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We perform a theoretical analysis of the semileptonic decays ηð0Þ → π0lþl− and η0 → ηlþl−, where
l ¼ e, μ, via a charge-conjugation-conserving two-photon mechanism. The underlying form factors are
modeled using vector-meson dominance, phenomenological input, and U(3) flavor symmetry. We consider
both a monopole and a dipole model, the latter tailored such that the expected high-energy behavior is
ensured. Furthermore, we benchmark the effect of S-wave rescattering contributions to the decays. We infer
significant effects of the form factors neglected in the literature so far, still finding branching ratios of the
various decays well below the current experimental upper limits.
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I. INTRODUCTION

Within the standard model (SM) of particle physics,
the strong and electromagnetic interactions conserve the
symmetries parity (P), charge conjugation (C), and time
reversal (T) separately. For this reason, the decays ηð0Þ →
π0lþl− and η0 → ηlþl− can—mediated via the strong and
electromagnetic force—only proceed via a C-even two-
photon mechanism due to Cðηð0ÞÞ ¼ Cðπ0Þ ¼ þ1; i.e., they
appear as one-loop processes at lowest order.1 As a result,
the SM contribution to those decays is strongly suppressed,
rendering them well-suited candidates for searches for
physics beyond the SM (BSM). In fact, BSM contributions
to the discussed decays, either mediated via a C-odd one-
photon exchange [1–4] or due to other BSM mechanisms
such as new light scalars [5] and unconventional sources
of CP violation [6], are themselves subject to ongoing
analyses.
Historically, calculations of η → π0lþl− were based

on different models for the η → π0γ�γ� vertex function, as
the conversion γ�γ� → lþl− depends solely on quantum
electrodynamics (QED) and is, hence, in principle straight-
forward. This is not unlike the rare dilepton decays of the

lightest flavor-neutral pseudoscalars, P → lþl−, P ¼ π0,
η, η0, similarly loop-induced and completely calculable
once the corresponding transition form factors P → γ�γ�

are known; see Refs. [7–9] for recent work and references
therein. For these decays, a reasonable behavior of the
transition form factors for large photon virtualities is not
only a requirement for a precision calculation, but a
necessity to regularize the otherwise ultraviolet-divergent
loop integral. This was similarly realized in early theoreti-
cal work on η → π0lþl− in the late 1960s, which was
based on the simplest possible, pointlike effective operator
for η → π0γγ [10,11]: the loop was rendered finite either
with an ad hoc form factor [10] or reconstructed disper-
sively from the unambiguously calculable imaginary
part, using a finite energy cutoff [11]. As the effective
operator only contained S-wave interactions in either case—
leading to helicity suppression of the resulting dilepton
mechanism—these calculations only determined a sub-
dominant contribution, underestimating in particular the η →
π0eþe− rate by orders of magnitude.
On the other hand, a first vector-meson-dominance

(VMD) model calculation [12], which based the η → π0γγ
amplitude on ρ and ω exchange, ρ≡ ρ0ð770Þ, ω≡ ωð782Þ,
required no such further regularization: the additional
vector-meson propagators, singularities in the crossed
channels providing so-called left-hand cuts, dampen the
high-energy behavior sufficiently such that the loop integral
is convergent; see Fig. 1. The coupling constants for the
V → Pγ transitions, V ¼ ρ, ω, P ¼ η; π0, largely unknown
at the time, had to be estimated in a quark model. In this
way, realistic rates Bðη → π0eþe−Þ=Bðη → π0γγÞ ≈ 10−5

were obtained. In the 1990s, the two decays η → π0eþe−

and η → π0μþμ− were reconsidered by calculating unitarity
bounds [13,14]. These are based on the observation that the
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1Contributions from the weak interactions are also required to
vanish at tree level.
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amplitude η → π0γγ (with real photons) model independ-
ently determines the imaginary part of the dilepton ampli-
tudes, thus providing a lower limit to the corresponding
rates. The diphoton decays were calculated in VMD,
supplemented with scalar a0ð980Þ exchange [13] or based
on a constituent-quark-box model [14]. The numerical
results of these older calculations are collected in Table I.
Today, we understand the mechanism for η → π0γγ (and

the related η0 decays) much better, while precision calcu-
lations are still a challenge. Chiral perturbation theory [19]
allows us to understand this reaction in terms of a

systematic expansion at low momenta: the dominant
contribution originates from a set of next-to-next-to-
leading-order counterterms [20,21], whose size can phe-
nomenologically be estimated in terms of vector-meson
exchanges. The resulting predictions agree with the data
[22–24] rather well [25], and rescattering corrections in the
scalar channel [26,27] are moderate in size [28]. Similarly,
vector-meson exchanges dominate the decays η0 → π0γγ
and η0 → ηγγ [29], with only minor S-wave corrections to
the γγ spectra.
The most recent theoretical work on the decays ηð0Þ →

π0lþl− and η0 → ηlþl− [30] employs this modern knowl-
edge to a large extent. It once more models the two-photon
amplitudes with a VMD ansatz, superseding Ref. [12] by
retaining all lepton mass effects and Ref. [13] by calculat-
ing the real parts of the amplitudes explicitly; the current
phenomenological information on vector-pseudoscalar-
photon couplings is used therein. Perhaps surprisingly,
what has still not been implemented is the dependence
on the photon virtualities, i.e., the vector-to-pseudoscalar
transition form factors [31,32]. These have garnered
significant interest in the last few years, both phenomeno-
logically [33–36] and, in particular for the ρ → π transition
form factor, on the lattice [37–40]. Furthermore, the
behavior of these form factors for asymptotically large
momentum transfers is known [41–45]. This is the major
novelty of this article and the main advance compared to
Ref. [30]: by providing a realistic model for ηð0Þ → π0γ�γ�
and η0 → ηγ�γ�, including the dependence on the photon
virtualities, we are able to give a more reliable prediction
for the rates of the corresponding dilepton decays in the
SM. Furthermore, by lifting the (somewhat artificial)
dependence of the loop regularization on the left-hand
cuts, we can, for the first time, also test the effect of S-wave

FIG. 1. The t- (top) and u-channel (bottom) diagrams that
contribute to ηð0Þ → ½π0=η�lþl− under the assumption that the
underlying two-photon amplitudes are dominated by the ex-
change of the vector mesons V ¼ ρ;ω;ϕ.

TABLE I. Historical theoretical results on the branching ratios for η → π0lþl− and experimental upper limits for the different decay
channels ηð0Þ → ½π0=η�lþl−, the latter all at 90% confidence level. Note that, for reasons of consistency with the experimental upper
limits, we converted the theoretical results from decay widths to branching ratios by using an up-to-date central value [15] for the η
width; see also Table XIII.

Branching ratio Ancillary information References

η → π0eþe− 9.9 × 10−9 VMD model [12]
η → π0eþe− 8.4þ4.6

−3.8 × 10−10 Unitarity bounds, VMD model [13]
η → π0eþe− 9.2ð1.5Þ × 10−10 Quark-box model, mq ¼ 330 MeV [14]

η → π0μþμ−
3.8þ2.3

−1.5 × 10−10 Unitarity bounds, VMD model
[13]

6.9þ4.6
−3.8 × 10−10 As above, supplemented by a0

η → π0μþμ− 3.3ð5Þ × 10−9 Quark-box model, mq ¼ 330 MeV [14]

η → π0eþe− < 7.5 × 10−6 3 × 107 η events WASA-at-COSY [16]
η → π0μþμ− < 5 × 10−6 2 × 107 η events Dzhelyadin et al. [17]
η0 → π0eþe− < 1.4 × 10−3 1.3 × 106 η0 events CLEO [18]
η0 → π0μþμ− < 6 × 10−5 107 η0 events Dzhelyadin et al. [17]
η0 → ηeþe− < 2.4 × 10−3 1.3 × 106 η0 events CLEO [18]
η0 → ημþμ− < 1.5 × 10−5 107 η0 events Dzhelyadin et al. [17]
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rescattering contributions. Varying the form-factor models
allows us to assess the remaining theoretical uncertainties
of our predictions.
Experimentally, the decay η → π0eþe− has been

searched for since the 1960s [46–48], motivated by the
search for possible C violation in the strong and electro-
magnetic interactions. To date, only upper limits have
been established for all decays studied in this article, the
most rigorous ones being collected in Table I.2 The most
stringent upper limits, those for η → π0eþe− from WASA-
at-COSY [16] and for η → π0μþμ− from Lepton-G [17],
are still more than 3 orders of magnitude above the
theoretical SM branching ratios; for the η0 decays, this
margin is even larger. There is, even so, the prospect
of improved experimental results by the REDTOP
Collaboration [49,50], which plans to search for rare decays
with an unprecedented number of η and η0 events.
This article is structured as follows. In Sec. II, we

construct the amplitudes for the decays ηð0Þ → π0lþl−

and η0 → ηlþl− as well as the corresponding two-photon
analogs, with the latter serving as normalization channels.
For the semileptonic decays, a set of form factors that
incorporate the nonperturbative physics of the process is
introduced and their normalizations are determined from
phenomenological input. These form factors are then
parametrized in Sec. III by means of two distinct VMD
models, including the construction of dispersively
improved variants. In Sec. IV, we discuss the calculation
of observables—branching ratios as well as differential
distributions—via a Passarino–Veltman (PV) decomposi-
tion. Scalar rescattering contributions are analyzed in
Sec. V. Our numerical results are discussed in Sec. VI,
and we summarize our findings in Sec. VII. Further details
are provided in the appendixes.

II. AMPLITUDES

The construction of the C-even decay amplitudes for

ηð0ÞðPÞ → π0ðp0ÞlþðpþÞl−ðp−Þ;
η0ðPÞ → ηðp0ÞlþðpþÞl−ðp−Þ; ð1Þ

where l ¼ e, μ, is based on the assumption that the
underlying ηð0Þ → π0γ�γ� and η0 → ηγ�γ� amplitudes are
dominated by the exchange of the vector mesons

V ¼ ρ;ω;ϕ, ϕ≡ ϕð1020Þ; see Fig. 1. For our analysis,
we define the Mandelstam variables s ¼ ðpþ þ p−Þ2,
t ¼ ðp− þ p0Þ2, and u ¼ ðpþ þ p0Þ2, which describe the
invariant mass squares of the lepton pair and the lepton-
pseudoscalar subsystems, respectively; they fulfill the rela-
tion Σ ¼ sþ tþ u ¼ M2

ηð0Þ þM2
π0=η þ 2m2

l. The relevant

vector-to-pseudoscalar transition form factors FVPðq2Þ are
defined according to

hPðpÞjjμð0ÞjVðpVÞi ¼ eϵμναβϵνðpVÞpαqβFVPðq2Þ; ð2Þ

where jμ ¼ eð2ūγμu − d̄γμd − s̄γμsÞ=3 denotes the electro-
magnetic current, and q ¼ pV − p. The normalizations
jFVPð0Þj at the real-photon point can be derived from
phenomenological input in a straightforward manner,

ΓðV → PγÞ ¼ αðM2
V −M2

PÞ3
24M3

V
jFVPð0Þj2;

ΓðP → VγÞ ¼ αðM2
P −M2

VÞ3
8M3

P
jFVPð0Þj2; ð3Þ

where α ¼ e2=ð4πÞ is the fine-structure constant, leading to
Table II with input from Ref. [15].
Using Eq. (2) and summing over the t- and u-channel

diagrams shown in Fig. 1 as well as V ¼ ρ;ω;ϕ, we find
the amplitude M≡Mðηð0Þ → ½π0=η�lþl−Þ to be

M ¼ i
α2

π2
X
V

Z
d4k gββ̃ϵμναβϵμ̃ ν̃ α̃ β̃P

αkμðPα̃kμ̃ − Pα̃lμ̃ þ kα̃lμ̃ÞPBW
V

�ðP − kÞ2�Pγðk2ÞPγ

�ðl − kÞ2�
× FVηð0Þ ðk2ÞFV½π0=η�

�ðl − kÞ2�ūs�γν̃ =k − =pþ þml

ðk − pþÞ2 −m2
l
γν þ γν

=p− − =kþml

ðp− − kÞ2 −m2
l
γν̃
�
vr; ð4Þ

TABLE II. The normalizations jFVPð0Þj at the real-photon
point obtained from Eq. (3) and phenomenological input deter-
mined from Ref. [15]; see also Table XIII.

Γ=keV [15] jFVPð0Þj=GeV−1

ρ → π0γ 69(12) 0.73(6)
ω → π0γ 725(26) 2.33(4)
ϕ → π0γ 5.61(21) 0.1355(26)

ρ → ηγ 44.2(3.1) 1.58(6)
ω → ηγ 3.91(35) 0.449(20)
ϕ → ηγ 55.3(1.1) 0.691(7)

η0 → ργ 55.5(1.9) 1.299(23)
η0 → ωγ 4.74(20) 0.401(9)
ϕ → η0γ 0.264(9) 0.712(12)

2Note that those upper limits were obtained assuming a flat Dalitz-plot distribution, which our results indicate to be an insufficient
assumption; see the discussion in Sec. VI A below.
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with ūs ≡ ūsðp−Þ and vr ≡ vrðpþÞ. Here, we defined l ¼
pþ þ p− and the [Breit–Wigner (BW)] propagators

PBW
V ðq2Þ ¼ 1

q2 −M2
V þ iMVΓV

; Pγðq2Þ ¼
1

q2 þ iϵ
;

ð5Þ

where MV is the mass of the respective vector meson and
ΓV its width. Due to their narrowness, a constant-width
approximation is well justified for the ω and ϕ, whereas the
broad ρ meson necessitates an energy-dependent width to
avoid sizable unphysical imaginary parts below threshold.
We will implement such a parametrization for the ρ in
Sec. III C, where we will use a dispersively improved BW
propagator. Our final results will be quoted for both a
variant with constant widths for all vector mesons (CW)
and a variant that instead employs an energy-dependent
width for the ρ (VW).
For the eventual computations, it will turn out useful to

apply the Dirac equation and make the replacements

ūsγν̃ð=k − =pþ þmlÞγνvr ¼ ūsðγν̃=kγν − 2pνþγν̃Þvr;
ūsγνð=p− − =kþmlÞγν̃vr ¼ ūsð2pν

−γ
ν̃ − γν=kγν̃Þvr ð6Þ

in Eq. (4).
The branching ratios of the semileptonic decays are

commonly normalized to the two-photon analogs,

ηð0ÞðPÞ → π0ðp0Þγðq1Þγðq2Þ;
η0ðPÞ → ηðp0Þγðq1Þγðq2Þ; ð7Þ

see also Fig. 2. For these decays, we define the Mandelstam
variables3

s ¼ ðq1 þ q2Þ2; tγ ¼ ðq2 þ p0Þ2; uγ ¼ ðq1 þ p0Þ2;
ð8Þ

which fulfill Σγ ¼ sþ tγ þ uγ ¼ M2
ηð0Þ þM2

π0=η, and denote

the corresponding helicity amplitudes by Hλλ0,

hγðq1; λÞγðq2; λ0ÞjSjηð0ÞðPÞ½π0=η�ðp0Þi
¼ ið4παÞð2πÞ4δð4ÞðPþ p0 − q1 − q2Þeiðλ−λ0ÞφHλλ0 : ð9Þ

Here, λð0Þ are the helicities of the photons, and we factored
out the dependence on the electric charge ð4παÞ and the
azimuthal angle φ for convenience. Using Eq. (2) and the
normalization of the form factors, jCVPγj ¼ jFVPð0Þj, as
will be introduced in Sec. III, we express the VMD helicity
amplitudes as

Hλλ0 ¼ ϵα1λ
�ðq1Þϵα2λ0 �ðq2Þ

X
V

CVηð0ÞγCV½π0=η�γ

×
�
PBW
V ðtγÞHt

α1α2 þ PBW
V ðuγÞHu

α1α2

�
; ð10Þ

where ϵ�λðqiÞ denote the polarization vectors of the out-
going photons and

Ht
α1α2 ¼ gμ1μ2ϵμ1ν1α1β1ϵμ2ν2α2β2p

ν1
V q

β1
1 p

ν2
0 q

β2
2 ;

Hu
α1α2 ¼ gμ1μ2ϵμ1ν1α1β1ϵμ2ν2α2β2p

ν1
0 q

β1
1 epν2

V q
β2
2 ; ð11Þ

with pV ¼ q2 þ p0 and epV ¼ q1 þ p0 the momenta of the
intermediate vector mesons.

III. FORM FACTORS

In order to parametrize the form factors FVPðq2Þ, we use
the VMD framework. As a consequence, the photon
couplings at the VPγ� vertices of the diagrams in Fig. 1
are mediated via two intermediate vector mesons V1 and
V2; see Fig. 3. Wewill construct two distinct such models: a

FIG. 2. The two diagrams contributing to the two-photon decay
ηð0Þ → ½π0=η�γγ, which are related via q1 ↔ q2.

FIG. 3. The modeling of the two-photon decay mechanism in
the VMD framework via two vector mesons V1 and V2.
Constraints on ðV1; V2Þ in dependence of the initial and final
state as well as V are given in Table III.

3Note that the Mandelstam variable s ¼ ðP − p0Þ2 is identical
in the semileptonic and the diphoton case.
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monopole (MP) parametrization with Vi ¼ ρ;ω;ϕ and a
dipole (DP) ansatz with Vi ¼ ρð0Þ;ωð0Þ;ϕð0Þ, ρ0 ≡ ρ0ð1450Þ,
ω0 ≡ ωð1420Þ, and ϕ0 ≡ ϕð1680Þ, that ensures the
expected high-energy behavior of the form factors [41–45].
For reference, we also include a model calculation with
constant form factors, i.e., a pointlike (PL) interaction,
which closely resembles the parametrization of Ref. [30].
The conservation of isospin—and thus G parity com-

bined with C—imposes constraints on V1 and V2 in
dependence on the initial and final states as well as the
t- or u-channel vector meson V. However, some of the
couplings, namely ηð0Þωϕð0Þ, ηð0Þϕωð0Þ, π0ρϕð0Þ, and π0ϕρð0Þ,
are, although isospin-allowed, vanishing under the
assumption of U(3) flavor symmetry and ideally mixed
vector-meson multiplets; see Appendix A. Since the
contribution of V ¼ ϕ would otherwise vanish entirely
for ηð0Þ → π0lþl−, we nonetheless include the Okubo–
Zweig–Iizuka-suppressed (OZI-suppressed) [51–53] cou-
plings π0ϕρð0Þ in our calculations; the remaining vector
mesons Vi are collected in Table III.

A. Monopole model

The MP model only takes the lowest-lying vector
mesons ρ, ω, and ϕ into account, so that the form factors
are parametrized according to

FVPðq2Þ ¼ CVPγM2
Vi
PBW
Vi

ðq2Þ; ð12Þ

with the assignments of Vi ∈ fρ;ω;ϕg according to
Table III. Here, we assume jCVPγj ¼ jFVPð0Þj at the
real-photon point, see Table II, which determines the
coupling constants CVPγ up to an overall phase. This
assumption omits corrections due to the constant, nonzero
widths in the BW propagators, which are negligible for
V ¼ ω;ϕ but potentially significant for V ¼ ρ.4 Since the
energy-dependent width of the ρ meson will be chosen to
have the proper threshold behavior, these complications
only exist for the variant CW but not for VW. All coupling
constants are assumed to be real in the following. In order
to fix the relative signs between them, we resort to U(3)
flavor symmetry and analyses of eþe− → 3π and eþe− →
πγ [54–56]; see Appendix A. Without loss of generality, we
adopt a positive sign for the coupling Cρηγ and establish the
consistent sign convention collected in Table IV.

B. Dipole model

Given that the asymptotic behavior of the vector-to-
pseudoscalar transition form factors is expected to be
FVPðq2Þ ∝ q−4 [41–45], we can additionally include the
next-higher multiplet of vector mesons, ρ0, ω0, and ϕ0, to

achieve this property by tuning a free parameter ϵV.
5 For the

DP model, we thus make the ansatz

eFVPðq2Þ ¼ CVPγ

�ð1 − ϵVi
ÞM2

Vi
PBW
Vi

ðq2Þ
þ ϵVi

M2
V 0
i
PBW
V 0
i
ðq2Þ�; ð13Þ

where we assume the excited vector states to couple
according to the exact same symmetry restrictions as the
ground-state multiplet; cf. Table III. Here, PBW

V 0 ðq2Þ is
defined as in Eq. (5), with MV 0 and ΓV 0 the mass and width
of the respective excited vector meson. Due to the large
widths of the excited vector mesons, a constant-width
approximation leads to a rather poor description of these
mesons, however. We will therefore, analogously to the ρ,
construct dispersively improved BW propagators for ρ0, ω0,
and ϕ0 based on energy-dependent widths in Sec. III C,
leading to replacements of the kind PBW

V 0 ðq2Þ → Pdisp
V 0 ðq2Þ.

Similarly to the MP, our final results for the DP will be
quoted for both the variant CW with constant widths for all
vector mesons and the variant VW, i.e., using constant
widths for the ω and ϕ but energy-dependent ones for ρð0Þ,
ω0, and ϕ0. The form factors in Eq. (13) are assumed to be
normalized such that eFVPð0Þ ¼ −CVPγ , which, as for the
MP, holds up to potential corrections due to the constant
widths in the propagators. In order to achieve the desired

TABLE III. The constraints on the vector mesons Vi of Fig. 3 in
dependence of V derived from isospin conservation and U(3)
flavor symmetry with ideally mixed vector-meson multiplets. We
include the OZI-suppressed couplings ϕπ0ρð0Þ; see text and
Appendix A for more information.

Vπ0γ Vηð0Þγ

V ρ ω ϕ ρ ω ϕ
Vi ωð0Þ ρð0Þ ρð0Þ ρð0Þ ωð0Þ ϕð0Þ

TABLE IV. The signs sgn½CVPγ � of the couplings constants
defined in Eq. (12). Here, we fixed the global sign of Cρηγ to be
positive; see Appendix A for details.

Cρπ0γ Cωπ0γ Cϕπ0γ

þ þ −

Cρηγ Cωηγ Cϕηγ

þ þ −

Cρη0γ Cωη0γ Cϕη0γ
þ þ þ

4Note that PBW
V ð0Þ ≃ −1=M2

V , so that FVPð0Þ ¼ −CVPγ ,
which, however, corresponds to an unobservable overall phase.

5Data both on eþe− → ωπ0 [57] and eþe− → ρ0η [58–60]
suggest that the required cancellation indeed largely occurs
between the contributions of the two lowest vector states, ρ
and ρ0 in those cases.
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high-energy behavior, the free parameter needs to be
chosen as ϵV ¼ M2

V=ðM2
V −M2

V 0 Þ.

C. Spectral representation

While the variant CW has its own raison d’être as a
simple approximate description, the large widths of the
mesons ρð0Þ, ω0, and ϕ0 actually require an energy-dependent
parametrization to avoid significant unphysical imaginary
parts below threshold.6 In this section, we construct these
energy-dependent widths; to ensure the correct analytic
properties when inserting the form factors into the ampli-
tude, Eq. (4), we will furthermore introduce dispersively
improved variants [68] of the form factors that contain a ρð0Þ-,
ω0-, or ϕ0-meson propagator, which lay the foundation for
the variant VW in both the MP and DP model.
For the ρ meson, we will use the energy-dependent

width [69]

Γρðq2Þ ¼ θðq2 − 4M2
π�Þ

γρ→πþπ−ðq2Þ
γρ→πþπ−ðM2

ρÞ
fðq2ÞΓρ;

γρ→πþπ−ðq2Þ ¼
ðq2 − 4M2

π�Þ3=2
q2

; ð14Þ

where the so-called barrier factor [70,71]

fðq2Þ ¼
ffiffiffiffiffi
q2

p
Mρ

M2
ρ − 4M2

π� þ 4p2
R

q2 − 4M2
π� þ 4p2

R
; ð15Þ

pR ¼ 202.4 MeV, has been introduced to ensure conver-
gence of the superconvergence relations evaluated in
Eq. (24) below. We calculate the dispersive ρ propagator via

Pdisp
V ðq2Þ ¼ −

1

π

Z
∞

sthr

dx
Im½PBW

V ðxÞ�
q2 − xþ iϵ

;

Im½PBW
V ðxÞ� ¼ −

ffiffiffi
x

p
ΓVðxÞ

ðx −M2
VÞ2 þ xΓVðxÞ2

; ð16Þ

where sthr ¼ 4M2
π� is the threshold for ρ → πþπ−. The

spectral representations of the form factors FVPðq2Þ for
VP∈ fρηð0Þ;ωπ0;ϕπ0g are thus given by

bFVPðq2Þ ¼
CVPγ

Nρ
M2

ρP
disp
ρ ðq2Þ; ð17Þ

where the normalization constant

Nρ ¼ −M2
ρP

disp
ρ ð0Þ ≈ 0.898 ð18Þ

is introduced in order to retain bFVPð0Þ ¼ −CVPγ , i.e., to
ensure that the coupling constants have the same meaning in
the original and the dispersively improved VMD paramet-
rization. For reasons of consistency, we also replace the ρ
propagator in the left-hand cuts, PBW

ρ ðq2Þ in Eq. (4), by a
dispersively improved variant, i.e.,

PBW
ρ ðq2Þ → 1

NLHC
ρ

Pdisp
ρ ðq2Þ; ð19Þ

where the normalization constant

NLHC
ρ ¼ iMρΓρP

disp
ρ ðM2

ρÞ ≈ 1 ð20Þ

is introduced in order to retain PBW
ρ ðM2

ρÞ ¼ 1=ðiMρΓρÞ, in
line with the VMD assumption.7 With these conventions, we
will drop the distinction between FVPðq2Þ and bFVPðq2Þ in
the following, and it will always be clear from context which
representation is used.
For the dipole variant, the widths of the excited vector

mesons ρ0;ω0;ϕ0 are modeled using the dominant quasi-
two-particle thresholds. We condense the decays ρ0 → ωπ,
ω0 → ρπ, and ϕ0 → K�K̄, K� ≡ K�ð892Þ, in the notation
V 0 → VP, such that

ΓV 0 ðq2Þ ¼ θðq2 − ðMV þMPÞ2Þ
γV 0→VPðq2Þ
γV 0→VPðM2

V 0 ÞΓV 0 ;

γV 0→VPðq2Þ ¼
λðq2;M2

V;M
2
PÞ3=2

ðq2Þ3=2 ; ð21Þ

where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz is the
Källén function. Here, we disregard any distinction
between the various charge channels and use the neutral
masses for numerical evaluation. The dispersive ρ0, ω0, and
ϕ0 propagators and spectral functions are defined similarly
to Eq. (16), with sthr ¼ ðMV þMPÞ2 for the thresholds. In
analogy to Eq. (13), the dipole form factors read

eFVPðq2Þ ¼
CVPγeNVi

�ð1− ϵVi
ÞM2

Vi
PVi

ðq2Þ þ ϵVi
M2

V 0
i
PV 0

i
ðq2Þ�;
ð22Þ

where the simplifying assumption of constant widths for ω
and ϕ propagators is always implicitly understood, with
PV 0

i
ðq2Þ∈ fPBW

V 0
i
ðq2Þ; Pdisp

V 0
i
ðq2Þg. Here, we introduced the

normalization constants
6In principle, such unphysical imaginary parts could be

avoided for the ρ exchange by reconstructing the latter in terms
of dispersion relations for γð�Þπ → ππ [40,61,62] and ηð0Þ →
ππγð�Þ [60,63–65]; cf. also Refs. [66,67]. We here refrain from
further refining the amplitude in such a way.

7We ignore the fact that the ρ pole in the complex plane does
not exactly agree with the Breit–Wigner parameters.
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eNV ¼ −
�ð1 − ϵVÞM2

VPVð0Þ þ ϵVM2
V 0PV 0 ð0Þ�; ð23Þ

which, once more, ensure eFVPð0Þ ¼ −CVPγ . The param-
eters ϵV have to be tuned differently in the dispersively
improved variant, namely via the superconvergence
relations

0 ¼ ð1 − ϵVÞM2
VP

0
V þ ϵVM2

V 0P0
V 0 ;

P0
V ¼

8<:
1; V ¼ ω;ϕ;

−
1

π

Z
∞

sthr

dx Im
�
PBW
V ðxÞ�; V ¼ ρð0Þ;ω0;ϕ0;

ð24Þ

such that the terms of Oð1=q2Þ in the form factors cancel.
We collect the numerical results for

ϵV ¼ M2
VP

0
V

M2
VP

0
V −M2

V 0P0
V 0

ð25Þ

and eNV in Table V, where we include the uncertainties due
to the large errors on ΓV 0 ; in the following, their effect is,
however, assumed to be insignificant and thus discarded.

IV. OBSERVABLES

The phenomenological analysis in this article will be
performed in terms of doubly and singly differential decay
widths as well as integrated branching ratios. We define
ν ¼ t − u for the Mandelstam variables t and u, in terms of
which the twofold differential decay width dΓ≡ dΓðηð0Þ →
½π0=η�lþl−Þ is given by [15]

dΓ ¼ 1

ð2πÞ3
1

64M3
ηð0Þ

jMj2dsdν: ð26Þ

Here, jMj2 is the spin-summed square of the amplitude,
Eq. (4), and the integration region is bounded by the
available phase space,

s∈ ½4m2
l; ðMηð0Þ −Mπ0=ηÞ2�;

ν∈ ½−νmax; νmax�; νmax ¼ σðsÞ
ffiffiffiffiffiffiffiffi
λðsÞ

p
; ð27Þ

with

σðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
l

s

r
; λðsÞ≡ λ

�
s;M2

ηð0Þ ;M
2
π0=η

�
: ð28Þ

The singly differential decay width dΓ=ds follows from an
integration of Eq. (26) over ν and the branching ratio

B
�
ηð0Þ → ½π0=η�lþl−

� ¼ Γ
Γηð0Þ

ð29Þ

is obtained after performing the full three-body phase-space
integration, i.e., by also integrating over s.
In order to calculate jMj2, we perform a PV decom-

position of Eq. (4) with FeynCalc [72–74] after inserting
explicit expressions for the form factors. For both the MP
and DP model and in both variants CWand VW, this results
in an expression of the generic form

M ¼ 16π2α2
�
Muv

QEDM
uv
H þMu0v

QEDM
u0v
H

�
;

Muv
QED ¼ mlūsvr; Mu0v

QED ¼ ūs=p0vr;

Muð0Þv
H ¼

X
V

CVM
uð0Þv
V ; CV ¼ CVηð0ÞγCV½π0=η�γ; ð30Þ

where the quantities Muð0Þv
V account for the different

vector-meson contributions in the result of the PV decom-
position, cf. the sum in Eq. (4); they amount to cumbersome
expressions containing PV functions.8 The numerical
values of the process-specific coupling constants CV are
provided in Table VI. Upon squaring and spin summing,
the above amplitude leads to

jMj2 ¼ 256π4α4½C2
ρjMρ;ρj2 þ C2

ωjMω;ωj2 þ C2
ϕjMϕ;ϕj2

þ CρCωjMρ;ωj2 þ CρCϕjMρ;ϕj2
þ CωCϕjMω;ϕj2�; ð31Þ

where we defined

jMV;V j2 ¼ jMuv
QEDj2jMuv

V j2 þ jMu0v
QEDj2jMu0v

V j2 þ 2Muv;u0v
QED Re½Muv

V Mu0v
V

��;
jMV1;V2

j2 ¼ 2jMuv
QEDj2Re½Muv

V1
Muv

V2

�� þ 2jMu0v
QEDj2Re½Mu0v

V1
Mu0v

V2

�� þ 2Muv;u0v
QED Re½Muv

V1
Mu0v

V2

� þMu0v
V1

Muv
V2

�� ð32Þ

8These expressions are attached as a text file to this article [75].

TABLE V. The values of the parameter ϵV derived from the
superconvergence relations, Eq. (25), and the normalization
constants of Eq. (23). Here, tiny imaginary parts in the normali-
zation constants have been neglected. The uncertainties refer to
the variations of Γρ0 , Γω0 , and Γϕ0 , see Table XIII, and are omitted
in the subsequent analysis.

ϵρ ð−0.47Þ−0.07þ0.06
eNρ 0.99þ0.04

−0.03

ϵω ð−0.43Þ−0.25þ0.16
eNω 1.10þ0.17

−0.10

ϵϕ ð−0.42Þ−0.08þ0.06 eNϕ 1.03þ0.05
−0.04
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for V1 ≠ V2, with

jMuv
QEDj2 ¼ 2m2

lðs − 4m2
lÞ; jMu0v

QEDj2 ¼ 1
2
½λðsÞ − ν2�;

Muv;u0v
QED ¼ −2m2

lν: ð33Þ

Similarly to the semileptonic decays, the branching ratio
of the two-photon analogs is defined by

Bðηð0Þ → ½π0=η�γγÞ ¼ Γγ

Γηð0Þ
; ð34Þ

where Γγ ≡ Γðηð0Þ → ½π0=η�γγÞ and

dΓγ ¼
1

ð2πÞ3
ð4παÞ2
64M3

ηð0Þ
jHj2dsdνγ; ð35Þ

with the phase space bounded by

s∈ ½0; ðMηð0Þ −Mπ0=ηÞ2�;
νγ ∈ ½−νmax

γ ; νmax
γ �; νmax

γ ¼
ffiffiffiffiffiffiffiffi
λðsÞ

p
: ð36Þ

Due to the indistinguishability of the two photons in the
final state, an additional factor of 1=2 has to be taken into
account upon integration. From Eq. (10), one finds the
polarization-summed amplitude squared

jHj2 ¼ 1

8

�X
V

C2
V

	
jPVðtγÞj2jHt;tj2 þ jPVðuγÞj2jHu;uj2 þ 2Re½PVðtγÞP�

VðuγÞ�jHt;uj2



þ
X

fV1;V2g
2CV1

CV2

	
Re½PV1

ðtγÞP�
V2
ðtγÞ�jHt;tj2 þ Re½PV1

ðuγÞP�
V2
ðuγÞ�jHu;uj2

þ Re½PV1
ðtγÞP�

V2
ðuγÞ þ PV1

ðuγÞP�
V2
ðtγÞ�jHt;uj2


�
; ð37Þ

where the second sum extends over fV1; V2g ¼
fρ;ωg; fρ;ϕg; fω;ϕg, and we introduced

jHt;tj2 ¼ gα1α̃1gα2α̃2Ht
α1α2H

t
α̃1α̃2

;

jHu;uj2 ¼ gα1α̃1gα2α̃2Hu
α1α2H

u
α̃1α̃2

;

jHt;uj2 ¼ gα1α̃2gα2α̃1Ht
α1α2H

u
α̃1α̃2

: ð38Þ

As in Eq. (22), the propagators PVðxÞ are to be understood
as BW propagators for all V in the CW approximation and
BW propagators for V ¼ ω;ϕ but dispersively improved
variants for V ¼ ρ in the variant VW. Inserting the
kinematics of the process, these expressions simplify to

jHt;tj2 ¼ jH0j2 þ t2γðs2 þ u2γÞ;
jHu;uj2 ¼ jH0j2 þ u2γðs2 þ t2γÞ;
jHt;uj2 ¼ jH0j2 þ tγuγðs2 þ tγuγÞ; ð39Þ

where we defined

jH0j2 ¼ M4
π0=η

�
s2 þ t2γ þ u2γ þ 2stγ þ 2suγ þ 4tγuγ

�
− 2M2

π0=ηΣγtγuγ − 2M6
π0=η

Σγ þM8
π0=η

: ð40Þ

Finally, we consider the normalized semileptonic
branching ratios

bB�ηð0Þ → ½π0=η�lþl−
� ¼ B

�
ηð0Þ → ½π0=η�lþl−

�
B
�
ηð0Þ → ½π0=η�γγ� ; ð41Þ

which are particularly useful from the theoretical point of
view, since they reduce the effect of the uncertainties from
the coupling constants.
We perform the phase-space integrations of the differ-

ential decay widths, Eqs. (26) and (35), numerically with the
Cuhre and Vegas algorithm from the Cuba library [76].
For the numerical evaluation of the PV functions contained

in the quantitiesMuð0Þv
V , see Eq. (30), we use Collier [77–80].9

TABLE VI. Numerical values of the coupling constants defined
in Eq. (30) for the different processes.

Cρ=GeV−2 Cω=GeV−2 Cϕ=GeV−2

η → π0lþl− 1.16(11) 1.05(5) 0.0936(20)
η0 → π0lþl− 0.95(8) 0.937(26) −0.0965ð25Þ
η0 → ηlþl− 2.05(8) 0.180(9) −0.492ð10Þ

9A C++ interface to the native Fortran library Collier written for
this purpose, including an executable demo file, is attached as
Supplemental Material to this article [75].
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The integration is carried out following the decomposition of
Eqs. (31) and (37),

ΓðγÞ ¼ C2
ρΓ

ðγÞ
ρ;ρ þ C2

ωΓ
ðγÞ
ω;ω þ C2

ϕΓ
ðγÞ
ϕ;ϕ

þ CρCωΓ
ðγÞ
ρ;ω þ CρCϕΓ

ðγÞ
ρ;ϕ þ CωCϕΓ

ðγÞ
ω;ϕ: ð42Þ

Numerical results for the auxiliary quantities ΓðγÞ
V1;V2

are listed
in Appendix B.10

V. SCALAR RESCATTERING CONTRIBUTIONS

While there are good reasons to assume that the VMD
model captures the most significant contributions to the
semileptonic ηð0Þ decays, we will assess scalar rescattering
contributions explicitly by calculating them for the η →
π0lþl− channels. For the η0 channels, the vector mesons
have sufficient energy to go quasi on shell, so that an even
stronger dominance of the VMD mechanism is expected.

A. Isolating the S wave in the hadronic subamplitude

With the decay η → π0lþl− being driven by the two-
photon intermediate state, as discussed in Sec. I, the
hadronic subprocess we consider is again η → π0γγ. The
corresponding subamplitudeHλλ0 , defined in Eq. (9), can be
expressed in terms of the tensor amplitudeHμν according to

eiðλ−λ0ÞφHλλ0 ¼ ϵ�μλ ðq1Þϵ�νλ0 ðq2ÞHμν: ð43Þ

In the following, we choose

ϵμ�ðq1Þ ¼
1ffiffiffi
2

p ð0;∓1;−i; 0Þ;

ϵμ�ðq2Þ ¼
1ffiffiffi
2

p ð0;∓1; i; 0Þ ð44Þ

as the explicit form for the polarization vectors. In the
context of the hadronic process η → π0γγ, we use the
Mandelstam variables s, tγ, and uγ as defined in Eq. (8). For
on shell photons, the tensor amplitudeHμν can be written in
terms of two independent tensor structures Tμν

1=2 [28],

Tμν
1 ¼ 1

2
sgμν − qμ2q

ν
1;

Tμν
2 ¼ 2sΔμΔν þ 4ðq1ΔÞðq2ΔÞgμν

− 4ðq2ΔÞΔμqν1 − 4ðq1ΔÞqμ2Δν; ð45Þ

with Δμ ¼ ðPþ p0Þμ, which manifestly fulfill the neces-
sary Ward identities. The expansion of the tensor amplitude
in this basis involves two scalar amplitudes A and B and
reads

Hμν ¼ Aðs; tγÞTμν
1 þ Bðs; tγÞTμν

2 : ð46Þ

Contracting the tensor amplitude (46) with the polarization
vectors gives an expression for the helicity amplitudes in
terms of the scalar amplitudes,

Hþþðs; tγÞ ¼ −
s
2
Aðs; tγÞ − s½2ðM2

η þM2
π0
Þ − s�Bðs; tγÞ;

Hþ−ðs; tγÞ ¼ ½ðtγ − uγÞ2 − λπ0ηðsÞ�Bðs; tγÞ: ð47Þ

Here and in the following, we use the abbreviation

λP1P2
ðsÞ≡ λðs;M2

P1
;M2

P2
Þ: ð48Þ

To isolate the S wave, we will neglect D and higher partial
waves, including the whole Hþ− contribution, since its
partial-wave expansion starts with D waves. Consequently,
we are required to set the scalar amplitude B to zero, which
leads to the S wave contributing only through the tensor
structure Tμν

1 . Furthermore, setting B to zero allows us to
use the S-wave amplitude hL¼0þþ to fix the scalar amplitude A
via Eq. (47),

A0ðsÞ ¼ −
2

s
h0þþðsÞ: ð49Þ

Note that the (þþ) helicity amplitude has a soft-photon
zero at s ¼ 0, such that A0ðsÞ has no singularity at that
point despite the factor 1=s.

B. Rescattering effects in the hadronic subprocess

In Ref. [28], the rescattering effects in η → π0γγ are
described by means of a coupled-channel analysis, taking
into account π0η and KK̄ intermediate states; cf. Fig. 4.

FIG. 4. The two intermediate states π0η=KK̄ contributing to the
two-photon amplitudes. The dispersive representation of those
amplitudes is constructed in Ref. [28].

10Using LoopTools [81] for the evaluation of the PV functions,
we observed severe numerical instabilities for some integrations
in the variant VW. These issues were most extreme in ΓV1;V2

with
at least one Vi ¼ ϕ for the decays ηð0Þ → π0eþe− but also notably
problematic in Γω;ω for η0 → π0eþe−. They can be traced back to
problems with the evaluation in certain regions of the phase space
and might be related to vanishing Gram determinants in the PV
reduction procedure, but their exact origin remains obscure to us,
in particular because a decomposition into coefficient functions
does not improve this behavior and the evaluation with Collier
using scalar functions does not suffer from such instabilities.
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Using the Omnès matrix ΩðsÞ for the π0η=ðKK̄ÞI¼1 system
constructed therein, one can write a dispersive representa-
tion for the S-wave amplitudes,

�
h0þþðsÞ
k01;þþðsÞ

�
¼ ΩðsÞ

(�
a
b

�
sþ s2

π

 X
V

Z
sV

−∞
dz

Ω−1ðzÞ
z2ðz − sÞ

× Im

�
h0;VþþðzÞ
k0;VþþðzÞ

�
−
Z

∞

sπη

dz
ImðΩ−1ðzÞÞ
z2ðz − sÞ

×

�
0

k0;Born1;þþ ðzÞ
�!)

; ð50Þ

with sπη ¼ ðMη þMπ0Þ2 the threshold for the π0η inter-
mediate state and

sV ¼ −
1

M2
V

�
M2

V −M2
η

��
M2

V −M2
π0

� ð51Þ

the onset of the left-hand cut. Here, we include the VMD
contributions from the ρ, ω, and ϕ mesons for the π0η
channel (h0;Vþþ) and the K� for the KK̄ channel (k0;Vþþ) in the
zero-width approximation. Using the polarization vectors
(44) and the coupling constants CV defined in Eq. (30), the
VMD amplitude for the π0η channel for photons with
polarization (þþ) as well as the corresponding S-wave
amplitude are given by

HVþþðs; tγÞ ¼
CV

4

stγ
M2

V − tγ − iϵ
þ ðtγ ↔ uγÞ;

h0;VþþðsÞ ¼
CV

2

 
sM2

V

λ1=2
π0η

ðsÞ
log

�
XVðsÞ þ 1

XVðsÞ − 1

�
− s

!
;

XVðsÞ ¼
2M2

V − ðM2
η þM2

π0
Þ þ s

λ1=2
π0η

ðsÞ
: ð52Þ

The logarithm in Eq. (52) induces the left-hand cut starting
from sV . The VMD contribution to the KK̄ channel, KVþþ,
can be treated in complete analogy. In the KK̄ channel, the
QED Born term projected onto isospin I ¼ 1 is included in
addition,

KBorn
1;þþðs; tγÞ ¼

ffiffiffi
2

p
sM2

K

ðtγ −M2
KÞðuγ −M2

KÞ
;

k0;Born1;þþ ðsÞ ¼ 2
ffiffiffi
2

p
M2

K

sσKðsÞ
log

�
1þ σKðsÞ
1 − σKðsÞ

�
; ð53Þ

with σKðsÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

K=s
p

. In Eq. (50), the soft-photon
zero is already taken care of; the remaining subtraction
constants a and b are determined in accordance with

Ref. [28], where an Adler zero at sA ¼ M2
η is implemented

to fix one of these and the other one is fit to experimen-
tal data.
Subtracting the VMD contributions (52) from the com-

plete S-wave amplitude h0þþ (50) allows us to isolate the
rescattering effects in Eq. (49),

A0
rescðsÞ ¼ −

2

s

 
h0þþðsÞ −

X
V¼ρ;ω;ϕ

h0;VþþðsÞ
!
: ð54Þ

With this, we can now construct the S-wave tensor
amplitude containing only the rescattering contributions,

eHμν ¼ A0
rescðsÞTμν

1 : ð55Þ

C. Loop calculation

In order to calculate the contribution of S-wave rescat-
tering effects to the decay η → π0lþl−, we retain the tensor
amplitude (55) for the η → π0γγ vertex. This reduces the
loop from a box to a triangle topology; see Fig. 5. We
denote the tensor QED subamplitude for γγ → lþl− by
Lμν. At tree level, the construction is straightforward, and
after simplifying with Eq. (6), one finds

Lμν ¼ −ūs
2pμ

− − γμ=q1
ðp− − q1Þ2 −m2

l þ iϵ
γνvr: ð56Þ

Note that we do not have to concern ourselves with
calculating the S-wave projection of the QED subamplitude
γ�γ� → lþl−, since the loop integration will take care of
the projection automatically. Furthermore, to avoid double
counting, we do not include the crossed channel, which is
described by the same amplitude due to the symmetry of
the triangle loop.
When taking into account the photon virtualities, the

gauge-invariant tensor structure Tμν
1 , in particular, acquires

additional terms [82–84],

Tμν
1 ðq21; q22Þ ¼

1

2
ðs − q21 − q22Þgμν − qμ2q

ν
1: ð57Þ

FIG. 5. The triangle loop contributing to π0η → lþl−, which
contains the tensor amplitude eHμν that captures the rescattering
effects in π0η → γγ, with the photon virtualities modeled via
vector-meson propagators. This process is related to the corre-
sponding η decay via crossing symmetry.
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The impact of the photon virtualities is then further
modeled by including factors M2

VP
BW
V ðq2Þ for both pho-

tons, resulting in a hadronic tensor amplitude for off shell
photons on the basis of the on shell one,

eHμνðq21; q22Þ ¼ M2
V1
PBW
V1

ðq21ÞM2
V2
PBW
V2

ðq22Þ
× A0

rescðsÞTμν
1 ðq21; q22Þ: ð58Þ

This is a naive generalization to virtual photons that
corresponds to a scalar-resonance approximation. It avoids
the known complications, e.g., from the modified partial-
wave projections of the VMD amplitudes; see Refs. [85,86]
for a more rigorous treatment. We deem this approximation
sufficient in the context of the semileptonic decays. The
prescription in Eq. (58) is consistent with the monopole
model for the form factors constructed in Sec. III.
The rescattering contribution to the η → π0lþl− ampli-

tude is then given by

ifMðsÞ ¼
�
α

π

�
2
Z

d4q1
eHμνðq21; q22Þ
q21 þ iϵ

Lμν

q22 þ iϵ
; ð59Þ

with q2 ¼ pþ þ p− − q1.
Understanding the S-wave amplitude as an enhancement

due to the a0ð980Þ resonance with IGðJPCÞ ¼ 1−ð0þþÞ,
only the combination of ρ and ω is allowed for the vector
mesons V1 and V2. With that, the S-wave rescattering
contribution is given by

fMðsÞ ¼ −i
�
α

π

�
2

M2
ρM2

ωA0
rescðsÞ

Z
d4q1PBW

ρ ðq21ÞPBW
ω ðq22Þ

×
Tμν
1 ðq21; q22ÞLμν

ðq21 þ iϵÞðq22 þ iϵÞ : ð60Þ

Note that with Tμν
1 ∝ Oðq21Þ, the integral is convergent only

due to the dependence on the photon virtualities introduced
in Eq. (58). This is a consequence of the reduction from a
box to a triangle loop. Contracting the tensor structures and
performing a PV decomposition allows us to separate a
factor of mls=ðM2

ρM2
ωÞ with only the ūsvr spinor structure

from Eq. (30) contributing,

fMðsÞ ¼ ið4παÞ2sA0
rescðsÞfMuv

H ðsÞMuv
QED: ð61Þ

Here, fMuv
H ðsÞ contains the remaining PV master integrals.

VI. RESULTS AND DISCUSSION

We present the results for the semileptonic decays in the
form of branching ratios as well as singly and doubly
differential decay widths. The branching ratios are particu-
larly apt to demonstrate the effects of the different form-
factor models. Furthermore, we examine the contribution
of scalar rescattering effects to the branching ratios and

normalize these to the corresponding two-photon analogs.
For all of our results, the quoted uncertainties stem from
the experimental uncertainties that enter via the coupling
constants and amount to ∼10%. The uncertainties from the
numerical integration, on the other hand, are at least 1 order
of magnitude smaller and therefore omitted.

A. Differential decay widths

The doubly and singly differential distributions of the
semileptonic decays exhibit distinct characteristics, with
the most prominent differences being observable between
the decays with electrons and muons in the final state; see
Figs. 6–8. While the majority of the doubly differential
distribution for the electron channels is contained in a small
fraction close to the threshold in the invariant lepton mass,
the decays with muons in the final state display a spread-out
distribution that covers large parts of the available phase
space. For the electron final state, in particular, it is
important to take account of the region close to the
threshold in the invariant lepton mass both when integrat-
ing over the phase space and when performing a meas-
urement, as significant parts of the decay width are readily
missed otherwise. Furthermore, the logarithmic scale
shows that the distributions possess a minimum for ν ¼ 0,
where ν ∝ cos θs, with θs the s-channel scattering angle.
With only even partial waves contributing to the decays,
this feature can be attributed to the dominance of D waves
over the helicity-suppressed S waves—which do not show
such an angular distribution—whereas for the muon
channels, this suppression is less pronounced. Beyond
the difference in the final-state leptons, the principal visible
differentiations concern the size of the phase space, which
is significantly larger for η0 → π0lþl− than for η →
π0lþl− and η0 → ηlþl−.
For all decay channels, the obtained Dalitz plots do not

follow a flat distribution, which was assumed for the
experimental analysis of η → π0eþe− in Ref. [16]. This
assumption is justified for a potential C-violating contri-
bution [4] but inaccurate for the standard-model result; we
therefore propose a reevaluation of the experimental data
and a reassessment of the reported upper limit.
The singly differential distributions for the electron

channels explicitly resolve a strongly peaked structure
for invariant lepton masses close to the threshold and a
subsequent rapid decrease. For muons in the final state,
the singly differential distribution is much different, with a
broad peak that is situated more centrally in the phase
space. This behavior is in correspondence with the obser-
vation that for ml ≈ 0, the threshold in s approximately
collapses to the threshold of the two-photon intermediate
state, s ¼ 0, where the two-photon cut induces a behavior
∝ logðsÞ [12]. Hence, for the electron final state, this
logarithmic divergence manifests itself as a peak close to
the threshold in s, regularized by a phase-space factor and
forced to zero at s ¼ 4m2

l, see Eq. (27), whereas the muon
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FIG. 6. Dalitz plots for the MP model in the variant CW, normalized to the maximum value within the available phase space of the
respective channel, dΓ̂=dsdν ¼ ½dΓ=dsdν�=½max dΓ=dsdν�.
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channels have a much higher threshold, far from the
logarithmic divergence.

B. Branching ratios in the different models

The sensitivity of the semileptonic decays to the different
form-factor parametrizations, i.e., a pointlike, monopole, or
dipole interaction, each with constant or energy-dependent
widths, can be probed by comparing the results for the
branching ratios collected in Table VII.
Our results for the decays η → π0lþl− obtained with

constant form factors and widths are compatible with the
results of Ref. [30], which similarly assumed a pointlike
interaction. Instead of determining the coupling constants
purely from phenomenology, the authors modeled these
using a symmetry-driven quark model, which results in
only slightly different numerical values. For the η0 decays,
on the other hand, we find significant disagreement, which
might be due to numerical difficulties when calculating
the box diagrams in a nonautomated way via Feynman
parameters.
Implementing nontrivial form factors leads to a signifi-

cant decrease of the branching ratio for all decays, with the
muon channels being subject to a larger reduction than the
electron channels and the η0 decays to less reduction than
the η decays. More specifically, the decrease amounts to
∼35% for η → π0eþe− and ∼50% for η → π0μþμ−. For
η0 → π0lþl−, the branching ratios are reduced by ∼20%
for electrons and ∼35% for muons in the final state.
Regarding η0 → ηlþl−, the branching ratios decrease by
∼10% for electrons and ∼25% for muons in the final state.
This gives strong indication that the photon virtualities
cannot be neglected in the analyzed processes, since constant
form factors are likely to overestimate the decay widths.

The dipole form factors, which feature the expected
high-energy behavior ∼1=q4, further assess the sensitivity
on the precise parametrization of the form factors.
Compared to the variation observed between constant form
factors and the monopole parametrization, their effect is,
however, negligible, leading to a further decrease for
η → π0lþl−, η0 → π0μþμ−, and η0 → ημþμ− and a slight
increase for η0 → π0eþe− and η0 → ηeþe−, both at most at
the level of 5%.
Using spectral representations to implement energy-

dependent widths for the broad vector mesons, i.e., ρð0Þ,
ω0, and ϕ0, leads to a decrease in the branching ratio of less
than 4% for all decays with constant form factors and an
increase of not more than 8% both in the monopole and
dipole models, with the exception of η0 → ημþμ−, where
the increase even reaches ∼15%.
All these variations are small compared to the difference

between the results in the PL model and any other model
and mostly even small compared to the phenomenological
uncertainties. We thus infer the semileptonic decays to be
rather insensitive to the precise parametrization of the
photon virtualities in the form factors. Therefore, we
restricted our discussion of the Dalitz and singly differential
plots in Sec. VI A to the monopole model, as finer details
would not be discernible.

C. Scalar rescattering contributions

We have calculated the S-wave rescattering contributions
exemplarily for the η → π0lþl− decay channels. Adding
these to the VMD amplitude leads to two additional terms
on the level of the squared amplitude in the branching ratio:
one pure rescattering term and one term mixing rescattering
and VMD effects,

FIG. 7. Logarithmic Dalitz plots for the electron channels with the MP model in the variant CW, normalized to the respective
maximum value within the available phase space; see Fig. 6.
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jMþ fMj2 ¼ jMj2 þ jfMj2 þ 2ReðMfM�Þ: ð62Þ
The two contributions to the branching ratios can be found
in Table VIII. For η → π0eþe−, both the rescattering and
the mixed contribution are of Oð10−4Þ compared to the

VMD result. This seems plausible, given that a spin flip is
necessary to couple a scalar resonance to two leptons,
resulting in an amplitude proportional to ml. For η →
π0μþμ−, the rescattering and mixed contributions are at the
level of 5% in comparison to the VMD contributions, still

FIG. 8. Singly differential decay widths in the Mandelstam variable s, obtained with the MP model in the variant CW. Here, the inlays
amplify the behavior close to the lower threshold of the phase space, where the distribution shows a strong peak for the channels with
electrons in the final state. The uncertainty is entirely due to the dominant phenomenological uncertainty of jFVPð0Þj; see Table II.
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notably below the uncertainties of the latter. In addition,
the two contributions have opposite signs, such that they
largely cancel, leading to a suppression ofOð10−3Þ. In light
of the negligible contributions of the rescattering effects,
we consider it unnecessary to calculate errors on them.
Apart from the impact of the uncertainties on the coupling
constants CV within the dispersive integral in Eq. (50), such
a calculation would also have to take into account the
uncertainties from fixing the subtraction constants as
estimated in Ref. [28].
A similar order of magnitude is expected for the

respective corrections to the other decay channels
η0 → ½π0=η�lþl−, an explicit demonstration of which is,
however, beyond the scope of this article.

D. Photonic decays and normalized branching ratios

The primary motivation for calculating the branching
ratios for the two-photon decays ηð0Þ → ½π0=η�γγ within our
VMD framework is the normalization (41) of the corre-
sponding semileptonic decays. Numerical results for these
are collected in Tables IX and X, respectively. Currently,

however, there is also thriving interest in resolving a
discrepancy arising from an updated experimental meas-
urement of the η → π0γγ decay [87]. The effect of imple-
menting dispersively improved ρ propagators amounts to
less than 2% and is therefore insignificant, as the phenom-
enological uncertainties range between ð6–11Þ%.
Our branching ratios with constant widths are in agree-

ment with the VMD results of Ref. [29]; supplementing
those with a linear-σ-model scalar contribution and chiral
loops, the authors quote Bðη → π0γγÞ ¼ 1.35ð8Þ × 10−4,
Bðη0 → π0γγÞ ¼ 2.91ð21Þ × 10−3, and Bðη0 → ηγγÞ ¼
1.17ð8Þ × 10−4 based on empirical couplings. These results
are slightly larger than the plain VMD numbers but still
compatible within uncertainties, indicating that the effects
of these model extensions are insignificant at the current
level of precision [29].
The dispersive analysis of η → π0γγ [28] referenced in

Sec. V also includes the a2 ≡ a2ð1320Þ tensor resonance
as well as isospin-breaking πþπ− contributions, with the
result Bðη → π0γγÞ ¼ 1.81þ0.46

−0.33 × 10−4 showing a ∼50%

TABLE VII. The branching ratios of the semileptonic decays, Eq. (29), resulting for the models PL, MP, and DP in
both variants CWand VW. The uncertainty is entirely due to the dominant experimental uncertainty of jFVPð0Þj; see
Table II. For reference, we also give the corresponding results from Ref. [30], where we added the quoted
uncertainties in quadrature.

Branching ratio=10−9

PL MP DP Reference [30]

η → π0eþe− CW 2.10(23) 1.35(15) 1.33(15) 2.0(2)
VW 2.06(22) 1.40(15) 1.36(15)

η → π0μþμ− CW 1.37(15) 0.70(8) 0.66(7) 1.1(2)
VW 1.32(14) 0.71(8) 0.67(7)

η0 → π0eþe− CW 3.82(33) 3.08(27) 3.14(27) 4.5(6)
VW 3.81(33) 3.30(28) 3.30(28)

η0 → π0μþμ− CW 2.57(23) 1.69(15) 1.68(15) 1.7(3)
VW 2.53(23) 1.81(16) 1.81(16)

η0 → ηeþe− CW 0.53(4) 0.48(4) 0.49(4) 0.4(2)
VW 0.51(4) 0.50(4) 0.50(4)

η0 → ημþμ− CW 0.287(26) 0.213(18) 0.207(18) 0.15(5)
VW 0.280(25) 0.225(20) 0.240(21)

TABLE VIII. The scalar rescattering contributions to the
branching ratios of η → π0lþl−, Eq. (62), separated into the
pure rescattering and mixed term, as well as the corresponding
VMD contributions from Table VII for comparison.

Branching ratio

VMD Rescattering Mixed

η → π0eþe− 1.36ð15Þ × 10−9 2.5 × 10−13 4.6 × 10−13

η → π0μþμ− 0.67ð7Þ × 10−9 2.8 × 10−11 −2.6 × 10−11

TABLE IX. The branching ratios of the two-photon decays,
Eq. (34), in both variants CWand VW. The uncertainty is entirely
due to the dominant experimental uncertainty of jFVPð0Þj; see
Table II.

Branching ratio=10−4

CW VW

η → π0γγ 1.21(13) 1.18(13)
η0 → π0γγ 27.8(1.7) 28.1(1.8)
η0 → ηγγ 1.10(8) 1.10(8)
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discrepancy with the VMD model. This deviation can be
traced back largely to the a2 contribution, suggesting
that the impact of this resonance might be relevant for
η → π0γγ, specifically at very low diphoton invariant
masses.
In light of this finding, it is important to note that we

have not included any tensor-meson effects for η →
π0lþl− in Sec. V. For electrons in the final state, the
lower threshold in s is close to the two-photon threshold, so
that an effect of similar size as in the photonic case is within
the bounds of possibility; the higher threshold for muons,
on the other hand, is expected to exclude the region where
the a2 resonance is most relevant. For the η0 decays, the
exchanged vector mesons can go quasi on shell, so that the
VMDmechanism is even more likely to dominate the effect
of the tensor resonance.
While our results for the two-photon decays of the η0

meson are compatible with the experimental results from
BESIII, Bðη0 → π0γγÞ ¼ 3.20ð24Þ × 10−3 [88] and Bðη0 →
ηγγÞ ¼ 8.3ð3.4Þ × 10−5 [89],11 the experimental situation
for η → π0γγ is presently inconclusive. For this decay, the
PDG average Bðη → π0γγÞ ¼ 2.55ð22Þ × 10−4 [15]—the
main input being Bðη → π0γγÞ ¼ 2.52ð23Þ × 10−4 from
the A2 experiment at MAMI [24]—is in agreement with
the theoretical calculation performed in Ref. [28] but in
severe tension with the preliminary result from the KLOE-2
Collaboration, Bðη→ π0γγÞ ¼ 0.99ð26Þ× 10−4 [87], which

corroborates the older KLOEmeasurement Bðη → π0γγÞ ¼
0.84ð30Þ × 10−4 [90] and is consistent with the VMD-only
result.
The results for the normalized branching ratio can be

found in Table X, and the discussion of the differences
between the distinct form-factor parametrizations is analo-
gous to Sec. VI B. Due to partial cancellations in this ratio,
the quoted uncertainties are reduced drastically, however
with the caveat that they are likely to underestimate the
genuine uncertainty, lest some neglected systematic effect
beyond the error estimates of the couplings potentially
becomes dominant here. At the same time, potential
corrections to the semileptonic branching ratios that are
not included in the plain VMD model, e.g., the a2
resonance, are assumed to partially cancel as well because
they emerge in the hadronic part of the amplitudes that is
shared with the photonic decays.
The doubly and singly differential decay widths for the

two-photon decays are displayed in Fig. 9. While the η
decay does not show much structure in either plot—being
dominated by a D wave at low and an S wave at high
diphoton invariant masses—the η0 decays are dominated
by vector-meson resonances that can go quasi on shell. The
ω resonance is clearly visible as two narrow bands in the
Dalitz plots and as a peak in the singly differential
distributions, whereas the ρ is disguised in comparison
due to its much larger width. The angular dependence
perceivable as a less saturated band in the Dalitz plots and
as a dip in the singly differential distributions can be
attributed to the fact that the ω → ½π0=η�γ decay must be in
a P wave due to parity.

VII. SUMMARY

We have reanalyzed the standard-model contribution to
the semileptonic decays ηð0Þ → π0lþl− and η0 → ηlþl−,
where l ¼ e, μ. Since C parity is conserved in the strong
and electromagnetic interactions, these processes are medi-
ated via a two-photon mechanism and therefore loop
induced. This two-photon mechanism is known to be
dominated by vector exchanges; as a major improvement
compared to the existing literature, we have, for the first
time, implemented a realistic dependence of the hadronic
subprocess on the photon virtualities via vector-to-pseu-
doscalar transition form factors. To assess the sensitivity to
the chosen parametrizations, we compared three different
schemes: constant couplings (as a reference point), monop-
ole form factors, and dipole form factors. The last of those
three are motivated by having the correct asymptotic
behavior at high virtualities. In addition, dispersively
improved variants of all form factors have been probed.
Nontrivial form factors turn out to be important in order not
to overestimate the branching ratios. We thereby improve
previous theoretical results for the semileptonic ηð0Þ decays.
On the other hand, the observables are mostly insensitive to

TABLE X. The same as Table VII but for the normalized
branching ratios of the semileptonic decays, Eq. (41). Due to
partial cancellations in this ratio, the quoted uncertainties are
given with the caveat that they are likely to underestimate the
genuine uncertainty; see main text.

Normalized branching ratio=10−6

PL MP DP

η → π0eþe− CW 17.422(28) 11.197(11) 11.032(9)
VW 17.510(20) 11.855(7) 11.531(4)

η → π0μþμ− CW 11.371(20) 5.781(7) 5.450(6)
VW 11.197(25) 6.020(10) 5.647(5)

η0 → π0eþe− CW 1.37(7) 1.11(6) 1.13(6)
VW 1.36(7) 1.17(6) 1.18(6)

η0 → π0μþμ− CW 0.92(5) 0.610(35) 0.603(35)
VW 0.90(5) 0.64(4) 0.65(4)

η0 → ηeþe− CW 4.77(7) 4.38(6) 4.41(6)
VW 4.65(7) 4.56(7) 4.56(7)

η0 → ημþμ− CW 2.60(6) 1.93(4) 1.88(4)
VW 2.54(5) 2.05(4) 2.18(4)

11Here and in the following, we combine statistical and
systematic uncertainties of experimental branching ratios in
quadrature for simplicity.

SCHÄFER, ZANKE, KORTE, and KUBIS PHYS. REV. D 108, 074025 (2023)

074025-16



the details of the parametrization at the level of uncertainty
induced by the phenomenological coupling constants.
All predicted branching ratios are, as expected, well

below the current experimental upper limits. For the latter,
we however recommend a reanalysis, given the far-from-
flat Dalitz-plot distributions of the standard-model contri-
butions. With improved experimental sensitivities in the
future, our theoretical branching ratios of these rare ηð0Þ
decays can hopefully be compared to experiment and thus
help cast a light on possible symmetry violations and
physics beyond the standard model in the light-meson
sector.
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FIG. 9. Dalitz plots for the two-photon decays in the variant CW (top), normalized to the maximum value within the available phase
space of the respective channel, dΓ̂γ=dsdνγ ¼ ½dΓγ=dsdνγ �=½max dΓγ=dsdνγ�, and singly differential decay widths in the Mandelstam
variable s, obtained in the variant CW (bottom).
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APPENDIX A: U(3) FLAVOR SYMMETRY

For the U(3) parametrizations of the pseudoscalar and
vector-meson multiplets, we write

ΦP ¼

0BBB@
π0 þ

ffiffi
2

p
ηþη0ffiffi
3

p 0 0

0 π0 þ
ffiffi
2

p
ηþη0ffiffi
3

p 0

0 0 −
ffiffi
2

p
ηþ2η0ffiffi
3

p

1CCCA;

ΦVð0Þ
μ ¼

0BB@
ρ0μ

ð0Þ þ ωð0Þ
μ 0 0

0 −ρ0μð0Þ þ ωð0Þ
μ 0

0 0 −
ffiffiffi
2

p
ϕð0Þ
μ

1CCA; ðA1Þ

where we only retain flavor-neutral states. Here, mixing
effects between the (physical) mesons are taken into
account via the pattern�

η0

η

�
¼
�

cos θP sin θP
− sin θP cos θP

��
η1

η8

�
; 

ωð0Þ

ϕð0Þ

!
¼
�

cos θVð0Þ sin θVð0Þ

− sin θVð0Þ cos θVð0Þ

� 
ωð0Þ
1

ωð0Þ
8

!
; ðA2Þ

with η1, η8 and ωð0Þ
1 , ωð0Þ

8 denoting the isoscalar singlet
and octet states of the pseudoscalar and vector-meson
multiplets, respectively. In the above, the mixing angles
are assumed to be given by θP ¼ arcsinð−1=3Þ for the

pseudoscalar nonet (canonical mixing) and θVð0Þ ¼
arcsinð1= ffiffiffi

3
p Þ for the vector mesons (ideal mixing). We

furthermore introduce the charge matrix according to

Q ¼ 1

3
diag½2;−1;−1�: ðA3Þ

Using Eq. (A1), we calculate Tr½ΦPΦV
μΦVð0Þ

ν � to find the
allowed couplings ηð0Þρρð0Þ, ηð0Þωωð0Þ, ηð0Þϕϕð0Þ, π0ρωð0Þ, and
π0ωρð0Þ. To derive the relative signs between the corre-
sponding coupling constants CVPγ introduced in Sec. III A,
we calculate Tr½ΦPΦV

μQ� and take the appropriate ratios of
coefficients that emerge in Eq. (4). For our analysis, we
furthermore included the OZI-suppressed coupling Cϕπ0γ ,
whose sign thus cannot be determined from U(3) sym-
metry. Instead, we resort to analyses of eþe− → 3π and
eþe− → πγ [54–56], which suggest that the product of the
ϕγ and ϕπγ couplings carries a relative sign as compared to
the product of the ωγ and ωπγ couplings. Hence, calculat-
ing Tr½ΦV

μQ� indicates a relative sign between Cϕπ0γ and
Cωπ0γ . Fixing the sign of Cρηγ to be positive, the sign
convention of Table IV follows.

APPENDIX B: INTERMEDIATE RESULTS

The numerical values of the auxiliary quantities ΓðγÞ
V1;V2

defined in Eq. (42), for a pointlike interaction (PL),
monopole form factors (MP), and dipole form factors
(DP), are collected in Tables XI and XII.

TABLE XI. Numerical results for the auxiliary quantities defined in Eq. (42) for the models PL, MP, and DP in both variants CWand
VW, rounded to four significant digits.

Γρ;ρ=MeV5 Γω;ω=MeV5 Γϕ;ϕ=MeV5 Γρ;ω=MeV5 Γρ;ϕ=MeV5 Γω;ϕ=MeV5

η → π0eþe− PL CW 0.5302 0.5684 0.1864 1.077 0.6041 0.6485
VW 0.4992 1.065 0.6060

MP CW 0.3463 0.3627 0.1093 0.6914 0.3707 0.3966
VW 0.3422 0.3814 0.1151 0.7226 0.3945 0.4174

DP CW 0.3419 0.3573 0.1033 0.6814 0.3615 0.3835
VW 0.3285 0.3630 0.09942 0.7160 0.3869 0.3903

η → π0μþμ− PL CW 0.3440 0.3686 0.1383 0.7022 0.4222 0.4498
VW 0.3123 0.6785 0.4136

MP CW 0.1772 0.1870 0.06392 0.3569 0.2029 0.2173
VW 0.1697 0.1972 0.06742 0.3657 0.2123 0.2293

DP CW 0.1674 0.1764 0.05756 0.3366 0.1888 0.2009
VW 0.1603 0.1802 0.06073 0.3473 0.1916 0.2102

(Table continued)
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TABLE XI. (Continued)

Γρ;ρ=MeV5 Γω;ω=MeV5 Γϕ;ϕ=MeV5 Γρ;ω=MeV5 Γρ;ϕ=MeV5 Γω;ϕ=MeV5

η0 → π0eþe− PL CW 154.6 283.5 57.20 405.1 125.7 183.3
VW 152.8 406.5 138.9

MP CW 125.8 227.7 37.08 323.0 82.41 126.6
VW 133.7 241.9 39.93 349.2 103.0 135.4

DP CW 128.1 232.0 35.95 328.3 84.42 128.8
VW 131.5 253.1 38.66 340.9 101.0 134.6

η0 → π0μþμ− PL CW 121.2 169.8 55.13 284.5 131.0 168.1
VW 116.9 281.7 139.1

MP CW 80.02 111.0 30.42 185.6 70.21 94.91
VW 83.84 119.3 32.79 199.8 84.77 101.9

DP CW 79.10 109.8 28.68 183.4 68.78 92.80
VW 80.95 121.1 29.78 201.0 82.23 97.28

η0 → ηeþe− PL CW 19.68 50.07 6.701 60.79 8.303 14.86
VW 19.47 60.64 10.11

MP CW 16.44 48.33 5.100 48.56 −1.684 10.79
VW 18.50 57.98 6.724

DP CW 16.54 51.24 4.902 47.02 −2.518 12.45
VW 18.37 46.79 4.827 57.81 6.109 10.82

η0 → ημþμ− PL CW 12.45 20.56 4.847 31.57 10.52 15.70
VW 12.38 31.86 11.66

MP CW 8.240 16.03 3.170 19.66 2.342 9.959
VW 9.471 24.59 6.988

DP CW 7.980 16.28 2.944 18.15 1.682 10.13
VW 10.05 15.35 2.937 23.61 6.266 9.555

TABLE XII. Numerical results for the auxiliary quantities defined in Eq. (42) in both variants CW and VW, rounded to four
significant digits.

Γγ
ρ;ρ=MeV5 Γγ

ω;ω=MeV5 Γγ
ϕ;ϕ=MeV5 Γγ

ρ;ω=MeV5 Γγ
ρ;ϕ=MeV5 Γγ

ω;ϕ=MeV5

η → π0γγ CW 3.154 × 104 3.193 × 104 8.719 × 103 6.175 × 104 3.218 × 104 3.335 × 104

VW 2.921 × 104 6.108 × 104 3.189 × 104

η0 → π0γγ CW 3.088 × 107 4.586 × 108 4.286 × 106 1.097 × 108 1.115 × 107 1.884 × 107

VW 3.341 × 107 1.130 × 108 1.386 × 107

η0 → ηγγ CW 3.203 × 106 6.537 × 107 4.473 × 105 1.425 × 107 2.031 × 105 7.406 × 105

VW 3.280 × 106 1.411 × 107 5.056 × 105
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APPENDIX C: CONSTANTS AND PARAMETERS

We collect the masses and widths used throughout the calculations in Table XIII.
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[81] T. Hahn and M. Pérez-Victoria, Comput. Phys. Commun.

118, 153 (1999).
[82] W. A. Bardeen and W. K. Tung, Phys. Rev. 173, 1423

(1968); Phys. Rev. D 4, 3229(E) (1971).
[83] R. Tarrach, Nuovo Cimento A 28, 409 (1975).
[84] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer,

J. High Energy Phys. 09 (2015) 074.
[85] B. Moussallam, Eur. Phys. J. C 73, 2539 (2013).
[86] B. Moussallam, Eur. Phys. J. C 81, 993 (2021).
[87] S. Giovannella (KLOE-2 Collaboration), Light meson

decays at KLOE/KLOE-2, in Talk at the ECT* Workshop
(Trento, 2023).

[88] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 96,
012005 (2017).

[89] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 100,
052015 (2019).

[90] B. Di Micco et al. (KLOE Collaboration), Acta Phys.
Slovaca 56, 403 (2006).

SEMILEPTONIC DECAYS ηð0Þ → π0lþl− AND η0 → ηlþl− IN THE … PHYS. REV. D 108, 074025 (2023)

074025-21

https://doi.org/10.1140/epjc/s10052-020-7969-8
https://doi.org/10.1103/PhysRevD.102.034026
https://doi.org/10.1140/epjc/s10052-020-08748-4
https://doi.org/10.1140/epjc/s10052-021-08864-9
https://doi.org/10.1140/epjc/s10052-022-10717-y
https://doi.org/10.1016/0370-1573(85)90129-2
https://doi.org/10.1016/j.ppnp.2021.103884
https://doi.org/10.1016/j.ppnp.2021.103884
https://doi.org/10.1016/j.physletb.2010.06.033
https://doi.org/10.1016/j.physletb.2010.06.033
https://doi.org/10.1140/epja/i2012-12190-6
https://doi.org/10.1140/epja/i2012-12190-6
https://doi.org/10.1103/PhysRevD.86.054013
https://doi.org/10.1103/PhysRevD.86.054013
https://doi.org/10.1103/PhysRevD.91.094029
https://doi.org/10.1103/PhysRevD.91.094029
https://doi.org/10.1103/PhysRevLett.115.242001
https://doi.org/10.1103/PhysRevLett.115.242001
https://doi.org/10.1103/PhysRevD.93.114508
https://doi.org/10.1103/PhysRevD.93.114508
https://doi.org/10.1103/PhysRevD.105.079902
https://doi.org/10.1103/PhysRevD.98.074502
https://doi.org/10.1103/PhysRevD.105.019902
https://doi.org/10.1007/JHEP12(2021)038
https://doi.org/10.1007/JHEP12(2021)038
https://doi.org/10.1103/PhysRevLett.35.1416
https://doi.org/10.1103/PhysRevLett.35.1416
https://doi.org/10.1016/0370-2693(78)90140-5
https://doi.org/10.1016/0370-2693(78)90140-5
https://doi.org/10.1016/0370-2693(79)90554-9
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1016/0370-1573(84)90126-1
https://doi.org/10.1016/0370-1573(84)90126-1
https://doi.org/10.1103/PhysRevLett.15.556
https://doi.org/10.1103/PhysRevLett.15.556
https://doi.org/10.1103/PhysRevLett.20.895
https://doi.org/10.1016/0370-2693(75)90167-7
https://arXiv.org/abs/1910.08505
https://arXiv.org/abs/2203.07651
https://doi.org/10.1016/S0375-9601(63)92548-9
https://doi.org/10.1143/PTPS.37.21
https://doi.org/10.1140/epjc/s10052-014-3180-0
https://doi.org/10.1007/JHEP08(2019)137
https://doi.org/10.1007/JHEP08(2019)137
https://doi.org/10.1140/epjc/s10052-020-08550-2
https://doi.org/10.1140/epjc/s10052-020-08550-2
https://doi.org/10.1103/PhysRevD.94.112001
https://doi.org/10.1103/PhysRevD.76.092005
https://doi.org/10.1103/PhysRevD.76.092005
https://doi.org/10.1103/PhysRevD.77.119902
https://doi.org/10.1103/PhysRevD.97.052007
https://doi.org/10.1103/PhysRevD.97.052007
https://doi.org/10.1140/epjc/s10052-021-09661-0
https://doi.org/10.1140/epjc/s10052-021-09661-0
https://doi.org/10.1103/PhysRevD.86.116009
https://doi.org/10.1103/PhysRevD.86.116009
https://doi.org/10.1103/PhysRevD.96.114016
https://doi.org/10.1103/PhysRevD.96.114016
https://doi.org/10.1016/j.physletb.2011.12.008
https://doi.org/10.1140/epjc/s10052-015-3495-5
https://doi.org/10.1140/epjc/s10052-022-10247-7
https://doi.org/10.1140/epjc/s10052-022-10247-7
https://doi.org/10.1140/epjc/s10052-022-11094-2
https://doi.org/10.1016/j.physletb.2014.09.021
https://doi.org/10.1007/JHEP07(2019)073
https://doi.org/10.1007/JHEP07(2019)073
https://doi.org/10.1103/PhysRevD.108.013005
https://doi.org/10.1103/PhysRevD.108.013005
https://doi.org/10.1007/JHEP07(2021)106
https://doi.org/10.1007/JHEP07(2021)106
https://doi.org/10.1103/PhysRevD.95.032004
https://doi.org/10.1103/PhysRevD.95.032004
https://doi.org/10.1103/PhysRevD.5.624
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2020.107478
https://doi.org/10.1016/j.cpc.2020.107478
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/0010-4655(91)90130-D
http://link.aps.org/supplemental/10.1103/PhysRevD.108.074025
http://link.aps.org/supplemental/10.1103/PhysRevD.108.074025
http://link.aps.org/supplemental/10.1103/PhysRevD.108.074025
http://link.aps.org/supplemental/10.1103/PhysRevD.108.074025
http://link.aps.org/supplemental/10.1103/PhysRevD.108.074025
http://link.aps.org/supplemental/10.1103/PhysRevD.108.074025
http://link.aps.org/supplemental/10.1103/PhysRevD.108.074025
https://doi.org/10.1016/j.cpc.2005.01.010
https://doi.org/10.1016/S0550-3213(03)00184-6
https://doi.org/10.1016/j.nuclphysb.2005.11.007
https://doi.org/10.1016/j.nuclphysb.2010.11.002
https://doi.org/10.1016/j.cpc.2016.10.013
https://doi.org/10.1016/j.cpc.2016.10.013
https://doi.org/10.1016/S0010-4655(98)00173-8
https://doi.org/10.1016/S0010-4655(98)00173-8
https://doi.org/10.1103/PhysRev.173.1423
https://doi.org/10.1103/PhysRev.173.1423
https://doi.org/10.1103/PhysRevD.4.3229.2
https://doi.org/10.1007/BF02894857
https://doi.org/10.1007/JHEP09(2015)074
https://doi.org/10.1140/epjc/s10052-013-2539-y
https://doi.org/10.1140/epjc/s10052-021-09772-8
https://doi.org/10.1103/PhysRevD.96.012005
https://doi.org/10.1103/PhysRevD.96.012005
https://doi.org/10.1103/PhysRevD.100.052015
https://doi.org/10.1103/PhysRevD.100.052015

