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In this paper, we study the properties of the pion-photon transition form factor (TFF), γγ� → π0, by using
the principle of maximum commonality (PMC) to deal with its perturbative QCD contribution up to next-
to-next-to-leading order QCD corrections. Applying the PMC, we achieve precise pQCD prediction for the
TFF in a largeQ2-region without conventional renormalization scale ambiguity. We also discuss the power
suppressed nonvalence quark contribution to the TFF, which is important for a sound prediction in a low
and intermediate Q2-region, e.g. the nonvalence quark components affect the TFF by about 1% to 23%
when Q2 changes down from 40 GeV2 to 4 GeV2. The resultant pion-photon TFF shows a better
agreement with previous Belle data. It is hoped that previous discrepancies between the experimental
measurements and theoretical predictions could be clarified by the forthcoming precise data on the Belle II
measurements.
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To meet the needs of the forthcoming more-and-more
precise experimental measurements, it is helpful to have
more precise standard model (SM) prediction so as to
improve the comparison of theoretical predictions with the
data and then ensure whether there is new physics beyond
the SM or not. Among them, the pion-photon transition
form factor (TFF) is an important component that is related
to the axial anomaly [1,2] and can be used to study the
chiral symmetry, the quark-mass ratio, the characteristics
of the pseudoscalar meson’s decay, etc. [3,4]. The pion-
photon TFF predicts the time-ordered product of two
electromagnetic currents using the operator-product-expan-
sion [5,6]. Different kinematic setting functions of the TFF
provide a theoretical description of various two-photon
processes, e.g., the deeply inelastic lepton-hadron scatter-
ing and the deeply virtual Compton scattering [7–10]. The
pion-photon TFF is also an important input to calculate the
hadronic light-by-light contribution to the muon anomalous
magnetic moment ðg − 2Þμ [11–13]. Therefore, in-depth
research on the pion-photon TFF is important.

Early experimental studies on the pion-photon TFF traced
back to the CELLO and CLEO measurements in 1991 and
1998 [14,15]. Lately, in 2009, theBABARCollaboration [16]
issued the data on the pion-photon TFF for the kinematic
region Q2 ∈ ½4; 40� GeV2, which sparked a heated discus-
sion by showing the unexpected scaling violation of the TFF,
e.g., its large Q2 behavior contradicts the well-known
asymptotic prediction,which indicates thatQ2FπγðQ2Þ tends
to be a constant [6]. In 2012, the Belle Collaboration [17]
issued their measurements for the same energy region, and
the data showed that the pion-photon TFF does not increase
significantly in a large Q2 region, which has a 2σ deviation
compared with the BABAR data. Benefiting from the high
luminosity and high trigger efficiency in Belle II at the
SuperKEKB experiment [18], the total uncertainty of the
system is expected to be 2 times smaller than that of Belle I.
Then it is hopeful that the above experimental discrepancy
could be clarified in the near future.
Theoretically, the pion-photon TFF has been studied

under various approaches. Using the QCD factorization,
the pion-photon TFF with one real and one virtual photon at
the leading-power level [Oð1=Q2Þ] can be decomposed
into two parts, i.e., the perturbatively calculable coefficient
function (CF) and the nonperturbative twist-two pion light-
cone distribution amplitude (LCDA) [19–21]. Many efforts
have been devoted to the calculation of the CF, e.g.
Refs. [22–24] derived the next-to-leading order (NLO)
QCD correction; lately, the computation of next-to-next-to-
leading-order (NNLO) QCD correction under the large
β0-approximation and the conformal scheme has been done
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by Refs. [25,26]; and the complete NNLO QCD correction
using the conformal symmetry [27] and the hard-collinear
factorization theorem [28] have been reported recently.
Those works provide us with great chances to achieve
precise pQCD prediction on CF.
At present, the original perturbative NNLO series of the

CF still shows large renormalization scale uncertainty, and it
becomes an important systematical error in their interpreta-
tion. It is noted that such large scale error is due to the
mismatching of strong coupling αs and its corresponding
coefficients [29–31], which is unnecessary and can be
removed via a proper scale-setting approach, leading to a
precise prediction consistent with standard renormalization
group invariance. For example, the principle of maximum
commonality (PMC) [32–36] provides a systematical way to
eliminate such conventional scale ambiguity by using the
renormalization group equation (RGE), or the β-function.
The RGE determines the correct αs running behavior of the
process by recursively using the fβig-terms of the perturba-
tive series. It has been demonstrated that after applying the
PMC, the resultant perturbative series becomes scale-
invariant that is independent of any initial choice of renorm-
alization scale [37]. And due to the elimination of the
RGE-involved divergent renormalon terms, the convergence
of the resultant CF perturbative series can be naturally
improved.
In the present paper, we shall adopt the PMC single

scale-setting approach [38] to achieve a scale-invariant
pQCD prediction for the CF of the leading-power valence
quark contribution Q2FV

πγðQ2Þ. By using the PMC single
scale-setting approach, the residual scale dependence [39]
due to the unknown even higher-order terms can be highly
suppressed. There are also power suppressed nonvalence
(NV) quark contributions, Q2FNV

πγ ðQ2Þ, and the total pion-
TFF can be written as

Q2FπγðQ2Þ ¼ Q2FV
πγðQ2Þ þQ2FNV

πγ ðQ2Þ: ð1Þ
The Q2FV

πγðQ2Þ arises from the direct annihilation of qq̄
pair in the pion into two photons, which provides the
dominant contribution to the CF in the largeQ2-region. The
Q2FNV

πγ ðQ2Þ is associated with the nonperturbative high-
Fock states in the pion [40–43], whose contributions can be
estimated by using proper phenomenological models. And
as will be shown below, they will have sizable contributions
in the low Q2-region.
Firstly, the leading-power contribution Q2FV

πγðQ2Þ can
be expressed as follows [19–21]:

Q2FV
πγðQ2Þ ¼

ffiffiffi
2

p
fπ
6

Z
1

0

dxTðx;Q; μfÞϕπðx; μfÞ; ð2Þ

where the pion decay constant fπ ¼ 130.5 MeV [44] and
the pion LCDA ϕπðx; μfÞ is usually represented as a
Gegenbauer polynomial expansion [6,45], e.g.,

ϕπðx; μfÞ ¼ 6xx̄
X

n¼0;2;���
anðμfÞC3=2

n ð2x − 1Þ; ð3Þ

where x̄ ¼ 1 − x, C3=2
n ð2x − 1Þ is the Gegenbauer poly-

nomial and μf is the factorization scale. The first moment
a0 equals to 1 by using the normalization condition.
The pion TFF is highly sensitive to the pion LCDA

[27,28]. To determine the precise behavior of the pion
LCDA is an interesting topic, which has been discussed
under various approaches, e.g., the lattice QCD, the QCD
sum rules, the Dyson-Schwinger equations, etc. [46–56],
most of which prefer the asymptotic form suggested by
Lepage and Brodsky [6]. In this paper, we will adopt the
latest Gegenbauer moments an obtained by using the QCD
sum rules in the framework of background field theory [57]
for subsequent numerical analysis. It improves the tradi-
tional light-cone harmonic oscillator model of the pion
leading-twist LCDA by introducing a new longitudinal
behavior of the wave function and gives a new method for
determining input parameters, see Ref. [57] for more
details. Specifically, it shows that the LCDA moments,
e.g., hξ2i2;πjμ0 ¼ 0.271� 0.013, hξ4i2;πjμ0 ¼ 0.138� 0.010,
which lead to theGegenbauer moments a2 ¼ 0.206� 0.038
and a4 ¼ 0.047� 0.011 at the scale μ0 ¼ 1 GeV. Figure 1
shows the behaviors of our adopted LCDA ϕπ , which is
asymptoticlike. We also present the asymptotic form
(ϕAS ¼ 6xð1 − xÞ with a2 ¼ 0) [6] and the Chernyak-
Zhitnitsky (CZ) form (ϕCZ ¼ 30xð1 − xÞð2x − 1Þ2 with
a2 ¼ 0.6) [58] in the figure.
The perturbatively calculable CF can be written as

Tðx;Q; μfÞ ¼ Tð0Þðx;Q; μfÞ þ asðμrÞTð1Þðx;Q; μf; μrÞ
þ a2sðμrÞTð2Þðx;Q; μf; μrÞ þOða3sÞ; ð4Þ
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FIG. 1. Our present adopted LCDA at μ0 ¼ 1 GeV, which is
shown by the dash-dot line. The shaded band shows its
uncertainty for a2 ¼ 0.206� 0.038 and a4 ¼ 0.047� 0.011.
The dotted and the dashed are for the asymptotic LCDA and
the CZ LCDA, respectively.
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where μr is the renormalization scale and as ¼ αs=4π.
Substituting Eqs. (3) and (4) into Eq. (2), we get

Q2FV
πγðQ2Þ ¼ Fð0ÞðQ2Þ þ Fð1ÞðQ2; μrÞasðμrÞ

þ Fð2ÞðQ2; μrÞa2sðμrÞ þOða3sÞ: ð5Þ

The LO, NLO, and NNLO coefficients Fði¼0;1;2Þ under the
MS-scheme can be read from Refs. [27,28]. Following the
standard PMC procedures, one can rewrite the pion-photon
TFF as

Q2FV
πγðQ2Þ ¼ 0.185þ r1;0asðμrÞ þ ½r2;0

þ β0r2;1�a2sðμrÞ þOða3sÞ; ð6Þ

where β0 ¼ 11 − 2
3
nf with nf being the number of active

light flavors. If setting the factorization scale as μf ¼ Q, the
analytical coefficients ri;j are

r1;0 ¼ 0.208E2ðQ; μ0Þ þ 0.135E4ðQ; μ0Þ − 1.230; ð7Þ

r2;0 ¼ −7.292E2ðQ; μ0Þ − 1.699E4ðQ; μ0Þ − 7.015; ð8Þ

r2;1 ¼ 2.610E2ðQ; μ0Þ ln
μ2r
Q2

þ 0.995E2ðQ; μ0Þ

þ 1.693E4ðQ; μ0Þ ln
μ2r
Q2

þ 0.570E4ðQ; μ0Þ

− 15.461 ln
μ2r
Q2

− 2.674; ð9Þ

where

EnðQ; μ0Þ ¼
�
αsðQÞ
αsðμ0Þ

�
γð0Þn =18

: ð10Þ

Here γ0n is the leading-order anomalous dimension

γ0n ¼ 8CF

�
ψðnþ 2Þ þ γE −

3

4
−

1

2ðnþ 1Þðnþ 2Þ
�
; ð11Þ

where CF ¼ 4=3, γE ¼ 0.577216 is EulerGamma constant
and ψðnþ 2Þ ¼ Pnþ1

k¼1 1=k − γE. The function ofEnðQ; μ0Þ
is to run the moments from the initial scale μ0 to Q, e.g.,
anðQÞ ¼ anðμ0ÞEnðQ; μ0Þ. To fix the αs scale running
behavior, we shall adopt αsðMZÞ ¼ 0.1179� 0.0009 [44]
to set the asymptotic scale (ΛQCD), which leads to ΛQCD ¼
0.385� 0.015 GeV by using the two-loop RGE.
Following the standard PMC procedures, one can use the

RG-involved β0-terms as explicitly given in Eq. (6) to fix an
effective strong coupling asðQ�Þ, and the series becomes a
conformal one independent to the choice of the renorm-
alization scale and scheme, e.g.,

Q2FV
πγðQ2Þ ¼ 0.185þ r1;0asðQ�Þ þ r2;0a2sðQ�Þ þOða3sÞ;

ð12Þ

where the PMC scale Q� satisfies

ln
Q2�
Q2

¼ −
r2;1
r1;0

: ð13Þ

Q� represents the physical momentum flow of the pion TFF
in the sense of its independence to the choice of renorm-
alization scale. Figure 2 shows the PMC scale Q� monoto-
nously increases with the increment of Q.
Figures 3 and 4 present the NLO and NNLO valence

quark contribution Q2FπγðQ2Þ under the conventional and
PMC predictions, respectively. Figure 3 shows that by
including the NNLO terms and the renormalization scale
uncertainty for the conventional series of Q2FV

πγðQ2Þ
becomes much larger than the NLO scale uncertainty.
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FIG. 2. The PMC scale Q� versus Q.
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FIG. 3. The NLO and NNLO valence quark contribution
Q2FV

πγðQ2Þ under the conventional prediction, where the
light-colored thinner band and the dark-colored broader band
correspond to their renormalization scale uncertainties with
μr ∈ ½Q=2; 2Q�, respectively.
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This is caused by the fact that the large renormalization
scale dependent log-terms for the conventional series, as
shown by Eqs. (6)–(9), start at the NNLO level. In Fig. 3, as
a conservation estimation, we have adopted the usual
choice of μr ∈ ½Q=2; 2Q� to discuss the renormalization
scale uncertainty. In the literature, some other choices have
also been suggested to analyze the scale uncertainty. For
example, the renormalization scale μr ¼

ffiffiffiffiffiffiffihxip
Q with the

effective quark momentum fraction hxi within the range of

½1=4; 3=4� has been suggested by Ref. [28], which is based
on the light-cone sum rule analysis of the pion-photon
transition from the factor given by Refs. [59,60]. Using this
smaller range, a smaller NNLO scale uncertainty can be
obtained, e.g., when setting Q ¼ 10 GeV2, 20 GeV2, and
40 GeV2; the NNLO scale uncertainty changes down from
30.65% to 17.47%, from 23.33% to 13.49%, and from
18.40% to 10.74%, respectively. Figure 4 shows that the
renormalization scale uncertainty is eliminated by applying
the PMC.
Secondly, to estimate the nonvalence quark contribution

Q2FNV
πγ ðQ2Þ, we adopt the phenomenological model sug-

gested in Ref. [40], e.g.,

FNV
πγ ðQ2Þ ¼ α

ð1þ Q2

κ2
Þ2
; ð14Þ

where

α ¼ FNV
πγ ð0Þ ¼

1

2
Fπγð0Þ ¼

1

8π2fπ
; ð15Þ

and

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

Fπγð0Þ
∂

∂Q2 FNV
πγ ðQ2ÞjQ2→0

s
; ð16Þ

∂FNV
πγ ðQ2Þ
∂Q2

����
Q2→0

¼ −A
128

ffiffiffi
3

p
m2

qπ
2β2

Z
1

0

ð1þ b1C
3=2
2 ð2x − 1Þ þ b2C

3=2
4 ð2x − 1ÞÞ x

1 − x
ðm2

q þ 4xð1 − xÞβ2Þ

× exp

�
−

m2
q

8β2xð1 − xÞ
�
dx; ð17Þ

wheremq ≃ 0.3 GeV is the constituent quark mass, and the
following wave function Ψπðx;k⊥Þ has been implicitly
adopted to calculate the nonvalence contribution,

Ψπðx;k⊥Þ ¼ Að1þ b1C
3=2
2 ð2x − 1Þ þ b2C

3=2
4 ð2x − 1ÞÞ

× exp

�
−

k2⊥ þm2
q

8β2xð1 − xÞ
�
; ð18Þ

whose dominant longitudinal behavior is given by a
Gegenbauer polynomial expansion, and the parameters
A, b1;2, and β are subject to the normalization condition,

Z
1

0

dx
Z

d2k⊥
16π3

Ψπðx;k⊥Þ ¼
fπ
2

ffiffiffi
6

p ; ð19Þ

and the constraint from π0 → γγ decay [61],

Z
1

0

dxΨπðx;k⊥ ¼ 0Þ ¼
ffiffiffi
6

p

π
: ð20Þ

Here we have adopted the Brodsky-Huang-Lepage prescrip-
tion for the transverse momentum dependence [61] and
considered the usual helicity component [62]. The pion
LCDA can be achieved by integrating over transverse
momentum k⊥ from the wave function (18), which can be
expanded as the same form as that of Eq. (3), and the first two
Gegenbauer moments a2 ¼ 0.206� 0.038 and a4 ¼
0.047� 0.011 will be used as two extra constraints to fix
the input parameters. Using those constraints, the input
parameters can be fixed numerically,

A ¼ 21.22þ0.53
−0.51 ; ð21Þ

β ¼ 0.684þ0.006
−0.012 ; ð22Þ

b1 ¼ 0.125þ0.034
−0.028 ; ð23Þ

b2 ¼ 0.063þ0.009
−0.008 ; ð24Þ

whose errors are for Δa2 ¼ �0.038 and Δa4 ¼ �0.011.
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FIG. 4. The NLO and NNLO valence quark contribution
Q2FV

πγðQ2Þ under the PMC prediction.
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Figure 5 presents the nonvalence quark contribution
Q2FNV

πγ ðQ2Þ, whose central value corresponds to a2¼ 0.206
and a4 ¼ 0.047, and the error bar is for Δa2 ¼ �0.038 and
Δa4 ¼ �0.011. It shows that because the nonvalence quark
contribution suffers from the Q2-suppression, its magnitude
is relatively small in the largeQ2 region. In contrast, whenQ2

is small, the nonvalence quark contribution becomes sizable,
which should be taken into consideration to have a sound
prediction for the pion-photon TFF Q2FπγðQ2Þ.
As a combination of the NNLO-level leading-power

valence quark contribution Q2FV
πγðQ2Þ and the nonvalence

quark contribution Q2FNV
πγ ðQ2Þ, we present the total pion-

photon TFF Q2FπγðQ2Þ in Fig. 6. Here the blue-solid and

red-solid lines are for the valence quark contribution
Q2FV

πγðQ2Þ under conventional and PMC predictions,
respectively. The blue-dashed and the red-dotted lines are
the total results by taking the central nonvalence quark
contribution into account.As expected, the nonvalence quark
contribution is relativistically small in the high Q2 region,
which is however sizable, especially in the smallQ2 region. It
should be emphasized that by using the PMC scale-setting
method, the resultant scale-invariant NNLO valence quark
contribution Q2FV

πγðQ2Þ becomes more convergent and
improves the accuracy of the perturbation theory predic-
tion on the valence quark effect. Numerically, when
Q2 ∈ ½4; 40� GeV2, the nonvalence quark contribution to
theQ2FπγðQ2Þwith conventional valence quark contribution
Q2FV

πγðQ2Þ decreases with the increment of Q2 and lies
within the range of [1.21%–8.32%] for μr ¼ Q, which
changes to [1.24%–23.29%] for the scale-invariant PMC
valence quark contribution. Specifically, when Q2 ¼
5 GeV2, the TFF Q2FπγðQ2Þ increased by 7.18% and
10.51% for conventional and PMC valence quark results
when the contribution of the nonvalence quark has been
taken into account. When Q2 ¼ 10 GeV2, the nonvalence
quark contributions become smaller and change to 4.22%
and 4.63% for conventional and PMC valence quark pre-
dictions, respectively.WhenQ2 > 20 GeV2, the nonvalence
quark contributions become less than 2% for both cases.
Figures 7 and 8 give the theoretical uncertainties of the

pion-photon TFF Q2FπγðQ2Þ by taking the renormaliza-
tion scale μr ∈ ½Q=2; 2Q�, ΔαsðMZÞ ¼ �0.0009, Δa2 ¼
�0.038, Δa4 ¼ �0.011, and the factorization scale
μf ∈ ½Q=2; 2Q�. For the pion-photon TFF Q2FπγðQ2Þ with
conventional valence quark contribution, its uncertainty
mainly comes from renormalization scale uncertainty. For
example, when Q2 ¼ 20 GeV2, the combined error is
about 12.29%, where the renormalization scale error is
≈12.06%, the LCDA error is ≈2.28%, the ΔαsðMZÞ error
is ≈0.36%, and the factorization scale error is ≈0.52%,
respectively. While, by using the PMC to eliminate the
renormalization scale error of the valence quark contri-
bution, the combined error of the TFF Q2FπγðQ2Þ can be
significantly reduced, i.e., when Q2 ¼ 20 GeV2, the net
error becomes about 2.99%, where the remaining LCDA
error is ≈2.89% and the ΔαsðMZÞ error is ≈0.58%, and the
factorization scale error is ≈0.28%.1
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FIG. 5. The nonvalence quark contribution Q2FNV
πγ ðQ2Þ versus

Q2. The dashed line represents its central value for a2 ¼ 0.206
and a4 ¼ 0.047, and the shaded band shows its error for Δa2 ¼
�0.038 and Δa4 ¼ �0.011.
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FIG. 6. The pion-photon TFF Q2FπγðQ2Þ versusQ2 before and
after taking into account the nonvalence quark contribution. The
blue-solid and red-solid lines are for the valence quark contri-
bution under conventional and PMC predictions, respectively.
The PMC prediction is scale invariant and the scale-dependent
conventional prediction is for μr ¼ Q. The blue-dashed and the
red-dotted lines are the total results by taking the nonvalence
quark contribution into account, respectively. The experimental
data of CLEO [15], BABAR [16], and Belle [17] Collaborations
are given as a comparison.

1The elimination of the factorization scale uncertainty is a
separate problem, which could be solved by matching the
nonperturbative bound-state dynamics with the Dokshitzer-Gri-
bov-Lipatov-Altarelli-Parisi evolution equation [63–65]. The
present NNLO prediction of the pion-photon TFF shows that
the factorization scale dependence can be decreased by applying
the PMC for the largeQ2 region. Two similar observations for the
hadronic production of top-quark pair and Higgs boson have also
been found in Refs. [66,67]. Then, as a practical treatment, one
may apply the PMC to reduce the factorization scale uncertainty.
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We adopt the quality of fit by using the parameter of
χ2d:o:f=d:o:f (where the symbol “d.o.f” is the short notation
of the degrees of freedom) to show to what degree the
predicted pion-photon TFF Q2FπγðQ2Þ agrees with the
data, e.g., [44],

χ2d:o:f ¼
1

N

XN
j¼1

�
Q2FðQ2Þjexpt: −Q2FðQ2Þjthe.

σ2i

�2
; ð25Þ

where “expt” stands for the experimental value, and σi is
the corresponding error for each point. The symbol of “the”
stands for the central value of the theoretical prediction.
From Refs. [15–17], we getN ¼ 6,N ¼ 17 andN ¼ 15 for
CLEO, BABAR, and Belle data, respectively, which stands
for the number of the data points. Table I shows the values
of χ2d:o:f obtained with conventional and PMC prediction of
Q2FV

πγðQ2Þ in comparison to the CLEO, BABAR, and Belle
data, respectively. The results indicate that the TFF
Q2FπγðQ2Þ with the PMC valence quark contribution
has much smaller χ2d:o:f compared to the conventional
one. The conventional TFF Q2FπγðQ2Þ does not agree
with the data, all of its corresponding p-values are less than
1%. While one may observe that by using the PMC to
improve the perturbative contribution, a better prediction
can be achieved. More explicitly, the PMC TFFQ2FπγðQ2Þ
agrees with the CLEO data in the low Q2 region, which
corresponds to a p-value ∈ ½68%–90%�. And in the high
Q2 region, the PMC TFF Q2FπγðQ2Þ is close to the
Belle data, which corresponds to a p-value ∈ ½50%–68%�;
on the contrary the PMC prediction TFF Q2FπγðQ2Þ is
inconsistent with the BABAR data, whose p-value is less
than 1%.
As a summary, we have adopted the PMC single-scale

approach to deal with the pQCD calculable valence quark
contribution to the pion-photon TFF Q2FπγðQ2Þ up to
NNLO accuracy. As for the TFF under the conventional
scale-setting approach, as shown by Fig. 7, its error is
dominated by the choice of the renormalization scale. And
it cannot explain the data even by including the nonvalence
quark contribution.
Applying the PMC, a more precise pQCD prediction

for the pion-photon TFF in the large Q2 region without
the conventional renormalization scale ambiguity can be
achieved. And as shown by Fig. 8, the net theoretical

uncertainty can be greatly suppressed. Using the asympto-
ticlike pion LCDA, we also estimate the nonvalence quark
contribution Q2FNV

πγ ðQ2Þ, which is sizable in the low Q2

region and affects the pion-photon TFF by about 23% for
Q2 ¼ 4 GeV2. The resultant PMC pion-photon TFF shows
a better agreement with the previous Belle data. It is hoped
that previous discrepancies between the experimental
measurements and theoretical predictions could be clarified
by the forthcoming more precise data at the Belle II
experiment [18].

TABLE I. The values of χ2d:o:f for Q2FπγðQ2Þ obtained with
conventional and PMC prediction ofQ2FV

πγðQ2Þ in comparison to
the CLEO, BABAR, and Belle data, respectively.

χ2d:o:f CLEO BABAR Belle

Conventional 3.81 23.07 6.88
PMC 0.53 6.97 0.87
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FIG. 7. Uncertainties of the pion-photon TFF Q2FπγðQ2Þ with
the scale-dependent conventional valence quark contribution
Q2FV

πγðQ2Þ. The shaded band represents the combined uncertain-
ties caused by taking the renormalization scale μr ∈ ½Q=2; 2Q�,
ΔαsðMZÞ ¼ �0.0009, Δa2 ¼ �0.038, Δa4 ¼ �0.011, and the
factorization scale μf ∈ ½Q=2; 2Q�. The experimental data of
CLEO [15], BABAR [16], and Belle [17] Collaborations are given
as a comparison.

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

FIG. 8. Uncertainties of the pion-photon TFF Q2FπγðQ2Þ with
the scale-invariant PMC valence quark contribution Q2FV

πγðQ2Þ.
The shaded band represents the combined uncertainties caused by
taking ΔαsðMZÞ ¼ �0.0009, Δa2 ¼ �0.038, Δa4 ¼ �0.011,
and the factorization scale μf ∈ ½Q=2; 2Q�. The experimental
data of CLEO [15], BABAR [16], and Belle [17] Collaborations
are given as a comparison.
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