced in
Sec. V also includes the a, = a,(1320) tensor resonance
as well as isospin-breaking zz~ contributions, with the
result B(n — 7%y) = 1.81104% x 107* showing a ~50%
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TABLE X. The same as Table VII but for the normalized
branching ratios of the semileptonic decays, Eq. (41). Due to
partial cancellations in this ratio, the quoted uncertainties are
given with the caveat that they are likely to underestimate the
genuine uncertainty; see main text.

Normalized branching ratio/ 1076

PL MP DP

n—aetes  CW  17.42228) 11.197(11)  11.032(9)
VW 17.51020) 11.855(7)  11.531(4)

n—uty~  CW  1137120)  5.781(7) 5.450(6)
VW 11.197(25)  6.020(10)  5.647(5)

W — dete CW  137(7) 1.11(6) 1.13(6)
VW 1.36(7) 1.17(6) 1.18(6)

W=t CW 09205 0.61035)  0.603(35)
VW 0.90(5) 0.64(4) 0.65(4)

W —nete- CW  4.77(7) 4.38(6) 4.41(6)
VW 4.65(7) 4.56(7) 4.56(7)

W —nqutu-  CW  2.60(6) 1.93(4) 1.88(4)
VW 2.54(5) 2.05(4) 2.18(4)

discrepancy with the VMD model. This deviation can be
traced back largely to the a, contribution, suggesting
that the impact of this resonance might be relevant for
n — nyy, specifically at very low diphoton invariant
masses.

In light of this finding, it is important to note that we
have not included any tensor-meson effects for 5 —
7%¢T¢~ in Sec. V. For electrons in the final state, the
lower threshold in s is close to the two-photon threshold, so
that an effect of similar size as in the photonic case is within
the bounds of possibility; the higher threshold for muons,
on the other hand, is expected to exclude the region where
the a, resonance is most relevant. For the # decays, the
exchanged vector mesons can go quasi on shell, so that the
VMD mechanism is even more likely to dominate the effect
of the tensor resonance.

While our results for the two-photon decays of the 7’
meson are compatible with the experimental results from
BESIIL, B(f — 2%y) = 3.20(24) x 1073 [88] and B(y —
nyy) = 8.3(3.4) x 1075 [89]," the experimental situation
for  — 7%y is presently inconclusive. For this decay, the
PDG average B(n — n’yy) = 2.55(22) x 10™* [15]—the
main input being B(n — z’yy) = 2.52(23) x 10~* from
the A2 experiment at MAMI [24]—is in agreement with
the theoretical calculation performed in Ref. [28] but in
severe tension with the preliminary result from the KLOE-2
Collaboration, B( — z%y) = 0.99(26) x 10~* [87], which

"Here and in the following, we combine statistical and
systematic uncertainties of experimental branching ratios in
quadrature for simplicity.

corroborates the older KLOE measurement B( — 7'yy) =
0.84(30) x 107 [90] and is consistent with the VMD-only
result.

The results for the normalized branching ratio can be
found in Table X, and the discussion of the differences
between the distinct form-factor parametrizations is analo-
gous to Sec. VI B. Due to partial cancellations in this ratio,
the quoted uncertainties are reduced drastically, however
with the caveat that they are likely to underestimate the
genuine uncertainty, lest some neglected systematic effect
beyond the error estimates of the couplings potentially
becomes dominant here. At the same time, potential
corrections to the semileptonic branching ratios that are
not included in the plain VMD model, e.g., the a,
resonance, are assumed to partially cancel as well because
they emerge in the hadronic part of the amplitudes that is
shared with the photonic decays.

The doubly and singly differential decay widths for the
two-photon decays are displayed in Fig. 9. While the 7
decay does not show much structure in either plot—being
dominated by a D wave at low and an S wave at high
diphoton invariant masses—the 7’ decays are dominated
by vector-meson resonances that can go quasi on shell. The
w resonance is clearly visible as two narrow bands in the
Dalitz plots and as a peak in the singly differential
distributions, whereas the p is disguised in comparison
due to its much larger width. The angular dependence
perceivable as a less saturated band in the Dalitz plots and
as a dip in the singly differential distributions can be
attributed to the fact that the @ — [z°/5]y decay must be in
a P wave due to parity.

VII. SUMMARY

We have reanalyzed the standard-model contribution to
the semileptonic decays 7"} — z°¢+¢~ and 5/ — nt*¢-,
where £ = e, u. Since C parity is conserved in the strong
and electromagnetic interactions, these processes are medi-
ated via a two-photon mechanism and therefore loop
induced. This two-photon mechanism is known to be
dominated by vector exchanges; as a major improvement
compared to the existing literature, we have, for the first
time, implemented a realistic dependence of the hadronic
subprocess on the photon virtualities via vector-to-pseu-
doscalar transition form factors. To assess the sensitivity to
the chosen parametrizations, we compared three different
schemes: constant couplings (as a reference point), monop-
ole form factors, and dipole form factors. The last of those
three are motivated by having the correct asymptotic
behavior at high virtualities. In addition, dispersively
improved variants of all form factors have been probed.
Nontrivial form factors turn out to be important in order not
to overestimate the branching ratios. We thereby improve
previous theoretical results for the semileptonic ) decays.
On the other hand, the observables are mostly insensitive to
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FIG. 9. Dualitz plots for the two-photon decays in the variant CW (top), normalized to the maximum value within the available phase
space of the respective channel, dfy /dsdv, = [dI",/dsdy,|/[max dI’,/dsdy, ], and singly differential decay widths in the Mandelstam

variable s, obtained in the variant CW (bottom).

the details of the parametrization at the level of uncertainty
induced by the phenomenological coupling constants.

All predicted branching ratios are, as expected, well
below the current experimental upper limits. For the latter,
we however recommend a reanalysis, given the far-from-
flat Dalitz-plot distributions of the standard-model contri-
butions. With improved experimental sensitivities in the
future, our theoretical branching ratios of these rare ;)
decays can hopefully be compared to experiment and thus
help cast a light on possible symmetry violations and
physics beyond the standard model in the light-meson
sector.
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APPENDIX A: U@3) FLAVOR SYMMETRY

For the U(3) parametrizations of the pseudoscalar and
vector-meson multiplets, we write

7+ % 0 0
oF — 0 70+ % 0 ’
0 0 _ﬁ%m
P00 + o) 0 0
o) = 0 0w 0| (AD
0 0 ~V2¢)

where we only retain flavor-neutral states. Here, mixing
effects between the (physical) mesons are taken into
account via the pattern

74 cosfp sinfp m
<n> - <—sin9p cosep> <n8>’
<w(/)> - ( cos@yn  sinby > (w%”) (A2)
g —sinfy,  cosBy a)g> ’

with 7, g and a)gl), a)g) denoting the isoscalar singlet

and octet states of the pseudoscalar and vector-meson
multiplets, respectively. In the above, the mixing angles
are assumed to be given by #p = arcsin(—1/3) for the

TABLE XI.
VW, rounded to four significant digits.

pseudoscalar nonet (canonical

arcsin(1/+/3) for the vector mesons (ideal mixing). We
furthermore introduce the charge matrix according to

mixing) and 6y =

Q:%diag[l—l,—l]. (A3)

Using Eq. (A1), we calculate Tr[®” <I>Xd)y(/)] to find the
allowed couplings 7 pp"), 1w, )", n°pw""), and
wp!). To derive the relative signs between the corre-
sponding coupling constants Cyp, introduced in Sec. Il A,
we calculate Tr[®” <I>,‘,/ Q] and take the appropriate ratios of
coefficients that emerge in Eq. (4). For our analysis, we
furthermore included the OZI-suppressed coupling C .,
whose sign thus cannot be determined from U(3) sym-
metry. Instead, we resort to analyses of eTe™ — 3z and
ete™ — my [54-56], which suggest that the product of the
¢y and ¢zy couplings carries a relative sign as compared to
the product of the wy and wxy couplings. Hence, calculat-
ing Tr[®, Q] indicates a relative sign between C,,0, and
Cyp,- Fixing the sign of C,, to be positive, the sign
convention of Table IV follows.

APPENDIX B: INTERMEDIATE RESULTS

The numerical values of the auxiliary quantities Fg) v
1-V2

defined in Eq. (42), for a pointlike interaction (PL),
monopole form factors (MP), and dipole form factors
(DP), are collected in Tables XI and XII.

Numerical results for the auxiliary quantities defined in Eq. (42) for the models PL, MP, and DP in both variants CW and

r,,/MeV’  T,,/MeVS — T,,/MeV®  T,,/MeVS  T,,/MeVS T, ,/MeV®

n—nlete PL CW 0.5302 0.5684 0.1864 1.077 0.6041 0.6485
VW 0.4992 1.065 0.6060

MP  CW 0.3463 0.3627 0.1093 0.6914 0.3707 0.3966

VW 0.3422 0.3814 0.1151 0.7226 0.3945 0.4174

DP  CW 0.3419 0.3573 0.1033 0.6814 0.3615 0.3835

VW 0.3285 0.3630 0.09942 0.7160 0.3869 0.3903

n— 2Outu- PL CW 0.3440 0.3686 0.1383 0.7022 0.4222 0.4498
VW 0.3123 0.6785 0.4136

MP  CW 0.1772 0.1870 0.06392 0.3569 0.2029 0.2173

VW 0.1697 0.1972 0.06742 0.3657 0.2123 0.2293

DP CW 0.1674 0.1764 0.05756 0.3366 0.1888 0.2009

VW 0.1603 0.1802 0.06073 0.3473 0.1916 0.2102

(Table continued)
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TABLE XI. (Continued)

r,,/MeV? T,/ MeV? Ty ,/MeV? r,,/MeV? r,;/MeV? T, ;/MeV?

0 — nlete” PL CW 154.6 283.5 57.20 405.1 125.7 183.3
VW 152.8 406.5 138.9

MP CW 125.8 227.7 37.08 323.0 82.41 126.6

VW 133.7 241.9 39.93 349.2 103.0 135.4

DP CW 128.1 232.0 35.95 328.3 84.42 128.8

VW 131.5 253.1 38.66 340.9 101.0 134.6

0 — 2utu PL CW 121.2 169.8 55.13 284.5 131.0 168.1
VW 116.9 281.7 139.1

MP CW 80.02 111.0 30.42 185.6 70.21 94.91

VW 83.84 119.3 32.79 199.8 84.77 101.9

DP CW 79.10 109.8 28.68 183.4 68.78 92.80

VW 80.95 121.1 29.78 201.0 82.23 97.28

7 — nete” PL CW 19.68 50.07 6.701 60.79 8.303 14.86
VW 19.47 60.64 10.11

MP CW 16.44 48.33 5.100 48.56 —1.684 10.79
VW 18.50 57.98 6.724

DP CW 16.54 51.24 4.902 47.02 -2.518 12.45

VW 18.37 46.79 4.827 57.81 6.109 10.82

0 = qutu PL CW 12.45 20.56 4.847 31.57 10.52 15.70
VW 12.38 31.86 11.66

MP CW 8.240 16.03 3.170 19.66 2.342 9.959
VW 9.471 24.59 6.988

DP CW 7.980 16.28 2.944 18.15 1.682 10.13

VW 10.05 15.35 2.937 23.61 6.266 9.555

TABLE XII. Numerical results for the auxiliary quantities defined in Eq. (42) in both variants CW and VW, rounded to four

significant digits.

7,/ MeV? I/ MeV> Il s/ MeV? I,/ MeV> 7 ;/MeV? 7 ,/MeV?

n— myy CW 3.154 x 10* 3.193 x 10* 8.719 x 103 6.175 x 10* 3.218 x 10* 3.335 x 10*
VW 2.921 x 104 6.108 x 10* 3.189 x 10*

n — 2y CW 3.088 x 107 4.586 x 108 4.286 x 10° 1.097 x 108 1.115 x 107 1.884 x 107
VW 3.341 x 107 1.130 x 108 1.386 x 107

n - nyy CwW 3.203 x 10° 6.537 x 107 4473 x 10° 1.425 x 107 2.031 x 10° 7.406 x 10°
VW 3.280 x 10° 1.411 x 107 5.056 x 10°
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APPENDIX C: CONSTANTS AND PARAMETERS

We collect the masses and widths used throughout the calculations in Table XIII.

TABLE XIII. The masses and widths needed for the calculations in this article, with the values taken from
Ref. [15].
Variable Value [15]
70 M 134.9768(5) MeV
a* M - 139.57039(18) MeV
K° My 497.611(13) MeV
n M, 547.862(17) MeV
r, 1.31(5) keV
7' (958) M,y 957.78(6) MeV
r, 188(6) keV
p0(770) M, 775.26(23) MeV
r, 147.4(8) MeV
(782) M, 782.66(13) MeV
r, 8.68(13) MeV
K*O(892) M g 895.55(20) MeV
$(1020) M, 1019.461(16) MeV
Ly 4.249(13) MeV
/)0(1450) M, 1465(25) MeV
L, 400(60) MeV
(1420) M, 1410(60) MeV
r, 290(190) MeV
$(1680) My 1680(20) MeV
Ty 150(50) MeV
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