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Motivated by the recent experimental progress in the A, decay that contains a neutron in the final state,
we analyze the semileptonic decay A. — nfv, in the framework of QCD sum rules. The transition form
factors are analytically computed using three-point correlation functions and the Cutkosky cutting rules,
which can be extrapolated into the physical region by employing the z-series parametrization. The
branching fractions of A. — ne*v, and A. — nu'v, are estimated to be (0.281 +0.056)% and
(0.275 4+ 0.055)%, respectively. Furthermore, we calculate as well the relevant decay asymmetry
observables sensitive to new physics beyond the standard model. The numerical results of semileptonic
decays A. — Afv, are also given and confronted to the latest experimental data.
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I. INTRODUCTION

The semileptonic decay of the lightest charmed baryon
A, plays an important role in exploring strong and weak
interactions in charm sectors. It can help elucidate the role
of nonperturbative effects in strong interactions and provide
crucial inputs for studying heavier charmed baryons and
bottom baryon decay. Additionally, the precise measure-
ment of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements |V | and |V 4| can also provide the significant
test for the standard model and the probable evidence for
new physics beyond the standard model [1].

In recent years, there have been extensive measurements
of the semileptonic decay modes A, — Afv, [2-5].
The most precise results of branching fractions yet
are B(A. = Ae'v,) =(3.56 £0.11 £0.07)% [4] and
B(A. = Auty,) = (348 £0.1440.10)% [5], respec-
tively. Comparing the former result with A_. inclusive
semileptonic decay mode B(A, — XeTv,) = (3.95+
0.34 £ 0.09)% [6], it can be inferred that there still remain
some potential exclusive semileptonic decay modes meas-
urable. Recently, the BESIII Collaboration reported the
evidence of the decay modes containing excited states,
specifically A, = A(1520)e*v, and A, — A(1405)ety,
[7]. These two decay modes yield relatively small branch-
ing fractions to be (1.02+£0.5240.11) x 10~ and
(0.42 +0.19 £ 0.04) x 1073, respectively. Moreover, the
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measurement of two five-body semileptonic decay modes
A, = Artrmety, and A, = pK%z~etv, are also per-
formed [8], in which the upper limits are set to be B(A, —
Antrmety,) <3.9x 107 and B(A. - pKine'y,) <
3.3 x 107*. In physics, besides the A, semileptonic decay
modes that include A(A*) baryon in the final state, the
exclusive semileptonic decay modes A, — nfv, are also
permitted by the standard model. However, there is still a
lack of experimental data in this regard.

Theoretically, A, — nfv, is dominated by the Cabibbo-
suppressed transition ¢ — dfv,. As a result, the decay
width is anticipated to be much smaller compared with the
A, - Afv, mode, which is dominated by the Cabibbo-
favored transition ¢ — s£v,. Experimentally, the main
challenge lies in distinguishing neutron signals from
neutral noises, which leads to the problem of direct neutron
detection [9,10]. Fortunately, with the improvement of
detector performance and analysis technique, the BESIII
Collaboration has made notable progress in measuring A,
decays that involve neutron signals in the final state [9-12].
It is predictable that the experimental data for the decay
mode A, — nfv, will be available in the near future,
making it beneficial to explore this process theoretically.
Furthermore, the semileptonic decay A, — nfv, is an
exceptional candidate for extracting the magnitude of the
CKM matrix element |V ,|. Currently, the determination of
|V.q| relies primarily on the charm meson semileptonic
decay D — ntv, [13—17]. Therefore, it is of great impor-
tance to investigate the semileptonic decay A, — nfv,
both experimentally and theoretically since such studies are
crucial for providing precise verification for |V.,| in the
charm baryon sector.

In the past, theoretical investigations for A, — nfv,
semileptonic decay have been performed in-depth in a
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variety of methods, such as the light-cone sum rules
(LCSR) [18-20], the light front approach (LF) [21], the
covariant confined quark model (CCQM) [22], the con-
stituent quark model (CQM) [23], the relativistic quark
model (RQM) [24], the SU(3) flavor symmetry [25,26], the
MIT bag model (MBM) [27], and the lattice QCD (LQCD)
[28]. Additionally, QCD sum rules (QCDSR) has also been
widely utilized to deal with the baryonic decay mode
[29-37]. Rather than a phenomenological model, QCDSR
is a QCD-based theoretical framework that systematically
incorporates nonperturbative effects at each dimension. To
evaluate the form factors in the weak transitions, the three-
point correlation functions are constructed with appropriate
interpolating currents. After equating two representations
of the three-point correlation functions, i.e., the QCD
representation and the phenomenological representation,
using quark-hadron duality, the form factors will be
formally determined. In this work, we will apply
QCDSR to calculate the form factors of the A, — nfv,
semileptonic decay mode, after which the branching
fractions as well as some other relevant decay asymmetry
observables are also obtained. Besides, the numerical
results of A, - Afv, semileptonic decay are also given
and compared with the latest experimental results.

The rest of the paper is structured as follows: in Sec. Il
we interpret the basic idea of QCDSR for the three-point
correlation functions. The numerical results and analysis
are presented in Sec. III. The conclusions and discussions
are given in the last section.

II. FORMALISM

The A, = nfv, decay is dominated by the Cabibbo-
suppressed transition ¢ — dfv, at the quark level.
|

l Ve
c d
A > n
d
u
FIG. 1. Feynman diagram for A. — nfv, semileptonic decay.

The effective Hamiltonian depicting this transition is
written as

Hes = %vcd[?ml —ywdlar(-ys)d. (1)

where G5 denotes the Fermi constant and V., is the CKM
matrix element. The Feynman diagram of A, — nfv, is
shown in Fig. 1. The leptonic part of this decay mode can
be obtained through electroweak perturbation theory,
while the hadronic part cannot be calculated perturbatively
due to its involvement in the low-energy aspects of QCD.
In general, the weak transition matrix element of the
hadronic part can be parametrized in terms of transition
form factors

v

(Aclq)juln(q2)) = s, (q1) |:fl (*)r, + ifz(qz)ﬁ,wq— + f3(q?) Aj—ﬂ] u,(q2)

My, .
- 2 .2 q 2y I
= itn (1) |91(4°)1 + i92(67) 0 3=+ 93(47) 37| 7sita(42). (2)
A, A,
where g, and ¢, are the four-vector momentum of the Jin, = €ijp(uf Cysd;)ey, (4)
initial state A, and final state neutron, respectively. The ' ‘ '
momentum transfer ¢ is defined as ¢ = g; — ¢».
To calculate the transition form factors by QCDSR, the G = €ijk(uiT Cys dj) d,, (5)

three-point correlation functions can be formally con-
structed as

Hﬂ(Q% q%, qz) =2 / d4xd4ygi(‘11x—qu)

x (01T{ja, (x)ju(0)ja()}10). ~ (3)

The weak transition current j, is defined as j, =
¢r,(1 —ys)d, and the interpolating currents of A, and
the neutron take the following quark structure [35,38]:

where the subscripts i, j, and k represent the color indices
and C is the charge conjugation matrix. It should be
mentioned that there are other choices of interpolating
currents of the neutron, such as Ioffe type and tensor type
[39-41]. However, as stated in Ref. [31], if the approx-
imations in sum rule calculations are justified to be good
enough, these different currents should give roughly the
same physical results.
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On the phenomenological side, after inserting a complete set of intermediate hadronic states and exploiting double
dispersion relations, the three-point correlation functions in Eq. (3) can be described as

the(q%’ q%’ qz) _ Z <O|jAL ‘AC(QI)><

Ac(q1)ljuln(42))(n(g2)1jn|0)

where M, and M,, denote the mass of A, and the neutron,
respectively. The vacuum-to-baryon transition amplitudes
can be parametrized by defining the decay constants

<O|jAC|AC(ql)> = ﬂACMA((Cll)v (7)

<0|]n|n(Q2)> = An”n(Q2)7 (8)
|

o (g1 — M3 )(q3 — M7)

+ higher resonances and continuum states, (6)

where 4, and 1, represent the decay constants of A, and
the neutron, respectively. By introducing the hadronic
transition matrix elements in Eq. (2) and utilizing the
spin sum completeness relations, Y ua (q1)is (q1) =
4 + My, and > u,(q2),(q2) = ¢» + M, we can finally
obtain the phenomenological representation of the three-
point correlation functions of Eq. (3),

2nlds + M) [ F1 (@)1 + 2P0 5+ F3(6) | + M)

h
5" (q1.43.4°) =

(‘11

_M%C)(Ch n)

It should be noted that we assume f3(¢?) and g5(g*) to be
negligible in this study as they will contribute to semi-
leptonic decays at O(m?) [33,42].

On the QCD side, the three-point correlation functions of
Eq. (3) can be expressed by operator-product expansion
(OPE) and double dispersion relations,

51’S2 q9°)
dSl/ d52 M
/mm min — 2 ( q2)

(10)

H,?CD

611 ‘Iz

where sfln("‘) is the kinematic limit. p,, (sl, 55, q*) stands

for the spectral density, which can be obtained through the
application of Cutkosky cutting rules [33-37,43-45]. In
this work, contributions up to dimension 6 are considered

in pX°(sy.5,.4%), which can be expressed as

=i (51.52.4%) +pl<qu><sl .52.4%)

2G? \Go-G
+P/<4g >(51752,qz)+/’;<cgq0 q>(51»527612)

P;?CD(Sl,Sz»ff)

2ty + M) [91(6)7, + 192020 5 + 95(02) | 75 (i + M)
(7 - M3 ) (g3 - M) '

©)

The first term corresponds to the perturbative contribu-
tion, while (gq), (:G*), (9,0 - Gq), and (gq)* re-
present condensates that describe the nonperturbative
effects. The relevant Feynman diagrams are plotted in
Fig. 2.

To establish the relation between phenomenological
representation and QCD representation, the quark-hadron
duality is adopted,

the q vl / dsl/ ds2 (SleZ q )
H 1 2 min min —_ ( QZ)
(12)
Here, s} and s denote the threshold parameters

of A, and the neutron, respectively. After taking into
account the double Borel transform to suppress the higher
excited states and continuum states contributions, the

. analytic expression of f;(¢*) and g¢;,(¢*°) can be
+pl(qu> (Sl’s2 qZ) (11) derived:
M2/ M
M Ble By 3m.&
1) =g (t) = d ds, [d - sy —t—sy)—t(s) —1 -2
P =) = S S | [ e g B s =) (o =412 20)
X e SI/M YZ/M +<Tq Z/MBle_md/M :| (13)
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FIG. 2. The Feynman diagrams for the computation of p,,
lines denote light quark.
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where we define t = ¢ and A(sy,s,,1) = s7 + s3 + 1> —
2518y — 2511 —2s,t. My and M represent the Borel
parameters which will appear after double Borel transform.
Note, there are twenty-four Lorentz structures of form
factors in Eq. (12). Here, we only present those that meet
the parameter selection criteria. Details will be discussed in
the next section. The variable ¢ is introduced in the integral
through the phase space integration by utilizing Cutkosky
cutting rules. It can be observed from Eqs. (13) and (14)
that the quark condensate (g¢q) and the mixed quark-gluon
condensate (g,go - Gq) do not contribute to the transition
form factors, while we find the contribution from gluon
condensate (g>G?) is negligible and can be ignored. Thus,
only the four-quark condensate (gq)> determines the
primary nonperturbative contribution to f;, which is in
agreement with previous theoretical studies of heavy to
light transitions [31-33].

III. NUMERICAL RESULTS
AND DISCUSSIONS

In our numerical calculation, the following input param-
eters are adopted [20,44-50]:

By 2 _ 92
/mm dSI /’nm dS2 / d§64ﬂ: ), S],SQ, )5/2[ (SZ(SI + t) + ( ) 2SZ)

(1= 52) (1% + 41E — 55(s5 — 28)))

—3&(s; +t—155) —s152(s1 + 1) —51(s57 = 1)> + 25153)]

(14)

(§q) = —(0.24 £0.01)® GeV3,
50 = (9.5 ~ 10.5) GeV?,
m. = 1.27 +0.02 GeV,
Ay, = 0.0119 GeV?,
M, = 2286 GeV,

= (2.4 ~3.0) GeV?
my = 4.67101% MeV,
Ay = 0.02 GeV?,
M, =0.938 GeV. (15)

Here, the standard value of the quark condensate (gq) is
taken at the renormalization point 4 = 1 GeV. The decay
constants and the threshold parameters are determined
using the two-point sum rules [20,49], employing the same
interpolating currents of Eqgs. (4) and (5).

Moreover, two additional free parameters, namely
the Borel parameters M3 and M}, are introduced in

the framework of QCDSR. For simplicity, we adopt the
following relation of Borel parameters [33,34,51]:

M3, B M3 —mg 6
M2 - M2 —m2 ( )
B, n d

In general, two criteria are employed to determine the
values of Borel parameters. First is the pole contribution.
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In order to investigate the contribution of ground-state
hadrons, the pole contribution has to dominate the spec-
trum. Thus, the pole contribution can be selected larger
than 40% for the transition form factors, which can be
formulated as follows:

fS(]) d fé(z) d
Srlnm sxznm

RPC = . 3 , (17)
Slinin dsl -fS;ni" ds2
0 0
j:rrllin ds fjim ds,
RPC = - : (18)

—.
S d 00
ndsy | dsy
j;flﬂlﬂ \];léﬂlﬂ

These two ratios can be regarded as the pole contribution
from the A. channel and neutron channel, respectively.
The second criterion is the convergence of OPE, which
ensures that the neglected power corrections in the con-
densate term remain small and the truncated OPE remains
effective. In our calculation, only the four-quark condensate
(gq)?* in Eq. (13) contributes to the expansion of OPE,
which means the relative contribution from the condensate
(Gq)? needs to be less than 30%. Additionally, since the
Borel parameters M 12,3] and M %2 are not physical parameters,
it is necessary to find an optimal window in which the

transition form factors exhibit minimal dependence of M %1
and M3 .

Through the above preparation, we notice that only one
Lorentz structure of f; and f, in Egs. (13) and (14) can
meet all the above criteria, while we are unable to identify
suitable Borel parameters that simultaneously satisfy both
criteria for the remaining structures. Then the transition
form factors of the semileptonic decay A, — nfv, can be
numerically calculated. The dependence of the form factors
at the maximum recoil point g> = 0 with the required range
of Borel parameter M%Z is shown in Fig. 3. In Fig. 3, it can
be observed that the variation of 5(1) has a negligible effect
on f,(0) and f,(0), whereas the variation of s9 has a more
significant impact. For comparison, we show our results
and previous theoretical predictions of transition form
factors at maximum recoil point ¢g*> = 0 in Table I. The
errors are mainly determined by the uncertainties of the
Borel parameters M %1 and M %7 and other input parameters
listed in Eq. (15). In Table I, our results for f;(0), f(0),
and g, (0) are comparable to other predictions, while there
is significant variation for ¢,(0) obtained from different
theoretical methods. In this work, the sign of g,(0) aligns
with the results from the LCSR [20] and LF approach [21],
but differs from those derived by other theoretical methods.
Further investigations are needed to resolve this discrep-
ancy. Moreover, it is worth mentioning that the results from

1.0 = T T T 1.0 = T T T T
(a) s) = 10 GeV? (b) s = 2.9 GeV?
0.8 0.8
0.6 S1(0) 0.6 S1(0)
0.4+ 0.4+
$9-28GeV2 - - - - - §9=95Gev? - - - - -
02} 59=2.9 Gev? 02} 59=10.0 Gev?
$9=3.0Gev? - -+ - =105 Gev? - - - - - -
0.0 L L L L L L L L 0.0 L L L L L L L L
1.8 1.9 2.0 2.1 22 23 24 25 1.8 1.9 2.0 2.1 22 23 24 25
M}, (GeV?) M}, GeV?)
0.0 T T T T 0.0 T T T T
(©) s} = 10 GeV? (d) s = 2.5 GeV?
-02f_ ______ -02f_
—04] L0 —04} L0
-0.6 - -0.6 -
9-24Gev? - - - - - 0-95Gev? - - - - -
-0.8} 9=2.5 Gev? -0.8} 59-10.0 Gev?
$9=26Gev? - - - =105 Gev2 - - - - - -
-10 L L L L L L L L -10L L L L L L L L
1.8 1.9 2.0 2.1 22 23 24 25 1.8 1.9 2.0 2.1 22 23 24 25

M3, (GeV?)

M3, (GeV?)

FIG. 3. The transition form factors f;(0) and f,(0) as functions of Borel parameter M%z for different values of s and s9.
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TABLE I. Theoretical predictions for the form factors of the semileptonic decay A, — nfv, at the maximum
recoil point ¢*> = 0 with different approaches.

Method f1(0) 12(0) 91(0) 9:(0)
QCDSR 0.53 £0.04 -0.25 +£0.03 0.53 £0.04 -0.25£0.03
LCSR [20] 0.597012 -0.437013 0.551011 -0.16150%
LF [21] 0.513 —0.266 0.443 —0.034
CCQM [22] 0.47 —0.246 0414 0.073
RQM [24] 0.627 -0.259 0.433 0.118
MBM [27] 0.40 -0.22 0.43 0.07
LQCD [28] 0.672 £ 0.039 —0.321 £ 0.038 0.602 £+ 0.031 0.003 + 0.052

LCSR [20] are derived using the same interpolating current
as in Eq. (4), where the transition form factors at g> = 0
show a high level of consistency with QCDSR.

Considering that the QCDSR method is applicable only
in the small ¢° region, and the physical region for ¢ in the
A, = ntv, decay extends from m? to (M, — M,)*, we
employ a conformal mapping g*> — z and z-series para-
metrization to extrapolate the obtained values to the entire
physical region. Specifically, we utilize the z-series para-
metrization in the BCL version proposed in [52]. The
mapping transform is expressed as follows:

Ve —q* =t =1 (19)
Vie— ¢+ i =1

where .= (M, £M,)?, and to=1, — /T, —1_\/T; = lpin
is chosen to maximally reduce the interval of z after
mapping ¢° to z with the interval #,,;, < ¢*> < t_ [20,53].
In the numerical analysis, we choose f,;, = —0.4 GeV.
Moreover, the following parametrization is adopted:

2(q*. 1) =

_ fz(o) 2
_m{l"‘al(z(‘l 19)—2(0,19))}. (20)

fi(@*)
Here, a, is a fitting parameter. f;(0) represents the value of
form factors at g*> = 0, which is also treated as a fitted
parameter here. For the pole masses, we employ mp. =
mp+ = 1.87 GeV [48] for the A, - nfv, decay mode. To
ascertain the central values, uncertainties, and correlation
coefficients of the fitted parameters f;(0) and a, for each
form factor, we begin by generating a set of QCDSR data
points for these form factors. The QCDSR data points for
each form factor are computed at ¢*> = {-0.4,-0.2,
0, 0.2,0.4}, utilizing a total of N =500 ensembles of
input parameter sets, which encompass Mzz, s, 59, and
other input parameters such as the quark condensate (gg).
The input parameter values are distributed randomly
according to a multivariate joint distribution [54]. We
subsequently perform a fitting of the z-series expansion
to fi(¢*) and f,(¢*) in order to obtain the fitting
parameters, namely f;(0) and a,, along with the correlation

coefficients p between them. The fitting results are pre-
sented in Table II, where the values of f;(0) obtained from
the fitting procedure are consistent with our directly
calculated results given in Table I. The g> dependence
of form factors is shown in Fig. 4.

After deriving the ¢*> dependence of transition form
factors, the branching fractions and the relevant decay
asymmetry observables of semileptonic decay A, — nfv,
can be analyzed. To facilitate this analysis, it is convenient
to introduce the helicity amplitudes, which provide a more
intuitive understanding of the physical pictures and sim-
plify the expressions when discussing the asymmetries of
the decay processes. The relations between helicity ampli-
tudes and the form factors are as follows [34,53,55]:

VO-
Ve
o VOC
S

HY, = V20~ (=@ + 3= 1)),
2 A

2

(.01 = pata?)).

HY =
10

<M—91(q2) +q—igz(q2)>»

vV o_ 0. qz
Y, = V2 (o) 7).
A _ VO ’
H, = Nz <M+91(q2) —Mq—Acga(qz))- (21)

Here, Hl/,(fvz is the helicity amplitudes for weak transitions
induced by vector and axial-vector currents, where A’ and

TABLE II.  Fitted parameters and the correlation coefficient p
between them for f,(¢?) and f,(q?) using the z-series para-
metrization in Eq. (20).

fi(0) ap P
i 0.57 £0.04 —-0.24 £ 0.76 0.38
I —-0.25 +0.02 —10.99 £0.96 -0.53
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021
. P~ (b)
—041
121
1.0 1 —0.6 1
0.8 1 —0.81
0.6 1 9
1.0 1 (q°)
~05 0.0 05 10 15 20 —05 0.0 05 10 15 20

¢*(GeV?)

¢*(GeV?)

FIG. 4. The ¢* dependence of form factors, in which the solid lines represent the central value of fitting parameters listed in Table II,
while the error bands represent the uncertainties allowed by the fitting parameters. Besides, the symbol point as well as the error bar
denote the fitted points and the uncertainties for each of the form factors.

Aw represent the helicity of the neutron and the W boson,
respectively. Q. is defined as Oy = M2 — ¢ and M, =
M, + M,. The negative helicity amplitudes can be derived
using the following relations:

14 _gv A _ _ A
H, ., =Hu,, HZ, ., = —Hy,, (22)

Then the total helicity amplitudes can be obtained,
Hy,, =Hy, —Hj), . (23)

With the above helicity amplitudes, the differential
distribution of A, — nfv, can be expressed as [24,34]

dU(Ac = ntve) _ GHValP@V 0L 0= (| _m2\?,
dq? N 38473 M q° e

(24)

where m, denotes the lepton mass (£ = e, u) and H is
defined as

my
24
L, (H3,+12,,)

2612 Lt —t)"

Hy = (1 n > (Hf +HH o+ HY + HE%,O)

(25)

According to the definition of H,,, the contribution to
the differential decay width from f5(¢?) and g5(g*) can be
found in the term H? and H?, , which is clearly sup-

2 2

pressed by the factor m%. Hence, we neglect the effect of
f3(¢?) and g3(¢*) in Eq. (9). In order to obtain the
numerical results of differential decay width, the following
input parameters related to the decay analysis are taken
from the Particle Data Group [48], where

Gr = 1.166 x 107 GeV~2, |V.q| = 0.221 £ 0.004,
m, = 0.511 MeV, m, = 0.106 GeV,

o, = (201.5£2.7) x 1075 s, (26)

Here, the mean lifetime of A, noted as 7, , is introduced to
calculate the branching fractions. We plot the ¢> depend-
ence of the differential decay width for A, - nfv, semi-
leptonic decay in Fig. 5(a) and list the numerical results of
branching fractions in Table III. It can be found that the
branching fractions for A, — ne*v, semileptonic decay
obtained using QCDSR are very close to the results derived
by CQM [23], RQM [24], SU(3) flavor symmetry [25], and
MBM [27]. As for the A, — nu*v, decay mode, we find
our results are consistent with RQM [24] and relatively
smaller than the Lattice QCD predictions [28].

In addition, two relevant decay asymmetry observables,
e.g., the leptonic forward-backward asymmetry (App) and
the asymmetry parameter (@, ) are defined as [5,24,57]

gz (forward) — <% (backward)

AFB(qz) = ar
de*
2
3 H%{l - HE%’_I ~ 27 (HyoHy, + H_1oH )
4 Ho ’
(27)
dl—vl’:%/dq2 _ dl—vl’:—%/qu
an (q%) = (28)

dU*=3)dg? + dU*="3/dg?’

where
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(@)

EN [
T T

dr/dg? x 10715 Gev

N
T

-]

_o6l . . .
0.0 0.5 1.0 1.5

7*(GeV?) 7*(GeV?)
0.0 (c)
-0.2f
-04F
<
S
-06F €
—08F 707 H
-1.0F
0.0 0.5 1.0 15
7*(GeV?)

FIG. 5.

The ¢ dependence of the differential decay width and the relevant decay observables for A, — nZv, semileptonic decay. The

red solid line denotes # = e, while the blue dashed line denotes # = ™.
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The ¢ dependence of the decay asymmetry observables
are plotted in Figs. 5(b) and 5(c). In Fig. 5, we can see the
dependence of the differential decay width and the decay
asymmetry observables on the lepton mass is consistent near
the zero recoil region > = (M, — M,)*. However, near the
maximum recoil point g> = m2, the behavior of the differ-
ential decay width and the leptonic forward-backward
asymmetry is significantly different. The leptonic forward-
backward asymmetry is going to O for the A, — ne™v, decay
mode and to —0.5 for the A, — nu*v, decay mode at
g*> = m2. This character agrees with Ref. [24]. As for the
asymmetry parameter, it varies froma, = —ltoa, = 0Oas
the ¢? increases from zero to ¢2,,. Besides, it is almost
indistinguishable throughout the entire physical region,
which is also consistent with the findings in Ref. [24]. We
also present the mean values of the relevant decay asymmetry

observables in Table III, which are obtained by separately
integrating the numerators and denominators in Egs. (27) and
(28) over the physical region of ¢*. From Table II, it can be
observed that our results for (Azp) and (@, ) agree with the
previous theoretical predictions. Future experiments meas-
uring these observables and comparing them with the
predictions of the present study will contribute to our
understanding of the relevant decay channels and the internal
structures of baryons. In addition, the possibility of new
physics effects beyond the standard model can be explored
through these observables [55,58].

By replacing the second d quark in the current (5) with a
strange quark and applying the same analysis procedure, we
also investigate the semileptonic decay mode A, — AZv,.
The relevant input parameters are m, = 93.415° MeV [48],
Ax = 0.0208 GeV? [32], M) = 1.116 GeV [48], |V, =
0.975 £ 0.006 [48], and my,q1. = mp+ = 1.97 GeV [48]. As
this decay mode has been thoroughly investigated both
theoretically and experimentally, we solely provide the
numerical results of branching fractions and decay asym-
metry observables in Table III as a validation of the QCDSR
method. It is evident that the branching fractions, the
forward-backward asymmetry, and the asymmetry param-
eter obtained through QCDSR for the semileptonic decay
A, — Afv, are in excellent agreement with Lattice QCD
results [56] and experimental data [4,5].
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TABLE III. Theoretical predictions of branching fractions, the forward-backward asymmetry, and the asymmetry parameter for
A, = nfv, and A, — Afv, semileptonic decay with different methods.

Channel Method B(%) (Apgp) (ap)

A, = nety, QCD sum rules (QCDSR) 0.281 £ 0.056 —-0.23 £ 0.01 —-0.93+0.03
Light front approach (LF) [21] 0.201
Covariant confined quark model (CCQM) [22] 0.207 —-0.236
Constituent quark model (CQM) [23] 0.270
Relativistic quark model (RQM)[24] 0.268 -0.251 -0.91
SU(3) flavor symmetry (SU(3)) [25] 0.289 4-0.035
SU(3) [26] 0.51 +0.04 —0.89 +0.04
MIT bag model (MBM) [27] 0.279 —0.87
Light front constituent quark model (LFCQM) [27] 0.36 £0.15 —0.96 + 0.04
Lattice QCD (LQCD) [28] 0.410 £0.026

A, = nuty, QCDSR 0.275 £0.055 —0.25+0.02 —-0.93+0.03
CCQM [22] 0.202 —0.260
RQM [24] 0.262 —0.276 —0.90
LQCD [28] 0.400 £ 0.026

A, = AeTy, QCDSR 3.49 +0.65 —0.20 +0.01 —0.90 +0.03
LQCD [56] 3.80 +0.22 —0.20 + 0.06 —-0.87 +0.10
Experiment (Exp) [4,5] 356 £0.11 £0.07 —0.24 £0.03 —0.86 £ 0.04

A= Aty QCDSR 3.37 £ 0.54 —0.24 £ 0.01 —0.90 £ 0.02
LQCD [56] 3.69 £0.22 —0.17 £ 0.07 —-0.87 £ 0.10
Exp [4,5] 3.48 +0.17 —-0.22 +0.04 —0.94 + 0.08

IV. CONCLUSIONS

In this work, we calculate the weak transition form
factors of A, — nfv, semileptonic decay in the framework
of QCD sum rules. The analytic results of the transition
form factors are obtained through the analysis of the three-
point correlation functions and the application of Cutkosky
cutting rules. The numerical results for the form factors at
the maximum recoil region point g> = 0 are computed and
compared with other methods. In order to extend the form
factors to the full physical region, we utilize a z-series
parametrization that adequately captures the ¢> dependence
of the form factors, ensuring a smooth extrapolation.

Based on the obtained form factors, we predict the
branching fractions to be B(A, — netv,) = (0.281 £
0.056)% and B(A, — nu*v,) = (0.275 £ 0.055)%, which
will provide important information to determine the value
of the CKM matrix element |V.,|. Moreover, the mean
values of the leptonic forward-backward asymmetry (Apz)
and the asymmetry parameter (a, ) are also given, which
will play a crucial role in probing potential new physics
effects beyond the standard model. Although there are still
no experimental data for A, — nfv, semileptonic decay to
date, considering the recent experimental progress of A,

decay modes involving the neutron final state, we believe
our predicted results can be tested by the future experiments
at BESIII, BELLEII, and LHCb.

Finally, we analyze the semileptonic decay mode
A, = Afv,. Our results exhibit a strong agreement with
the experimental data, indicating that the QCDSR calcu-
lation can be applied to other charmed baryons, such as
Ejm). Furthermore, there is still potential for further
improvement in this method. The relatively large errors
in the branching fractions compared with the experimental
data suggest the necessity for further refinement. One
possible approach to address this issue is to calculate the
contributions from radiation corrections, although this
presents a significant challenge in the application of QCD
sum rules.
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