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We give details of our study as to whether high-energy gluon showers inside a QCD medium can be
treated as a sequence of individual splitting processes g → gg, or whether there is significant quantum
overlap between where one splitting ends and the next begins (neglecting effects that can be absorbed into
an effective value of the jet-quenching parameter q̂ that characterizes the medium). The study is carried out
by imagining in-medium gluon-shower development in the simplest theoretical situation, which includes
imagining a very large, static, homogeneous medium and taking the large Nc limit. Along the way, we also
show how in-medium shower evolution can be written in terms of a “net” splitting rate ½dΓ=dx�net, and we
provide a moderately simple analytic fit to our numerical results for the overlap effects included in that rate,
which we hope may be of use to others wishing to study possible consequences of overlapping splittings.
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I. INTRODUCTION

When passing through matter, high energy particles lose
energy by showering, via the splitting processes of hard
bremsstrahlung and pair production. At very high energy, the
quantum mechanical duration of each splitting process,
known as the formation time, exceeds the mean free time
for collisions with the medium, leading to a significant
reduction in the splitting rate known as the Landau-
Pomeranchuk-Migdal (LPM) effect [1–3].1 A long-standing
problem in field theory has been to understand how to
implement this effect in cases where the formation times of
two consecutive splittings overlap. Several authors [5–7]
previously analyzed this issue for QCD at leading-log
order, which arises from the limit where one bremsstrah-
lung gluon is soft compared to the other very high-energy
partons. They found large effects at high energy, but those
effects could be absorbed into an effective value q̂eff of the
medium parameter q̂ that encodes the rate of transverse
momentum kicks to a high-energy particle by the medium.
In a short companion Letter [8], which should be read first,
we motivated and outlined a method for investigating the

size of overlapping formation time effects that cannot be
absorbed into q̂, and we presented selected results. The
purpose of the current paper is to provide details of the
methods and derivations used in Ref. [8], and to provide a
more complete exposition of results.
As described in Ref. [8], our focus will be on computing

the statistically averaged distribution ϵðzÞ of energy depos-
ited in the medium by a gluon shower initiated by a very
high-energy gluon with energy E0 that starts at the origin
traveling in the z direction. We will be particularly focused
on overlapping formation time corrections to the shape of
that distribution,

SðZÞ≡ hzi
E0

ϵðhziZÞ; ð1:1Þ

where

hzi≡ 1

E0

Z
∞

0

dz z ϵðzÞ ð1:2Þ

is the characteristic length of the shower (of parametric
order α−1s

ffiffiffiffiffiffiffiffiffiffiffi
E0=q̂

p
), and Z≡ z=hzi.

Our results will all be derived in terms of what we call
the net rate ½dΓ=dx�net for splitting [9], defined as the rate
for splittings (including the case of two overlapping
splittings) to produce one daughter of energy xE plus
any other daughters from a parent of energy E. Formulas
for overlapping formation time effects appearing in the net
rate, developed in Refs. [9–15], are extremely long and
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1The papers of Landau and Pomeranchuk [1,2] are also
available in English translation [4].
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complicated. They are also time consuming to evaluate
numerically. In this paper, we will present a relatively
simple function that fits our numerical results well (at first
order in overlap effects) for ½dΓ=dx�net. We need this quick-
to-evaluate fit function to make our analysis of the shape
function SðZÞ numerically practical, but perhaps others
may find the fit function useful as well.

A. Assumptions

For the sake of theoretical simplicity, we make the
assumptions outlined in Ref. [8], which mostly follow
those of the underlying rate calculations developed in
Refs. [9–15]. We assume a homogeneous, static medium
large enough to stop the shower2; a nearly on shell initial
gluon3; transverse momentum transfer from the medium
described by the multiple-scattering (q̂) approximation; the
large-Nc limit, and so purely gluonic showers.
We also focus on p⊥-insensitive quantities such as the

energy deposition distribution ϵðzÞ and its shape (1.1) so
that we only need to track p⊥-integrated distributions of
energy in gluon showers.4

There was another simplifying assumption, made implic-
itly in Ref. [8], which we should be explicit about here. To
first order in high-energy radiative corrections, write the
effective value of q̂ as q̂eff ¼ q̂ð0Þ þ δq. Here, q̂ð0Þ is what
we might call the bare value of q̂—the value from
scatterings of a high-energy parton with the medium that
are not accompanied by high-energy splitting. In our
analysis, we will treat q̂ð0Þ as a constant, independent of
energy. There are caveats and countercaveats concerning

logarithmic dependence of that approximation, which we
will simply ignore in this paper.5

In principle, the analysis of this paper can be applied to
any sufficiently thick QCD medium where the q̂ approxi-
mation is appropriate. However, our own interest is
ultimately motivated by quark-gluon plasmas (QGPs),
and so we will sometimes use that language. In that
context, we are making no assumption about whether
the coupling αsðTÞ of the QGP is large or small—all of
the details of the QGP are hidden away in the value of q̂ð0Þ.
We will, however, work perturbatively in the size of the
αsðμÞ associated with a high-energy splitting vertex, for
which the transverse momentum scale is parametrically
μ ∼ ðq̂ωÞ1=4, where ω is the energy of the softest daughter.
Throughout this paper, we will only focus on the high-

energy particles (E ≫ T) in showers. We ignore thermal
gluon masses for the high-energy gluons in our (purely
gluonic) showers.

B. Outline

The next section briefly summarizes the calculation of
overlapping splitting rates, previously worked out in
Refs. [9–15], and explains how the results of that work
are packaged into results for different types of rates (2.2).
Section III describes, and presents results for, the net rate

½dΓ=dx�net that will be used throughout the rest of the paper.
We first review how rates can be combined into the net rate.
The net rate is split into leading-order (BDMPS-Z) and
next-to-leading-order (overlap) pieces. We review logarith-
mic infrared divergences of the net rate, due to soft radiative
corrections to hard splittings g → gg, and then factorize out
those soft radiative corrections as described in Ref. [8].
Numerical results, and an analytic fit, are presented for
overlap corrections to ½dΓ=dx�net. The section concludes
with discussion of how to convert ½dΓ=dx�net between
different choices of factorization scale.
In principle, the factorized soft radiative corrections

should be resummed and absorbed into an effective value
q̂eff of q̂, and that change will affect the effective “leading-
order” development of the shower. Section IV argues that
this complication can be ignored in our calculation. This
point is somewhat nontrivial and requires partial discussion
of resumming soft radiative corrections to q̂ at next-to-
leading-log order (NLLO); the current state of the art is
leading-log order.

2The underlying rate calculations of Refs. [9–15] only
assumed that the medium was approximately static and homo-
geneous over the formation time and corresponding formation
length. The analysis in this paper is made simpler by assuming
that it is static and homogeneous over the entire development of
the shower.

3For some discussion, in various approximations, of how to
marry an initial vacuumlike cascade of virtuality after a relativ-
istic heavy-ion collision with later nearly on shell showering in a
finite medium (but not attempting to analyze the overlap effects
that are the subject of this paper), see e.g. Refs. [16–18].

4This allows us to use existing calculations of p⊥-integrated
rates [9] for in-medium double splitting with overlapping for-
mation times. For a discussion of generalizing BDMPS-Z rate
calculations to p⊥ dependence of nonoverlapping splitting rates
in various situations, see e.g. Refs. [19–23]. More recently,
Ref. [24] investigated p⊥ dependence for soft emissions over-
lapping harder splittings with the latter treated in antenna
approximations such as in Refs. [25,26]. Our p⊥-integrated
calculations avoid soft-emission approximations (or more general
energy and/or p⊥ ordering assumptions about sequential emis-
sions), within the context of our other assumptions. By avoiding
antenna approximations in particular, our calculations capture the
(important for us) full backreaction of an overlapping second
emission on the probability for the original splitting to occur in
the first place. This is just like Refs. [5–7] except that we avoid all
soft-emission approximations. (See also footnote 34.)

5For example, for fixed-coupling calculations for a weakly-
coupled medium, the large-q⊥ Rutherford tail dΓel=dðq2⊥Þ ∝
α2sn=q4⊥ of the elastic scattering cross section causes logarithmic
dependence of hq2⊥i on the upper scale of q⊥ relevant to the
process under consideration. On the other hand, including
running of αs as dΓel=dðq2⊥Þ ∝ α2s ðq⊥Þn=q4⊥ is enough to even-
tually tame that dependence if the relevant upper scale Q⊥ for q⊥
is large enough that αsðQ⊥Þ is small compared to the strength of
αs at the scale of the medium. (See, for example, Sec. VI B of
Ref. [27], which combined earlier observations of Refs. [28,29].)
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Section V provides the starting point for our analysis of
shower energy deposition by showing that the deposited
energy distribution ϵðzÞ satisfies an integrodifferential
equation (5.15) in terms of the net splitting rate
½dΓ=dx�net. Since our goal is to study aspects of showers
that are as insensitive as possible to physics that can be
absorbed into the effective value of q̂, our ultimate interest
will be to follow Ref. [8] and study the shape SðZÞ of ϵðzÞ
given by (1.1).
Numerically, the features of ϵðzÞ that are easiest to

calculate are its moments hzni. Section VI presents a
recursion relation (6.2a) for those moments in terms of
integrals of ½dΓ=dx�net. These are then converted to various
moments hZni of the shape function SðZÞ. Our interest
lies in the relative size of overlap corrections to those
moments, which will be presented in Table III. We will find
that most overlap corrections are very small, but the fourth
cumulant of SðZÞ turns out to be very sensitive to overlap
effects.
In order to convince ourselves that overlap effects on the

shape function are very small, regardless of the sensitivity
of the fourth cumulant, Sec. VII turns away from moments
and takes on the more numerically complicated task of
directly calculating the size of overlap corrections to the
full SðZÞ as a function of Z, summarized in Fig. 14. As
prequel to this next-to-leading-order calculation, we also
provide what, as far as we know, are the first full leading-
order (BDMPS-Z) numerical calculations of ϵðzÞ and SðZÞ,
and we compare those to what they would be in the
instructive Blaizot/Iancu/Mehtar-Tani analytic model for
(leading-order) showers [30,31].
Section VIII demonstrates that the ability to analyze

showers in terms of ½dΓ=dx�net is not restricted to just
energy deposition but also applies more generally to the
time development of the gluon distribution of the shower.
This generalizes leading-order versions of shower evolu-
tion equations used by others [30,31], but we have not
made any attempt to simulate our evolution equation.
The results we find are that overlap effects on SðZÞ are

very small—much smaller than related effects previously
computed for large-Nf QED [32]. Section IX attempts to
give some crude, incomplete, after-the-fact analysis of why
the results of the two calculations are so qualitatively
different, which generates questions for future work.
In Sec. X, we discuss what cross-checks are available for

our calculation of overlap effects. Then we offer short
concluding remarks in Sec. XI.

II. REVIEW OF THE BUILDING BLOCKS:
SPLITTING RATES

A. Diagrams

The calculation of the LPM effect was generalized from
QED to QCD by Baier et al. [28,33,34] and Zakharov
[35,36] (BDMPS-Z). When specialized to an infinite

medium in the q̂ approximation, their formalism gives
the in-medium g → gg splitting rate6

�
dΓ
dx

�
LO

¼ αsPg→ggðxÞ
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xþ x2Þq̂A

xð1 − xÞE

s
ð2:1Þ

for energies E → xEþ ð1 − xÞE. The subscript on q̂A
indicates the q̂ appropriate for the adjoint color representation,
i.e. for gluons, and CA ¼ Nc is the adjoint-representation
quadratic Casimir. Pg→ggðxÞ is the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) splitting function.7 We
refer to (2.1) as the “leading-order” (LO) result for g → gg.
For us, leading order means the leading order in the number
of high-energy splitting vertices and includes the effects
of an arbitrary number of interactions with the medium. In
the following discussion, we will adopt Zakharov’s pic-
ture [35,36] of LPM rate calculations, which is to think of
the rate for g → gg as time-ordered diagrams, such as Fig. 1,

=

xE

)*(
E

(b)(a)

(lightcone) time(lightcone) time

FIG. 1. (a) A time-ordered contribution to the LO rate for single
splitting g → gg, with amplitude in blue and conjugate amplitude
in red. (b) A single diagram representing this contribution to the
rate. In both cases, all lines implicitly interact with the medium.
We need not follow particles after the emission has occurred in
both the amplitude and conjugate amplitude because we will
consider only the p⊥-integrated rate. (See, for example, Sec. 4.1
of Ref. [10] for a more explicit argument, although applied there
to a more complicated diagram.) Nor need we follow them before
the first emission because we approximate the initial particle as
on shell. Only one of the two time orderings that contribute to the
LO rate is shown above.

6It is difficult to figure out whom to reference for the first
appearance of (2.1). BDMS [37] give the q → qg formula in their
Eq. (42b) [with the relevant limit here being the infinite volume
limit τ0 → ∞ for their time τ0]. They then discuss elements of the
g → gg case after that but do not quite give an explicit formula for
the entire rate. (They are not explicit about the formula for ω0.)
Zakharov makes a few general statements about the g → gg case
after Eq. (75) of Ref. [38]. As an example from ten years later, the
explicit formula is given by Eqs. (2.26) and (4.6) of Ref. [39] in
the case where s represents a gluon.

7Our Pg→ggðxÞ ¼ 2CAð1 − xþ x2Þ2=xð1 − xÞ does not con-
tain the pieces of the usual DGLAP splitting function used to
include the effect of virtual diagrams. In particular, the 1=ð1 − xÞ
in our formula for Pg→gg is just the ordinary function 1=ð1 − xÞ
and not the distribution 1=ð1 − xÞþ, and our Pg→gg does not
contain a δ-function term δð1 − xÞ. When we need to deal with
virtual diagrams in this paper, we will do so explicitly.
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combining the amplitude forg → gg (blue)with the conjugate
amplitude (red). Zakharov then thought of Fig. 1(b) as three
particles propagating forward in time which, in the high-
energy limit, could be described (between the splitting
vertices) as a 3-particle, two-dimensional quantummechanics
problem in the transverse plane. The medium-averaged
effect of interactions with the medium can be described
by a non-Hermitian, effective “potential energy” between
the three particles in the quantum mechanics problem.
In this language, the q̂ approximation corresponds to a
harmonic oscillator problem (with imaginary-valued spring
constants). For a discussion and review in the particular
context of our problem with our notation, see, for example,
Refs. [10,40].
We refer to the effects of two overlapping g → gg

splittings, such as Fig. 2, as one type of next-to-leading-
order (NLO) effect. Since there are four high-energy
splitting vertices in this rate diagram, it is suppressed by
one power of high-energy αsðμÞ compared to the leading-
order splitting of Fig. 1. Figure 3 shows examples of
diagrams contributing to the rate, drawn in the style of
Fig. 1(b). The subtraction in Fig. 3 means that our rates
represent the difference between (i) a full calculation of
(potentially overlapping) g → gg → ggg, and (ii) approxi-
mating a double splitting as two independent, consecutive
single splittings g → gg that each occur with the LO single
splitting rate (2.1).8 At the same order in αsðμÞ, there are
also NLO virtual corrections to single splitting g → gg, for
which we show a few examples in Fig. 4. Figure 5 shows
examples of some more direct g → ggg processes that also
contribute at the same order in αsðμÞ. A complete list of all
diagrams contained in our calculation may be found in
Refs. [9,15].
Throughout this paper, αs will refer to high-energy αsðμÞ

unless stated otherwise.

B. Notation for rates

Following Ref. [9], we will refer to the leading-order
g → gg rate, its NLO correction, and the g → ggg rate as�

dΓ
dx

�
LO
;

�
Δ
dΓ
dx

�
NLO

g→gg
;

�
Δ

dΓ
dxdy

�
g→ggg

: ð2:2Þ

The last one, ½ΔdΓ=dxdy�g→ggg, represents both (i) overlap
corrections to two consecutive splittings, such as in
Fig. 3, and (ii) processes involving direct g → ggg, such
as Figs. 5(a) and 5(b). In both cases, energy is being split as
E → xEþ yEþ ð1 − x − yÞE. The symbol “Δ” in front of
that rate is a reminder that it represents a correction to an
LO-based calculation of double splitting as two, consecu-
tive, independent g → gg splitting events. ½ΔdΓ=dx�NLOg→gg

similarly represents the corresponding virtual corrections to
single splitting, such as in Figs. 4 and 5(c). In this case,
energy is being split as E → xEþ ð1 − xÞE.
Formulas for the rates (2.2) are presented in

Refs. [9,15],9 which carried out the calculation in light
cone perturbation theory (LCPT). We will be slightly
sloppy with our terminology in this paper. Technically,
we should define x and y by the splitting of light cone
longitudinal momentum; Pþ→xPþþyPþþð1−x−yÞPþ

for g → ggg and Pþ → xPþ þ ð1 − xÞPþ for g → gg.
But the splittings relevant to shower development are
high energy and nearly collinear, and so we may also
refer to x and y simply as “energy fractions” in our
applications.10

In the case of the virtual diagrams, the rate calculation
involves integration over the light cone longitudinal
momentum fraction y of one of the loop lines, as labeled
in Figs. 4 and 5(c). One consequence of LCPT is that the
pþ of every (transverse-polarized) gluon must be non-
negative, which imposes constraints on the allowed range
of y in the virtual diagrams. References [9,15] divide virtual
diagrams into two classes. Class I (such as the top line of
Fig. 4) means that (i) y should be integrated over 0 < y <
1 − x and (ii) the substitution x → 1 − x generates a distinct
set of diagrams that must also be included. Class II (such as
the bottom line of Fig. 4) means that (i) y should be
integrated over 0 < y < 1 and (ii) the substitution x →
1 − x does not generate any new diagrams. With this
nomenclature,

�
Δ
dΓ
dx

�
NLO

g→gg
¼
��

Δ
dΓ
dx

�
NLO

class I

�
þðx→ 1−xÞþ

�
Δ
dΓ
dx

�
NLO

class II

¼
�Z

1−x

0

dy

�
Δ

dΓ
dxdy

�
NLO

class I

�
þðx→ 1−xÞ

þ
Z

1

0

dy

�
Δ

dΓ
dxdy

�
NLO

class II
; ð2:3Þ

=
E

(lightcone) time(lightcone) time

)*(

yE
xE

FIG. 2. A particular example of two overlapping splittings.

8The key importance of this subtraction is explained in Sec. 1.1
of Ref. [11].

9More specifically, see Appendix A of Ref. [9], but supplement
the formulas there as explained in Appendix A of Ref. [15] in
order to include diagrams like Fig. 5. Various pieces of these
formulas are taken from earlier papers [10–14].

10More specifically, the difference between pþ=Pþ and p0=E
is suppressed by p2⊥=E2 ∼ q̂tform=E2 ∼ q̂1=2=E3=2, and in all
of our analysis we ignore effects that are suppressed by
powers of E.
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where the subscripts refer to Class I and Class II virtual
diagrams.11 The virtual diagrams were computed with MS
ultraviolet renormalization, and so αsðμÞ will refer to the
MS coupling in our work.
In this paper, we will need to do y integrals numerically.

Reference [9] found it convenient to separate out a
piece containing the renormalization scale μ dependence
from the integrals in (2.3) and to integrate that piece
analytically. That is a choice, and a detail, that we leave
to Appendix A, where the reader may find the exact

connection with the rate formulas as they are presented
in Refs. [9,15].12

In what follows, we will consider the shower as
being made up of 1 → 2 splittings and effective 1 → 3
splittings. In that context, we find it convenient to use the
notation

�
dΓ
dx

�
1→2

≡
�
dΓ
dx

�
LO

þ
�
Δ
dΓ
dx

�
NLO

g→gg
; ð2:4aÞ

x

y

xy y x

(b) (c)(a)

FIG. 5. Some examples from Ref. [15] that involve (a) and (c) a 4-gluon vertex or (b) exchange of a longitudinally polarized gluon
(denoted by the vertical line crossed by a bar) in light cone perturbation theory (LCPT).

result for two LO splittings
overlap effectsignoring

yx x xy y

x x y yxy

FIG. 3. Examples of diagrams contributing to the effects of overlapping formation times for two splittings g → gg → ggg. The first and
second rows (when combined with their conjugates and appropriate permutations of the daughters) were analyzed in Refs. [10,11],
respectively.

x x x

y y y

x x
y

y

y xClass II:

Class I:

FIG. 4. Some examples from Ref. [9] of NLO virtual corrections to single splitting g → gg.

11Following Ref. [9], our convention is that, when there is a
loop in the amplitude (or a loop in the conjugate amplitude), the
loop-symmetry factor (if any) is already accounted for in the
formulas for ½ΔdΓ=dxdy�NLOclass I and ½ΔdΓ=dxdy�NLOclass II.

12We have intentionally used subscript names “class I” and
“class II” in (2.3) that are different from those used in Ref. [9] to
avoid confusing the formulas given there, where some pieces
have been separated out, with the integrands in (2.3), where they
have not. See Appendix A.
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�
dΓ
dxdy

�
1→3

≡
�
Δ

dΓ
dxdy

�
g→ggg

: ð2:4bÞ

Remember that, for simplicity, we are only considering
purely gluonic showers, and so the daughters of every
splitting are identical particles. Our convention is to not
include final-state identical particle factors in differential
rates. So, formally, the total rate for any sort of 1 → 2 or
1 → 3 splittings would be

Γ ¼ 1

2!

Z
1

0

dx

�
dΓ
dx

�
1→2

þ 1

3!

Z
1

0

dx
Z

1−x

0

dy

�
dΓ
dxdy

�
1→3

; ð2:5Þ

or, equivalently,

Γ ¼
Z
x<1−x

dx

�
dΓ
dx

�
1→2

þ
Z
y<x<1−x−y

dxdy

�
dΓ
dxdy

�
1→3

: ð2:6Þ

(We say “formally” because the total rate is infrared
divergent.)
We should note that the “1 → 3” rate (2.4b) can have

either sign [11] because, as mentioned earlier, part of it
represents an overlap correction to a shower of LO 1 → 2
splittings, and corrections may have either sign.

III. ½dΓ=dx�net AND ITS FACTORIZATION

A. Definition and properties

As mentioned earlier, we define the “net” rate ½dΓ=dx�net
as the probability per unit time that splittings of a parent
with energy E create a daughter with energy xE (along with
any other daughters). For a shower made up of 1 → 2 and
1 → 3 splittings,

�
dΓ
dx

�
net

¼
�
dΓ
dx

�
1→2

þ 1

2!

Z
1−x

0

dy

�
dΓ
dxdy

�
1→3

ð3:1Þ

if all the particles are identical (i.e. gluons in our case). The
reason for the 1=2! factor on the 1 → 3 terms is that one of
the three daughters has been distinguished as having energy
xE, but we do not want to double count the integration over
the energies of the other two (identical) daughters.
Note that the total rate (2.5) is not equal to

R
dx½dΓ=dx�net.

But one may show that

Γ ¼
Z

1

0

dx x

�
dΓ
dx

�
net
: ð3:2Þ

To see this, use (3.1) to write the right-hand side as

Z
1

0

dxx

�
dΓ
dx

�
net

¼
Z

1

0

dxx

�
dΓ
dx

�
1→2

þ 1

2!

Z
1

0

dxx
Z

1−x

0

dy

�
dΓ

dxdy

�
1→3

: ð3:3Þ

For the 1 → 2 integral in (3.3), average (i) the integral with
(ii) itself after the change of integration variable x → 1 − x.
Since the daughters ðx; 1 − xÞ of the splitting are identical
particles, ½dΓ=dx�1→2 does not change under x → 1 − x,
and so

Z
1

0

dx x

�
dΓ
dx

�
1→2

¼
Z

1

0

dx
xþ ð1 − xÞ

2

�
dΓ
dx

�
1→2

¼ 1

2

Z
1

0

dx

�
dΓ
dx

�
1→2

: ð3:4Þ

Do the same for the 1 → 3 integral in (3.3) except aver-
age over (i) the original integral, (ii) x ↔ y, and
(iii) x ↔ 1 − x − y. These are just certain permutations of
the three identical daughters ðx; y; 1 − x − yÞ, and so
½dΓ=dxdy�1→3 does not change. Comparing the resulting
rewriting of (3.3) to (2.5) gives (3.2).

B. IR divergences and factorization

As written, the definition (3.1) of ½dΓ=dx�net, when
applied to the 1 → 2 and 1 → 3 processes (2.4), is plagued
with infrared divergences. First, there are power-law infra-
red divergences associated with the different boundaries
(0, 1 − x, and 1) of the y integrations in (3.1) and (2.3),
but these divergences cancel each other when all added
together. It is possible to re-arrange the y integrals so that
(i) the IR divergences (for fixed x) all become associated
with y → 0 and (ii) the terms which generate power-law IR
divergences all cancel in the integrand. Specifically,
Ref. [9] showed that (3.1) could be rewritten as

�
dΓ
dx

�
net

¼
�
dΓ
dx

�
LO

þ
�
dΓ
dx

�
NLO

net
ð3:5Þ

with13

13See Sec. 1.2 of Ref. [9]. Here we use a capital letter for the
function V to distinguish it from the lower-case function v of
Ref. [9]. This is a technical point arising from our use of the full
NLO virtual rates ½ΔdΓ=dxdy�NLOclass I and ½ΔdΓ=dxdy�NLOclass II in our
discussion here, instead of their NLO counterparts in Ref. [9]
(where a piece including the renormalization scale dependence
has been separated out). See footnote 12 and Appendix A. We
have also capitalized the function name R for consistency of
notation, but it is identical to the function r in Ref. [9].
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�
dΓ
dx

�
NLO

net
¼

Z
1=2

0

dy

�
Vðx; yÞθ

�
y <

1 − x
2

�

þ Vð1 − x; yÞθ
�
y <

x
2

�

þ Rðx; yÞθ
�
y <

1 − x
2

��
; ð3:6Þ

where

Vðx; yÞ≡
��

Δ
dΓ
dxdy

�
NLO

class I
þ
�
Δ

dΓ
dxdy

�
NLO

class II

�
þ ðy ↔ 1 − x − yÞ; ð3:7aÞ

Rðx; yÞ≡
�
Δ

dΓ
dxdy

�
g→ggg

: ð3:7bÞ

The θð� � �Þ in (3.6) represent unit step functions
[θðtrueÞ ¼ 1 and θðfalseÞ ¼ 0], and they just implement
upper limits on the y integration. The advantage of using
the θ functions is so that all the integrals can be combined:
the integrals for the separate terms each have power-law IR
divergences, but their sum does not.
The explicit upper limit 1=2 on the y integral sign

R
dy

in (3.6) could just as well be replaced by ∞ because the
actual limits on various terms in the integrand are imple-
mented by the θ functions. 1=2 is simply the largest any of
those limits on y could ever be.
Though IR power-law divergences cancel, there remains

an uncanceled IR double-log divergence associated with
y → 0 in (3.6). This is a double logarithm [5–7] associated
with soft radiative corrections to an underlying, hard single-
splitting process ½dΓ=dx�LO. It is essentially the same
double logarithm that was originally discovered by con-
sidering radiative corrections to q̂ [41]. Physically, this
double logarithm is cut off in the infrared where the q̂
approximation breaks down. If one works exclusively in the
q̂ approximation, however, the double log manifests as an
infrared divergence that must be regularized and/or sub-
tracted. Equation (3.6) also generates a subleading, single
logarithm IR divergence that was extracted analytically in
Ref. [42] and alternatively derived from the known radi-
ative corrections to q̂ in Ref. [40]. The small-y behavior of
the integral in (3.6) was found to be

−
CAαs
4π

�
dΓ
dx

�
LO

Z
y≪minðx;1−xÞ

dy
y
½ln yþ s̄ðxÞ� ð3:8Þ

for fixed x, where

s̄ðxÞ ¼ − lnð16xð1 − xÞð1 − xþ x2ÞÞ

þ 2
½x2ðln x − π

8
Þ þ ð1 − xÞ2ðlnð1 − xÞ − π

8
Þ�

ð1 − xþ x2Þ : ð3:9Þ

For us, “soft” radiation means soft compared to both
high-energy daughters of the underlying LO splitting
E → xEþ ð1 − xÞE, and so the small-y approximation
used in (3.8) is only valid for y ≪ minðx; 1 − xÞ, which
is parametrically equivalent to y ≪ xð1 − xÞ.
s̄ðxÞ diverges proportional to lnðxð1 − xÞÞ for x → 0 or

x → 1. It is natural to rewrite the ln yþ s̄ðxÞ in a way that
combines the ln y and lnðxð1 − xÞÞ behavior,

ln yþ s̄ðxÞ ¼ ln

�
y

xð1 − xÞ
�
þ ŝðxÞ ð3:10Þ

with

ŝðxÞ ¼ − lnð16ð1− xþ x2ÞÞ

þ 2
½x2ðlnx− π

8
Þ þ ð1− xÞ2ðlnð1− xÞ− π

8
Þ�

ð1− xþ x2Þ : ð3:11Þ

[ŝðxÞ remains finite for x → 0 and x → 1.] It will also
sometimes be useful to think of the integral (3.8) in terms of
energy and so rewrite it as

−
CAαs
4π

�
dΓ
dx

�
LO
Z
ωy≪minðx;1−xÞE

dωy

ωy

�
ln

�
ωy

xð1−xÞE
�
þ ŝðxÞ

�
;

ð3:12Þ
where ωy ≡ yE is the energy of the soft y daughter.
By itself, the integral in (3.12) is IR divergent and so

ultimately depends on the IR physics or IR regulator that
cuts off those divergences. Wewill not be sensitive to the IR
details because we intend to study infrared-safe character-
istics of the shower, namely the shape (1.1) of the energy
deposition distribution ϵðzÞ. To this end, we will introduce
an energy factorization scale Λfac and separate the NLO
contribution to the net rate into�
dΓ
dx

�
NLO

net
¼

�
dΓ
dx

�
NLO;fac

net
−
CAαs
4π

�
dΓ
dx

�
LO

Z
Λfac

0

dωy

ωy

×

�
ln

�
ωy

xð1 − xÞE
�
þ ŝðxÞ

�
; ð3:13Þ

where the superscript “fac” above stands for “factorized.”
The IR-subtracted net rate�
dΓ
dx

�
NLO;fac

net
≡

Z
∞

0

dy

�
Vðx; yÞθ

�
y <

1 − x
2

�

þ Vð1 − x; yÞθ
�
y <

x
2

�

þ Rðx; yÞθ
�
y <

1 − x
2

�

þ CAαs
4π

�
dΓ
dx

�
LO ln yþ s̄ðxÞ

y
θðyE < ΛfacÞ

�
ð3:14Þ

is then finite, and it can be computed numerically.
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Our program is to absorb the last (IR-sensitive) term of
(3.13) into an effective value q̂eff of q̂ and so into an
effective value ½dΓ=dx�LOeff of the leading-order g → gg
splitting rate. In principle, this simply shuffles the problem
of IR-sensitive physics to ½dΓ=dx�LOeff . Moreover, in prin-
ciple, the large double and single IR logarithms in
½dΓ=dx�LOeff would then have to be tamed by a next-to-
leading-log order (NLLO) resummation of IR logarithms to
all orders in αsðμÞ. In practice, we will find that we can
ignore the replacement of ½dΓ=dx�LO by ½dΓ=dx�LOeff in
evaluating whether those overlap effects that cannot be
absorbed into q̂ are large or small. In part, this is because
constant shifts δq̂ to the value of q̂ will, by design, have no
effect on the shape function (1.1)—that is precisely why we
choose to study the shape function. Additionally, it is
because we will later show that changes that could affect
the leading-order shape function do not affect the relative
sizes NLO/LO of overlap effects at the order of our
calculation. For now, the upshot is that we will focus on
the IR-subtracted version (3.14) of the net splitting rate.
Note that we have written the integral as

R∞
0 dy in (3.14).

However, the largest y for which the integrand is nonzero
is maxðx=2; ð1 − xÞ=2;Λfac=EÞ.

C. Choice of factorization and renormalization scales

1. Our usual choice

As previously noted, IR logarithms result from soft
radiation with energies ωy up to the parametric scale
minðx; 1 − xÞE. The choice of factorization scale that
subtracts as much of the IR logarithms as possible is then
Λfac ∼minðx; 1 − xÞE, and our usual choice will be

Λfac ¼ κxð1 − xÞE; ð3:15Þ

where κ is anOð1Þ constant that we will canonically choose
to be 1, but which we will vary later.
Our UV renormalization scale μ should be chosen so

that the explicit αsðμÞ in the leading-order splitting rate
½dΓ=dx�LO (the αs associated with the high-energy splitting
vertex) is evaluated at an appropriate physics scale to
account for anti-screening from virtual particle pairs
present in the vacuum. During a formation time, the
transverse separation b of the daughters of a g → gg
splitting is of order ðq̂ωÞ−1=4, where ω ¼ minðx; 1 − xÞE.
(Note that this is parametrically small compared to medium
scales in the high-energy limit.) So we want αsð1=bÞ, which
is αsðμÞwith μ ∼ ðq̂ωÞ1=4. In terms of our choice (3.15), this
is μ ∼ ðq̂ΛfacÞ1=4. Rather than varying the exact choices of μ
and Λfac separately, we will simply combine the two by
choosing

Λfac ¼ κxð1 − xÞE; μ ¼ ðq̂AΛfacÞ1=4: ð3:16Þ

2. An alternate choice

We will also consider another choice for comparison. In
our theorist’s limit of arbitrarily high energy showers (and
an infinite-size medium), an underlying LO single splitting
process g → gg, with E → xEþ ð1 − xÞE, should not
affect where energy is deposited in the z direction in the
limit that the radiated energy fraction x (or 1 − x) is
extremely small, since that soft x gluon deposits negligible
energy. So it will not matter if we make a poor estimate
of the size of the IR logarithms for the even softer
radiative corrections to such an already very soft process.
Parametrically, we only need do a reasonable job with
choosing the factorization scale for the case where
minðx; 1 − xÞ ∼ 1. So, though (3.16) is a more physically
sensible choice, one should in principle, for the purpose of
calculating ϵðzÞ and then its shape SðZÞ, be able to get away
with choosing

Λfac ¼ rE; μ ¼ ðq̂AΛfacÞ1=4 ð3:17Þ

instead, where r is an Oð1Þ constant.
We will later compare results using (3.16) and (3.17) to

check the robustness of our conclusions about the impact of
overlap corrections that cannot be absorbed into q̂. Note
that, for a perfectly democratic splitting with x ¼ 1

2
, our two

different choices (3.16) and (3.17) match up when r ¼ κ=4.

D. Numerical results and fits for Λfac = xð1− xÞE
Using (3.14), with the rate formulas of Refs. [9,15] as

described in Appendix A of this paper, and choosing
Λfac ¼ xð1 − xÞE, we have numerically computed14 the
values of ½dΓ=dx�NLO;facnet represented by the data points
in Fig. 6 and in the last column of Table I.15 More
specifically, the figure and table show the values of

fðxÞ≡
h
dΓ
dx

i
NLO;fac

net

CAαs
h
dΓ
dx

i
LO ; ð3:18Þ

where ½dΓ=dx�LO is given by (2.1). It is convenient to plot
this ratio not only to see the relative size (in units of CAαs)
of the NLO correction compared to the leading-order rate,
but also because both the numerator and denominator
blow up proportional to ½xð1 − xÞ�−3=2 (up to logarithms)
as x → 0 or x → 1, and so fðxÞ is a smoother function
than ½dΓ=dx�NLO;facnet .

14See Appendix B 1 for some information on our numerical
methods.

15The data points in Table I and Fig. 8 that have extremely tiny
x or 1 − x are not intended to be relevant to any actual
phenomenological situation, since our high-energy approxima-
tions fail when xE or ð1 − xÞE are ≲T. They are included just for
the purpose of understanding the asymptotic behavior of our
formulas.
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The first thing to note about these results is that the
relative size of the (factorized) NLO contribution to
½dΓ=dx�net is a roughly CAαs × 100% correction to
½dΓ=dx�LO. One would need CAαs ¼ Ncαs to be small
for this to be a small correction. But remember that our
motivation is to study overlap effects that cannot be
absorbed into q̂. If fðxÞ were independent of x, then, no
matter how large f was, the NLO corrections would simply
rescale the size of ½dΓ=dx�LO, which could be absorbed by
rescaling the size of q̂, which would have no effect on, for
example, the shape SðZÞ of the energy deposition distri-
bution. So what will be important about Fig. 6 is how it
varies with x, not its overall value. We must wait until we
compute the NLO effect on the shape before we can draw
conclusions.
The leading-order rate ½dΓ=dx�LO for g → gg is sym-

metric under swapping the two daughters via x ↔ 1 − x.
The second thing to note about Fig. 6 is that fðxÞ and so
½dΓ=dx�NLOfac are not symmetric in x ↔ 1 − x. In general,
½dΓ=dx�net is not symmetric because 1 → 3 processes are
not. Those processes (such as overlapping g → gg → ggg)
have three daughters; they are symmetric under permuta-
tions of ðx; y; 1 − x − yÞ but not under x ↔ 1 − x.
We will be curious later to understand the relative

importance or unimportance of processes involving funda-
mental or effective 4-gluon interactions such as Fig. 5 on
the shape properties that we will calculate. Following
Ref. [15], we refer to such interactions as “F ¼ 4þ I”
interactions, where “F” is meant to be evocative of the word
“four”; “4” stands for fundamental 4-gluon vertices and “I”
stands for interactions via longitudinally polarized gluon
exchange, which are “instantaneous” in LCPT. Figure 7
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FIG. 7. Like Fig. 6 but here showing only the contribution from
diagrams that contain at least one F ¼ 4þ I interaction [15], like
the examples in Fig. 5. These diagrams do not have IR
divergences and so do not require factorization, and so they
do not affect the infrared subtraction in (3.14) and are not
sensitive to the choice of Λfac. These diagrams are also UV
convergent and are not sensitive to the choice of renormalization
scale μ. The solid curve corresponds to the fit (3.19c).
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FIG. 6. Plot of the ratio (3.18) vs x for Λfac ¼ κxð1 − xÞE and
μ ¼ ðq̂AΛfacÞ1=4. The diamonds are numerically computed data
points for κ ¼ 1, and the solid curve is a fit (3.19) to those points.
For the sake of later discussion, the dashed lines show the results
for κ ¼ 1

2
(upper) and κ ¼ 2 (lower), and the dotted lines for

κ ¼ 1
16

(upper) and κ ¼ 16 (lower).

TABLE I. Our numerical results for fðxÞ for Λfac ¼ xð1 − xÞE
and μ ¼ ðq̂AΛfacÞ1=4. The last column shows values for the ratio
(3.18), as plotted by the diamonds in Fig. 6. The second column
breaks out the contribution from only diagrams [9] without
F ¼ 4þ I vertices. The third column is the contribution from
diagrams [15] with F ¼ 4þ I vertices, which are shown by
diamonds in Fig. 7. We estimate our numerical error in these
results to be roughly �1 in the last digit for all entries except the
entries for x ¼ 0.0001 and 0.9999 [where we estimate �ða fewÞ
in the last digit]. We expended computational effort to get the
second-column entries for x ¼ 0.0001 and 0.9999 in order to
capture and fit the log behavior of (3.19b), but we did not see a
need to expend similar effort for corresponding entries in the third
column, which have been left blank.

fðxÞ
x Non-F F diagrams Total

0.0001 −2.087
0.001 −1.525 −0.0425 −1.568
0.01 −1.081 −0.0470 −1.128
0.05 −0.8787 −0.0551 −0.9339
0.1 −0.8178 −0.0586 −0.8764
0.2 −0.7673 −0.0571 −0.8245
0.3 −0.7455 −0.0509 −0.7965
0.4 −0.7422 −0.0459 −0.7881
0.5 −0.7573 −0.0463 −0.8037
0.6 −0.7924 −0.0530 −0.8453
0.7 −0.8477 −0.0625 −0.9102
0.8 −0.9237 −0.0697 −0.9935
0.9 −1.0276 −0.0697 −1.0974
0.95 −1.1057 −0.0653 −1.1710
0.99 −1.228 −0.0577 −1.286
0.999 −1.319 −0.0542 −1.374
0.9999 −1.361
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shows our result for the piece of Fig. 6 that comes from
processes involving F interactions [15].
Since data points like those of Table I are slow to

compute numerically, and since we will later need to use
½dΓ=dx�net both in integrals and in integrodifferential
equations, we need a reasonable alternative that is quick
to evaluate. We have therefore fit the data of Table I to a
fairly accurate functional form. We will continue to dis-
tinguish the contribution of the F diagrams, and so we write

fðxÞ ¼ fnon-FðxÞ þ fFðxÞ: ð3:19aÞ

We have found a good fit to the non-F contributions (the
second column of Table I) by the function

fnon-FðxÞ ¼ 0.26873 ln xþ 0.00745 lnð1 − xÞ − 3.92750

þ 8.96222x − 1.69021x2 − 2.93372x1=2

− 1.71625x3=2 þ 1.26448ð1 − xÞ1=2
þ 3.08068ð1 − xÞ3=2: ð3:19bÞ

This fits all the non-F data of the table with at most 0.003
absolute error and better than 0.3% relative error. The
presence of ln x behavior as x → 0 is clear from the
log-linear plot of the non-F data in Fig. 8(a). In contrast,
Fig. 8(b) does not convincingly demonstrate lnð1 − xÞ
behavior as x → 1, and so for now the nonzero coefficient
of the lnð1 − xÞ term in our fit (3.19b) should not be taken
too seriously. (We have not made the numerical effort to
push our calculations to even smaller values of 1 − x.) For
the rest of (3.19b), we found the use of half powers of x and
1 − x necessary to fit the data well with a relatively few
number of terms. This is a possibility that might have been
anticipated; the somewhat-related experience of Ref. [42]
was that small-y expansions of overlapping real splittings
(and their virtual counterparts) were expansions in powers
of y1=2 rather than integer powers of y (where y was the
softest gluon).

For the F diagram contributions of Fig. 7 (the third
column of Table I), we found that a simple polynomial fit
worked well enough,

fFðxÞ ¼ −0.04338 − 0.29586xþ 1.69249x2 − 3.29499x3

þ 2.38669x4 − 0.49977x5; ð3:19cÞ

which is the solid curve plotted in Fig. 7. This fits the data
points with at most 0.001 absolute error, which is small
when combined with the non-F diagrams. The solid curve
plotted in Fig. 6 is the total ratio (3.19a).

E. Converting between different choices of Λfac

1. Overview

To understand how our results for ½dΓ=dx�NLO;facnet will
change if one changes the factorization scale Λfac and
renormalization scale μ, we just need to know how our
results depend on those two scales. We can read the Λfac
dependence from the last term of (3.14),16

�
dΓ
dx

�
NLO;fac

net
¼ ðΛfac independentÞþ

CAαs
4π

�
dΓ
dx

�
LO

×
Z

∞

0

dy
lnyþ s̄ðxÞ

y
θðyE<ΛfacÞ

¼ ðΛfac independentÞþ
CAαs
4π

�
dΓ
dx

�
LO

×
�
1

2
ln2

�
Λfac

E

�
þ s̄ðxÞ ln

�
Λfac

E

��
: ð3:20Þ
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FIG. 8. (a) A log-linear plot of the non-F contributions to the ratio fðxÞ of (3.18). (b) The same data plotted vs 1 − x instead of x. Note
that we have arranged both plots so that x → 0 is on the left and x → 1 is on the right.

16The fact that the explicit integral shown in the first line of
(3.20) is infrared divergent does not matter, since (i) that
divergence does not depend on Λfac and (ii) the divergence
cancels, by construction, against the otherΛfac-independent terms
in (3.14).
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The renormalization scale μ dependence is even easier to
isolate. The explicit ln μ dependence of the NLO result
must cancel the implicit dependence in the coupling αsðμÞ
in the leading-order rate (2.1), and so

�
dΓ
dx

�
NLO;fac

net
¼ ðμ independentÞ− β0αs

�
dΓ
dx

�
LO

lnμ; ð3:21Þ

where β0 is the leading-order coefficient of the renormal-
ization group β function for αs. Since we are investigating
purely gluonic showers in the large-Nc limit, only the
gluonic contribution matters,

β0 ¼ −
11CA

6π
: ð3:22Þ

Putting together (3.20) and (3.21), the change δ½dΓ=dx� in
the net rate due to changing Λfac and/or μ is

δ

�
dΓ
dx

�
NLO;fac

net
¼ CAαs

4π

�
dΓ
dx

�
LO

× δ

�
1

2
ln2

�
Λfac

E

�

þ s̄ðxÞ ln
�
Λfac

E

�
−
4πβ0
CA

ln μ
�
: ð3:23Þ

A change from Λfac ¼ xð1 − xÞE to Λfac ¼ κxð1 − xÞE,
with μ ¼ ðq̂AΛfacÞ1=4 in both cases, then gives

�
dΓ
dx

�
NLO;fac

net

				Λfac¼κxð1−xÞE
μ¼ðq̂AΛfacÞ1=4

¼
�
dΓ
dx

�
NLO;fac

net

				
κ¼1

þ CAαs
4π

�
dΓ
dx

�
LO

×

�
1

2
ln2κ þ

�
ŝðxÞ − πβ0

CA

�
ln κ

�
: ð3:24Þ

The dashed curves in Fig. 6 show the variation in the ratio
fðxÞ of (3.18) from increasing the choice of κ up or down
by a factor of 2. In estimating factorization scale depend-
ence, one may reasonably wonder whether it is more
physically relevant to vary the energy scale Λfac by a factor
of 2 or so, or to vary the associated transverse momentum
scale ðq̂ΛfacÞ1=4 by a factor of 2 or so. The latter
corresponds to varying Λfac up or down by a factor of
16, shown by the dotted curves in Fig. 6. The conservative
conclusion is that fðxÞ and so ½dΓ=dx�NLOfacnet are potentially
very sensitive to the choice of factorization scale.
Fortunately, our final results concerning overlap corrections
to the shape function SðZÞ will be dramatically less
sensitive.
Note that the x-independent terms in the factor f� � �g in

the rescaling (3.24) could be absorbed into a constant shift
in q̂ and so will not affect the shape function SðZÞ. Only the
x-dependent pieces will change the shape function. Note
also that in this case the change in renormalization scale μ

has no explicit effect on the size of the NLO correction
to SðZÞ.

2. An alternate choice

As mentioned earlier, we will eventually also examine
how our results turn out if one chooses (more simply but
more unphysically) an x-independent factorization scale
Λfac ¼ rE as in (3.17). In that case, the relation to our
numerical results for Λfac ¼ xð1 − xÞE is just (3.24) with κ
replaced by r=xð1 − xÞ,

�
dΓ
dx

�
NLO;fac

net

				 Λfac¼rE
μ¼ðq̂AΛfacÞ1=4

¼
�
dΓ
dx

�
NLO;fac

net

				 Λfac¼xð1−xÞE
μ¼ðq̂AΛfacÞ1=4

þCAαs
4π

�
dΓ
dx

�
LO
�
1

2
ln2

�
r

xð1−xÞ
�

þ
�
ŝðxÞ−πβ0

CA

�
ln

�
r

xð1−xÞ
��

: ð3:25Þ

We note that, because of the double log in (3.25), the
NLO/LO ratio fðxÞ will diverge like ln2ðxð1 − xÞÞ for
Λfac ¼ rE as x → 0 or x → 1, instead of the milder ln x
divergence as x → 0 (and perhaps no divergence for x → 1)
that we found numerically for Λfac ¼ xð1 − xÞ. The
worse divergence of Λfac ¼ rE is an indication that Λfac ¼
xð1 − xÞ better captures the physics of x → 0 and x → 1, as
we supposed.

3. Yet another choice

Though we will not use it for numerics, it will be
convenient in some of our later discussion to also consider
the choice

Λfac ¼ rE0; μ ¼ ðq̂AΛfacÞ1=4; ð3:26Þ

where E0 is the energy of the original particle that initiates
the shower, and r is again a fixed, Oð1Þ constant. At first
sight, a seeming failure of this choice is that it is the
wrong scale late in the development of the shower (or any
part of the shower), when particle energies have
dropped to E ≪ E0. In that case, however, those particles
are already effectively stopped, since their remaining
stopping distance lstopðEÞ ∼ α−1s

ffiffiffiffiffiffiffiffiffi
E=q̂

p
is then parametri-

cally small compared to the overall stopping distance
lstopðE0Þ ∼ α−1s

ffiffiffiffiffiffiffiffiffiffiffi
E0=q̂

p
. Having chosen Λfac poorly for

those E ≪ E0 splittings will not have a significant effect
on the energy deposition distribution ϵðzÞ. As to the lack of
x dependence in (3.26), the argument that was made in the
case of (3.17) applies here as well.
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For later reference, the conversion is

�
dΓ
dx

�
NLO;fac

net

				 Λfac¼rE0
μ¼ðq̂AΛfacÞ1=4

¼
�
dΓ
dx

�
NLO;fac

net

				 Λfac¼xð1−xÞE
μ¼ðq̂AΛfacÞ1=4

þ CAαs
4π

�
dΓ
dx

�
LO
�
1

2
ln2

�
rE0

xð1 − xÞE
�

þ
�
ŝðxÞ − πβ0

CA

�
ln

�
rE0

xð1 − xÞE
��

: ð3:27Þ

F. Scaling of ½dΓ=dx�facnet with energy E

The only dimensionful scales in the original NLO
differential rates ΔdΓ=dxdy are q̂ and the parent energy
E. Like the leading-order rate (2.1), those differential rates
are proportional to

ffiffiffiffiffiffiffiffiffi
q̂=E

p
and so scale like E−1=2 for fixed

x and y. However, the integration over y in (3.6) to get
½dΓ=dx�NLOnet produced IR log divergences. To factorize out
those divergences, we introduced a new energy scaleΛfac to
define ½dΓ=dx�NLO;facnet in (3.14). If we take our canonical
choice Λfac ¼ κxð1 − xÞE or the alternate choice
Λfac ¼ rE, then we are not introducing a new dimensionful
parameter, and ½dΓ=dx�NLO;facnet will scale as E−1=2. But this
is not the case if we instead choose Λfac ¼ rE0 as in (3.26).
Specifically, (3.27) shows that this choice would introduce
a term into ½dΓ=dx�NLO;facnet that scales as E−1=2 ln2ðE0=EÞ.
Later, in Sec. Vand beyond, we make use of simplifications
that occur when ½dΓ=dx�facnet scales exactly as E−1=2. At that
time, we will only consider choices where Λfac ∝ E, like
Λfac ¼ xð1 − xÞE or Λfac ¼ rE, and not Λfac ∝ E0.

IV. LO VS EFFECTIVE LO RATES

In defining the factorized net rate (3.14), we subtracted
the IR log divergences from the net rate and imagined
absorbing those divergences into an effective leading-
order g → gg splitting rate ½dΓ=dx�LOeff . Formally, within
our approximations so far,17

�
dΓ
dx

�
LO

eff
¼

�
dΓ
dx

�
LO
�
1 −

CAαs
4π

Z
Λfac

0

dωy

ωy

×

�
ln

�
ωy

xð1 − xÞE
�
þ ŝðxÞ

��
: ð4:1Þ

However, to really compute ½dΓ=dx�LOeff , one would have to
correctly account for the infrared physics that cuts off the
IR divergence of the integral above. Parametrically, the
result at leading-log order is

�
dΓ
dx

�
LO

eff
≈
�
dΓ
dx

�
LO
�
1 −

CAαs
8π

ln2
�
Λfac

T

��
: ð4:2Þ

In the high-energy limit, the double logarithm becomes
large since we choose Λfac ∝ E. That means that
αs ln2ðΛfac=TÞ is not small at high energy, and one must
resum logarithms to all orders in αs to get a usable result
for ½dΓ=dx�LOeff .
Let us ignore that complication for just a moment to give

a very crude preview of the type of argument we will
eventually make. Imagine, just for a moment, that the
logarithms were not large and that αs ln2ðΛfac=TÞ had size
OðαsÞ. In this paper, we want to explore the relative size
of NLO corrections that cannot be absorbed into q̂, as
measured by the shape function SðZÞ. That means that we
will look at the ratio of the factorized NLO correction to the
effective LO result for SðZÞ. But (if logarithms were not
large), this ratio would be

NLOfac

LOeff
¼ NLOfac

LO × ½1þOðαsÞ�
¼ NLOfac

LO
× ½1þOðαsÞ�: ð4:3Þ

The desired ratio NLOfac=LOeff is itself OðαsÞ, but (4.3)
means that the difference between using LO and LOeff
in the denominator is an even higher-order correction to
the ratio and so can be ignored. At the order of our
calculation, we can simply calculate NLOfac=LO instead of
NLOfac=LOeff . Unfortunately, the logic of (4.3) fails
because the accompanying logarithms are large.18

So think schematically about resumming the large
logarithms in ½dΓ=dx�LOeff to all orders in αs. At first order
in αs, (4.1) absorbs not only a leading, double log but also
a subleading, single log. To be consistent, we must then
consider NLLO resummation of large logarithms. We do
not know how to do the full NLLO resummation.
Fortunately, we do not need it because the shape function
SðZÞ and its moments are completely insensitive to any
constant shift in q̂, which corresponds to any constant (i.e. x
and E independent) contributions to the braces f� � �g in
(4.1). Understanding the x and E dependence of the NLLO
resummation is much easier than understanding the full
NLLO resummation. To preview the result of this section
we will argue that, for large logarithms, the resummed
version of (4.3) is

NLOfac

LOeff
¼ NLOfac

LO × ½1þOð ffiffiffiffiffi
αs

p Þ�

¼ NLOfac

LO
× ½1þOð ffiffiffiffiffi

αs
p Þ� ð4:4Þ

17In (4.1), we are using the version of the integral from (3.13).

18In fact, such logarithms have to be large if we wish to treat
our high-energy αsðμÞ as smaller than the αsðTÞ of the medium.

ARNOLD, ELGEDAWY, and IQBAL PHYS. REV. D 108, 074015 (2023)

074015-12



provided the LO quantity is (like the shape function)
insensitive to constant shifts of q̂.
The following discussion may be a little clearer if we first

remove any x and E dependence from our choice of
factorization scale, taking Λfac ¼ rE0 as in (3.26) for the
purpose of this argument. The conversion (3.27) between
this scale and our usual choice Λfac ¼ xð1 − xÞE is finite
and is free of large logarithms unless xð1 − xÞ ≪ 1 or
E ≪ E0. As discussed in Secs. III C 2 and III E 3, those
limiting cases will not significantly affect the calculation of
the shower energy deposition distribution ϵðzÞ and its
shape, and so the conversion (3.27) does not need to be
resummed.

A. Origin of the IR double and single logs in (4.1)

We need to review the origin of the remaining, explicit x
and E dependence in (4.1) so that we can discuss how to
resum it. We will use the combined analysis of IR double
and single logarithms presented in Ref. [40]. There, the
usual, leading-order BDMPS-Z rate calculation (in q̂
approximation) was modified by replacing q̂ by the
effective transverse momentum broadening parameter
q̂effðΔbÞ originally calculated by Liou, Mueller and Wu
(LMW) [41], which incorporates the effect of soft radiation
carrying away transverse momentum. The Δb in q̂effðΔbÞ
represents transverse separation. Formally, q̂effðΔbÞ is
extracted from the thermal expectation of a Wilson loop
with long, lightlike sides separated by transverse distance
Δb, as depicted in Fig. 9(a). The bare q̂ð0Þ corresponds to
the contribution from thermal-scale correlations in the
medium; the double and single logarithms come from
the exchange of a nearly collinear, high-energy gluon
(ω ≫ T) as in Fig. 9(b). In our application, those loga-
rithms are cut off at high energy by the factorization scale
Λfac, so that T ≪ ω ≤ Λfac. We should really write
q̂effðΔb;ΛfacÞ instead of just q̂effðΔbÞ, but we will stick

with the shorter notation q̂effðΔbÞ for now, with the Λfac
dependence implicit.19

As reviewed in our notation in Ref. [40], the Zakharov
picture of the usual BDMPS-Z calculation for g → gg
involves solving for the propagator of 3-particle quantum
mechanics in the two-dimensional transverse plane with
Hamiltonian

H¼ p2⊥1

2jpz1 j
þ p2⊥2

2jpz2 j
−

p2⊥3

2jpz3 j
−
iq̂A
8

ðb212þb223þb231Þ; ð4:5Þ

where bij ≡ bi − bj are the transverse separations between
the three “particles” in Fig. 10 and ðpz1;pz2;pz3Þ¼
ð1−x;x;−1ÞE are the corresponding longitudinal momenta
of those particles. Symmetries are used to reduce this to a
1-particle quantum mechanics problem in a single trans-
verse position variable B related by

b12 ¼ B; b23 ¼ −ð1 − xÞB; b31 ¼ −xB; ð4:6Þ

which reduces (4.5) to

H ¼ P2

2xð1 − xÞE −
iq̂A
8

ð1þ ð1 − xÞ2 þ x2ÞB2; ð4:7Þ

where P is conjugate to B. In the LO splitting process of
Fig. 10, transverse separations vary with time, but the
typical value B̄ of B during the splitting is parametrically

x

z

t

�b

x

(b)

z

t

(a)

lig
ht−

lik
e

FIG. 9. (a) AWilson loop with long, lightlike sides and transverse spatial width Δb, whose expectation gives expð− 1
4
q̂ðΔbÞTðΔbÞ2Þ

for small Δb and large extent T in time t. (b) An example of a high-energy nearly-collinear radiative contribution to the
Wilson loop.

19In the original work of LMW [41] on momentum broad-
ening, the role of our “Λfac” is played by the largest “soft”
bremsstrahlung energy ω that has a formation time that fits inside
the length L of the medium, which corresponds to Λfac ∼ q̂L2.
Our canonical choice (3.16) of Λfac in this paper corresponds to
replacing that L by the formation time of the underlying hard
single-splitting process E → xEþ ð1 − xÞE that one is comput-
ing soft radiative corrections too.
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B̄ ∼ ½xð1 − xÞEq̂�−1=4: ð4:8Þ

Reference [40] argued that, in the large-Nc limit, the
modification of (4.5) that would correctly reproduce the
IR double and single logs from soft radiative corrections
to the hard, underlying g → gg process was, with one
caveat,

H ¼ p2⊥1

2jpz1 j
þ p2⊥2

2jpz2 j
−

p2⊥3

2jpz3 j
−
i
8
½q̂effA ðb12Þb212

þ q̂effA ðb23Þb223 þ q̂effA ðb31Þb231�: ð4:9Þ

The caveat is that the momentum broadening analysis of
LMW [41] gives the q̂eff between an amplitude (blue) line
and a conjugate amplitude (red) line in Fig. 10. The q̂eff
between two amplitude (blue) lines is slightly different.
In the analysis of Ref. [40], this difference was equivalent
to replacing

q̂effA ðb12Þ → q̂effA ðe−iπ=8b12Þ; ð4:10Þ

in (4.9). The modified (4.9) then reduces to

H ¼ P2

2xð1 − xÞE −
i
8
½q̂effA ðe−iπ=8BÞ

þ ð1 − xÞ2q̂effA ðð1 − xÞBÞ þ x2q̂effA ðxBÞ�B2: ð4:11Þ

Reference [40] used this Hamiltonian instead of (4.7)
for the BDMPS-Z calculation and reproduced the soft
radiative corrections (3.8) to the usual leading-order
BDMPS-Z rate (2.1). The result may be summarized in
the form20

�
dΓ
dx

�
LO

eff
¼

�
dΓ
dx

�
LO
Re

( ffiffiffi
2

p
e−iπ=4

"
w12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂effA ðB̄Þ
q̂Að0Þ

s

þ w23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂effA ðe−iπ=8ð1 − xÞB̄Þ

q̂Að0Þ

s

þ w31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂effA ðe−iπ=8xB̄Þ

q̂Að0Þ

s #)
; ð4:12Þ

where here21

B̄≡ e−γE=2
�
1

2
xð1 − xÞð1 − xþ x2Þq̂AE

�
−1=4

; ð4:13Þ

and the weights ðw12; w23; w31Þ are defined by

w12 ¼
1

1þ ð1 − xÞ2 þ x2
; w23 ¼

ð1 − xÞ2
1þ ð1 − xÞ2 þ x2

;

w31 ¼
x2

1þ ð1 − xÞ2 þ x2
; ð4:14Þ

with

w12 þ w23 þ w31 ¼ 1: ð4:15Þ

The intricate details of these formulas will not matter for
our argument, but we thought it useful to have something
concrete to reference. There are two aspects of (4.12) that
will matter.
The first is that, for our application, the arguments Δb of

the three q̂effA ðΔbÞ’s in (4.12) are all of order

Δb ∼ B0 ≡ ðq̂AE0Þ−1=4: ð4:16Þ

That is because, as previously discussed, processes with
parametrically (i) E ≪ E0 or (ii) x ≪ 1 or 1 − x ≪ 1 are
not important to determining the shape function SðZÞ.
The second important aspect is that, if one were to

replace all three of the different q̂effA ðΔbÞ’s in (4.12) by the
fixed (x and E independent)22 value q̂effA ðB0Þ, then the
effective LO rate ½dΓ=dx�LOeff would be a fixed multiple
of the original ½dΓ=dx�LO (i.e. something that could be

1−x

(lightcone) time

3

x
1

2

FIG. 10. This is Fig. 1(b) for LO splitting g → gg, but here with
the three lines labeled (1,2,3).

20Though some broader claims were made at the end, Ref. [40]
only did explicit calculations for the part of the double-log region
to the right of the corner marked β in our Fig. 11. However, that
region contains all of theΔb dependence of the logarithms, which
is our ultimate interest here.

21Our B̄ defined in (4.13) differs from the B̄ defined in
Ref. [40] by a factor of i1=4 ¼ eiπ=8.

22q̂effA ðΔbÞ ¼ q̂effA ðΔb;ΛfacÞ also depends on Λfac. Remember
the earlier argument that the difference between using Λfac ¼ rE0

and Λfac ¼ rE or Λfac ¼ κxð1 − xÞE does not involve large
logarithms in our application, and so, for simplicity, we would
carry out our discussion of resumming large logarithms using the
fixed scale choice Λfac ¼ rE0. That simplifies the discussion here
because the only x and E dependence inside the braces f� � �g in
(4.12) is that of the arguments Δb of q̂effA ðΔb;ΛfacÞ; we need not
be distracted by the possibility of x or E dependence of Λfac in
this analysis.
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absorbed by a constant shift of q̂), and so the shape of the
energy deposition distribution would be unchanged;
SLOeff ðZÞ ¼ SLOðZÞ. That means that the actual difference
between SLOeff ðZÞ and SLOðZÞ depends specifically on how
q̂effA ðΔbÞ varies when one varies Δb.

B. The dependence of resummed q̂effA ðΔbÞ on Δb
The dependence of the original LMW q̂effðΔbÞ on Δb is

easy to extract from parametric arguments for the double
log in Ref. [41], provided we rewrite their parametric
formulas in terms of variables more relevant here. Figure 11
shows the double-log region, where τ0 is the scale of the
mean free path for elastic scattering of high-energy par-
ticles from the medium. The difference with similar
discussion in LMW is that they were interested specifically
in the problem of transverse-momentum broadening after
passing through a large length L of medium, and in that
context they eventually set the transverse separation to be
Δb ∼ ðq̂LÞ−1=2. Wewant to keep everything in terms ofΔb,
which can be achieved by substituting back L ∼ 1=q̂ðΔbÞ2
in their general discussion. With this translation, they found

q̂effðΔbÞ ¼ q̂ð0Þ þ δq̂ðΔbÞ

≈ q̂ð0Þ

�
1þ CAαs

2π
ln2

�
1

q̂τ0ðΔbÞ2
��

ð4:17Þ

at leading-log order, to first order in αsðμÞ. In fact, the Δb
dependence of the double log above contains all of the
Δb dependence including the single log as well [41]. We
can therefore use LMW’s results for leading-log order
resummation to all orders in αsðμÞ to also obtain the
results for the Δb dependence of a NLLO resummation.
(We outline a more detailed argument of this claim in
Appendix C.)
Equation (4.17) was derived by LMW for the case where

one ignores running of αsðk⊥Þ. In that case, they obtained
an analytic result for the leading-log resummation. We will
continue with their fixed-coupling analysis, but later argue
that a running coupling will not change our conclusion that
NLO=LOeff ≃ NLO=LO as in (4.4). Their resummed result,
when translated from their L back to Δb, is

q̂effðΔbÞ ≈ q̂ð0Þ
I1


2


CAαs
π

�
1=2

ln



1
q̂τ0ðΔbÞ2

��


CAαs
π

�
1=2

ln



1
q̂τ0ðΔbÞ2

� ; ð4:18Þ

where I1 is the modified Bessel function. Remember that in
our problem Δb ∼ B0 ¼ ðq̂AE0Þ−1=4, and so23

1

q̂τ0ðΔbÞ2
∼

ffiffiffiffiffiffi
E0

T

r
: ð4:19Þ

In the high-energy limit of large logarithms, (4.18)
becomes

q̂effðΔbÞ ≈ q̂ð0Þ

�
1

q̂τ0ðΔbÞ2
�

2
ffiffiffiffiffiffiffiffiffiffiffi
CAαs=π

p
; ð4:20Þ

where we have suppressed a prefactor proportional to
1=ð ffiffiffiffiffi

αs
p

logÞ3=2 that will not affect the argument (see
Appendix C 4 for details). Since Δb ∼ B0, this can be
expanded as

q̂effðΔbÞ ≈ q̂ð0Þ

�
1

q̂τ0B2
0

�
2

ffiffiffiffiffiffiffiffiffiffiffi
CAαs=π

p

×
�
1 − 2

�
CAαs
π

�
1=2

ln
�ðΔbÞ2

B2
0

��
ð4:21Þ

and so

FIG. 11. The integration region giving rise to the double logs of
LMW [41]. Here ω is the energy of the soft-radiated gluon (which
we calledyE earlier), andΔt is the timeoverwhich it is radiated (the
difference of the emission time in the amplitude and the emission
time in the conjugate amplitude). The transverse momentum of the
soft-radiated gluon is k⊥ ∼

ffiffiffiffiffiffiffiffiffiffiffi
ω=Δt

p
. The only boundary that is

sensitive to Δb is the red one. For a quark-gluon plasma, the three
vertices ðα; β; γÞ above respectively correspond to ðω;ΔtÞ of order
ðT; τ0Þ, ðτ0=ðΔbÞ2; τ0Þ, and ð1=q̂ðΔbÞ4; 1=q̂ðΔbÞ2Þ. The last one
is also parametrically ∼ðΛfac; tformðΛfacÞÞ for our application. We
have not shown any vertical snip off the γ corner corresponding to
constraining ω ≤ Λfac because it is unimportant as far as large
logarithms are concerned and so, for this purpose, is a detail hidden
inside the circle marking that corner.

23In the case of a weakly coupled QGP with gauge coupling
coupling g, we have used q̂ð0Þ ∼ g4T3 and τ0 ∼ 1=g2T and so
q̂ð0Þτ20 ∼ T in (4.19). For a strongly coupled QGP, the only
relevant scale here is T. One can worry that one should self-
consistently use q̂eff instead of q̂ð0Þ for q̂ in (4.19), but the
difference would only generate a subleading OðαsÞ correction to
the Oð ffiffiffiffiffi

αs
p Þ exponents in (4.20) and (4.21) and will not affect the

conclusion (4.22).
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q̂effðΔbÞ ¼ q̂effðB0Þ½1þOð ffiffiffiffiffi
αs

p Þ�
¼ ðfixed constantÞ × ½1þOð ffiffiffiffiffi

αs
p Þ�: ð4:22Þ

The expansion in
ffiffiffiffiffi
αs

p
made here is valid because

lnðΔb=B0Þ is not a large logarithm in our application.
Equation (4.22) is the justification for our earlier claim
(4.4) that we could ignore the difference between SLOðZÞ
and SLOeff ðZÞ when computing the relative size of NLO
corrections to SLOeff ðZÞ.

C. Running of αsðk⊥Þ
In the preceding, we used an explicit resummation for-

mula (4.18) that ignored running of αsðk⊥Þ. At leading-log
order, one may find more sophisticated discussions in
Refs. [43–45]. However, that analysis is not needed for
our argument.
First note that the red boundary k⊥ ∼ 1=Δb in Fig. 11 is

the part of the double-log region where k⊥ is the largest and
so αsðk⊥Þ is the smallest. In our previous argument, we
were trying to show that

				 q̂effðΔbÞ − q̂effðB0Þ
q̂effðB0Þ

				 ≪ 1 ð4:23Þ

for Δb ∼ B0, so that q̂effðΔbÞ could be replace by q̂effðB0Þ.
For fixed coupling, we argued that this ratio was Oð ffiffiffiffiffi

αs
p Þ.

Imagine that the fixed coupling we had taken was the
coupling associated with the red boundary, αsð1=ΔbÞ. Note
that 1=Δb ∼ 1=B0 ∼ ðq̂E0Þ1=4 ∼ μ in our application, and
so, up to higher-order corrections, αsð1=ΔbÞ is just the αs ¼
αsðμÞ that we have been using throughout this entire paper.
Now imagine replacing fixed αs ¼ αsð1=ΔbÞ by a running
αsðk⊥Þ. The numerator in (4.23) does not change, because it
only involves the physics of k⊥ ∼ 1=Δb. But the denom-
inator gets bigger because, in the rest of the double-log
region, αsðk⊥Þ is bigger than before. So, the parametric
inequality (4.23) remains valid for small αsðμÞ.

D. Notation: LO vs bare

Going forward, it will be helpful to somewhat streamline
our notation. From now on, we will use “LO” to refer to
calculations based on the leading-order splitting rates (2.1)
with q̂ taken to be q̂effðB0Þ, as opposed to the bare q̂ð0Þ.
With this nomenclature, we now formally have

LOeff ¼ LO × ½1þOð ffiffiffiffiffi
αs

p Þ� ð4:24Þ

for any quantity we will discuss in the context of energy
deposition, including ones that are (unlike the shape
function) sensitive to constant shifts in q̂.

V. ENERGY DEPOSITION EQUATION

In this section, we derive the basic equation satisfied by
the energy deposition distribution ϵðzÞ. Wewill build on the
methods of Refs. [32,46].24 One might be able to directly
figure out the final formula in terms of the net rate
½dΓ=dx�net, but we think it is clearer to first review earlier
results written in terms of ½dΓ=dx�1→2 and ½dΓ=dx�1→3.
For simplicity, start by considering a shower composed

of only 1 → 2 splittings. Let ϵðE; zÞ represent the distri-
bution of deposited energy as a function of position z for a
shower initiated by a particle of energy E, with

Z
∞

0

dz ϵðE; zÞ ¼ E: ð5:1Þ

The starting equation is

ϵðE; zþ ΔzÞ ≃ ½1 − ΓðEÞΔz�ϵðE; zÞ

þ 1

2

Z
1

0

dx

�
dΓ
dx

ðE; xÞ
�
1→2

× ΔzfϵðxE; zÞ þ ϵðð1 − xÞE; zÞg ð5:2Þ

for small Δz. To see this, think of traveling the distance
zþ Δz indicated on the left-hand side as first traveling Δz
followed by traveling distance z. In the first Δz of distance,
the particle has a chance 1 − ΓðEÞΔz of not splitting at all,
and then the energy density deposited after traveling the
remaining distance z will just be ϵðE; zÞ. This possibility is
represented by the first term on the right-hand side of (5.2).
Alternatively, there is a chance that the particle does split
in the first Δz. In this case, we will have two particles with
energies xE and ð1 − xÞE, which will deposit energy
density ϵðxE; zÞ and ϵðð1 − xÞE; zÞ respectively after trav-
eling the remaining distance z. Both daughter’s eventual
contribution to the deposited energy are added together in
the second term of (5.2). The factor of 1

2
in the second term

is the identical final-state particle factor for the two
daughter gluons,

ΓðEÞ ¼ 1

2

Z
1

0

dx

�
dΓ
dx

ðE; xÞ
�
1→2

: ð5:3Þ

Rearranging the terms in (5.2) and taking the limit Δz → 0
yields the integrodifferential equation

∂ϵðE; zÞ
∂z

¼ −ΓðEÞϵðE; zÞ þ 1

2

Z
1

0

dx

�
dΓ
dx

ðE; xÞ
�
1→2

× fϵðxE; zÞ þ ϵðð1 − xÞE; zÞg: ð5:4Þ

24See in particular Appendix A.1 of Ref. [32], but specialize
throughout to the case of a single type of particle (namely
gluons).
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Now use the symmetry of ½dΓ=dx�1→2 under exchange of
the final-state daughters x and 1 − x to rewrite this as

∂ϵðE; zÞ
∂z

¼ −ΓðEÞϵðE; zÞ þ
Z

1

0

dx

�
dΓ
dx

ðE; xÞ
�
1→2

ϵðxE; zÞ:

ð5:5Þ

1 → 3 splittings may be included by following the same
steps. First, add a 1 → 3 term

þ 1

3!

Z
1

0

dx
Z

1−x

0

dy

�
dΓ
dxdy

ðE; x; yÞ
�
1→3

× fϵðxE; zÞ þ ϵðyE; zÞ þ ϵðð1 − x − yÞE; zÞg ð5:6Þ

to the right-hand side of (5.4). Using the symmetry of the
three daughters, this generalizes (5.5) to

∂ϵðE; zÞ
∂z

¼ −ΓðEÞϵðE; zÞ þ
Z

1

0

dx

�
dΓ
dx

ðE; xÞ
�
1→2

ϵðxE; zÞ

þ 1

2

Z
1

0

dx
Z

1−x

0

dy

�
dΓ
dxdy

ðE; x; yÞ
�
1→3

ϵðxE; zÞ

¼ −ΓðEÞϵðE; zÞ þ
Z

1

0

dx

�
dΓ
dx

ðE; xÞ
�
net
ϵðxE; zÞ;

ð5:7Þ

where the last equality uses (3.1). We may now express
everything in terms of ½dΓ=dx�net by (i) using (3.2) to
rewrite Γ as

R
dxx½dΓ=dx�net and (ii) combining the x

integrals,

∂ϵðE;zÞ
∂z

¼
Z

1

0

dx

�
dΓ
dx

ðE;xÞ
�
net
fϵðxE;zÞ−xϵðE;zÞg: ð5:8Þ

Provided ½dΓ=dx�net scales with parent energy as E−1=2,
e.g. like the leading-order rate (2.1) does, we may define an
energy-independent, rescaled rate ½dΓ̃=dx�net by25�

dΓ
dx

ðE; xÞ
�
net

¼ E−1=2
�
dΓ̃
dx

ðxÞ
�
net
: ð5:9Þ

If rates scale like E−1=2, then the distances z characteristic
of shower development will scale like E1=2, so the energy
deposition distribution should scale as

ϵðE; zÞ ∝ ϵ̃ðE−1=2zÞ: ð5:10Þ

We want the rescaled function ϵ̃ðsÞ to be independent of E
and so have a normalization independent of E. We choose
to normalize it so thatZ

∞

0

ds ϵ̃ðsÞ ¼ 1; ð5:11Þ

which, together with (5.1), fixes the proportionality con-
stant in (5.10),

ϵðE; zÞ ¼ E1=2ϵ̃ðE−1=2zÞ: ð5:12Þ

For a shower initiated by a particle of energy E0, (5.8)
becomes

∂ϵ̃ðz̃Þ
∂z̃

¼
Z

1

0

dxx

�
dΓ̃
dx

ðxÞ
�
net
fx−1=2ϵ̃ðx−1=2z̃Þ− ϵ̃ðz̃Þg; ð5:13Þ

where

z̃≡ E−1=2
0 z; ð5:14aÞ

and the original energy deposition distribution ϵðzÞ that we
were looking for is

ϵðzÞ≡ ϵðE0; zÞ ¼ E1=2
0 ϵ̃ðz̃Þ: ð5:14bÞ

Now that the variable z̃ has served its purpose, we may
use (5.9) with E ¼ E0, along with (5.14), to rewrite (5.13)
in terms of the original, unscaled variables as

∂ϵðzÞ
∂z

¼
Z

1

0

dx x

�
dΓ
dx

ðE0; xÞ
�
net
fx−1=2ϵðx−1=2zÞ − ϵðzÞg;

ð5:15Þ

Just remember that this formula is only valid if ½dΓ=dx�net
scales with energy as exactly E−1=2.
Equation (5.15) will be the basic equation underlying the

analysis in the rest of this paper. Like ½dΓ=dx�LO of (2.1),
½dΓ=dx�net diverges ∝ ½xð1 − xÞ�−3=2 for x → 0 and x → 1.
It is useful to note that, nonetheless, the x integration in
(5.15) is convergent as x → 1 because the two terms inside
the braces then cancel, and it is also convergent as x → 0
because of (i) the overall factor of x in the integrand and
(ii) the fact that the energy deposition distribution ϵðz0Þ
must fall rapidly (at least exponentially) to zero as z0 → ∞.

VI. MOMENTS OF THE SHAPE SðZÞ
The simplest aspects to calculate, of the energy depo-

sition distribution ϵðzÞ and its shape SðZÞ, are their
moments.
Before we start, we give a clarification about numerical

accuracy. In this section, we give a variety of numerical
results for moments in Tables II–V, where wewill implicitly

25It might be more elegant to scale out a factor of CAαs
ffiffiffiffiffiffiffiffiffiffiffi
q̂A=E

p
in (5.9) instead of just E−1=2, so that the rescaled rate ½dΓ̃=dx�net
(and also eventually the coordinate z̃) would be dimensionless.
We will find it convenient to do this later, in Sec. VII. We do not
do it now because it would slightly clutter our equations and
deemphasize the most essential point, the E−1=2 dependence.
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pretend that the fit (3.19) to our NLO/LO rate ratio fðxÞ is
exactly correct. In reality, though our fit is good, it is only
an approximation to fðxÞ. We have not attempted to make
systematic estimates of the error arising from this approxi-
mation. However, from our experience in (i) varying the
number of terms in our fits and (ii) improvement over time
of the accuracy of the values that culminated in our Table I,
we estimate that the final results for the relative size of
overlap effects on moments of SðZÞ should be accurate to
roughly two significant figures.

A. Recursion formula for moments of ϵðzÞ
To find a formula for the moments, multiply both sides of

(5.15) by zn and integrate over z. After integrating by parts
on the left-hand side of the equation, one finds the recursion
relation

−nhzn−1i¼
Z

1

0

dxx

�
dΓ
dx

ðE0;xÞ
�
net
fxn=2hzni−hznig; ð6:1Þ

giving

hzni ¼ nhzn−1i
Avg½xð1 − xn=2Þ� ; ð6:2aÞ

where we find it convenient to introduce the notation

Avg½gðxÞ�≡
Z

1

0

dx

�
dΓ
dx

ðE0; xÞ
�
net
gðxÞ: ð6:2bÞ

The moments hZni of the shape SðZÞ [defined by (1.1)] are
given in terms of the moments (6.2) as simply

hZni ¼ hzni
hzin : ð6:3Þ

As examples, the stopping distance is

lstop ≡ hzi ¼ 1

Avg½xð1 − ffiffiffi
x

p Þ� ; ð6:4Þ

and the width of the energy deposition distribution is
σ ¼ ðhz2i − hzi2Þ1=2 with

hz2i ¼ 2lstop

Avg½xð1 − xÞ� : ð6:5Þ

The width of the shape SðZÞ is then

σS ¼
σ

lstop
¼

�
2Avg½xð1 − ffiffiffi

x
p Þ�

Avg½xð1 − xÞ� − 1

�
1=2

: ð6:6Þ

B. Expansion in αs and results

We now want to expand results to NLO in αs ¼ αsðμÞ to
compute the relative size of the changes to the moments due
to overlapping formation times effects. We imagine split-
ting the rate into

�
dΓ
dx

�
net

¼
�
dΓ
dx

�
LO

eff
þ
�
dΓ
dx

�
NLO;fac

net
ð6:7Þ

as discussed in Sec. III B. We expand the moments as

hzni ≃ hznieffLO þ δhzni; ð6:8aÞ
where hznieffLO represents the result obtained using
½dΓ=dx�LOeff instead of ½dΓ=dx�net in (6.2), and δhzni repre-
sents the factorized NLO correction to hznieffLO at first order
in ½dΓ=dx�NLO;facnet . Remember that, adopting the nomencla-
ture of Sec. IV D,

hznieffLO ¼ hzniLO½1þOð ffiffiffiffiffi
αs

p Þ�: ð6:8bÞ

Expanding the recursion relation (6.2a) gives

δhzni ¼ hzniLO
�
δhzn−1i
hzn−1iLO

−
δAvg½xð1 − xn=2Þ�
Avg½xð1 − xn=2Þ�LO

�
; ð6:9Þ

where

Avg½gðxÞ�LO ≡
Z

1

0

dx

�
dΓ
dx

ðE0; xÞ
�
LO
gðxÞ; ð6:10aÞ

δAvg½gðxÞ�≡
Z

1

0

dx

�
dΓ
dx

ðE0; xÞ
�
NLO;fac

net
gðxÞ; ð6:10bÞ

and δhz0i≡ 0. The LO moments are determined recur-
sively by the analog of (6.2a),

hzniLO ¼ nhzn−1iLO
Avg½xð1 − xn=2Þ�LO

: ð6:11Þ

Though it is not our ultimate goal, we give results for the
first few moments hzni in Table II. These were calculated
using (2.1) for the LO rate and using

TABLE II. Expansions (6.8) of the moments hzni of the energy
deposition distribution ϵðzÞ for Λfac ¼ xð1 − xÞE [(3.16) with
κ ¼ 1]. The last two columns show similar expansions of hzni1=n,
for which δ½hzni1=n� ¼ 1

n hznið1=nÞ−1LO δhzni. The unit l0 is defined
by (6.14).

hzniLO δhzni hzni1=nLO δ½hzni1=n�
zn in units of ln

0 in units of l0

z 2.1143 2.2338 CAαs 2.1143 2.2338 CAαs
z2 5.7937 12.191 CAαs 2.4070 2.5324 CAαs
z3 18.758 59.214 CAαs 2.6570 2.7959 CAαs
z4 68.534 289.00 CAαs 2.8772 3.0332 CAαs
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�
dΓ
dx

�
NLO;fac

net
¼ CAαs

�
dΓ
dx

�
LO
fðxÞ ð6:12Þ

with fit function (3.19) and Λfac ¼ xð1 − xÞE for the NLO
rate. The parametric scale for the stopping distance is

lstop ∼
1

CAαs

ffiffiffiffiffiffi
E0

q̂A

s
; ð6:13Þ

and so we have expressed the moments in Table II in
appropriate units of

l0 ≡ 1

CAαs

ffiffiffiffiffiffi
E0

q̂A

s
: ð6:14Þ

Because different moments hzni have different dimen-
sions, comparing those moments would be comparing
apples and oranges. So we have also converted all the
moments into lengths by presenting the expansions of
hzni1=n in the last two columns. In that comparison, the
overlap corrections are roughly Oð100%Þ × CAαs relative
to the LO results. This is similar in size to the NLO
corrections that we saw for ½dΓ=dx�net in Sec. III D.
Now look instead at the analog of hzni1=n for moments of

the shape function SðZÞ,

hZni1=n ¼ hzni1=n
hzi : ð6:15Þ

Their expansions to NLO are given in Table III, now using
the adjustable factorization scale Λfac ¼ κxð1 − xÞ and
explicitly showing the κ dependence of the results.26

In all these entries, χαs is our name for the relative size
of NLO corrections:

χαs ≡ δQ
QLO

ð6:16Þ

for any quantity Q.
Table III similarly show results for ðμn;SÞ1=n, where the

reduced moment μn;S of the shape SðZÞ is

μn;S ≡ hðZ − hZiÞni: ð6:17Þ

Our motivational example of such a moment [8] is

σS ¼
σ

lstop
¼ μ1=22;S ; ð6:18Þ

for which the relative size χαs of NLO corrections is
roughly −2% × CAαs for κ ¼ 1 and which remains small
for κ varied over any reasonable range. All the other hZni1=n
and ðμn;SÞ1=n entries in Table III have similarly small NLO
corrections.
Not content to leave well enough alone, we also

considered similar expansions involving the cumulants
kn;S of SðZÞ up through n ¼ 4. For n < 4, cumulants are
the same as reduced moments, but

k4;S ≡ μ4;S − 3μ22;S: ð6:19Þ

As can be seen in Table III, the NLO correction for k1=44;S is
large—more than 100% × CAαs! This is because the LO
values on the right-hand side of (6.19) cancel to within 2%,
and so the relatively small NLO corrections to μ4;S and
3μ22;S become a large relative correction to what’s left over.
One can worry if the large correction to k4;S is an

important effect, or whether something important may

TABLE III. Expansions involving moments hZni, reduced moments μn;S, and cumulants kn;S of the shape function
SðZÞ. Here we take Λfac ¼ κxð1 − xÞ and show the κ dependence of the results. There are no NLO entries for hZi
because hZi ¼ 1 and hZiLO ¼ 1 by definition of Z≡ z=hzi. See the caveat about significant figures given at the
beginning of Sec. VI; we estimate that our results for χαs are valid to roughly two significant digits, once one
accounts for approximation error to the NLO/LO rate ratio fðxÞ.
Quantity Q QLO δQ χαs

hZi 1
hZ2i1=2 1.1384 ð−0.0050þ 0.0004 ln κÞCAαs ð−0.0044þ 0.0003 ln κÞCAαs
hZ3i1=3 1.2567 ð−0.0053þ 0.0006 ln κÞCAαs ð−0.0042þ 0.0005 ln κÞCAαs
hZ4i1=4 1.3608 ð−0.0031þ 0.0007 ln κÞCAαs ð−0.0023þ 0.0005 ln κÞCAαs

μ1=22;S ¼ k1=22;S ¼ σS 0.5441 ð−0.0104þ 0.0008 ln κÞCAαs ð−0.0191þ 0.0014 ln κÞCAαs

μ1=33;S ¼ k1=33;S
0.4587 ð0.0139þ 0.0004 ln κÞCAαs ð0.0303þ 0.0010 ln κÞCAαs

μ1=44;S
0.7189 ð0.0011þ 0.0006 ln κÞCAαs ð0.0016þ 0.0009 ln κÞCAαs

k1=44;S
0.2561 ð0.3242 − 0.0086 ln κÞCAαs ð1.2662 − 0.0338 ln κÞCAαs

26If we had shown κ dependence for the moments of Table II,
they would have double-log dependence on κ. For example, hzi ¼
2.1143þ ð2.2338þ 0.3084 ln κ − 0.0841ln2κÞ in units of l0. We
did not show this for everything since we are focused on the shape
function, which is not affected by constant changes in q̂.
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happen for moments beyond n ¼ 4. A simple way to settle
this is to calculate the corrections to the shape function
SðZÞ itself rather than merely its moments. It is trickier to
get accurate numerics for SðZÞ, but we will be able to see
that the NLO corrections to SðZÞ are all very small, the
fourth cumulant k4;S not withstanding.

C. A formula for later

We gave recursive expressions for δhzni and hzniLO
in (6.9) and (6.11), but we have not bothered to explic-
itly write formulas for each δQ in Table II in terms
of δhzni and hzniLO and thence in terms of integrals. For
later reference, it will be helpful to have one explicit
example: χαs¼ðδQÞ=ðQLOÞ in the case ofQ¼σS¼σ=lstop.
Starting from σ ¼ ðhz2i − hzi2Þ1=2 and lstop ¼ hzi, we
have

δσS ¼ δ

�
σ

lstop

�
¼ σS;LO

�
δðσ2Þ
2σ2LO

−
δhzi
hziLO

�

¼ σS;LO

�
δhz2i − 2hziLOδhzi
2ðhz2iLO − hzi2LOÞ

−
δhzi
hziLO

�
; ð6:20Þ

and so

½χαs�σS ¼
δhz2i − 2hziLOδhzi
2ðhz2iLO − hzi2LOÞ

−
δhzi
hziLO

: ð6:21Þ

Combined with (6.9) and (6.11), that’s good enough for
numerics. If desired, one may simplify this formula to27

½χαs�σS ¼
δAvg½xð1− ffiffiffi

x
p Þ2�

2Avg½xð1− ffiffiffi
x

p Þ2�LO
−

δAvg½xð1−xÞ�
2Avg½xð1−xÞ�LO

: ð6:22Þ

D. An alternate choice: Λfac = rE

Before moving on, there is another check that can be
made of the robustness of our qualitative conclusion that
NLO corrections to moments (other than the fourth
cumulant) are tiny relative to LO results. In Sec. III C 2,
we argued that the choice Λfac ¼ rE, where r is an Oð1Þ
constant, is a poor choice of factorization scale for
small xð1 − xÞ but should be adequate for defining
the factorization of the shower’s energy deposition dis-
tribution ϵðzÞ, and hence shape SðZÞ, into LOeff and NLO
pieces. Our ½dΓ=dx�NLO;facnet can be converted from our
original choice Λfac ¼ xð1 − xÞE to Λfac ¼ rE using (3.25)

and then used to compute moments. Table IV shows the
result of converting the last column χαs of Table III
to Λfac ¼ rE.28

Like Table III, the relative sizes of NLO corrections
remain small, except for k1=44;S . Note that results for Λfac ¼
rE are more sensitive to the exact choice of r than results
for Λfac ¼ κxð1 − xÞE were to the choice of κ.

E. The relative importance of F diagrams

Table I, or a comparison of Figs. 6 and 7, shows that
F ¼ 4þ I diagrams (like those of Fig. 5) make a relatively
small contribution to ½dΓ=dx�NLO;facnet for Λfac ¼ xð1 − xÞE.
Was it (with hindsight) important to include them in
our analysis? It is interesting to examine their contribu-
tion to the shape SðZÞ of energy deposition, which is
insensitive to changes that can be absorbed into q̂. How
much do F diagrams affect the relative size χαs of NLO
corrections, like those given in Table III? Table V shows the
relative contribution of F diagrams to χαs compared to
the total of all NLO diagrams. Their effect is small for
our favorite characteristic μ1=22;S ¼ σ=lstop of the shape.
However, their relative effect is larger for higher moments
like μ1=44;S .
The takeaway is that calculation of the F diagrams [15]

was important for getting good estimates of some of
the shape moments in a particular factorization scheme,
but their inclusion or exclusion did not affect the answer
to the qualitative question of whether NLO corrections
are large.

TABLE IV. Like the last column of Table III (the relative size
of NLO corrections) but computed here for factorization scale
Λfac ¼ rE.

Quantity Q χαs (Λfac ¼ rE)

hZi
hZ2i1=2 ð0.0023þ 0.0058 lnð4rÞÞCAαs
hZ3i1=3 ð0.0051þ 0.0082 lnð4rÞÞCAαs
hZ4i1=4 ð0.0081þ 0.0090 lnð4rÞÞCAαs

μ1=22;S ¼ k1=22;S ¼ σS ð0.0102þ 0.0252 lnð4rÞÞCAαs

μ1=33;S ¼ k1=33;S
ð0.0429þ 0.0140 lnð4rÞÞCAαs

μ1=44;S
ð0.0236þ 0.0169 lnð4rÞÞCAαs

k1=44;S
ð0.8415 − 0.4878 lnð4rÞÞCAαs

27The averages in the first term of (6.22) are related to the
averages of xð1 − xn=2Þ that arise in an evaluation of (6.21) by the
linearity of the definitions (6.10) of δAvg and AvgLO in their
argument, which gives δAvg½xð1− ffiffiffi

x
p Þ2�¼2δAvg½xð1− ffiffiffi

x
p Þ� −

δAvg½xð1−xÞ� and similarly for AvgLO.

28κ ¼ 1 was our canonical choice for Λfac ¼ κxð1 − xÞE.
In Table IV, we implicitly made r ¼ 1

4
our “canonical” choice

for Λfac ¼ rE, just because it matches Λfac ¼ xð1 − xÞE for
perfectly democratic splittings x ¼ 0.5. This is the reason we
write the logs in Table IV as lnð4rÞ, so that the logs vanish
for r ¼ 1

4
.
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VII. THE FULL SHAPE SðZÞ
We now turn to finding the full shape function SðZÞ

expanded to first order in ½dΓ=dx�NLO;facnet .

A. Method

First, return to the basic Eq. (5.15) for ϵðzÞ. It will be
useful for numerics and the following discussion to switch
to dimensionless variables

ẑ≡ z
l0

; ϵ̂ðẑÞ≡ l0

E0

ϵðl0ẑÞ;
dΓ̂
dx

¼ l0

dΓ
dx

; ð7:1Þ

with l0 defined by (6.14). Then

∂ϵ̂ðẑÞ
∂ẑ

¼
Z

1

0

dx x

�
dΓ̂
dx

�
net
fx−1=2ϵ̂ðx−1=2ẑÞ − ϵ̂ðẑÞg: ð7:2Þ

The leading-order version is just

∂ϵ̂LOðẑÞ
∂ẑ

¼
Z

1

0

dx x

�
dΓ̂
dx

�
LO
fx−1=2ϵ̂LOðx−1=2ẑÞ − ϵ̂LOðẑÞg:

ð7:3Þ

To solve (7.3) numerically, we follow a procedure similar
to Ref. [32].29 First, we start with an approximate asymp-
totic solution for large ẑ,

ϵ̂LOðẑÞ ∼ e−ẑ
2=π; ð7:4Þ

which is derived in Appendix D. [This leading exponential
dependence is also the same as that for the Blaizot/Iancu/
Mehtar-Tani (BIM) model for showers, discussed in
Appendix E.] We choose a large value ẑmax ≫ 1 and use
(7.4) for ẑ > ẑmax. Since (7.3) is a linear equation, it does
not care about the overall normalization of ϵ̂LO, and so we

initially take ϵ̂LOðẑÞ ¼ e−ẑ
2=π for ẑ > ẑmax and postpone

normalizing ϵ̂LO until later.
Next, we choose a small increment Δẑ ≪ 1 and approxi-

mate (7.3) by

ϵ̂LOðẑ − ΔzÞ ≃ ϵ̂LOðẑÞ − Δz
Z

1

0

dx x

�
dΓ̂
dx

�
LO

× fx−1=2ϵ̂LOðx−1=2ẑÞ − ϵ̂LOðẑÞg: ð7:5Þ
Note that, for any value of ẑ, the arguments of the function
ϵ̂LO on the right-hand side of (7.5) are never smaller than ẑ
itself. So, starting with ẑ ¼ ẑmax, we use (7.5) repeatedly,
step by step, to calculate ϵ̂LOðẑÞ for smaller and smaller
values of ẑ, until we get to ẑ ¼ 0. When we are done, we
then normalize ϵ̂LOðẑÞ so thatZ

∞

0

dẑ ϵ̂LOðẑÞ ¼ 1: ð7:6Þ

A few more details about numerical implementation are
given in appendix B 2.
Next, we substitute

ϵ̂ðẑÞ ≃ ϵ̂LOðẑÞ þ δϵ̂ðẑÞ ð7:7Þ
into (7.2) and expand to first order in NLO quantities,
giving

∂δϵ̂ðẑÞ
∂ẑ

¼
Z

1

0

dxx

�
dΓ̂
dx

�
LO
fx−1=2δϵ̂ðx−1=2ẑÞ−δϵ̂ðẑÞg

þ
Z

1

0

dxx

�
dΓ̂
dx

�
NLO;fac

net
fx−1=2ϵ̂LOðx−1=2ẑÞ− ϵ̂LOðẑÞg:

ð7:8Þ
If not for the last term, this would have the same form as the
LO equation (7.3). The last term, however, acts as a driving
term generated by the previously computed ϵ̂LOðẑÞ. To
solve (7.8), we discretize it similar to (7.5) and start with
δϵ̂ðẑÞ ¼ 0 for ẑ > ẑmax. Let δϵ̂1ðẑÞ be the solution obtained
through this procedure.
If δϵ̂1ðẑÞ is a solution to (7.8), then so is

δϵ̂ðẑÞ ¼ δϵ̂1ðẑÞ þ cϵ̂LOðẑÞ ð7:9Þ
for any constant c. The solution we need is one consistent
with normalizing ϵ̂ ¼ ϵ̂LO þ δϵ̂ so that

R
dẑ ϵ̂ðẑÞ ¼ 1

through first order. That normalization requiresZ
∞

0

dẑ δϵ̂ðẑÞ ¼ 0: ð7:10Þ

The properly normalized solution (7.9) can be obtained
from any particular solution δϵ̂1 by

δϵ̂ðẑÞ ¼ δϵ̂1ðẑÞ − ϵ̂LOðẑÞ
Z

∞

0

dẑ δϵ̂1ðẑÞ; ð7:11Þ

provided we have normalized ϵ̂LO as in (7.6).

TABLE V. The relative contribution of F ¼ 4þ I diagrams to
the χαs values listed in Table III for κ ¼ 1.

Quantity Q
χαsðF diags onlyÞ

χαsðtotalÞ

hZi
hZ2i1=2 −14%
hZ3i1=3 −25%
hZ4i1=4 −63%

μ1=22;S ¼ k1=22;S ¼ σS −14%

μ1=33;S ¼ k1=33;S
18%

μ1=44;S
225%

k1=44;S
4%

29Specifically, see Appendix B of Ref. [32].
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Finally, the expansion

SðZÞ ≃ SLOðZÞ þ δSðZÞ ð7:12Þ

of the shape function (1.1) to first order in ½dΓ=dx�NLO;facnet
can be written in the form

SLOðZÞ ¼ hẑiLOϵ̂LOðZhẑiLOÞ; ð7:13Þ

δSðZÞ¼
�
hẑiLOδϵ̂ðζ̂Þþδhẑi d

dζ̂
ðζ̂ϵ̂LOðζ̂ÞÞ

�
ζ̂¼ZhẑiLO

; ð7:14Þ

where hẑiLO is evaluated using ϵ̂LO, and δhẑi is

δhẑi ¼
Z

∞

0

dẑ ẑδϵ̂ðẑÞ: ð7:15Þ

B. Results and checks

Figure 12 shows our numerical results for ϵ̂LOðẑÞ and
δϵ̂ðẑÞ=CAαs. From the latter, we see that NLO corrections
to the leading-order energy deposition distribution are large
unless CAαs is indeed small. Similar to our earlier dis-
cussion of the Table II results for the moments of ϵðzÞ,
this is not surprising; in Fig. 6, we saw that NLO
corrections for the net rate ½dΓ=dx�net decreased the rate
byOð100%Þ × CAαs. A large decrease to the rate will mean
a large change to how soon the shower stops, and so a large
change to where the energy is deposited.
To understand the shape of δϵ̂ðẑÞ in Fig. 12(b), consider

any change to ϵ̂LOðẑÞ that simply rescales the ẑ axis,

ϵ̂LOðẑÞ → λϵ̂LOðλẑÞ: ð7:16Þ

If we increase the stopping distance by choosing λ ¼ 1 − ξ
and then formally expand to first order in ξ (just as we

formally expand our overlap results to first order in αs),
then the change in ϵ̂LO would be proportional to

−½ϵ̂LOðẑÞ þ ẑϵ̂0LOðẑÞ�: ð7:17Þ

The dashed line in Fig. 12(b) is a plot of (7.17) which, to
excellent approximation, is proportional to the solid curve
for δϵ̂ðẑÞ=CAαs. That is, the corrections that we see in
Fig. 12(b) can mostly be absorbed into a change in the
stopping distance and so into the value of q̂.
Now turn to the shape function SðZÞ ≃ SLOðZÞ þ δSðZÞ,

which is insensitive to constant changes that can be
absorbed into q̂. Figure 13 shows plots of SLOðZÞ and
δSðZÞ. Here, NLO corrections to SLOðZÞ are small even for
CAαs ¼ 1, qualitatively consistent with our results for the
moments of the shape function in Table III, but now with
the clarification that the relatively large correction to the
delicate fourth cumulant does not correspond to a signifi-
cant effect on the shape distribution SðZÞ. To emphasize
this point, we reproduce in Fig. 14 the comparison
presented in our summary paper [8] of SLOðZÞ vs SLOðZÞ þ
δSðZÞ for CAαs ¼ 1.30

The shape functions shown in Fig. 13 were linearly
extrapolated to the continuum limit Δẑ ¼ 0 from simu-
lations at ðΔẑ; ẑmaxÞ ¼ ð0.0025; 20Þ and (0.005, 20). To
check that this is adequate, we compute moments from our
numerical results for SLOðZÞ and δSðZÞ and compare them
to our earlier moment calculations in Table III. Specifically,
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FIG. 12. (a) The solid curve shows the energy deposition distribution ϵ̂LOðẑÞ vs ẑ≡ z=l0, where the unit l0 is defined in (6.14). [For
comparison, the dotted curve shows an analytic result (E6) derived from the BIM model.] (b) A similar plot of δϵ̂LOðẑÞ=CAαs for our
canonical choice Λfac ¼ xð1 − xÞE of factorization scale. For comparison, the dashed curve shows the first-order change (7.17) that
would be induced in ϵ̂LOðẑÞ by rescaling the ẑ axis in (a).

30We have been careful to say SLOðZÞ þ δSðZÞ instead of
simply SðZÞ. That’s because SðZÞ at this order is really
SeffLOðZÞ þ δSðZÞ. Section IV explained that SLO and SeffLO can
be expected to differ already at Oð ffiffiffiffiffi

αs
p Þ, and we have not

calculated SeffLO. However, the comparison of SLO and SLO þ δS
made in Fig. 14 is enough to investigate the relative importance of
overlap effects δS.
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Fig. 15 shows the approach to the continuum limit of the
relative size χαs of NLO corrections to the reduced
moments and cumulants. As one can see from the figure,
a linear extrapolation from our two smallest Δẑ values will
do fairly well at reproducing our earlier (and more precise)
moment results.31 The precise numbers do not matter as the
point of this exercise is simply to feel confident enough in
the accuracy of Figs. 13 and 14 to support our qualitative
conclusion that the NLO corrections to the shape function
are small for CAαs ≤ 1.

1. An aside: BIM model for LO results

Our focus in this paper is on NLO corrections, which we
have compared to the size of LO results. Like our NLO
corrections, the LO energy deposition ϵLOðzÞ and shape
function SLOðZÞ have been computed numerically in
Figs. 12(a) and 13(a). It is interesting to compare those

numerical results to a model of LO shower development
investigated by Blaizot, Iancu, and Mehtar-Tani (BIM)
[30,31], which replaces the LO splitting rate (2.1) by
something simpler that allows for analytic solutions. The
BIM model of LO shower development gives the dotted
curves in Figs. 12(a) and 13(a). (See Appendix E for
details.) The BIM model result is notably different for the
energy deposition ϵLOðzÞ but is close to the exact LO result
for the shape function SLOðZÞ. Since our conclusion is that
NLO effects for the shape function are small, the BIM
model appears to give a reasonably good approximation to
the shape SðZÞ of energy deposition (for the purely gluonic
showers studied here).32 That is, its more significant
deviation in the case of ϵðzÞ could be absorbed into the
value of q̂.

VIII. TIME EVOLUTION
OF GLUON DISTRIBUTION

In this paper, we have focused on characteristics of the
energy deposition distribution ϵðzÞ, for which the basic
equation was (5.8). One might also be interested, more
fundamentally, in the time evolution of the distribution of
all shower gluon energies as a function of time. Though we
will not make use of it in this paper, we present here the
basic evolution equation as another example that all the
necessary information about splitting rates is encoded in
the net rate ½dΓ=dx�net.
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FIG. 13. (a) The solid curve shows SLOðZÞ vs Z≡ z=hziLO. [For comparison, the dotted curve shows the analytic result (E8) from the
BIM model.] (b) A plot of δSðZÞ=CAαs for our canonical choice Λfac ¼ xð1 − xÞE of factorization scale. Note the different scale of the
vertical axis compared to (a).
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FIG. 14. Energy deposition shape with and without first-order
overlapping formation time effects δS, for CAαs ¼ 1.

31See Appendix B 2 for a demonstration that errors associated
with out choice of ẑmax were negligible.

32If one compares the BIM model curve in Fig. 13(a) to the
total LOþ NLO curve in Fig. 14, then the BIM curve looks like it
matches the total curve even better than it matches the LO curve.
But this is accidental and represents a somewhat faulty com-
parison: The BIM curve in Fig. 13(a) is independent of the value
of CAαs, but the difference between the LO and LOþ NLO
curves in Fig. 14 is proportional to CAαs, which was somewhat
arbitrarily chosen to be CAαsðμÞ ¼ 1 for the purpose of Fig. 14.
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Reference [9] packaged the basic evolution equation
as,33,34

∂

∂t
nðζ; E0; tÞ ¼ −ΓðζE0Þnðζ; E0; tÞ

þ
Z

1

ζ

dx
x

�
dΓ
dx

�
ζE0

x
; x

��
net
n

�
ζ

x
; E0; t

�
;

ð8:1Þ

where nðζ; E0; tÞdζ represents the number of gluons
with energy between ζE0 and ðζ þ dζÞE0 at time t.
Our new observation about this equation is simply that
(3.2) can be used to rewrite (8.1) completely in terms of
½dΓ=dx�net,

∂

∂t
nðζ; E0; tÞ ¼

Z
1

0

dx

�
θðx > ζÞ

x

×

�
dΓ
dx

�
ζE0

x
; x

��
net
n

�
ζ

x
; E0; t

�

− x

�
dΓ
dx

ðζE0; xÞ
�
net
nðζ; E0; tÞ

�
: ð8:2Þ

When discussing energy deposition, it is a little easier to
describe the shower (following [30]) in terms of gluon
energy density in ζ,

Dðζ; E0; tÞ≡ ζE0nðζ; E0; tÞ; ð8:3Þ

instead of nðζ; E0; tÞ. The corresponding version of (8.2) is

∂

∂t
Dðζ; E0; tÞ ¼

Z
1

0

dx

�
θðx > ζÞ

×

�
dΓ
dx

�
ζE0

x
; x

��
net
D

�
ζ

x
; E0; t

�

− x

�
dΓ
dx

ðζE0; xÞ
�
net
Dðζ; E0; tÞ

�
: ð8:4Þ

As time progresses, Dðζ; E0; tÞ develops a δ-function piece
representing the amount of stopped energy,

Dðζ; E0; tÞ ¼ EstoppedðE0; tÞδðζÞ þDmovingðζ; E0; tÞ: ð8:5Þ

For a sanity check, we verify in Appendix F that the
evolution equation (8.4) conserves total energy.
In applications where the relevant rates scale with energy

exactly as E−1=2, one may rescale variables as
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FIG. 15. The horizontal lines show the χαs results of Table III for the relative size of NLO corrections to reduced moments and
cumulants, as computed using the direct integration method of Sec. VI for Λfac ¼ xð1 − xÞE, i.e. κ ¼ 1. The data points show, as a
function of step size Δẑ for ẑmax ¼ 20, the same moments computed instead from the SLOðZÞ and δSðZÞ functions found by the
numerical methods of Sec. VII.

33See Sec. 3.1.1 of Ref. [9], where our nðζ; E0; tÞ here is called
Nðζ; E0; tÞ there. For a sanity check of why ½dΓ=dz�net is
appropriate in (8.1), see footnote 27 of Ref. [9].

34Our distributionDðζ; E0; tÞ is a p⊥-integrated distribution. In
principle, if one imagined a more general equation than (8.1) that
fully handled overlap effects to NLO in αsðμÞ for the evolution of
an unintegrated distribution Dðζ; p⊥; E0; tÞ, then our (8.1) should
be equivalent to the p⊥ integral of that more general equation. We
should also note that our (8.1) is a coarse-grained description that
assumes one does not attempt to resolve time scales smaller than
democratic formation times, which are of order democratic color
decoherence times in the language used by authors who make
antenna approximations. All effects associated with two over-
lapping formation times have instead already been integrated over
time scales ≲tform and absorbed into the formula for the effective
rates ½dΓ=dx�net appearing in (8.1). So, for example, possible
memory effects like the ones considered e.g. by Ref. [24] in
antenna approximation do not appear explicitly in the structure of
(8.1); they are instead implicitly accounted for (along with all
other overlap effects not captured by an antenna approximation)
by our rate formulas, in the situation described in Sec. I A. (See
also footnote 4.)
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t ¼ E1=2
0 t̃; nðζ; E0; tÞ ¼ ñðζ; t̃Þ;

Dðζ; E0; tÞ ¼ E0D̃ðζ; t̃Þ ð8:6aÞ
�
dΓ
dx

ðE; xÞ
�
net

¼ E−1=2
�
dΓ̃
dx

ðxÞ
�
net
; ð8:6bÞ

to simplify (8.2) to

∂

∂t̃
ñðζ; t̃Þ ¼ 1

ζ1=2

Z
1

0

dx

�
dΓ̃
dx

�
net

×

�
θðx > ζÞ
x1=2

ñ

�
ζ

x
; t̃

�
− xñðζ; t̃Þ

�
ð8:7Þ

or equivalently

∂

∂t̃
D̃ðζ; t̃Þ ¼ 1

ζ1=2

Z
1

0

dx

�
dΓ̃
dx

�
net

�
θðx > ζÞx1=2D̃

�
ζ

x
; t̃

�

− xD̃ðζ; t̃Þ
�
: ð8:8Þ

At leading order, where there are only 1 → 2 splitting
processes, (8.8) is equivalent to an evolution equation
used previously by Refs. [30,31] to study leading-order
shower development in the BIM model.35 Through the use
of ½dΓ=dx�net, our (8.8) extends their equation to situations
where there are more than just 1 → 2 splitting processes.
Note that E−1=2 energy scaling is subtle at NLO, even

when one chooses a factorization scale Λfac ∝ E such that
½dΓ=dx�NLO;facnet scales as E−1=2. The subtlety is that
½dΓ=dx�LOeff then has E−1=2 ln2 E instead of E−1=2 depend-
ence on energy. We have managed to ignore this difficulty
in our analysis only because we have been specifically
interested in the size of NLO=LOeff ratios, as discussed
in Sec. IV.
One reason that we have not attempted to simulate (8.8)

for this paper is that we expect it would be more numeri-
cally challenging to accurately reproduce the tiny NLO
effects of Table III.

IX. WHY ARE NLO EFFECTS SO SMALL?

Why are our results for overlap effects on the shape of
energy deposition so very small? The simplest character-
istic of the shape function, for example, is its width
σS ¼ σ=lstop, for which the relative size of NLO correc-
tions listed in Table III was

½χαs�energyσ=lstop
¼ ð−0.0191þ 0.0014 ln κÞCAαs: ð9:1Þ

Seemingly, overlap effects which cannot be absorbed into q̂
are almost negligible even for CAαsðμÞ ¼ 1 in large-Nc
Yang-Mills theory. As noted in the summary paper [8], this
conclusion is vastly different than an earlier analysis [32] of
overlap effects in large-Nf QED for charge (rather than
energy) deposition of a shower initiated by an electron.
There, the result was

½χαEM�chargeσ=lstop
¼ −0.87NfαEM; ð9:2Þ

which would be an Oð100%Þ effect for NfαEMðμÞ ¼ 1.
When we set out performing the calculations in this paper,
we were expecting gluon shower results somewhat similar
in size to (9.2). We were very surprised by the tiny
result (9.1).
One could wonder if there might be some miraculous

reason why (9.1) should be exactly zero for a purely
gluonic shower. Perhaps we were not careful enough with
the precision of our numerics, or perhaps there was some
tiny mistake in the rate formulas of Refs. [9–12]? But κ
parametrizes our choice of factorization scaleΛ¼κxð1−xÞ,
and the κ dependence of (9.1) originates solely from the
double and single IR logarithms subtracted by the defi-
nitions (3.13) and (3.14). The double logarithms have
long been known [5–7] and are well-studied. The full
single logarithms have been derived by two completely
different methods [40,42] which give the same result. The
steps that lead from there to the κ dependence (3.24) of the
net rate, and then to the ln κ term in (9.1), are pretty
straightforward.36 Since one Oð1Þ value of κ is a good as
another, we do not see how (9.1) could be a mistaken
value for something that is actually exactly zero for all
choices of κ.
Can we get any insight as to why (9.1) is so small

compared to the analogous (9.2)? Though we do not have
an explanation of why (9.1) is as very small as it is, it is
possible to investigate some aspects of the suppression in
more detail.
To study this, we will separate how the result (9.1)

depends on ½dΓ=dx�NLO;facnet from how it depends on every-
thing else. Equation (6.22) for (9.1) can be rewritten as

½χαs�energyσ=lstop
¼

Z
1

0

dxWðxÞ
�
dΓ
dx

�
NLO;fac

net
ð9:3aÞ

35See Eq. (4) of Ref. [30], where their ðx; zÞ are our ðζ; xÞ.
Their KðxÞ (before they make the BIM model approximation of
replacing K by K0) is our ½dΓ=dx�LO, up to a trivial overall
normalization difference associated with their definition of
rescaled time τ vs our t̃.

36It is worth noting that the x-independent terms of the κ
dependence shown in (3.24) can be absorbed into a constant shift
in q̂ and so do not affect the shape distribution and so give no
NLO corrections χαs to moments of the shape distribution. The
only term in (3.24) that does affect χαs is the ŝðxÞ ln κ term
associated with IR single logs.
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with weight function W defined by37

Wðx0Þ ¼ x0ð1− ffiffiffiffi
x0

p Þ2
2Avg½xð1− ffiffiffi

x
p Þ2�LO

−
x0ð1−x0Þ

2Avg½xð1−xÞ�LO
: ð9:3bÞ

Now rewrite the above in terms of the NLO/LO rate ratio
fðxÞ defined by (3.18),

½χαs�energyσ=lstop
¼ CAαs

Z
1

0

dxwðxÞfðxÞ; ð9:4aÞ

wðx0Þ ¼
�
dΓ
dx

ðx0Þ
�
LO
�

x0ð1 − ffiffiffiffi
x0

p Þ2
2Avg½xð1 − ffiffiffi

x
p Þ2�LO

−
x0ð1 − x0Þ

2Avg½xð1 − xÞ�LO

�
: ð9:4bÞ

Note that the definition (6.10a) of Avg½� � ��LO means thatZ
1

0

dx0 wðx0Þ ¼ 0: ð9:5Þ

This had to be because if fðxÞ had been an x-independent
constant, so that ½dΓ=dx�NLO;facnet ∝ ½dΓ=dx�LO, then the
NLO effects could be completely absorbed into a constant
shift in q̂, and the whole point of looking at shape
characteristics such as σS is that the shape is insensitive
to constant shifts in q̂. So the integral (9.4a) must vanish for
constant f.
Figure 16(a) shows a plot of wðxÞ and fðxÞ. Because of

(9.5), the w function has to be positive in some places and
negative in others, but note how that manifests; it is positive
on the left of the plot and negative on the right. It is not
really antisymmetric in x → 1 − x, but qualitatively it is a

crude distortion of something “antisymmetric.” In contrast,
fðxÞ has the same sign on both sides of the plot; it is not
really symmetric in x → 1 − x, but qualitatively it is a crude
distortion of something symmetric. Note that the NLO
g → gg contribution to fðxÞ must be exactly symmetric
because the daughter gluons are identical particles, but this
symmetry is not respected by the g → ggg contribution.38

These properties of fðxÞ and wðxÞ explain a partial
cancellation when we compute the integral (9.4a) of their
product wðxÞfðxÞ.
Wewill make the last statement more concrete by plotting

wðxÞfðxÞ, but we find it more visually advantageous to first
eliminate one piece that does not contribute to χαs. Note
that, because of (9.5), the integral (9.4a) for χαs will be
unchanged if we replace fðxÞ by fðxÞ þ c, for any constant
c. We choose to replace Fig. 16(a) by Fig. 16(b), where we
have chosen c to make fðxÞ þ c small for the middle range
of x values, while still maintaining that fðxÞ þ c, like fðxÞ,
has the same sign everywhere. Now we plot the product
wðxÞ½fðxÞ þ c� as the solid curve in Fig. 17. The value of
χαs is the area under that curve. One sees a positive
contribution from the far right of the plot, partly canceled
by a negative contribution from the far left, though it is hard
to judge visually how precisely they cancel.
Now let us look at a similar analysis for the analogous,

charge-stopping calculation for an electron-initiated shower
in large-Nf QED. In the large Nf limit, it is possible to
distinguish the original electron throughout the evolution of
the shower, and the overall charge deposition of the shower
is simply given by where the original electron finally stops
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f(x)  [for �fac = x(1-x)E]

w(x)

w(x) and f(x): energy stopping for gluon shower(a)
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w(x)
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FIG. 16. (a) Plot of the NLO/LO net rate ratio fðxÞ (solid curve) and the weight function wðxÞ in the integral (9.4a) that gives (9.1).
(b) The same, but fðxÞ is shifted upward by a constant, as described in the text.

37Note that, in (9.3b), the variables x appearing in the
Avg½� � ��LO’s are dummy variables associated with the definition
(6.10a), unrelated to the integration variable x in (9.3a).

38It would not make sense to plot the NLO g → gg and g →
ggg contributions separately because they have canceling power-
law IR divergences [9], which are not handled by our factori-
zation scheme (3.14). One might in principle imagine enhancing
our factorization scheme to subtract power-law divergences for
the separate contributions, but it does not seem worth the effort
(and we do not currently have complete analytic results for all of
the power-law divergences [9]).
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and deposits its charge.39 The relevant splitting rate for
computing charge deposition is then the electron splitting
rate ½dΓ=dx�e, where x represents the energy fraction of the
original electron after the splitting compared to before the
splitting. In Ref. [32], the formula analogous to (9.3) was
(with minor adjustment)40

½χαEM�chargeσ=lstop
¼ δAvg½ð1 − ffiffiffi

x
p Þ2�

2Avg½ð1 − ffiffiffi
x

p Þ2�LO
−

δAvg½ð1 − xÞ�
2Avg½ð1 − xÞ�LO

;

ð9:6Þ

where here δAvg is computed using ½dΓ=dx�NLOe→e instead of
½dΓ=dx�NLO;facnet . IR factorization is not necessary (there are
no log IR divergences), and so there is no IR factorization
scale Λfac. Equation (9.6) can now be rewritten as

½χαEM�chargeσ=lstop
¼

Z
1

0

dxWeðxÞ
�
dΓ
dx

�
NLO

e→e
ð9:7aÞ

with weight function

Weðx0Þ ¼
ð1 − ffiffiffiffi

x0
p Þ2

2Avg½ð1 − ffiffiffi
x

p Þ2�LO
−

ð1 − x0Þ
2Avg½1 − x�LO

: ð9:7bÞ

To put it in a form similar to (9.4),

½χαEM�chargeσ=lstop
¼ NfαEM

Z
1

0

dxweðxÞfeðxÞ; ð9:8aÞ

weðx0Þ ¼
�
dΓ
dx

ðx0Þ
�
LO

e→e

� ð1 −
ffiffiffiffi
x0

p
Þ2

2Avg½ð1 − ffiffiffi
x

p Þ2�LO
−

ð1 − x0Þ
2Avg½ð1 − xÞ�LO

�
; ð9:8bÞ

feðxÞ≡
h
dΓ
dx

i
NLO

e→e

NfαEM
h
dΓ
dx

i
LO

e→e

: ð9:8cÞ

Figure 18 shows plots of weðxÞ and feðxÞ analogous to the
plots of wðxÞ and fðxÞ in Fig. 16.
There is no crude symmetry or antisymmetry here. Note

in particular that even LO and NLO single splitting rates for
e → eγ will not be symmetric in x → 1 − x because the two
daughters are not identical particles. [Unlike the discussion
of Fig. 16, we will not shift feðxÞ by a constant because it
already, like Fig. 16(b), is almost as close as it can get to
fe ¼ 0 while having the same sign of feðxÞ for all x.] The
product of weðxÞ and feðxÞ is shown by the dotted curve in
Fig. 17. One can see the qualitative difference with the
gluonic case; the area under the dotted curve does not have
any significant cancellation between positive and negative
contributions. But also, the area associated with the right-
hand side of the dotted curve is already bigger than that
associated with the right-hand side of the solid curve.41

It is natural to wonder how much of the huge difference
between the small vs large χαs’s of (9.1) and (9.2) are due to
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) electron charge stopping: w(x) 	 f(x)

FIG. 17. The solid curve is the product of the wðxÞ and shifted
fðxÞ functions of Fig. 16, and its integral gives (9.1). For
comparison, the dotted curve shows a similar product for
large-Nf QED (9.2).
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w(x) and f(x): charge stopping for electron shower

FIG. 18. Like Fig. 16(a), but here for charge stopping of
electron showers in large-Nf QED.

39See the discussion in Sec. 2.2 of Ref. [32].
40Specifically, see Eq. (2.17) of Ref. [32]. The analysis of that

paper later used amore complicated version,Eq. (2.26) ofRef. [32],
which accounted for a piece of the rate that scaled with energy as
β0E−1=2 lnE, arising froma fixed choice of renormalization scaleμ.
Onewill get the simpler equationwe have used by instead choosing
μ ∝ ðq̂rEÞ1=4 with constant r, similar to our (3.17). The difference
with the fixed-μ result turns out to be small and does not
significantly affect (9.2). [The change is less than 3% and does
not depend on the choice of r.]We have not shown other reasonable
choices, such as μ ¼ ðq̂κxEÞ1=4 analogous to our (3.16).

41We find numerically that (up to logarithms) both curves blow
up as ð1 − xÞ−1=2 as x → 1, which is an integrable divergence.
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having fermions in large-Nf QED (e.g. e → eγ and γ → eē
processes), and so how much different our QCD results
might be if we included quarks in addition to gluons
(e.g. q → qg and g → qq̄). Formally, quark processes are
suppressed in the large-Nc limit if one takes Nc large while
keepingNf fixed, and so can be ignored for large-Nc gluon-
initiated showers. However, since Nc ¼ 3 and Nf ≥ 3

[depending on the size of μ ∼ ðq̂EÞ1=4] in QCD, a more
relevant large-Nc limit would be to include quarks and treat
Nf as also potentially large.
It is also natural to wonder whether, even for electron-

initiated showers in large-Nf QED, there might be a
significant difference between the size of overlap correc-
tions for (i) the shape of the energy deposition distribution
and (ii) the shape of the charge deposition distribution. And
similarly for quark-initiated showers in QCD. We leave all
of these questions for future study.

X. THEORIST ERROR

We should comment on the possibility of error in our
calculation. There is, of course, theoretical error associated
with the unknown size of yet-higher-order corrections and,
in our case, the choice of factorization and renormalization
scales. But one may be more concerned with what we
instead refer to as theorist error. The calculation of over-
lapping splitting rates [9–15] was very long and very
complicated. Though we and our previous collaborators
have tried very hard to be meticulously careful, to inde-
pendently check the details of all calculations, and to devise
cross-checks, we cannot completely rule out the possibility
of error. Ref. [9] lists a number of nontrivial sanity checks
on our rate calculations,42 though we later found one error
in the calculation after the first publication of Ref. [9].43

More recently, our best cross-check has been to show that
the IR contribution to our very complicated, full expression
for ½dΓ=dx�net gives the correct result for single (and not
just double) IR logarithms. This was shown by (i) extracting
[42] the single log coefficient (3.9) from the IR limit of our
full rate calculation and comparing to (ii) a much simpler
and completely independent derivation of the IR single
logarithm [40], found by substituting the known single-log
result [41] for soft radiative corrections to in-medium
transverse momentum broadening into a BDMPS-Z-like
calculation of the leading-order rate for a hard g → gg
splitting.
In principle, the best way to have full confidence in our

full result for ½dΓ=dx�net would be for an independent group
to repeat the calculation, preferably using an independent
method. A less arduous check might be to independently
calculate ½ΔdΓ=dxdy�g→ggg in the IR limit y → 0 (for fixed
x) and extract the nonlogarithm piece of that limit. Or to

somehow independently compute ½dΓ=dx�net in the limits
x → 0 and/or x → 1. But we are unsure how complicated
such calculations might be.
All that said, we feel fairly confident in our final

conclusion.

XI. CONCLUDING REMARKS

Our specific conclusion is that the effects of overlapping
gluon splittings are numerically very small and incon-
sequential for the shape of the energy deposition of a
purely-gluonic in-medium shower, at least with the sim-
plifying assumptions used in our thought experiment. Put
another way, the effects of overlapping formation times on
the energy deposition distribution ϵðzÞ itself are small
provided one allows q̂ to be an energy-dependent phe-
nomenological jet quenching parameter for this purpose.
The energy dependence of q̂effðωÞ was investigated at
leading-log order by the early work of Refs. [5–7], and
expanded on in Refs. [43–45]. It would be interesting if
those analyses could be extended to next-to-leading-log
order (for which our very limited NLLO analysis of Sec. IV
would be inadequate).
The results of this paper and its companion Letter [8]

represent a first exploratory investigation into these topics.
In particular, motivated by Sec. IX, it remains to be seen
whether overlap corrections become more important when
quarks are incorporated into our gluonic showers.
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APPENDIX A: NLO RATES IN TERMS
OF THE NLO FORMULAS OF REF. [9]

The NLO rates used in this paper are given in
Refs. [9,15] (and in particular Appendix A of each). But
most of the rate formulas in those references are given for
what they call NLO rates. The purpose of this appendix is
to be clear how the various NLO rates needed for this paper
can be written in terms of the NLO rate formulas given in
Refs. [9,15].
The difference between NLO and NLO is that Ref. [9]

found it convenient to separate the renormalization
scale dependence μ from the rest of the NLO g → gg rate,
writing

42Specifically, see Sec. 5 of Ref. [9].
43See Appendix A of Ref. [42].
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�
Δ
dΓ
dx

�
NLO

g→gg
¼

�
Δ
dΓ
dx

�
NLO

g→gg
þ
�
dΓ
dx

�
ren log

ðA1Þ

with44

�
dΓ
dx

�
ren log

≡ −
β0αs
2

�
dΓ
dx

�
LO
�
ln

�
μ2

jΩ0jE
�

þ ln

�
xð1 − xÞ

4

�
þ γE −

π

4

�
ðA2Þ

and β0 given by our (3.22). Above, Ω0 is the complex
frequency associated with the leading-order BDMPS-Z
g → gg splitting rate (2.1), given by

Ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−iq̂A
2E

�
−1þ 1

x
þ 1

1 − x

�s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ið1 − xþ x2Þq̂A

2xð1 − xÞE

s
; ðA3Þ

and γE is the Euler-Mascheroni constant. Note that the ln μ
dependence in (A2) matches (3.21). There is not neces-
sarily anything significant about the x dependence and
dimensionless constants in the rest of (A2)—they were just
a combination that was convenient to algebraically separate
from the NLO rate in Ref. [9] and to integrate over y.
When written in terms of the NLO rates of Refs. [9,15],

our Eq. (2.3) is then45

�
Δ
dΓ
dx

�
NLO

g→gg
¼
�Z

1−x

0

dy

�
Δ

dΓ
dxdy

�
virt I

�
þðx→ 1−xÞ

þ
Z

1

0

dy
�
Δ

dΓ
dxdy

�
virt II

þ
�
dΓ
dx

�
ren log

; ðA4Þ

where ½ΔdΓ=dxdy�virt I and ½ΔdΓ=dxdy�virt II is the notation
in those references for the NLO versions of what we call
½ΔdΓ=dxdy�NLOclass I and ½ΔdΓ=dxdy�NLOclass II in this paper.
Correspondingly, Eqs. (3.6), (3.7), and (3.14) of this paper
can be rewritten, in terms of the rates presented in
refs. [9,15], as46

�
dΓ
dx

�
NLO

net
¼

�
dΓ
dx

�
ren log

þ
�
dΓ
dx

�
NLO

net

¼
�
dΓ
dx

�
ren log

þ
Z

1=2

0

dy

�
vðx; yÞθ

�
y <

1 − x
2

�

þ vð1 − x; yÞθ
�
y <

x
2

�

þ rðx; yÞθ
�
y <

1 − x
2

��
; ðA5Þ

vðx; yÞ≡
��

Δ
dΓ
dxdy

�
virt I

þ
�
Δ

dΓ
dxdy

�
virt II

�
þ ðy ↔ 1 − x − yÞ; ðA6aÞ

rðx; yÞ≡
�
Δ

dΓ
dxdy

�
g→ggg

; ðA6bÞ

and, most importantly,

�
dΓ
dx

�
NLO;fac

net
≡

�
dΓ
dx

�
ren log

þ
Z

∞

0

dy

�
vðx; yÞθ

�
y <

1 − x
2

�

þ vð1 − x; yÞθ
�
y <

x
2

�

þ rðx; yÞθ
�
y <

1 − x
2

�

þ CAαs
4π

�
dΓ
dx

�
LO ln yþ s̄ðxÞ

y
θðyE < ΛfacÞ

�
:

ðA7Þ

Take care when using these formulas to note that
the definitions of ½ΔdΓ=dxdy�g→ggg, ½ΔdΓ=dxdy�virt I, and
½ΔdΓ=dxdy�virt II in Ref. [9] have been updated to include F
diagrams in Ref. [15].47

APPENDIX B: NUMERICAL METHODS

1. Computation of ½dΓ=dx�NLO;fac
net

In (A7) for ½dΓ=dx�NLO;facnet , there is a subtraction in the y
integrand that removed the y−1 ln y and y−1 behavior of the
integrand at small y which would otherwise have generated
IR double- and single-logarithmic divergences. With that
subtraction, the leftover behavior of the integrand at small y
turns out to be of order y−1=2 ln y, which is an integrable
divergence. However, as a practical matter for numerical
integration, it is more efficient to soften the integrable
divergence by changing integration variable from y to

44Above, Eqs. (A1) and (A3) correspond to Eqs. (A.49) and
(A.4) of Ref. [9]. Equation (A2) above is a slight rewriting of
Eq. (A.50) of Ref. [9]. For that, we have used Eqs. (A.6) and (A.7)
of Ref. [9], and we have also used the fact that Ω0 ¼ e−iπ=4jΩ0j to
rewrite ReðiΩ0 lnð1=Ω0ÞÞ ¼ ReðiΩ0Þ½lnð1=jΩ0jÞ − π

4
�.

45Equation (A4) above is just the combination of Eqs. (A.47)–
(A.49) and (A.52) of Ref. [9] for the case of renormalized rates.

46The NLO rate in (A5) above is Eq. (1.7) of Ref. [9]. vðx; yÞ
and rðx; yÞ are defined as in Eq. (1.8) of Ref. [9].

47Specifically, see Eqs. (A.1), (A.18), and (A.19) of
Ref. [15].
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u ¼ y1=2, so that the behavior of the u integrand is merely
ln u as u → 0.
We use Mathematica [47] for the evaluations of the y

integrand, including the necessary Δt integrations in the
formulas for ½ΔdΓ=dxdy�virt I, ½ΔdΓ=dxdy�virt II, and
½ΔdΓ=dxdy�g→ggg presented in Refs. [9,15]. Our unsophis-
ticated attempts to use Mathematica’s built-in integrator to
do the u ¼ y1=2 integrals were inefficient, however. Instead,
we did the u integration by brute force using a simple
midpoint Riemann sum covering the integration region
u ¼ 0 to umax ¼ ½maxðx=2; ð1 − xÞ=2;Λfac=EÞ�1=2 where
the integrand is nonzero. For sufficiently smooth functions,
the error of a midpoint Riemann sum should scale as
OððΔuÞ2Þ, where Δu is the small step size. But there are
two issues that spoil this rate of convergence: our integrand
(i) has discontinuities at the thresholds for the various θ
functions in (A7), and (ii) diverges as ln u as u → 0.
The simplest way to take care of issue (i) is to divide
the integral up into the three regions where the integrand is
continuous, and do each region separately with a midpoint
Riemann sum.48

For the second issue, we numerically extract the coef-
ficient c of the c ln u behavior as u → 0, and then we
correct the midpoint Riemann sum approximation to

Z
umax

0

du fðuÞ ¼ −
Δu ln 2

2
cþ

XN
n¼1

Δuf
��

n −
1

2

�
Δu

�
;

ðB1Þ

where Δu ¼ umax=N. The factor of 1
2
Δu ln 2 in the cor-

rection term comes from the identity

lim
N→∞

�Z
NΔu

0

du ln u −
XN
n¼1

Δu ln
��

n −
1

2

�
Δu

��

¼ −
1

2
Δu ln 2: ðB2Þ

There are, no doubt, much more sophisticated integration
methods that could have been used, but these were the
simplest for us to quickly implement without diagnosing
how to fine-tune the performance of general-purpose
integrators; because our integration method is nonadaptive,
however, one must monitor the numerical convergence with
increasing N.

2. More details on numerical evaluation of ϵ̂ðẑÞ
In the backward-evolution equation (7.5) for ϵ̂LOðẑÞ, the

integral

Z
1

0

dx x

�
dΓ̂
dx

�
LO
fx−1=2ϵ̂LOðx−1=2ẑÞ − ϵ̂LOðẑÞg ðB3Þ

has integrable singularities at the endpoints. Specifically,
the integrand scales like x−1=2 as x → 0 and ð1 − xÞ−1=2 as
x → 1. It is numerically more efficient to make a change of
integration variable, similar to the u ¼ y1=2 earlier in this
appendix, to reduce the singularity. Changing variables to
u ¼ x1=2 in (B3) will help x → 0 but will not do anything
for x → 1. A simple solution is to first split the integral
up as

Z
1

0

dx � � � ¼
Z

1=2

0

dx � � � þ
Z

1

1=2
dx � � � ; ðB4Þ

and then change integration variable x → 1 − x in the last
integral. Remembering that ½dΓ=dx�LO is symmetric under
exchange of its two daughters, (B3) then becomes

Z
1=2

0

dx

�
dΓ̂
dx

�
LO
ðxfx−1=2ϵ̂LOðx−1=2ẑÞ− ϵ̂LOðẑÞg

þð1−xÞfð1−xÞ−1=2ϵ̂LOðð1−xÞ−1=2ẑÞ− ϵ̂LOðẑÞgÞ: ðB5Þ

Now the change of integration variable to u ¼ x1=2 will
remove all 1= ffip divergences.
To do the integral (B3) with the discretized representa-

tion of ϵ̂ðζ̂Þ that we obtain for ẑ ≤ ζ̂ ≤ ẑmax, we used
Mathematica to interpolate the function and then integrated
using that interpolation.
The integrals in (7.8) that determine δϵ̂ðẑÞmay be treated

similarly, except that one must remember that ½dΓ=dx�net is
not symmetric under x → 1 − x. So the driving term

Z
1

0

dx x

�
dΓ̂
dx

�
NLO;fac

net
fx−1=2ϵ̂LOðx−1=2ẑÞ − ϵ̂LOðẑÞg ðB6Þ

for that equation should be replaced by

Z
1=2

0

dx
�
x
�
dΓ̂
dx

ðxÞ
�
NLO;fac

net
fx−1=2ϵ̂LOðx−1=2ẑÞ − ϵ̂LOðẑÞg

þ ð1 − xÞ
�
dΓ̂
dx

ð1 − xÞ
�
NLO;fac

net

× fð1 − xÞ−1=2ϵ̂LOðð1 − xÞ−1=2ẑÞ − ϵ̂LOðẑÞg
�
; ðB7Þ

followed by a change of variables to u ¼ x1=2.
In the main text, we demonstrated approach to the

continuum limit in Fig. 15. Figure 19 shows our approach
to the ẑmax → ∞ limit for the smallest Δẑ value of Fig. 15.
There is no noticeable difference between the results for
ẑmax ¼ 10 and ẑmax ¼ 20, and so the value ẑmax ¼ 20 used
in Fig. 15 was plenty large enough.

48Alternatively, one can do a single integral over the total
integration region and correct the midpoint rule in the steps where
discontinuities occur, given that we know exactly where the
points of discontinuity are.
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APPENDIX C: MORE ON Δb DEPENDENCE
OF NLLO RESUMMATION

In this appendix, we argue that the resummation (4.18)
is adequate to capture the Δb dependence of resummation
at next-to-leading-log order (NLLO) but would fail at the
next order (NNLLO). As in Sec. IV B, we will ignore the
running of αsðk⊥Þ, which was argued not to affect our
conclusions in Sec. IV C.

1. Review of LLO resummation

We first review the leading-log order (LLO) resumma-
tion of LMW [41]. In our notation, we find it convenient to
express the leading-log contribution to q̂eff from nth order
in αsðμÞ as

δnq̂effðΔbÞ≈ ᾱns q̂ð0Þ

Z
∞

τ0

dt1
t1

Z
1=ðΔbÞ2

q̂t1

dk2⊥1

k2⊥1

Z
t1

τ0

dt2
t2

×
Z

k2⊥1

q̂t2

dk2⊥2

k2⊥2

� � �
Z

tn−1

τ0

dtn
tn

Z
k2⊥;n−1

q̂tn

dk2⊥n

k2⊥n
; ðC1Þ

where in this appendix we use the shorthand notation

ᾱs ≡ CAαs
π

: ðC2Þ

In our convention, ðk⊥1; t1Þ are the transverse momen-
tum and emission duration49 of the first soft gluon, ðk⊥2; t2Þ
are those of an even softer gluon emission, and so forth,
with k⊥ ordering

1

Δb
≫ k⊥1 ≫ k⊥2 ≫ � � � : ðC3Þ

The first inequality in (C3) can be understood as following
a pattern (k⊥0 ≫ k⊥1) similar to the others, because 1=Δb
is the transverse momentum scale (k⊥0) corresponding to
the lightlike Wilson loop of Fig. 9 from which the first
gluon (k⊥1) is emitted. The other conditions for leading
logs are that softer emissions take place within the duration
of harder emissions, so that

t1 ≫ t2 ≫ t3 ≫ � � � ≫ τ0: ðC4Þ

The last inequality in (C4), implemented in the lower limits
of all the time integrals, reflects the breakdown of the q̂
approximation for emission times smaller than the mean
free path τ0, which was also a constraint in Fig. 11. The
lower limits on the k⊥ integrals correspond to the fact that
the transverse momentum kicks Δp⊥ ∼

ffiffiffiffiffi
q̂t

p
accumulated

over the duration of an emission will disrupt the vacuum-
like logarithms ifΔp⊥ is as large as the k⊥ of that emission.
Each double logarithm relies on nearly collinear emissions,
and the kicks from the medium disturb collinearity.
Mathematically, in order to implement the conditions

just described, the k⊥ integrals in (C1) should be under-
stood as requiring that each upper limit of integration be
greater than the corresponding lower limit. That means in
particular that the k⊥1 integration sets an upper limit

t1 <
1

q̂ðΔbÞ2 ðC5Þ

on the t1 integration. We could have explicitly written that
in (C1), but the motivation for the limits was easier to
explain by initially writing the t1 integral as unbounded.
In LMW’s application, the relevant scale for Δb was

ðq̂LÞ−1=2, where L was the length of the medium traversed,

0 5 10 15 20 25
z^ 

max

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

��
s f

or
 m

om
en

ts
  [

in
 u

ni
ts

 o
f 

C
A
�

s]

 (�
2,S

)1/2 =  (k
2,S

)1/2

 (�
3,S

)
1/3

 =  (k
3,S

)
1/3

 (�
4,S

)
1/4

(a)

�z
^ 

 = 0.0025

0 5 10 15 20 25
z^ 

max

0

0.5

1

1.5

2

��
s f

or
 m

om
en

ts
  [

in
 u

ni
ts

 o
f 

C
A
�

s]

(k
4,S

)
1/4

(b)

�z
^ 

 = 0.0025

FIG. 19. Like Fig. 15 but here the data points show the dependence on ẑmax for Δẑ ¼ 0.0025. The solid horizontal lines again show the
results of Table III, and their difference with the ðΔẑ; ẑmaxÞ ¼ ð0.0025; 20Þ data points is the same as that in Fig. 15, due to the nonzero
value of Δẑ. We have drawn dashed horizontal lines corresponding to the ðΔẑ; ẑmaxÞ ¼ ð0.0025; 20Þ value to instead emphasize the
relevant point for approximating ẑmax → ∞; there is no significant difference between ẑmax ¼ 10 and ẑmax ¼ 20.

49The emission duration t1 is what we called Δt in Fig. 11.
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Δb here →
1

Qs
∼

1ffiffiffiffiffiffi
q̂L

p in LMW . ðC6Þ

In our application, the scale analogous to L is, parametri-
cally, the formation time for the underlying, hard splitting
process. However, for the sake of the discussion of Sec. IV,
we keep things here explicitly in terms of Δb.
There are many different ways to rewrite (C1), and we

will provide several for the sake of reference when
comparing to other papers. LMW use the variables50

x ∼
τ0
t

ðC7Þ

in place of our t’s. After making this change of integration
variable in (C1), one may change the order of integrations
to write a formula equivalent to LMW’s version,51

δnq̂effðΔbÞ≈ ᾱns q̂ð0Þ

Z
1=ðΔbÞ2

q̂τ0

dk2⊥1

k2⊥1

Z
k2⊥1

q̂τ0

dk2⊥2

k2⊥2

���
Z

k2⊥;n−1

q̂τ0

dk2⊥n

k2⊥n

×
Z

1

q̂τ0=k2⊥n

dxn
xn

���
Z

x3

q̂τ0=k2⊥2

dx2
x2

Z
x2

q̂τ0=k2⊥1

dx1
x1

: ðC8Þ

Alternatively, to make contact with the variables ðt;ωÞ
used in Fig. 11, change integration variables in (C1) by
using the parametric relation t ∼ ω=k2⊥ for the duration of
vacuumlike gluon fluctuations,

δnq̂effðΔbÞ≈ ᾱns q̂ð0Þ

Z
∞

τ0

dt1
t1

Z
t1=ðΔbÞ2

q̂t2
1

dω1

ω1

Z
t1

τ0

dt2
t2

×
Z

ω1t2=t1

q̂t2
2

dω2

ω2

� � �
Z

tn−1

τ0

dtn
tn

Z
ωn−1tn=tn−1

q̂t2n

dωn

ωn
;

ðC9Þ

where the limits of the ω1 integration again implicitly set
the upper limit (C5) on t1.
The analysis of Ref. [43] (which reviews the fixed

coupling case as a warmup) uses the logarithmic variables

Y ≡ ln

�
t
τ0

�
; ρ≡ ln

�
k2⊥
q̂τ0

�
; ðC10Þ

in terms of which (C1) can be written

δnq̂eff ≈ ᾱns q̂ð0Þfn

�
ln

�
1

q̂τ0ðΔbÞ2
�
; ln

�
1

q̂τ0ðΔbÞ2
��

;

ðC11aÞ

where (introducing our own notation “fn”)

fnðY; ρÞ≡
Z

Y

0

dY1

Z
ρ

Y1

dρ1

Z
Y1

0

dY2

Z
ρ1

Y2

dρ2 � � �

×
Z

Yn−1

0

dYn

Z
ρn−1

Yn

dρn: ðC11bÞ

Equation (C11) tell us that the leading-log result at nth
order is just ᾱns q̂ð0Þ times the hyper-volume of the integra-
tion region in (C11).
LMW’s summation of all the leading-log δnq̂eff gives the

formula (4.18) presented in the main text. Iancu and
Triantafyllopoulos [43] give a little more detail, showing
that

fnðY; ρÞ ¼
Ynρn

ðn!Þ2 −
Ynþ1ρn−1

ðnþ 1Þ!ðn − 1Þ! ðn > 0Þ ðC12Þ

(which can be proven by induction). Summing all orders of
αs gives

1þ
X∞
n¼1

ᾱns fnðY; ρÞ

¼ I0ð2
ffiffiffiffiffiffiffiffiffiffi
ᾱsYρ

p
Þ − Y

ρ
I2ð2

ffiffiffiffiffiffiffiffiffiffi
ᾱsYρ

p
Þ; ðC13Þ

and setting Y ¼ ρ ¼ lnð 1
q̂τ0ðΔbÞ2Þ as in (C11a) then

gives (4.18).

2. Δb dependence of logarithms at OðαsÞ
It will be useful to also review some of the qualitative

aspects of double and single logs at OðαsÞ. The double-log
approximation corresponds to the n ¼ 1 case of (C1),

δq̂effðΔbÞ ≈ ᾱsq̂ð0Þ

Z
1=q̂ðΔbÞ2

τ0

dt1
t1

Z
1=ðΔbÞ2

q̂t1

dk2⊥1

k2⊥1

; ðC14Þ

where we have used (C5). A picture of the integration
region is shown in Fig. 20(a), which is equivalent to the
integration region previously depicted in Fig. 11. LMW
analyzed the subleading, single logarithms as well at this
order. What will be important for our discussion are
qualitative characterizations of the following parametric
regions.

(i) Double logarithms are generated by integrating over
the interior of the shaded region,

τ0 ≪ t1≪
1

q̂ðΔbÞ2 ; q̂t1 ≪ k2⊥1≪
1

ðΔbÞ2 ; ðC15Þ

50LMW represent (C7) with the symbol x. We use x here to
avoid confusion with our use of x elsewhere in this paper.

51Specifically, see Eq. (50) of Ref. [41], which only explicitly
writes out the example n ¼ 2, and make use of the translation
(C6). Our δ2q̂eff corresponds to their Eq. (50) divided by L,
except that their numbering of the gluons is the reverse of
ours, i.e. their ðk⊥1; � � � k⊥nÞ are our ðk⊥n;…; k⊥1Þ and their
ðx1;…; xnÞ are our ðxn;…; x1Þ. Their Q2

0 ¼ q̂τ0.
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such as the point labeled “A” in Fig. 20(a). The
double log will be proportional to the area of
the shaded region in the log-log coordinates of
the figure.

(ii) Single logarithms arise from integrating along the
edges, e.g. over

τ0 ≪ t1 ≪
1

q̂ðΔbÞ2 ; k2⊥1 ∼
1

ðΔbÞ2 ðC16Þ

for the upper edge in Fig. 20(a), which is the edge
most sensitive to the value of Δb. Because k2⊥1 ∼
1=ðΔbÞ2 in (C16), the red line representing this edge
should be thought of as having an Oð1Þ thickness in
the log-log coordinates used in the figure. Similarly
for the other edges. In the limit of large logarithms,
the Oð1Þ thickness of the edges is parametrically
small compared to the size of the shaded, double-log
region. The point labeled “D” in Fig. 21(a) gives an

example of how we’ll graphically indicate points
contributing to the single log.

(iii) No logarithms are generated by the corners, such as

t1 ∼
1

q̂ðΔbÞ2 ; k2⊥1 ∼
1

ðΔbÞ2 ; ðC17Þ

which is labeled “γ” in the figure.
The single-log pieces can be thought of as the dominant

contribution to the difference of (a) the full integral over all
ðω1; t1Þ and (b) the double-log approximation (C14). It will
be useful to give a name to the integral that gives this
difference. We will call it

ᾱsq̂ð0Þ

Z
dt1
t1

Z
dk2⊥1

k2⊥1

Fslðt1; k2⊥1Þ; ðC18Þ

where Fsl has support on the edges of the double log region
and falls rapidly towards zero as ðY1; ρ1Þ moves away from
those edges in Fig. 21(a). The subscript “sl” stands for

(a) (b)

FIG. 20. (a) The double-log region of Fig. 11 in terms of the variables (Y, ρ) of (C10). (aþ b) A depiction of the leading-log region at
order Oðα2s Þ. In this figure, the extent of the ðY2; ρ2Þ region is drawn for the case where ðY1; ρ1Þ is at point “A.”

(a) (b)

FIG. 21. Like Fig. 20, but here the extent of the ðY2; ρ2Þ region is drawn for the case where ðY1; ρ1Þ is at point “D.”
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“single log.” Most details of Fsl will be unimportant. The
important property of Fsl is that it will be uniform along
each individual edge, by which we mean that integration of
Fsl over the direction perpendicular to an edge gives (to
good approximation in the large-log limit) the same result
everywhere along that edge. The uniformity of each edge in
this sense means that the contribution of each edge to (C18)
will be proportional to a single logarithm, with a coefficient
depending on the details of how Fsl behaves near that edge.
To give a concrete example of uniformity, consider the

edge (C16) that is sensitive to the physics of k⊥ ∼ 1=Δb.
The (approximate) formula for Fsl along that edge may be
extracted from LMW [41] in terms of the variables
ðt1;ω1Þ,52

Fsl ≃ Fapprox
sl

¼ Re

�
1

3

��
1þ iω1ðΔbÞ2

2t1

�
eiω1ðΔbÞ2=2t1

þ 2i
ð1 − eiω1ðΔbÞ2=2t1Þ
ω1ðΔbÞ2=2t1

�

− θ

�
ω1ðΔbÞ2

2t1
< 1

��
: ðC19Þ

The detailed expression does not matter except to explicitly
confirm the important point that this edge’s Fsl is a function
of only ω1ðΔbÞ2=2t1. Since t1 ≈ 2ω1=k2⊥1 in this region of
vacuum-like emissions, the Fslðt1; k2⊥1Þ of (C18) is actually
a function of only k2⊥1ðΔbÞ2 near this (red) edge of
Fig. 21(a), and k2⊥1 is the variable that parametrizes the
direction perpendicular to that edge. This provides an
example of how Fsl is “uniform” along an edge, which
in this case means that Fapprox

sl ðt1; k2⊥1Þ ≃ Fapprox
sl ððk⊥1ΔbÞ2Þ

does not depend on t1.
Because (C19) is localized near the edge, the limits of the

dk2⊥1 integral in (C18) that is perpendicular to the edge

(C16) can be replaced (within the large-log approximation)
by 0 to ∞. This gives

Z
∞

0

dk2⊥1

k2⊥1

Fapprox
sl ððk⊥1ΔbÞ2Þ

¼
Z

∞

0

du
u
Fapprox
sl ðuÞ

¼ an Oð1Þ constant independent of Δb ðC20Þ

for that edge.
Overall, the total result for double and single logs will

have the form

q̂effðΔbÞ ¼ q̂ð0Þ þ δq̂ðΔbÞ

≃ q̂ð0Þ

�
1þ ᾱs

2

�
ln2

�
1

q̂τ0ðΔbÞ2
�

þ κ ln
�

1

q̂τ0ðΔbÞ2
���

; ðC21Þ

where the single-log coefficient κ is some constant53 that is
independent of Δb. Equation (C21) refines (4.17) to now
include the single log term. This large single logarithm does
not generate any large Δb dependence when included in
our earlier discussion of Sec. IV B. That is because we were
only interested in Δb ∼ B0 as in (4.16), and one may
rewrite the single log term in (C21) as

κ ln

�
1

q̂τ0ðΔbÞ2
�

¼ κ ln

�
1

q̂τ0B2
0

�
− κ ln

�ðΔbÞ2
B2
0

�
: ðC22Þ

On the right-hand side, the first term is a large logarithm but
does not depend on Δb, whereas the second term depends
on Δb but is not a large logarithm and so will not need to
resummed.

3. Δb dependence at NLLO and NNLLO

Now move to the next order in αs by considering
the n ¼ 2 case of (C1). The corresponding leading-log
region, which generates an Oðα2s log4Þ contribution to q̂eff ,
corresponds to the combination of the shaded regions of
Figs. 20(a) and 20(b). The leading log is generated by

52This comes from Eq. (32) of Ref. [41], where S is − 1
4
q̂effx2⊥L

and where there is an implicit Ref� � �g on the right-hand side. Our
δq̂eff then corresponds to integrating the right-hand side of their
(32) with integral

−
4

x2⊥L

Z
dω
ω

:

Comparing to the ðω; tÞ version

ᾱsq̂ð0Þ

Z
dt1
t1

Z
dω1

ω1

Fsl

of our (C18) then determines Fsl, except that we must subtract
away the double log piece already included in the n ¼ 1 version
of (C9), where the edge we are focused on is the upper limit
t1=ðΔbÞ2 of the ω1 integration there. That subtraction is imple-
mented by the last term in our (C19). We have written the
argument of the θ function to match the k2⊥1 ≤ 1=ðΔbÞ2 condition
in the (C1) version of the leading-log resummation.

53For details, see Eq. (45) of LMW [41], where x and l0 are our
Δb and τ0. Divide both sides of that equation by L to get q̂eff , and
use the translation (C6) to replace the remaining occurrences of L
by 1=q̂ðΔbÞ2. Note that this replaces their lnð8ml0=x2q̂LÞ by a
Δb-independent constant of Oð1Þ. The ml0 and the integral in
that formula arise from the boundary t1 ∼ τ0 in our Fig. 20(a)
[what they call “boundary (c)”]. Since this boundary does not
generate a logarithm with large dependence on the exact value of
Δb ∼ B0, we can ignore it in our analysis. We may also ignore the
various complications in the analysis of this boundary, recently
investigated by Ghiglieri and Weitz [48] for the case of a quark-
gluon plasma.
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points in the interior, such as the combined pair AB in the
figure.
The combination AC contributes at NLLO, which is

Oðα2s log3Þ for n ¼ 2. This combination corresponds to

1

Δb
≫ k⊥1 ∼ k⊥2: ðC23Þ

If we continue on to yet higher orders in αs, the contri-
butions at NLLO order that involves a pair like AC will
have

1

Δb
≫ k⊥1 ∼ k⊥2 ≫ k⊥3 ≫ � � � : ðC24Þ

None of the points will be sensitive to the exact value of
Δb, and so none of these contributions contribute to
what we’re interested in, which is the Δb dependence of
resummed q̂eff .
Now turn to the combination of Figs. 21(a) and 21(b),

with ðt1; k2⊥1Þ along the edge k⊥1 ∼ 1=Δb. First, note that if
ðt1; k2⊥1Þ were at the vertex γ, then we would lose both logs
from the ðt1; k2⊥1Þ integration, and so this would be a
NNLLO contribution instead of an NLLO one. So, at
NLLO, we can replace the upper limit 1=q̂ðΔbÞ2 of (C5) on
the t1 integration by 1=q̂B2

0—a change which will only
affect NNLLO.
So we should focus on combinations like DB, which

correspond to NLLO contributions with

1

Δb
∼ k⊥1 ≫ k⊥2 ≫ k⊥3 ≫ � � � : ðC25Þ

None of ðt2;ω2Þ; ðt3;ω3Þ;… can be on an edge because
having placed ðt1;ω1Þ on an edge (e.g. point D in the
figure) has already cost us a logarithm; having another
point also on an edge would move us from NLLO to
NNLLO. So we may use the leading-log approximation for
all the ðti;ωiÞ integrals except for ðt1;ω1Þ. For the same
reason, the k⊥2 integration in (C1) does not care about the
exact value of k⊥1 at this order, only its order of magnitude,
and so the upper limit k2⊥1 of integration can be replaced
by 1=B0 since k⊥1 ∼ 1=Δb ∼ 1=B0 in (C25). Altogether,
NLLO contributions of type (C25) then contribute

ᾱns q̂ð0Þ

Z
1=q̂B2

0

τ0

dt1
t1

Z
k⊥1∼1=Δb

dk2⊥1

k2⊥1

Fslðt1; k2⊥1Þ
Z

t1

τ0

dt2
t2

×
Z

1=B0

q̂t2

dk2⊥2

k2⊥2

� � �
Z

tn−1

τ0

dtn
tn

Z
k2⊥;n−1

q̂tn

dk2⊥n

k2⊥n

¼ ᾱns q̂ð0Þ

Z
1=q̂B2

0

τ0

dt1
t1

Z
k⊥1∼1=Δb

dk2⊥1

k2⊥1

Fslðt1; k2⊥1Þ

× fn−1

�
ln

�
t1
τ0

�
; ln

�
1

q̂τ0B2
0

��
ðC26Þ

to δnq̂eff at NLLO. fn is again defined by (C10) and
(C11b). The k2⊥1 integral in (C26) is the one presented in
(C20) and so is independent of Δb (at this order in logs).
Since there is no other Δb in (C26), we see that NLLO
contributions from combinations like DB are independent
of Δb.
For a combination like DE in Fig. 21, E would be

sensitive to Δb since 1=Δb ∼ k⊥1 ∼ k⊥2. But this is an
NNLLO contribution since both points are on edges.
We have now addressed the interesting cases. We

conclude that NLLO does not generate any Δb dependence
not already included in the LLO result (C1), which sums to
the formula (4.18) used in the main text. Our analysis above
suggests that additional Δb dependence will appear at
NNLLO, but that is beyond the scope of what is needed for
this paper.

4. A loose end: The prefactor of Eq. (4.20)

In the main text, we ignored a prefactor when discussing
the Δb dependence of the leading-log resummation. The
leading term in the large-argument expansion of I1 in (4.18)
actually gives

q̂effðΔbÞ ≈ q̂ð0Þ

�
1

q̂τ0ðΔbÞ2
�

2
ffiffiffi
ᾱs

p

×
1ffiffiffiffiffiffi
4π

p
� ffiffiffiffiffi

ᾱs
p

ln

�
1

q̂τ0ðΔbÞ2
��

−3=2
ðC27Þ

instead of (4.20). Including the full prefactor then changes
(4.21) and (4.22) to

q̂effðΔbÞ ≈ q̂ð0Þ

�
1

q̂τ0B2
0

�
2
ffiffiffi
αs

p �
1 − 2

ffiffiffiffiffi
ᾱs

p
ln

�ðΔbÞ2
B2
0

��

×
1ffiffiffiffiffiffi
4π

p
� ffiffiffiffiffi

ᾱs
p

ln

�
1

q̂τ0B2
0

��
−3=2

×

�
1 −

3 lnððΔbÞ2=B2
0Þ

2 lnð1=q̂τ0B2
0Þ

�
ðC28Þ

and

q̂effðΔbÞ ¼ q̂effðB0Þ
�
1þOð ffiffiffiffiffi

αs
p Þ þO

�
1

lnð1=q̂τ0B2
0Þ
��

:

ðC29Þ

Now remember that, when making the large-argument
expansion of I1 in (4.20), wewere taking the large-logarithm
limit where αsln2ð1=q̂τ0ðΔbÞ2Þ ∼ αsln2ð1=q̂τ0B2

0Þ is ≫ 1.
So theOð1= logÞ term in (C29) can be ignored compared to
the Oð ffiffiffiffiffi

αs
p Þ term, leaving us with (4.22).
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APPENDIX D: ASYMPTOTIC
BEHAVIOR OF ϵ̂LOðẑÞ

In this appendix, we will derive the asymptotic falloff of
the energy stopping distribution ϵLOðzÞ for large z. We
follow a procedure similar to that used in Ref. [32] for the
falloff of the leading-order charge distribution ρLOðzÞ at
large z.54 In that case, the conclusion was that

ρLOðzÞ ∼ e−ΓLOðE0Þz ðD1Þ

for large z, where ΓLO is the total leading-order rate for the
relevant splitting process e → eγ. In our case, however, the
total rate for g → gg in q̂ approximation is infinite because
of the x−3=2 [or symmetrically ð1 − xÞ−3=2] IR divergence of
Eq. (2.1) for ½dΓ=dx�LO, and so (D1) suggests that the fall-
off of our ϵLOðzÞ must be faster than simple exponential
decay. We’ll find that our large-z tail is approximately
Gaussian.
Start from the leading-order energy deposition Eq. (7.3):

∂ϵ̂LOðẑÞ
∂ẑ

¼
Z

1

0

dx x

�
dΓ̂
dx

�
LO
fx−1=2ϵ̂LOðx−1=2ẑÞ − ϵ̂LOðẑÞg:

ðD2Þ

Note that the x → 0 contribution to the integration con-
verges because (i) x½dΓ̂=dx�LO ∼ x−1=2 and (ii) ϵLOðz0Þ
should fall to zero faster than, for example, ðz0Þ−1=2 as
z0 → ∞. The x → 1 contribution to the integration con-
verges because (i) x½dΓ̂=dx�LO ∼ ð1 − xÞ−3=2 and (ii) there
is a cancellation between the two terms inside the braces:

fx−1=2ϵ̂LOðx−1=2ẑÞ − ϵ̂LOðẑÞg ∼ 1 − x as x → 1: ðD3Þ

Now rewrite ϵ̂LOðẑÞ in the WKB-inspired form

ϵ̂LOðẑÞ≡ e−WðẑÞ; ðD4Þ

where, asymptotically, WðẑÞ should be an increasing
function of ẑ so that ϵLOðzÞ → 0 as z → ∞. Plugging
(D4) into the leading-order energy deposition Eq. (D2)
gives

W 0ðẑÞ ¼
Z

1

0

dx x

�
dΓ̂
dx

�
LO
f1 − x−1=2eWðẑÞ−Wðx−1=2 ẑÞg: ðD5Þ

Let us more carefully examine the cancellation (D3) as
x → 1, now in the language of (D5). For this limit, we
define δ≡ 1 − x ≪ 1, which gives

WðẑÞ −Wðx−1=2ẑÞ ≃ −
1

2
ẑW 0ðẑÞδ ðD6Þ

and so

f1 − x−1=2eWðẑÞ−Wðx−1=2 ẑÞg
≃ 1 − ð1 − δÞ−1=2e−1

2
ẑW 0ðẑÞδ: ðD7Þ

ẑW 0ðẑÞ will be large for large ẑ. There are then two regions
of small δ to consider. For x extremely close to 1, such that

δ ≪
1

ẑW 0ðẑÞ ≪ 1; ðD8Þ

(D7) gives

f1 − x−1=2eWðẑÞ−Wðx−1=2 ẑÞg ≃ 1

2
½ẑW 0ðẑÞ − 1�δ; ðD9Þ

which vanishes linearly as δ → 0 and describes the can-
cellation (D3). In contrast, in the other small-δ region

1

ẑW 0ðẑÞ ≪ δ ≪ 1; ðD10Þ

where x is close but not arbitrarily close to 1, the
exponential term in (D7) will be suppressed, so that

f1 − x−1=2eWðẑÞ−Wðx−1=2 ẑÞg ≃ 1: ðD11Þ

That means that the δ−3=2 divergence of x½dΓ̂=dx�LO will
not be moderated in the integration region (D10), and so
(when ẑ is large) the integral in (D5) is dominated

δ ∼
1

ẑW 0ðẑÞ ≪ 1; ðD12Þ

which is the transition between the lower end of region
(D10) and region (D8). We may therefore approximate the
full integral (D5) by approximating δ ≪ 1 in the integrand,
which corresponds to the approximation (D7). It is con-
venient to use that δ ≪ 1 approximation to also rewrite

ð1 − δÞ−1=2 ≃ eδ=2; x

�
dΓ̂
dx

�
LO

≃
1

πδ3=2
; ðD13Þ

and so (D5) becomes

W 0ðẑÞ ≃
Z

∞

0

dδ

πδ3=2
f1 − e−

1
2
½ẑW 0ðẑÞ−1�δg: ðD14Þ

Note that we have replaced the upper limit of integration by
∞, which introduces negligible relative error in the large-ẑ
limit for the same reason that δ ≪ 1 dominated over δ ∼ 1.
The integral gives54Specifically, see Appendix B of Ref. [32].
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W 0ðẑÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π
½ẑW 0ðẑÞ − 1�

r
: ðD15Þ

Before solving (D15), we can simplify a bit by again
remembering our expectation that ẑW 0ðẑÞ ≫ 1 in the large
ẑ limit, so that (D15) becomes

W 0ðẑÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π
ẑW 0ðẑÞ

r
: ðD16Þ

Solving for W gives

WðẑÞ ≃ ẑ2

π
ðD17Þ

at large ẑ, which is equivalent to the asymptotic behavior
quoted in (7.4):

ϵ̂LOðẑÞ ∼ e−ẑ
2=π: ðD18Þ

There is a short-cut that we might have taken to
determine (D18). Once we had completed enough of the
argument to realize that the calculation of WðẑÞ would be
dominated by δ ≪ 1, we could have replaced ½dΓ=dx�LO by
the BIM [30] model rate (E2), which agrees with ½dΓ=dx�LO
in the limits x → 0 and x → 1. Then we could have
extracted (D18) from the energy deposition distribution
(E6) of the BIM model.
With some work, one could refine our leading large-ẑ

approximation to W to compute OðẑÞ corrections to the
exponent in (D18) and even further to find power-law
prefactors to the exponential.55 However, we find in
practice that (D18) by itself is adequate to get good
numerical convergence of our results in the large-ẑmax limit.

APPENDIX E: ϵLOðẑÞ IN THE BIM MODEL

In this appendix, we discuss, in our notation, the BIM
model result for LO energy deposition [31].
Using the formula Pg→ggðxÞ¼2CAð1−xþx2Þ2=xð1−xÞ

for the DGLAP splitting function, the LO splitting rate
(2.1) can be rewritten as�

dΓ
dx

�
LO

¼ CAαsð1 − xþ x2Þ5=2
π½xð1 − xÞ�3=2

ffiffiffiffiffiffi
q̂A
E

r
: ðE1Þ

Blaizot, Iancu, and Mehtar-Tani (BIM) [30] realized that if
one replaces the leading-order splitting rate (E1) by the
simpler function�

dΓ
dx

�
BIM

¼ CAαs
π½xð1 − xÞ�3=2

ffiffiffiffiffiffi
q̂A
E

r
; ðE2Þ

then it is possible to solve leading-order shower develop-
ment analytically. We will refer to this as the BIM model of

shower development. The BIM rate (E2) is equal to the
actual LO rate in the limit that one of the two daughters is
soft, i.e. xð1 − xÞ ≪ 1. But for perfectly democratic split-
ting x ¼ 0.5, the BIM rate overestimates the LO BDMPS-Z
rate by a factor of ð4=3Þ5=2 ≃ 2. In our notation, their
analytic solution for the time development of the gluon
density in x is

n̂BIMðx; t̂Þ ¼
t̂e−t̂

2=πð1−xÞ

π½xð1 − xÞ�3=2 for x > 0; ðE3Þ

with t̂≡ t=l0, and l0 defined by (6.14).
In general, the energy which is still moving (x > 0) at

time t is

EmovingðtÞ ¼
Z

1

0þ
dx xE0nðx; E0; tÞ: ðE4Þ

The moving energy decreases at the rate that energy is
deposited into the medium, and so

ϵðzÞ ¼ −
dEmoving

dt

				
t¼z

¼ −
�
d
dt

Z
1

0þ
dx xE0nðx; E0; tÞ

�
t¼z

:

ðE5Þ

Switching to dimensionless variables (7.1) and plugging in
the BIM solution (E3) yields56

ϵ̂ðẑÞ ¼ −
d
dẑ

e−ẑ
2=π ¼ 2ẑ

π
e−ẑ

2=π: ðE6Þ

The corresponding stopping distance is

l̂BIM
stop ¼ hẑiBIM ¼ π

2
; ðE7Þ

and the shape function (1.1) is then

SBIMðZÞ ¼
πZ
2

e−πZ
2=4: ðE8Þ

The BIM stopping distance hẑiBIM ≃ 1.571 is shorter
than the LO stopping distance hẑiLO ≃ 2.1143 of Table II
because the BIM rate (E2) overestimates the splitting rate
for democratic splittings. Other moments of the BIM
energy stopping distribution are

hẑniBIM ¼ πn=2Γ
�
1þ n

2

�
: ðE9Þ

55We do not expect these corrections to be the same as the BIM
model result (E6).

56One way to do the x integral is to switch integration variable
to u≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x=ð1 − xÞp
, which leads to a simple Gaussian integral in

u. Our Eq. (E6) for ϵ̂ðẑÞ is the same as Eq. (2.19) of Ref. [31]
except for the choices of how we normalize our variable ẑ and
energy distribution ϵ̂.
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APPENDIX F: ENERGY CONSERVATION FOR EQ. (8.4)

To see that the evolution equation (8.4) for Dðζ; E0; tÞ conserves energy, integrate both sides of the equation over ζ and
then switch the order of integration on the right-hand side to get

dEtotal

dt
¼

Z
1

0

dx
Z

1

0

dζ

�
θðx > ζÞ

�
dΓ
dx

�
ζE0

x
; x

��
net
D

�
ζ

x
; E0; t

�
− x

�
dΓ
dx

ðζE0; xÞ
�
net
Dðζ; E0; tÞ

�
: ðF1Þ

The ζ integral of the first term can be rewritten as

Z
x

0

dζ

�
dΓ
dx

�
ζE0

x
; x

��
net
D

�
ζ

x
; E0; t

�
¼

Z
1

0

dζ0x
�
dΓ
dx

ðζ0E0; xÞ
�
net
Dðζ0; E0; tÞ; ðF2Þ

where ζ0 ≡ ζ=x. The first term of (F1) then cancels the second term, giving dEtotal=dt ¼ 0.
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