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The nucleon axial-vector coupling constant gA is studied in the presence of an external magnetic field,
and in dense nuclear environments, to emulate nuclear matter in magnetars. For this purpose we use QCD
finite energy sum rules for two-current and three-current correlators, the former involving nucleon-nucleon
correlators and the latter involving proton-axial-neutron currents. As a result, the axial-vector coupling
constant decreases both with baryon density as well as with magnetic field. The axial-vector coupling
evaluated with baryon density near the nuclear density ρ0 leads to g�A ≈ 0.92. In the presence of magnetic
fields gA decreases in general, but g�A does not show significant changes.
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The nuclear axial-vector charge or axial-vector coupling
constant gA of the nucleon plays an important role in
compact star phenomenology. In particular, gA is related to
nuclear beta decay processes, being the neutron decay
width ∼1þ 3g2A [1,2]. Also, in neutrons stars electronic
capture produces the inverse process which altogether is
known as the Urca process. These decay and capture
processes keep the star in chemical equilibrium with the
constant loss of neutrinos. The neutrino emissivity also
involves gA in the same way as in the neutron decay
width [3]. Therefore, it is relevant to know how gA is
modified in a compact star environment, in particular
for a high baryon density. It is accepted that gA is quenched
in nuclear medium [4–13], and several studies have
concluded that g�A ≡ gAðρ0Þ ≈ 1, where ρ0 ¼ 0.16 fm−3 ¼
1.22 × 10−3 GeV3 is the nuclear baryon density.
In magnetars it is expected that the magnetic field

increases in the interior of the star with values that
can reach ∼1019 G in the core, which is equivalent to

eB ∼ 3.4m2
π [14]. Hence, such an intense magnetic field

can modify considerably the hadronic parameters. At zero
baryonic density, the magnetic field decreases the axial-
vector coupling constant [15,16]. The influence of the
magnetic field on the axial-vector coupling behavior in
dense baryonic matter is the purpose of this work. We use
finite energy sum rules (FESR) involving the three-current
correlator (proton, axial-vector, neutron) in order to deter-
mine the magnetic and density evolution of the axial-vector
coupling constant. In addition, we also determine the two-
nucleon (proton-proton and neutron-neutron) current cor-
relators in the presence of an external magnetic field, and in
a dense baryonic medium, to find the medium dependent
evolution of the nucleon-current coupling and the con-
tinuum hadronic thresholds.

I. FESR

Among the different types of sum rules in the literature,
FESR establish a clear criterion for the separation between
the hadronic and the QCD sectors. Considering a form
factor ΠðsÞ generated by current correlation, with s ¼ q2,
the FESR are obtained by integrating the form factor along
the well-known pac-man contour, i.e. a circle in the
complex s plane, with a cut on the positive real axis.
Hadronic resonances enter the positive real axis, while the
QCD sector is on the circle. From Cauchy’s theorem,
quark-hadron duality relates both sectors, i.e.
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Z
s0

0

ds
π
sNImΠhadðsÞ ¼ −

I
s0

ds
2πi

sNΠQCDðsÞ; ð1Þ

where s0 is the radius of the circle. The factor sN is an
analytic kernel.
In order to relate these two sectors, nonperturbative

effects must be included. They are parametrized in terms of
the operator product expansion (OPE) leading to

ΠðsÞ ¼ CpertðsÞ þ
X
n>0

CnðsÞ
hOni
sn

; ð2Þ

where the first term corresponds to the perturbative sector,
including radiative corrections from perturbation theory.
The OPE is a parametrization of nonperturbative effects
in terms of background gluon and quark fields. For this
purpose the radius of this circle, s0, should be large enough.
When radiative corrections, and medium effects are absent,
the analytic kernel depending on N eliminates most
condensate contributions. This feature is quite convenient
in order to identify the relevant condensates. When medium
effects are present, usually Lorentz symmetry is broken,
generating contributions from new condensates. It is then
necessary to choose a frame to perform the integral as now
Πðp2Þ → Πðp0; pÞ. The usual choice is to set p ¼ 0 and
s ¼ p2

0, by separating even and odd contributions of
Πðp0Þ ¼ ΠeðsÞ þ p0ΠoðsÞ.1
Here, we will use the usual contour for the nucleon-

nucleon correlator, but calculate the nucleon-axial-vector-
nucleon correlator. In this case, a double FESR must be
used [15,18]:

Z
sp

0

ds0

π
Ims0

Z
sn

0

ds
π
ImsΠhadðs; s0; tÞ

¼
I
sp

ds0

2πi

I
sn

ds
2πi

ΠQCDðs; s0; tÞ; ð3Þ

where

ImsfðsÞ≡ lim
ϵ→0

Imfðsþ iϵÞ: ð4Þ

The FESR in vacuum involve condensates of different
dimensions. However, for in-medium scenarios this corre-
spondence is no longer valid. This is due to the appearance
of new condensates whose corresponding Wilson coeffi-
cients are e.g. powers of the form ∼ lnð−sÞ=sn.
Nevertheless, once FESR are implemented, these higher
dimension operators are suppressed by powers of s−n0 . If s0
decreases, its is expected that the condensates behave
similarly, as known e.g. at finite temperature where con-
densates melt. In summary, vacuum FESR determine up to
whatever dimension in the OPE is needed in applications.

Another feature of FESR is the fact that the contour integral
can be exchanged with the momentum loop integral of the
form factors. This is extremely useful because it is not
necessary to determine the correlator up to its final form.
In addition, it does not impose the condition of expansion
in powers of 1=s, as usually done in OPE. This allows us
to achieve low s0 values. For detailed information see
e.g. [19–21].

II. AXIAL-VECTOR COUPLING IN VACUUM

Based on [15], we discuss a determination of the axial-
vector coupling of the nucleon in the framework of QCD
sum rules. The main object of interest is the following
currents correlator:

Πμðx; y; zÞ ¼ −h0jT ηpðxÞAμðyÞη̄nðzÞj0i; ð5Þ
where in the QCD sector ηN is Ioffe’s nucleon interpolating
current [22]

ηpðxÞ ¼ ϵabc½uaðxÞTCγμubðxÞ�γμγ5dcðxÞ; ð6Þ
η̄nðzÞ ¼ ϵabc½d̄bðzÞγμCd̄aðzÞT �ūcðzÞγμγ5; ð7Þ

where C ¼ iγ0γ2 is the charge conjugation operator.
In the hadronic sector ηpðxÞ is defined as

h0jηpðxÞjp0; s0i ¼ λpus
0
pðp0Þe−ip0·x; ð8Þ

hp; sjη̄nðzÞj0i ¼ λnūsnðpÞeip·z; ð9Þ

where λp and λn are the phenomenological current-proton
and current-neutron couplings, respectively. Alternatively,
we could introduce nucleonic fields whose matrix compo-
nents are the ones described in the above equations, i.e.

ηNðxÞ ¼ λNΨðxÞ; ð10Þ

whereΨN corresponds to the nucleonic fields, and Aμ to the
positively charged axial-vector current.
In the QCD sector AμðyÞ is defined as

AμðyÞ ¼ d̄ðyÞγμγ5uðyÞ: ð11Þ
In the hadronic sector this is defined as

hp0; s0jAμðyÞjp; si ¼ ūs
0
pðp0ÞTμðqÞusnðpÞeiq·y; ð12Þ

with q ¼ p0 − p.
The function T is the most general function in terms of

the Clifford basis, compatible with the axial-vector sector
and their relevant transformations, written as

TμðqÞ ¼ GAðtÞγμγ5 þ GPðtÞγ5
qμ
2mN

þGTðtÞσμνγ5
qν
2mN

;

ð13Þ
1Alternatively, one could perform a contour integration in the

complex-p0 plane [17].
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with t ¼ q2 and mN the vacuum nucleon mass.
Alternatively, the axial-vector current might also be
expressed in terms of nucleonic fields as

AμðyÞ ¼
Z

d4ξψ̄pðξÞT̃μðξ − yÞψnðξÞ; ð14Þ

where T̃μðxÞ is the inverse Fourier transformation of TμðqÞ
in configuration space.
The function GA provides the definition of the axial-

vector according to

gA ≡GAð0Þ: ð15Þ

Fourier transforming the three-current correlator in
momentum space leads to

Πμðp; p0Þ ¼
Z

d4yd4ze−iðq·yþp·zÞΠμð0; y; zÞ: ð16Þ

The correlator in the hadronic sector can be expressed as
usual by inserting a complete set of intermediate nucleon
states, or by expressing the currents in terms of nucleon
fields, leading to

Πhad
μ ðp; p0Þ ¼ λnλp

ð=pþmnÞTμðqÞð=p0 þmpÞ
ðp2 −m2

nÞðp02 −m2
pÞ

: ð17Þ

Using an appropriate procedure one can isolate the GA
contribution from the other form factors, e.g.

tr½Πμðp; p0Þγν� ¼ −4iϵμναβpαp0βΠðs; s0; tÞ; ð18Þ

with s ¼ p2, s0 ¼ p02, and Π in the hadronic sector being

Πhadðs; s0; tÞ ¼ λnλp
GAðtÞ þ GTðtÞðmn −mpÞ=mN

ðs −m2
nÞðs0 −m2

pÞ
: ð19Þ

In vacuum, proton and neutron masses are almost
identical due to SUð2Þ isospin symmetry. In principle it
is possible to completely isolate GA if the masses are
different. This procedure could be more cumbersome
than the one introduced here. Even in the case of
different masses, the contribution to GA proportional to
ðmn −mpÞ=mN would be small, provided usual isospin
breaking is generated by external magnetic fields. If isospin
density effects are considered, the mass difference could be
considerable.
Following the same procedure in the QCD sector, the

two-loop leading order perturbative contribution in the
frame t ¼ 0 becomes

ΠpQCDðs; s0; 0Þ ¼ s2 lnð−s=μ2Þ − s02 lnð−s0=μ2Þ
ð2πÞ4ðs0 − sÞ

þ regular terms; ð20Þ

where μ is the MS scale. Regular terms means terms
without discontinuities on the real axes, or singularities
which would vanish in a FESR framework. Using the
double FESR described previously one obtains

gAλnλp ¼ 1

48π4
�
s3nθðsp − snÞ þ s3pθðsn − spÞ

�
; ð21Þ

where sN are the nucleon current hadronic thresholds,
which must be bigger than m2

N . In vacuum, both nucleon
thresholds are the same; therefore

gA ¼ s30
48π4λ2N

; ð22Þ

which is the leading contribution, as the next correction,
∼hG2i=s20, is negligible.
The information needed for completion is the values of

the threshold and the nucleon coupling, which will be
determined using the nucleon-nucleon correlator [22–25]

ΠNðxÞ ¼ h0jT ηNðxÞη̄Nð0Þj0i: ð23Þ
From the FESR, the two Dirac structures become

λ2N ¼ s30
192π4

þ s0
32π2

hG2i þ 2

3
hq̄qi2 ð24Þ

λ2NmN ¼ −
s20
8π2

hq̄qi þ 1

12
hG2ihq̄qi; ð25Þ

where the saturation approximation was invoked in oper-
ators of dimension d ¼ 6 and d ¼ 7.
Hence, the nucleon couplings and the hadronic thresh-

olds are functions of the quark and gluon condensates.
In particular, as was pointed out in [15], there is a small
window for possible values of quark and gluon condensates
agreeing with the experimental values of the axial-vector
coupling constant gA ≈ 1.275. We will use two sets of
parameters that fit this experimental value.
When medium effects are taken into account, it is

expected that the axial-vector contribution to the form
factor splits into different components, according to the
symmetry breaking induced by the external magnetic field
and thermal or dense bath

GAγμ → Gð0Þ
A γ0 þ Gð⊥Þ

A γ⊥μ þ Gð3Þ
A γ3 þ G̃AFμνγ

ν: ð26Þ

We will limit ourselves to the leading contribution
described by Eq. (21). Hence, density and magnetic con-
tributions will be present only through the in-medium
nucleon-current couplings and nucleon hadronic thresholds.
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III. FINITE DENSITY

Baryonic density effects in QCD sum rules for baryons
were first considered in a series of pioneering papers
[17,26–29]. The basic idea is that density dependence
enters only in the effective operators in the nonperturbative
sector. The introduction of a dense medium will break
Lorentz symmetry. Hence, the structure of correlators
changes and new condensates appear. All correlator struc-
tures can be separated into even and odd contributions in
terms of p0 as

Πðp0; p2Þ ¼ Πeðp2
0; p

2Þ þ p0Πoðp2
0; p

2Þ: ð27Þ

The sum rules will involve the frame where p ¼ 0,
defining s ¼ p2

0. In the case of the nucleon-nucleon
correlator the general structure is

ΠN ¼ Πs þ =pΠp þ =uΠu; ð28Þ

where the subscript s stands for scalar, the subscript p
means proportional to p, and u is the fourth velocity vector
which in the system’s rest frame is u ¼ ð1; 0; 0; 0Þ. Each
of the above terms will be separated into even and odd
contributions.
The hadronic sector is usually represented in terms

of the finite density fermion self energy. We write the
nucleon correlator in the hadronic sector in a different
way, which can easily be obtained in terms of the self
energy

ΠN ¼ −λ2N
γ0ðp0 þ ΔμÞ − vγ · p −mN

; ð29Þ

where Δμ is a correction to the baryon chemical potential,
and v is the fermion velocity. The nucleon-current coupling
and the nucleon mass are now density dependent, and in the
absence of any isospin breaking factor, proton and neutron
correlators will lead to the same results.
In the hadronic and in the QCD sector, all possible

structures were included. However, for our analysis
we need only two of those terms in order to find λN ,
and also to avoid the presence of other condensates of
dimension four, which are unknown, as well as higher
dimensional condensates. In the case where we use Ioffe’s
interpolating nucleon current we have for proton up to
dimension 6 [17,26–28,30–32]

Πe
p ¼ −

1

64π4
s2 lnð−sÞ þ 1

9π2
ð4hθui þ hθdiÞ

−
1

32π2
lnð−sÞhG2i þ 1

36π2
lnð−sÞhθgi

−
2

3
hūui2 − 4

3
hu†ui2 þ RT ð30Þ

Πe
s ¼

1

4π2
lnð−sÞhd̄di − 1

12
hG2ihd̄di þ RT; ð31Þ

where

hθqi≡
�
q̄

�
iγ0D0 −

mq

4

�
q

�
ð32Þ

is the zero component of the energy momentum tensor Tq
00

associated to quarks. Similarly,

hθgi≡
�
αs
π

�
Ga

0αG
a α
0 −

1

4
Ga

αβG
a αβ

��
: ð33Þ

At the end of each form factor, RT stands for regular terms,
i.e. those without branch cuts or poles in the complex s
plane, having no contribution to the FESR.
The condensates and nucleon mass as a function of

baryon density can be described as

hq†qi ¼ 3

2
ρB ð34Þ

hq̄qi ¼ hq̄qi0½1 − 0.329ðρB=ρ0Þ� ð35Þ

hG2i ¼ hG2i0½1 − 0.066ðρB=ρ0Þ� ð36Þ

hΘqi ¼ 2.6 × 10−4ðρB=ρ0Þ ð37Þ

hΘgi ¼ 6.1 × 10−5ðρB=ρ0Þ ð38Þ

m�
N ¼ mN ½1 − 0.329ðρB=ρ0Þ�; ð39Þ

where ρB is the baryon density, and ρ0 ¼ 0.16 fm−3 ¼
1.22 × 10−3 GeV3 is the nuclear density. In the estimations
considered above, we have used the value of the pion-
nucleon sigma term as σN ¼ 45 MeV.

IV. MAGNETIC FIELD EFFECTS

When considering finite magnetic field effects together
with finite density, the required Feynman diagrams in the
operator product expansion will involve a plethora of new
condensates. This is a consequence of Lorentz symmetry
breaking. We have taken into account here a subset of all
possible condensates. In order to have a simple represen-
tation we restrict the condensates to the relevant ones at
finite density. The only strictly magnetic condensate to be
considered is the polarization of the chiral condensate
hq̄σ12qi. Hence, we have the common terms that already
exist in vacuum described in Eqs. (24) and (25), the
exclusive density terms in Eq. (30), the exclusive magnetic
field terms [19], and some combination of both that we
need to determine. Considering only the subset of con-
densates described above, the only relevant mixed con-
tribution will be Πe

u ∼ ðeBÞ2hq†qi, which contributes in the
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hadronic sector to Δμ defined in Eq. (29), and which is not
considered in this work.
The set of FESR then for protons is the following:

λ2p ¼ s3p
192π4

þ sp
32π3

hαsG2i þ 2

3
hūui2

þ sp
2π4

euedB2 þ sp
6π4

ðeuBÞ2½lnðsp=8m2
qÞ − 1�

þ sp
96π4

ðedBÞ2½8 lnðsp=8m2
qÞ − 9�

þ 3ρ2B −
sp
9π2

hθdi −
4sp
9π2

hθui −
sp

72π2
hθgi ð40Þ

λ2pmp ¼ −
s2p
8π2

hd̄di þ 1

12π
hαsG2ihd̄di þ sp

2π2
euBhd̄σ12di

þ 4

3π2
ðeuBÞ2½lnðsp=m2

qÞ − 1�hd̄di ð41Þ

−λ2p
κpB

2
¼ s2p

48π2
hd̄σ12di þ

euBsp
24π2

hd̄di: ð42Þ

For neutrons, the FESR are the same with the replace-
ment of p → n and u ↔ d. Here, eu and ed are the quark
charges, sp is the continuum threshold for protons, and κp
is the proton anomalous magnetic moment. Note that the

exclusive finite density contribution only appears in the last
line of Eq. (40).
The next step is to incorporate density and magnetic field

depending condensates. Besides the chiral condensate,
there is not much in the literature for the value of the
different condensates including both effects. On the other
hand, most of the works which consider magnetic evolution
of condensates usually consider very high magnetic field
strength values, much bigger than 0.1 GeV2, so this is not a
simple task. Therefore we need to assume some simpli-
fications in order to evaluate the sum rules.
The evolution of the gluon condensate with respect

to the magnetic field is almost negligible for low B
[19,33]. In this way, it is reasonable to consider only a
baryon density dependent gluon condensate. From [34]
we can see that, at low B, the approximation fðB; ρBÞ ≈
fðB; 0Þfð0; ρBÞ=fð0; 0Þ can be applied to the quark con-
densate. We will use this approximation also for the
nucleon mass, with the magnetic evolution of chiral
condensate and nucleon mass the same as used in [21].
In the case of the expectation values hθqi and hθgi, we will
leave them as baryon density dependent only.

V. RESULTS

Once we have solved the set of the three coupled FESR
described in Eqs. (40)–(42), we obtain the magnetic and

FIG. 1. Neutron-current coupling (upper panel) and proton-
current coupling (lower panel) as functions of the baryon density
in units of the nuclear density for different values of the external
magnetic field strength.

FIG. 2. Neutron-current coupling (upper panel) and proton-
current coupling (lower panel) as functions of the external
magnetic field strength for different values of baryon density
in units of the nuclear density.
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baryon-density evolution of the hadronic thresholds and
the current couplings. In Fig. 1 we show the behavior
of the neutron and proton current couplings as a function of
the baryon density, measured in units of the nuclear density
ρ0 ¼ 0.16 fm−3, for different values of the external mag-
netic field. The couplings diminish as the baryon density
increases, in agreement with the deconfining tendency
associated to high baryon density. On the contrary, as
was noted in [15], the presence of the magnetic field
increases the values of the nucleon couplings. In a similar
way, in Fig. 2, we see the nucleon couplings as a function of
the magnetic field for different values of the baryon density.
The tendency of the couplings is to increase with the
magnetic field, expressing the confining effect of the
magnetic field. Both effects, magnetic field and baryon
density, compete with each other.
The hadronic thresholds for neutron and proton as a

function of the baryon density for different values of the
magnetic field are plotted in Fig. 3. Notice the similarity
of the shapes of the hadronic thresholds compared with the
evolution of the nucleon couplings. This is somehow
expected since, at lowest order in the OPE expansion,
λ2N ∼ s30 as can be seen in Eq. (40). The decreasing of the
hadronic thresholds as a function of the baryon density also

is a signature of deconfinement trend. The presence of the
magnetic field raises the value of the thresholds. The same
can be seen in Fig. 4, where the hadronic thresholds are
plotted as a function of the magnetic field for different
values of the baryon density.
Notice that sn < sp in all cases shown in Figs. 3 and 4.

This implies that, from Eq. (21), the axial-vector coupling
constant at a finite baryon density and magnetic field
is then

gA ¼ 1

48π4
s3n
λnλp

: ð43Þ

Since we have obtained the evolution of current cou-
plings and neutron continuum threshold, the medium
evolution of the nucleon axial-vector coupling constant
is determined as can be seen in Fig. 5 as a function of the
baryon density and in Fig. 6 as a function of the magnetic
field strength. The axial-vector coupling decreases with the
baryon density, and at the nuclear density g�A ≡ gAðρ0Þ ≈
0.92 in agreement with other approaches that suggest that
g�A ≲ 1. As the magnetic field increases, the axial-vector
coupling becomes smaller for ρB ≲ 1.25ρ0. However, for
ρ≳ 1.25ρ0, gA seems to increase with the magnetic field.
This means that in magnetar’s nuclear matter, gA ∼ g�A is
apparently not affected by the magnetic field.

FIG. 3. Neutron-current continuum threshold (upper panel) and
proton-current continuum threshold (lower panel) as functions of
the baryon density in units of the nuclear density for different
values of the external magnetic field strength.

FIG. 4. Neutron-current continuum threshold (upper panel) and
proton-current continuum threshold (lower panel) as functions of
the external magnetic field strength for different values of baryon
density in units of the nuclear density.
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VI. CONCLUSIONS AND DISCUSSION

In this study, we conducted a comprehensive analysis
within the framework of QCD FESR, investigating the

evolution of the nuclear axial-vector coupling with respect
to both baryonic density and a constant, uniform magnetic
field. Our research aims to emulate the scenario of nuclear
matter in magnetars.
As a result, we obtain a decreasing axial-vector

coupling when baryonic density increases, where in the
specific case of the nuclear density g�A ≈ 0.92 in accordance
with the commonly assumed value that establishes that
g�A ∼ 1 [4–13]. The axial-vector coupling at nuclear density
is basically unchanged by the effects of the magnetic field,
at least for the values considered here.
The plotted curves of the axial-vector coupling as a

function of the baryon density present an intersection when
different values of the magnetic field are considered. This
behavior, the increasing of gA with the magnetic field, may
be enhanced for higher values of baryon density and
magnetic field, which is the case when one gets close to
the core of the magnetar.
It is important to remark that there are many approxi-

mations concerning the magnetic evolution of the differ-
ent condensates. Since there are no other approaches
which consider both, baryonic density and magnetic field
effects, in the axial-vector coupling it is difficult to
determine if this behavior is correct, but these simplifi-
cations are taken under a reasonable basis. However it is
important to obtain a complete and better in-medium
evolution of the condensates as well as the incorporation
of other neglected condensates. This will be explored
elsewhere in future work.
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