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Motivated by the recent experimental progress in the Λc decay that contains a neutron in the final state,
we analyze the semileptonic decay Λc → nlνl in the framework of QCD sum rules. The transition form
factors are analytically computed using three-point correlation functions and the Cutkosky cutting rules,
which can be extrapolated into the physical region by employing the z-series parametrization. The
branching fractions of Λc → neþνe and Λc → nμþνμ are estimated to be ð0.281� 0.056Þ% and
ð0.275� 0.055Þ%, respectively. Furthermore, we calculate as well the relevant decay asymmetry
observables sensitive to new physics beyond the standard model. The numerical results of semileptonic
decays Λc → Λlνl are also given and confronted to the latest experimental data.
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I. INTRODUCTION

The semileptonic decay of the lightest charmed baryon
Λc plays an important role in exploring strong and weak
interactions in charm sectors. It can help elucidate the role
of nonperturbative effects in strong interactions and provide
crucial inputs for studying heavier charmed baryons and
bottom baryon decay. Additionally, the precise measure-
ment of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements jVcsj and jVcdj can also provide the significant
test for the standard model and the probable evidence for
new physics beyond the standard model [1].
In recent years, there have been extensive measurements

of the semileptonic decay modes Λc → Λlνl [2–5].
The most precise results of branching fractions yet
are BðΛc → ΛeþνeÞ ¼ ð3.56� 0.11� 0.07Þ% [4] and
BðΛc → ΛμþνμÞ ¼ ð3.48� 0.14� 0.10Þ% [5], respec-
tively. Comparing the former result with Λc inclusive
semileptonic decay mode BðΛc → XeþνeÞ ¼ ð3.95�
0.34� 0.09Þ% [6], it can be inferred that there still remain
some potential exclusive semileptonic decay modes meas-
urable. Recently, the BESIII Collaboration reported the
evidence of the decay modes containing excited states,
specifically Λc → Λð1520Þeþνe and Λc → Λð1405Þeþνe
[7]. These two decay modes yield relatively small branch-
ing fractions to be ð1.02� 0.52� 0.11Þ × 10−3 and
ð0.42� 0.19� 0.04Þ × 10−3, respectively. Moreover, the

measurement of two five-body semileptonic decay modes
Λc → Λπþπ−eþνe and Λc → pK0

sπ
−eþνe are also per-

formed [8], in which the upper limits are set to be BðΛc →
Λπþπ−eþνeÞ < 3.9 × 10−4 and BðΛc → pK0

sπ
−eþνeÞ <

3.3 × 10−4. In physics, besides the Λc semileptonic decay
modes that include ΛðΛ�Þ baryon in the final state, the
exclusive semileptonic decay modes Λc → nlνl are also
permitted by the standard model. However, there is still a
lack of experimental data in this regard.
Theoretically, Λc → nlνl is dominated by the Cabibbo-

suppressed transition c → dlνl. As a result, the decay
width is anticipated to be much smaller compared with the
Λc → Λlνl mode, which is dominated by the Cabibbo-
favored transition c → slνl. Experimentally, the main
challenge lies in distinguishing neutron signals from
neutral noises, which leads to the problem of direct neutron
detection [9,10]. Fortunately, with the improvement of
detector performance and analysis technique, the BESIII
Collaboration has made notable progress in measuring Λc
decays that involve neutron signals in the final state [9–12].
It is predictable that the experimental data for the decay
mode Λc → nlνl will be available in the near future,
making it beneficial to explore this process theoretically.
Furthermore, the semileptonic decay Λc → nlνl is an
exceptional candidate for extracting the magnitude of the
CKM matrix element jVcdj. Currently, the determination of
jVcdj relies primarily on the charm meson semileptonic
decay D → πlνl [13–17]. Therefore, it is of great impor-
tance to investigate the semileptonic decay Λc → nlνl
both experimentally and theoretically since such studies are
crucial for providing precise verification for jVcdj in the
charm baryon sector.
In the past, theoretical investigations for Λc → nlνl

semileptonic decay have been performed in-depth in a
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variety of methods, such as the light-cone sum rules
(LCSR) [18–20], the light front approach (LF) [21], the
covariant confined quark model (CCQM) [22], the con-
stituent quark model (CQM) [23], the relativistic quark
model (RQM) [24], the SUð3Þ flavor symmetry [25,26], the
MIT bag model (MBM) [27], and the lattice QCD (LQCD)
[28]. Additionally, QCD sum rules (QCDSR) has also been
widely utilized to deal with the baryonic decay mode
[29–37]. Rather than a phenomenological model, QCDSR
is a QCD-based theoretical framework that systematically
incorporates nonperturbative effects at each dimension. To
evaluate the form factors in the weak transitions, the three-
point correlation functions are constructed with appropriate
interpolating currents. After equating two representations
of the three-point correlation functions, i.e., the QCD
representation and the phenomenological representation,
using quark-hadron duality, the form factors will be
formally determined. In this work, we will apply
QCDSR to calculate the form factors of the Λc → nlνl
semileptonic decay mode, after which the branching
fractions as well as some other relevant decay asymmetry
observables are also obtained. Besides, the numerical
results of Λc → Λlνl semileptonic decay are also given
and compared with the latest experimental results.
The rest of the paper is structured as follows: in Sec. II

we interpret the basic idea of QCDSR for the three-point
correlation functions. The numerical results and analysis
are presented in Sec. III. The conclusions and discussions
are given in the last section.

II. FORMALISM

The Λc → nlνl decay is dominated by the Cabibbo-
suppressed transition c → dlνl at the quark level.

The effective Hamiltonian depicting this transition is
written as

Heff ¼
GFffiffiffi
2

p Vcd½lγμð1 − γ5Þνl�½d̄γμð1 − γ5Þc�; ð1Þ

where GF denotes the Fermi constant and Vcd is the CKM
matrix element. The Feynman diagram of Λc → nlνl is
shown in Fig. 1. The leptonic part of this decay mode can
be obtained through electroweak perturbation theory,
while the hadronic part cannot be calculated perturbatively
due to its involvement in the low-energy aspects of QCD.
In general, the weak transition matrix element of the
hadronic part can be parametrized in terms of transition
form factors

hΛcðq1Þjjμjnðq2Þi ¼ ūΛc
ðq1Þ

�
f1ðq2Þγμ þ if2ðq2Þσμν

qν

MΛc

þ f3ðq2Þ
qμ
MΛc

�
unðq2Þ

− ūΛc
ðq1Þ

�
g1ðq2Þγμ þ ig2ðq2Þσμν

qν

MΛc

þ g3ðq2Þ
qμ
MΛc

�
γ5unðq2Þ; ð2Þ

where q1 and q2 are the four-vector momentum of the
initial state Λc and final state neutron, respectively. The
momentum transfer q is defined as q ¼ q1 − q2.
To calculate the transition form factors by QCDSR, the

three-point correlation functions can be formally con-
structed as

Πμðq21; q22; q2Þ ¼ i2
Z

d4xd4yeiðq1x−q2yÞ

× h0jTfjΛc
ðxÞjμð0Þj†nðyÞgj0i: ð3Þ

The weak transition current jμ is defined as jμ ¼
c̄γμð1 − γ5Þd, and the interpolating currents of Λc and
the neutron take the following quark structure [35,38]:

jΛc
¼ ϵijkðuTi Cγ5djÞck; ð4Þ

jn ¼ ϵijkðuTi Cγ5djÞdk; ð5Þ

where the subscripts i, j, and k represent the color indices
and C is the charge conjugation matrix. It should be
mentioned that there are other choices of interpolating
currents of the neutron, such as Ioffe type and tensor type
[39–41]. However, as stated in Ref. [31], if the approx-
imations in sum rule calculations are justified to be good
enough, these different currents should give roughly the
same physical results.

FIG. 1. Feynman diagram for Λc → nlνl semileptonic decay.
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On the phenomenological side, after inserting a complete set of intermediate hadronic states and exploiting double
dispersion relations, the three-point correlation functions in Eq. (3) can be described as

Πphe
μ ðq21; q22; q2Þ ¼

X
spins

h0jjΛc
jΛcðq1ÞihΛcðq1Þjjμjnðq2Þihnðq2Þjjnj0i

ðq21 −M2
Λc
Þðq22 −M2

nÞ
þ higher resonances and continuum states; ð6Þ

whereMΛc
andMn denote the mass of Λc and the neutron,

respectively. The vacuum-to-baryon transition amplitudes
can be parametrized by defining the decay constants

h0jjΛc
jΛcðq1Þi ¼ λΛc

uΛc
ðq1Þ; ð7Þ

h0jjnjnðq2Þi ¼ λnunðq2Þ; ð8Þ

where λΛc
and λn represent the decay constants of Λc and

the neutron, respectively. By introducing the hadronic
transition matrix elements in Eq. (2) and utilizing the
spin sum completeness relations,

P
uΛc

ðq1ÞūΛc
ðq1Þ ¼

=q1 þMΛc
and

P
unðq2Þūnðq2Þ ¼ =q2 þMn, we can finally

obtain the phenomenological representation of the three-
point correlation functions of Eq. (3),

Πphe
μ ðq21; q22; q2Þ ¼

λnðq2 þMnÞ
h
f1ðq2Þγμ þ if2ðq2Þσμν qν

MΛc
þ f3ðq2Þ qμ

MΛc

i
λΛc

ðq1 þMΛc
Þ

ðq21 −M2
Λc
Þðq22 −M2

nÞ

−
λnðq2 þMnÞ

h
g1ðq2Þγμ þ ig2ðq2Þσμν qν

MΛc
þ g3ðq2Þ qμ

MΛc

i
γ5λΛc

ðq1 þMΛc
Þ

ðq21 −M2
Λc
Þðq22 −M2

nÞ
: ð9Þ

It should be noted that we assume f3ðq2Þ and g3ðq2Þ to be
negligible in this study as they will contribute to semi-
leptonic decays at Oðm2

lÞ [33,42].
On the QCD side, the three-point correlation functions of

Eq. (3) can be expressed by operator-product expansion
(OPE) and double dispersion relations,

ΠQCD
μ ðq21; q22; q2Þ ¼

Z
∞

smin
1

ds1

Z
∞

smin
2

ds2
ρQCDμ ðs1; s2; q2Þ

ðs1 − q21Þðs2 − q22Þ
;

ð10Þ
where smin

1ð2Þ is the kinematic limit. ρQCDμ ðs1; s2; q2Þ stands

for the spectral density, which can be obtained through the
application of Cutkosky cutting rules [33–37,43–45]. In
this work, contributions up to dimension 6 are considered
in ρQCDμ ðs1; s2; q2Þ, which can be expressed as

ρQCDμ ðs1; s2;q2Þ ¼ ρpertμ ðs1; s2;q2Þþ ρhq̄qiμ ðs1; s2;q2Þ
þ ρhg

2
sG2i

μ ðs1; s2;q2Þþ ρhgsq̄σ·Gqiμ ðs1; s2;q2Þ
þ ρhq̄qi

2

μ ðs1; s2;q2Þ: ð11Þ

The first term corresponds to the perturbative contribu-
tion, while hq̄qi, hg2sG2i, hgsq̄σ · Gqi, and hq̄qi2 re-
present condensates that describe the nonperturbative
effects. The relevant Feynman diagrams are plotted in
Fig. 2.
To establish the relation between phenomenological

representation and QCD representation, the quark-hadron
duality is adopted,

Πphe
μ ðq21; q22; q2Þ ≃

Z
s0
1

smin
1

ds1

Z
s0
2

smin
2

ds2
ρQCDμ ðs1; s2; q2Þ

ðs1 − q21Þðs2 − q22Þ
:

ð12Þ

Here, s01 and s02 denote the threshold parameters
of Λc and the neutron, respectively. After taking into
account the double Borel transform to suppress the higher
excited states and continuum states contributions, the
analytic expression of fiðq2Þ and giðq2Þ can be
derived:

f1ðtÞ ¼ g1ðtÞ ¼
eM

2
Λc
=M2

B1eM
2
n=M2

B2

λΛc
λnMΛc

�Z
s0
1

smin
1

ds1

Z
s0
2

smin
2

ds2

Z
dξ

3mcξ

64π4λðs1; s2; tÞ3=2
ðm2

cðs1 − t − s2Þ − tðs1 − tþ s2 − 2ξÞÞ

× e−s1=M
2
B1e−s2=M

2
B2 þmchq̄qi2

6
e−m

2
c=M2

B1e−m
2
d=M

2
B2

�
; ð13Þ
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f2ðtÞ ¼ g2ðtÞ ¼
eM

2
Λc
=M2

B1eM
2
n=M2

B2

λΛc
λn

Z
s0
1

smin
1

ds1

Z
s0
2

smin
2

ds2

Z
dξ

3ξ

64π4λðs1; s2; tÞ5=2
½m4

cðs2ðs1 þ tÞ þ ðs1 − tÞ2 − 2s22Þ

−m2
cðs31 − s21ðtþ s2 þ 2ξÞ − s1ðt2 þ 2tðξ − 3s2Þ þ s2ðs2 − 4ξÞÞ þ ðt − s2Þðt2 þ 4tξ − s2ðs2 − 2ξÞÞÞ

− tð−2ξð−2s21 þ s1ðtþ s2Þ þ ðt − s2Þ2Þ − 3ξ2ðs1 þ t − s2Þ − s1s2ðs1 þ tÞ − s1ðs1 − tÞ2 þ 2s1s22Þ�
× e−s1=M

2
B1e−s2=M

2
B2 ; ð14Þ

where we define t ¼ q2 and λðs1; s2; tÞ ¼ s21 þ s22 þ t2 −
2s1s2 − 2s1t − 2s2t. M2

B1
and M2

B2
represent the Borel

parameters which will appear after double Borel transform.
Note, there are twenty-four Lorentz structures of form
factors in Eq. (12). Here, we only present those that meet
the parameter selection criteria. Details will be discussed in
the next section. The variable ξ is introduced in the integral
through the phase space integration by utilizing Cutkosky
cutting rules. It can be observed from Eqs. (13) and (14)
that the quark condensate hq̄qi and the mixed quark-gluon
condensate hgsq̄σ ·Gqi do not contribute to the transition
form factors, while we find the contribution from gluon
condensate hg2sG2i is negligible and can be ignored. Thus,
only the four-quark condensate hq̄qi2 determines the
primary nonperturbative contribution to f1, which is in
agreement with previous theoretical studies of heavy to
light transitions [31–33].

III. NUMERICAL RESULTS
AND DISCUSSIONS

In our numerical calculation, the following input param-
eters are adopted [20,44–50]:

hq̄qi ¼ −ð0.24� 0.01Þ3 GeV3;

s01 ¼ ð9.5 ∼ 10.5Þ GeV2; s02 ¼ ð2.4 ∼ 3.0Þ GeV2

mc ¼ 1.27� 0.02 GeV; md ¼ 4.67þ0.48
−0.17 MeV;

λΛc
¼ 0.0119 GeV3; λn ¼ 0.02 GeV3;

MΛc
¼ 2.286 GeV; Mn ¼ 0.938 GeV: ð15Þ

Here, the standard value of the quark condensate hq̄qi is
taken at the renormalization point μ ¼ 1 GeV. The decay
constants and the threshold parameters are determined
using the two-point sum rules [20,49], employing the same
interpolating currents of Eqs. (4) and (5).
Moreover, two additional free parameters, namely

the Borel parameters M2
B1

and M2
B2
, are introduced in

the framework of QCDSR. For simplicity, we adopt the
following relation of Borel parameters [33,34,51]:

M2
B1

M2
B2

¼ M2
Λc

−m2
c

M2
n −m2

d

: ð16Þ

In general, two criteria are employed to determine the
values of Borel parameters. First is the pole contribution.

FIG. 2. The Feynman diagrams for the computation of ρQCDμ ðs1; s2; q2Þ. Double solid lines represent charm quark, and ordinary solid
lines denote light quark.
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In order to investigate the contribution of ground-state
hadrons, the pole contribution has to dominate the spec-
trum. Thus, the pole contribution can be selected larger
than 40% for the transition form factors, which can be
formulated as follows:

RPC
Λc

¼
R s0

1

smin
1

ds1
R s0

2

smin
2

ds2R
∞
smin
1

ds1
R s0

2

smin
2

ds2
; ð17Þ

RPC
n ¼

R s0
1

smin
1

ds1
R s0

2

smin
2

ds2R s0
1

smin
1

ds1
R∞
smin
2

ds2
: ð18Þ

These two ratios can be regarded as the pole contribution
from the Λc channel and neutron channel, respectively.
The second criterion is the convergence of OPE, which

ensures that the neglected power corrections in the con-
densate term remain small and the truncated OPE remains
effective. In our calculation, only the four-quark condensate
hq̄qi2 in Eq. (13) contributes to the expansion of OPE,
which means the relative contribution from the condensate
hq̄qi2 needs to be less than 30%. Additionally, since the
Borel parametersM2

B1
andM2

B2
are not physical parameters,

it is necessary to find an optimal window in which the

transition form factors exhibit minimal dependence of M2
B1

and M2
B2
.

Through the above preparation, we notice that only one
Lorentz structure of f1 and f2 in Eqs. (13) and (14) can
meet all the above criteria, while we are unable to identify
suitable Borel parameters that simultaneously satisfy both
criteria for the remaining structures. Then the transition
form factors of the semileptonic decay Λc → nlνl can be
numerically calculated. The dependence of the form factors
at the maximum recoil point q2 ¼ 0 with the required range
of Borel parameter M2

B2
is shown in Fig. 3. In Fig. 3, it can

be observed that the variation of s01 has a negligible effect
on f1ð0Þ and f2ð0Þ, whereas the variation of s02 has a more
significant impact. For comparison, we show our results
and previous theoretical predictions of transition form
factors at maximum recoil point q2 ¼ 0 in Table I. The
errors are mainly determined by the uncertainties of the
Borel parameters M2

B1
and M2

B2
and other input parameters

listed in Eq. (15). In Table I, our results for f1ð0Þ, f2ð0Þ,
and g1ð0Þ are comparable to other predictions, while there
is significant variation for g2ð0Þ obtained from different
theoretical methods. In this work, the sign of g2ð0Þ aligns
with the results from the LCSR [20] and LF approach [21],
but differs from those derived by other theoretical methods.
Further investigations are needed to resolve this discrep-
ancy. Moreover, it is worth mentioning that the results from

FIG. 3. The transition form factors f1ð0Þ and f2ð0Þ as functions of Borel parameter M2
B2

for different values of s01 and s02.
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LCSR [20] are derived using the same interpolating current
as in Eq. (4), where the transition form factors at q2 ¼ 0
show a high level of consistency with QCDSR.
Considering that the QCDSR method is applicable only

in the small q2 region, and the physical region for q2 in the
Λc → nlνl decay extends from m2

l to ðMΛc
−MnÞ2, we

employ a conformal mapping q2 → z and z-series para-
metrization to extrapolate the obtained values to the entire
physical region. Specifically, we utilize the z-series para-
metrization in the BCL version proposed in [52]. The
mapping transform is expressed as follows:

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ; ð19Þ

where t�¼ðMΛc
�MnÞ2, and t0¼ tþ−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ−t−

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ−tmin

p
is chosen to maximally reduce the interval of z after
mapping q2 to z with the interval tmin < q2 < t− [20,53].
In the numerical analysis, we choose tmin ¼ −0.4 GeV.
Moreover, the following parametrization is adopted:

fiðq2Þ¼
fið0Þ

1−q2=ðmpoleÞ2
f1þa1ðzðq2;t0Þ−zð0;t0ÞÞg: ð20Þ

Here, a1 is a fitting parameter. fið0Þ represents the value of
form factors at q2 ¼ 0, which is also treated as a fitted
parameter here. For the pole masses, we employ mpole ¼
mDþ ¼ 1.87 GeV [48] for the Λc → nlνl decay mode. To
ascertain the central values, uncertainties, and correlation
coefficients of the fitted parameters fið0Þ and a1 for each
form factor, we begin by generating a set of QCDSR data
points for these form factors. The QCDSR data points for
each form factor are computed at q2 ¼ f−0.4;−0.2;
0; 0.2; 0.4g, utilizing a total of N ¼ 500 ensembles of
input parameter sets, which encompass M2

B2
, s01, s

0
2, and

other input parameters such as the quark condensate hq̄qi.
The input parameter values are distributed randomly
according to a multivariate joint distribution [54]. We
subsequently perform a fitting of the z-series expansion
to f1ðq2Þ and f2ðq2Þ in order to obtain the fitting
parameters, namely fið0Þ and a1, along with the correlation

coefficients ρ between them. The fitting results are pre-
sented in Table II, where the values of fið0Þ obtained from
the fitting procedure are consistent with our directly
calculated results given in Table I. The q2 dependence
of form factors is shown in Fig. 4.
After deriving the q2 dependence of transition form

factors, the branching fractions and the relevant decay
asymmetry observables of semileptonic decay Λc → nlνl
can be analyzed. To facilitate this analysis, it is convenient
to introduce the helicity amplitudes, which provide a more
intuitive understanding of the physical pictures and sim-
plify the expressions when discussing the asymmetries of
the decay processes. The relations between helicity ampli-
tudes and the form factors are as follows [34,53,55]:

HV
1
2
;0
¼

ffiffiffiffiffiffiffi
Q−

p
ffiffiffiffiffi
q2

p
�
Mþf1ðq2Þ −

q2

MΛc

f2ðq2Þ
�
;

HA
1
2
;0
¼

ffiffiffiffiffiffiffi
Qþ

p
ffiffiffiffiffi
q2

p
�
M−g1ðq2Þ þ

q2

MΛc

g2ðq2Þ
�
;

HV
1
2
;1
¼

ffiffiffiffiffiffiffiffiffi
2Q−

p �
−f1ðq2Þ þ

Mþ
MΛc

f2ðq2Þ
�
;

HA
1
2
;1
¼ ffiffiffiffiffiffiffiffiffi

2Qþ
p �

−g1ðq2Þ −
M−

MΛc

g2ðq2Þ
�
;

HV
1
2
;t
¼

ffiffiffiffiffiffiffi
Qþ

p
ffiffiffiffiffi
q2

p
�
M−f1ðq2Þ þ

q2

MΛc

f3ðq2Þ
�
;

HA
1
2
;t
¼

ffiffiffiffiffiffiffi
Q−

p
ffiffiffiffiffi
q2

p
�
Mþg1ðq2Þ −

q2

MΛc

g3ðq2Þ
�
: ð21Þ

Here, HVðAÞ
λ0;λW

is the helicity amplitudes for weak transitions
induced by vector and axial-vector currents, where λ0 and

TABLE I. Theoretical predictions for the form factors of the semileptonic decay Λc → nlνl at the maximum
recoil point q2 ¼ 0 with different approaches.

Method f1ð0Þ f2ð0Þ g1ð0Þ g2ð0Þ
QCDSR 0.53� 0.04 −0.25� 0.03 0.53� 0.04 −0.25� 0.03
LCSR [20] 0.59þ0.15

−0.16 −0.43þ0.13
−0.12 0.55þ0.14

−0.15 −0.16þ0.08
−0.05

LF [21] 0.513 −0.266 0.443 −0.034
CCQM [22] 0.47 −0.246 0.414 0.073
RQM [24] 0.627 −0.259 0.433 0.118
MBM [27] 0.40 −0.22 0.43 0.07
LQCD [28] 0.672� 0.039 −0.321� 0.038 0.602� 0.031 0.003� 0.052

TABLE II. Fitted parameters and the correlation coefficient ρ
between them for f1ðq2Þ and f2ðq2Þ using the z-series para-
metrization in Eq. (20).

fið0Þ a1 ρ

f1 0.57� 0.04 −0.24� 0.76 0.38
f2 −0.25� 0.02 −10.99� 0.96 −0.53
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λW represent the helicity of the neutron and the W boson,
respectively. Q� is defined as Q� ¼ M2

� − q2 and M� ¼
MΛc

�Mn. The negative helicity amplitudes can be derived
using the following relations:

HV
−λ0;−λW

¼ HV
λ0;λW

; HA
−λ0;−λW

¼ −HA
λ0;λW

: ð22Þ

Then the total helicity amplitudes can be obtained,

Hλ0;λW ¼ HV
λ0;λW

−HA
λ0;λW

: ð23Þ

With the above helicity amplitudes, the differential
distribution of Λc → nlνl can be expressed as [24,34]

dΓðΛc → nlνlÞ
dq2

¼ G2
FjVcdj2q2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
QþQ−

p
384π3M3

Λc

�
1 −

m2
l

q2

�
2

Htot;

ð24Þ

where ml denotes the lepton mass (l ¼ e, μ) and Htot is
defined as

Htot ¼
�
1þ m2

l

2q2

��
H2

1
2
;1
þH2

−1
2
;−1 þH2

1
2
;0
þH2

−1
2
;0

�

þ 3m2
l

2q2

�
H2

1
2
;t
þH2

−1
2
;t

�
: ð25Þ

According to the definition of Htot, the contribution to
the differential decay width from f3ðq2Þ and g3ðq2Þ can be
found in the term H2

1
2
;t
and H2

−1
2
;t
, which is clearly sup-

pressed by the factor m2
l. Hence, we neglect the effect of

f3ðq2Þ and g3ðq2Þ in Eq. (9). In order to obtain the
numerical results of differential decay width, the following
input parameters related to the decay analysis are taken
from the Particle Data Group [48], where

GF ¼ 1.166 × 10−5 GeV−2; jVcdj ¼ 0.221� 0.004;

me ¼ 0.511 MeV; mμ ¼ 0.106 GeV;

τΛc
¼ ð201.5� 2.7Þ × 10−15 s: ð26Þ

Here, the mean lifetime of Λc, noted as τΛc
, is introduced to

calculate the branching fractions. We plot the q2 depend-
ence of the differential decay width for Λc → nlνl semi-
leptonic decay in Fig. 5(a) and list the numerical results of
branching fractions in Table III. It can be found that the
branching fractions for Λc → neþνe semileptonic decay
obtained using QCDSR are very close to the results derived
by CQM [23], RQM [24], SUð3Þ flavor symmetry [25], and
MBM [27]. As for the Λc → nμþνμ decay mode, we find
our results are consistent with RQM [24] and relatively
smaller than the Lattice QCD predictions [28].
In addition, two relevant decay asymmetry observables,

e.g., the leptonic forward-backward asymmetry (AFB) and
the asymmetry parameter (αΛc

) are defined as [5,24,57]

AFBðq2Þ ¼
dΓ
dq2 ðforwardÞ − dΓ

dq2 ðbackwardÞ
dΓ
dq2

¼ 3

4

H2
1
2
;1
−H2

−1
2
;−1 − 2

m2
l

q2 ðH1
2
;0H1

2
;t þH−1

2
;0H−1

2
;tÞ

Htot
;

ð27Þ

αΛc
ðq2Þ ¼ dΓλ0¼1

2=dq2 − dΓλ0¼−1
2=dq2

dΓλ0¼1
2=dq2 þ dΓλ0¼−1

2=dq2
; ð28Þ

where

FIG. 4. The q2 dependence of form factors, in which the solid lines represent the central value of fitting parameters listed in Table II,
while the error bands represent the uncertainties allowed by the fitting parameters. Besides, the symbol point as well as the error bar
denote the fitted points and the uncertainties for each of the form factors.
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dΓλ0¼1
2

dq2
¼ 4m2

l

3q2

�
H2

1
2
;1
þH2

1
2
;0
þ 3H2

1
2
;t

�
þ 8

3

�
H2

1
2
;1
þH2

1
2
;0

�
;

ð29Þ

dΓλ0¼−1
2

dq2
¼ 4m2

l

3q2

�
H2

−1
2
;−1 þH2

−1
2
;0
þ 3H2

−1
2
;t

�

þ 8

3

�
H2

−1
2
;−1 þH2

−1
2
;0

�
: ð30Þ

The q2 dependence of the decay asymmetry observables
are plotted in Figs. 5(b) and 5(c). In Fig. 5, we can see the
dependence of the differential decay width and the decay
asymmetry observables on the lepton mass is consistent near
the zero recoil region q2 ¼ ðMΛc

−MnÞ2. However, near the
maximum recoil point q2 ¼ m2

l, the behavior of the differ-
ential decay width and the leptonic forward-backward
asymmetry is significantly different. The leptonic forward-
backward asymmetry is going to 0 for theΛc → neþνe decay
mode and to −0.5 for the Λc → nμþνμ decay mode at
q2 ¼ m2

l. This character agrees with Ref. [24]. As for the
asymmetry parameter, it varies from αΛc

¼ −1 to αΛc
¼ 0 as

the q2 increases from zero to q2max. Besides, it is almost
indistinguishable throughout the entire physical region,
which is also consistent with the findings in Ref. [24]. We
also present themeanvalues of the relevant decay asymmetry

observables in Table III, which are obtained by separately
integrating the numerators anddenominators inEqs. (27) and
(28) over the physical region of q2. From Table III, it can be
observed that our results for hAFBi and hαΛc

i agree with the
previous theoretical predictions. Future experiments meas-
uring these observables and comparing them with the
predictions of the present study will contribute to our
understanding of the relevant decay channels and the internal
structures of baryons. In addition, the possibility of new
physics effects beyond the standard model can be explored
through these observables [55,58].
By replacing the second d quark in the current (5) with a

strange quark and applying the same analysis procedure, we
also investigate the semileptonic decay mode Λc → Λlνl.
The relevant input parameters arems ¼ 93.4þ8.6

−3.4 MeV [48],
λΛ ¼ 0.0208 GeV3 [32], MΛ ¼ 1.116 GeV [48], jVcsj ¼
0.975� 0.006 [48], andmpole ¼ mDþ

s
¼ 1.97 GeV [48]. As

this decay mode has been thoroughly investigated both
theoretically and experimentally, we solely provide the
numerical results of branching fractions and decay asym-
metry observables in Table III as a validation of the QCDSR
method. It is evident that the branching fractions, the
forward-backward asymmetry, and the asymmetry param-
eter obtained through QCDSR for the semileptonic decay
Λc → Λlνl are in excellent agreement with Lattice QCD
results [56] and experimental data [4,5].

FIG. 5. The q2 dependence of the differential decay width and the relevant decay observables for Λc → nlνl semileptonic decay. The
red solid line denotes l ¼ eþ, while the blue dashed line denotes l ¼ μþ.
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IV. CONCLUSIONS

In this work, we calculate the weak transition form
factors of Λc → nlνl semileptonic decay in the framework
of QCD sum rules. The analytic results of the transition
form factors are obtained through the analysis of the three-
point correlation functions and the application of Cutkosky
cutting rules. The numerical results for the form factors at
the maximum recoil region point q2 ¼ 0 are computed and
compared with other methods. In order to extend the form
factors to the full physical region, we utilize a z-series
parametrization that adequately captures the q2 dependence
of the form factors, ensuring a smooth extrapolation.
Based on the obtained form factors, we predict the

branching fractions to be BðΛc → neþνeÞ ¼ ð0.281�
0.056Þ% and BðΛc → nμþνμÞ ¼ ð0.275� 0.055Þ%, which
will provide important information to determine the value
of the CKM matrix element jVcdj. Moreover, the mean
values of the leptonic forward-backward asymmetry hAFBi
and the asymmetry parameter hαΛc

i are also given, which
will play a crucial role in probing potential new physics
effects beyond the standard model. Although there are still
no experimental data for Λc → nlνl semileptonic decay to
date, considering the recent experimental progress of Λc

decay modes involving the neutron final state, we believe
our predicted results can be tested by the future experiments
at BESIII, BELLEII, and LHCb.
Finally, we analyze the semileptonic decay mode

Λc → Λlνl. Our results exhibit a strong agreement with
the experimental data, indicating that the QCDSR calcu-
lation can be applied to other charmed baryons, such as

Ξþð0Þ
c . Furthermore, there is still potential for further

improvement in this method. The relatively large errors
in the branching fractions compared with the experimental
data suggest the necessity for further refinement. One
possible approach to address this issue is to calculate the
contributions from radiation corrections, although this
presents a significant challenge in the application of QCD
sum rules.
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TABLE III. Theoretical predictions of branching fractions, the forward-backward asymmetry, and the asymmetry parameter for
Λc → nlνl and Λc → Λlνl semileptonic decay with different methods.

Channel Method Bð%Þ hAFBi hαΛc
i

Λc → neþνe QCD sum rules (QCDSR) 0.281� 0.056 −0.23� 0.01 −0.93� 0.03
Light front approach (LF) [21] 0.201
Covariant confined quark model (CCQM) [22] 0.207 −0.236
Constituent quark model (CQM) [23] 0.270
Relativistic quark model (RQM)[24] 0.268 −0.251 −0.91
SU(3) flavor symmetry (SUð3Þ) [25] 0.289� 0.035
SUð3Þ [26] 0.51� 0.04 −0.89� 0.04
MIT bag model (MBM) [27] 0.279 −0.87
Light front constituent quark model (LFCQM) [27] 0.36� 0.15 −0.96� 0.04
Lattice QCD (LQCD) [28] 0.410� 0.026

Λc → nμþνμ QCDSR 0.275� 0.055 −0.25� 0.02 −0.93� 0.03
CCQM [22] 0.202 −0.260
RQM [24] 0.262 −0.276 −0.90
LQCD [28] 0.400� 0.026

Λc → Λeþνe QCDSR 3.49� 0.65 −0.20� 0.01 −0.90� 0.03
LQCD [56] 3.80� 0.22 −0.20� 0.06 −0.87� 0.10
Experiment (Exp) [4,5] 3.56� 0.11� 0.07 −0.24� 0.03 −0.86� 0.04

Λc → Λμþνμ QCDSR 3.37� 0.54 −0.24� 0.01 −0.90� 0.02
LQCD [56] 3.69� 0.22 −0.17� 0.07 −0.87� 0.10
Exp [4,5] 3.48� 0.17 −0.22� 0.04 −0.94� 0.08
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