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The quantum chromodynamics (QCD) phase structure has been studied using the Polyakov-loop
augmented quark-meson model (PQM) in the extended mean field approximation (e-MFA), where the
quark one-loop vacuum term is included. When the divergent vacuum term is regularized in the minimal
subtraction scheme and the curvature meson masses are used to fix the parameters, the Polyakov quark-
meson model with the vacuum term (PQMVT) becomes inconsistent as the curvature masses are
determined by calculating the self energies at zero momentum. The above inconsistency is remedied by the
on-shell parameter fixing when the pion decay constant and the pole masses of the mesons are put into the
relation of the couplings and running mass parameter by using the on-shell and the minimal subtraction
renormalization scheme. Combining the modified chiral effective potential of the on-shell renormalized
quark-meson model (RQM) with the Polyakov-loop potential that mimics the physics of the confinement-
deconfinement transition, we get the renormalized Polyakov quark-meson (RPQM) model. The phase
diagrams and the thermodynamics details for the PQM, PQMVT, and RPQM model have been computed
and compared for different forms of the Polyakov-loop potentials with and without the quark backreaction.
The results have also been compared with the available lattice QCD data. The so-called quarkyonic phase
region in the phase diagram, where the chiral symmetry is restored but the quarks and antiquarks are still
confined, gets reduced by the quark backreaction in the unquenched Polyakov-loop potential. It altogether
disappears for the chemical potential dependent parameter T0 ≡ T0ðμÞ in the Log or the PolyLog-glue form
of the Polyakov-loop potential in the RPQM model.
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I. INTRODUCTION

The strong interaction theory, quantum chromodynamics
(QCD) indicates that under the extreme conditions of
high temperatures and/or densities, there should be a
phase transition from the normal hadronic matter to a
collective form of matter known as the quark gluon plasma
(QGP) [1–5]. The general properties of such a hot and
dense matter are summarized in the QCD phase diagram
[1], which can be probed by the ultrarelativistic heavy ion
collision experiments like the RHIC (BNL), LHC (CERN),
and the upcoming CBM experiments at the FAIR facility
(GSI-Darmstadt). The study of the QCD thermodynamics
and its phase structure is a very active area of current

research as several issues are not yet settled. One gets
important information and insights regarding the QCD
phase transition from the first-principle lattice QCD sim-
ulations [6–15], but these calculations get seriously com-
promised as the QCD action becomes complex due to the
fermion sign problem [8] when the baryon density/chemi-
cal potential is nonzero. Hence, one turns to the effective
models [16–21] for the study of the QCD thermodynamics
and its phase diagram.
The QCD Lagrangian has the global SULþRð2Þ ×

SUL−Rð2Þ symmetry for the two flavor of massless quarks.
In the low energy hadronic vacuum of the QCD, the chiral
(axial A ¼ L − R) symmetry is spontaneously broken, and
one gets the chiral condensate as order parameter and the
three massless pions as Goldstone modes. The small
explicit breaking of the chiral symmetry due to the light
quark masses gives a little mass to the physical pions,
which are the lightest among hadrons. The SULð2Þ ×
SURð2Þ linear sigma model [22–24] is a good framework
to study the chiral symmetry breaking and restoring phase
transition. Coupling the isosinglet σ, isotriplet a0

! scalar
mesons together with the isosinglet η, isotriplet π⃗
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pseudoscalar mesons of the sigma model with the two
flavor of quarks, one gets the QCD-like framework of the
quark-meson (QM) model to study the QCD thermo-
dynamics and its phase diagram in great detail.
The QCD phase structure/phase diagram has already

been studied in the chiral models [25–36], and the two
and three flavor QM model [37–41]. But the QM model in
the standard mean field approximation (s-MFA) gives
an inconsistent result as the chiral phase transition at
zero baryon densities becomes first-order in the chiral
limit, which is at odds with the general theoretical con-
siderations [42,43]. This inconsistency is remedied by the
proper treatment of the Dirac sea [44] after including the
quark one-loop vacuum fluctuation. In the modified frame-
work of the quark-meson model with the vacuum term
(QMVT), several QCD phase structure studies [45–58]
regularized the divergent one-loop vacuum term in the
minimal substraction scheme and after identifying the pion
decay constant with the vacuum expectation value of the
sigma mean field, fixed the model parameters using the
curvature masses of the mesons. The above parameter
fixing procedure turns out to be inconsistent as one notes
that the effective potential is the generator of the n-point
functions of the theory at vanishing external momenta, and
the curvature mass is defined by the evaluation of the self-
energy at zero momentum [59–63].
The radiative corrections to the physical quantities

change their tree level relations to the parameters of the
Lagrangian. Hence, the use of tree level values of the
parameters for the calculation of effective potential
becomes inconsistent. One has to account for the renorm-
alization scale Λ dependence of the running parameters in
the (modified) minimal subtraction MS scheme while the
on-shell parameters have their tree-level values. Following
the correct renormalization procedure, one needs to calcu-
late the counterterms both in the MS scheme and in the
on-shell scheme and then connect the renormalized para-
meters of the two schemes. The effective potential is then
calculated using the MS procedure where the relations
between the running parameters and the on-shell param-
eters (physical quantities) are used as input [60]. Using the
abovementioned renormalization prescription Adhikari and
Collaborators [60,64–66] correctly accounted for the effect
of Dirac sea in the QMmodel whoseOð4Þ sigma model has
the σ and π⃗ as meson degrees of freedom. In a very recent
work [67], we have applied the exact renormalization
method for the on-shell parameter fixing to that version
of the QM model in which the two flavor of quarks are
coupled to the eight mesons (isosinglet and isotriplet
combination of the σ and a0

! as scalars and the η and π⃗
as pseudoscalars) of the SULð2Þ × SURð2Þ sigma model
and termed this setting as the renormalized quark-meson
(RQM) model.
The physics of quark confinement in the hadrons at

low temperatures and densities is implemented by the

introduction of the Polyakov-loop, where the QCD confine-
ment is mimicked in a statistical sense by coupling the
chiral models to a constant background SUðNcÞ gauge field
Aa
μ [2,68–73]. In such studies, the free energy density from

the gluons is added to the QM model using the pheno-
menological Polyakov-loop potential [74–76], and it
becomes the PQM model [77–80]. In the present work,
the modified chiral parts of the effective potentials for both
the on-shell renormalized quark-meson model (RQM)
and the curvature mass parametrized QMVT model have
been augmented with the physics of confinement/
deconfinement transition by including the Polyakov-loop
potential, and the respective settings have been termed as
the renormalized Polyakov quark-meson model (RPQM)
and the PQMVT model. In this study, we have considered
the important improvement of the Polyakov-loop potential
from a pure gauge potential to an unquenched glue
potential in which backreaction effects of the quarks are
included [81–84]. It is worthwhile to explore the conse-
quences of coupling the improved chiral effective potential
with the unquenched Polyakov-loop potential because it
leads to the linkage of the chiral and deconfinement phase
transitions also at small temperatures and large chemical
potentials. The abovementioned attribute is also seen in
the functional renormalization (FRG) improvement of the
PQM model when the Yang-Mills Polyakov-loop potential
is used [53,85]. We have computed the relative shift of
the critical end point (CEP) and made the qualitative and
quantitative comparisons of the phase diagrams and
thermodynamics in the RPQM and PQMVT models when
different forms of the Polyakov-loop potentials are con-
sidered with and without quark backreaction.
The paper is arranged as follows. Section II presents a

brief formulation of the SULð2Þ × SURð2Þ PQM model.
Section II A describes the different forms of the Polyakov-
loop potentials, while Sec. II B presents the thermodynamic
grand potential in the PQM model. Section III gives a brief
account of the Polyakov quark-meson model with the
vacuum term (PQMVT). The renormalized Polyakov
quark-meson model (RPQM) effective potential has been
presented in Sec. IV. Section V gives results and discussion.
Section VA discusses the order parameters and their
temperature derivatives, Sec. V B describes the sigma mass
and the model dependence of the phase diagrams, Sec. V C
reports the results for the quarkyonic phase in the RPQM
model, Sec. V D explains the computed results for the
thermodynamic observables while the specific heat and the
speed of sound are discussed in Sec. V E. Section VI
presents the summary and conclusion. Appendix A
presents the parameter fixing for the QMVT model. The
essential steps of the exact on-shell parameter fixing and
the calculation of the quark one-loop effective potential in
the large Nc limit for the renormalized quark-meson
(RQM) model have been presented in Appendix B. The
integrals are presented in Appendix C.
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II. MODEL FORMULATION

We will be combining the Polyakov-loop potential with
the SULð2Þ × SURð2Þ quark-meson model. In this model, a
spatially constant temporal gauge field, two light quarks,
and SUVð2Þ × SUAð2Þ symmetric meson fields are coupled
together. The Polyakov-loop field Φ is defined as the
thermal expectation value of color trace of the Wilson loop
in temporal direction,

Φ ¼ 1

Nc
hTrcLðx⃗Þi; Φ ¼ 1

Nc
hTrcL†ðx⃗Þi; ð1Þ

where L is a matrix in the fundamental representation of the
SUcð3Þ color gauge group,

Lðx⃗Þ ¼ P exp

�
i
Z

β

0

dτA0ðx⃗; τÞ
�
: ð2Þ

Here, P is path ordering, A0 is the temporal component of
vector field, andβ ¼ T−1 [68]. In accordanceofRefs. [74,75],
we have considered a homogeneous Polyakov-loop field
Φðx⃗Þ ¼ Φ ¼ constant and Φ̄ðx⃗Þ ¼ Φ̄ ¼ constant.
The model Lagrangian has quarks, mesons, couplings,

and Polyakov-loop potential UðΦ; Φ̄; TÞ as

LPQM ¼ LQM − UðΦ; Φ̄; TÞ: ð3Þ

The Lagrangian of the model [22–24] is written as

LQM ¼ ψ̄
�
iγμ∂μ − gt0ðσ þ iγ5ηÞ

− g⃗t · ða⃗þ iγ5π⃗Þ
�
ψ þ LðMÞ; ð4Þ

where ψ is a color Nc-plet, a four-component Dirac spinor,
and a flavor doublet,

ψ ¼
�
u

d

�
: ð5Þ

The Lagrangian for meson fields is [22]

LðMÞ ¼ Trð∂μM†
∂
μM −m2ðM†MÞÞ

− λ1
�
TrðM†MÞ�2 − λ2TrðM†MÞ2

þ c½detMþ detM†� þ Tr
�
HðMþM†Þ�; ð6Þ

here, the field M is a complex 2 × 2 matrix,

M ¼ taξa ¼ taðσa þ iπaÞ; ð7Þ

a ¼ 0, 1, 2, and 3. ta represents the four generators of the
Uð2Þ algebra,

M ¼ t0ðσ þ iηÞ þ ⃗t · ða⃗þ iπ⃗Þ ð8Þ

with t0 ¼ 1
2
ð1
0
0
1
Þ, t1 ¼ 1

2
ð0
1
1
0
Þ, t2 ¼ 1

2
ð0i −i0 Þ, t3 ¼ 1

2
ð1
0

0
−1Þ.

One can rewrite the Lagrangian (6) in the form [23],

LðMÞ ¼ 1

2
ð∂μσ∂μσ þ ∂μπ⃗ · ∂μπ⃗ þ ∂μη∂μη

þ ∂μa⃗0 · ∂μa⃗0Þ − U; ð9Þ

further,

U ¼m2

2
ðσ2 þ π⃗2 þ η2 þ a⃗2Þ− c

2
ðσ2 − η2 þ π⃗2 − a⃗2Þ

þ 1

4

�
λ1 þ

1

2
λ2

�
ðσ2 þ π⃗2 þ η2 þ a⃗2Þ2

þ λ2
2

�ðσ2 þ π⃗2Þðη2 þ a⃗2Þ− ðση− π⃗ · a⃗Þ2	− hσ: ð10Þ

The 2 × 2 matrix H explicitly breaks the chiral symmetry
and is chosen as

H ¼ taha; ð11Þ

where ha are external fields. The field σ acquires nonzero
vacuum expectation value (VEV), σ̄, due to the sponta-
neous breaking of the chiral symmetry, while the other
scalar and pseudoscalar fields (a⃗0; π⃗; η) assume zero VEV.
Here, the two parameters h0 and h3 may give rise to the
explicit breaking of chiral symmetry. We are neglecting
the isospin symmetry breaking; hence, we choose h0 ≠ 0
and h3 ¼ 0.
The field σ has to be shifted to σ → σ̄ þ σ as it acquires

nonzero VEV. At the tree level, the expression of the meson
masses are [22]

m2
σ ¼ m2 − cþ 3

�
λ1 þ

λ2
2

�
σ̄2; ð12Þ

m2
a0 ¼ m2 þ cþ

�
λ1 þ

3λ2
2

�
σ̄2; ð13Þ

m2
η ¼ m2 þ cþ

�
λ1 þ

λ2
2

�
σ̄2; ð14Þ

m2
π ¼ m2 − cþ

�
λ1 þ

λ2
2

�
σ̄2; ð15Þ

mq ¼
gσ̄
2
: ð16Þ

Using (12)–(16), the parameters of the Lagrangian (6) are
obtained as

THERMODYNAMICS AND PHASE DIAGRAMS OF THE … PHYS. REV. D 108, 074014 (2023)

074014-3



λ1 ¼
m2

σ þm2
η −m2

a0 −m2
π

2f2π
; ð17Þ

λ2 ¼
m2

a0 −m2
η

f2π
; ð18Þ

m2 ¼ m2
π þ

m2
η −m2

σ

2
; ð19Þ

c ¼ m2
η −m2

π

2
; ð20Þ

g2

4
¼ m2

q

σ̄2
; ð21Þ

and the tree level effective potential is written as

Uðσ̄Þ ¼ 1

2
ðm2 − cÞσ̄2 þ 1

4

�
λ1 þ

1

2
λ2

�
σ̄4 − hσ̄: ð22Þ

σ̄ ¼ fπ gives the minimum of the effective potential at the
tree level, and the stationarity condition for the potential
(22) gives

h ¼ fπm2
π: ð23Þ

A. Polyakov-loop potentials

There are different possibilities for the functional form of
the effective Polyakov-loop potential UðΦ; Φ̄; TÞ. Its sim-
plest form is constructed by finding a potential that respects
all given symmetries and includes the spontaneously
broken Zð3Þ symmetry for the system in the deconfined
phase [2,69,70]. Thus, the minimal content of a Polyakov-
loop potential [74] is given by the following polynomial
form:

UPoly

T4
¼ −

b2ðTÞ
2

ΦΦ̄ −
b3
6
ðΦ3 þ Φ̄3Þ þ b4

4
ðΦΦ̄Þ2; ð24Þ

the coefficients of the Eq. (24) are given by

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

; ð25Þ

where a0 ¼ 6.75, a1 ¼ −1.95, a2 ¼ 2.625, a3 ¼ −7.44,
b3 ¼ 0.75, and b4 ¼ 7.5.
The above Polyakov-loop potential ansatz has been

enhanced by adding the contribution that results from
the integration of the SUð3Þ group volume in the generating
functional for the Euclidean action. This integration is done
by using the Haar measure and takes the form of a Jacobian
determinant. Its logarithm is added as an effective potential
to the action in the generating functional. The positive
coefficient of the logarithm term bounds the potential from

below for large Φ and Φ̄, and the logarithmic form of the
Polyakov-loop potential is written as [72,75]

ULog

T4
¼ bðTÞ ln�1 − 6ΦΦ̄þ 4ðΦ3 þ Φ̄3Þ − 3ðΦΦ̄Þ2�
−
1

2
aðTÞΦΦ̄: ð26Þ

The parameters of the polynomial and Log form of the
Polyakov-loop potential were determined [74,75] by fitting
the lattice data for pressure, entropy density as well as
energy density and the evolution of Polyakov-loop hΦi on
the lattice in pure gauge theory. The coefficients of the
Eq. (26) are the following [75]:

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

; ð27Þ

bðTÞ ¼ b3

�
T0

T

�
3

; ð28Þ

where a0 ¼ 3.51, a1 ¼ −2.47, a2 ¼ 15.2, b3 ¼ −1.75.
Note that the Log potential has qualitative consistency
with the leading order result of the strong-coupling expan-
sion [15]. Also, since the potential diverges forΦ, Φ̄ ⟶ 1,
the Polyakov-loop always remains smaller than 1 and
approaches this value asymptotically as T ⟶ ∞.
Reference [82] took into account the Polyakov-loop

fluctuations and constructed the new Polyakov-loop effec-
tive potential in which the parameters are so adjusted that
apart from the other existing lattice data, the lattice data for
the longitudinal as well as the transverse susceptibilities are
also reproduced. They enhanced the polynomial form of the
Polyakov-loop potential with the addition of the logarith-
mic term to arrive at the following expression of the
PolyLog Polyakov-loop potential:

UPolyLog

T4
¼ bðTÞ ln�1 − 6ΦΦ̄þ 4ðΦ3 þ Φ̄3Þ − 3ðΦΦ̄Þ2�
þ a2ðTÞΦΦ̄þ a3ðTÞðΦ3 þ Φ̄3Þ þ a4ðTÞðΦΦ̄Þ2:

ð29Þ

The coefficients of the Eq. (29) PolyLog parametrization
are defined as

aiðTÞ ¼
aðiÞ0 þ aðiÞ1 ðT0

T Þ þ aðiÞ2 ðT0

T Þ2
1þ aðiÞ3 ðT0

T Þ þ aðiÞ4 ðT0

T Þ2
ð30Þ

bðTÞ ¼ b0

�
T0

T

�
b1�

1 − eb2ð
T0
T Þ

b3 �: ð31Þ

The parameters are summarized in the Table I.
The deconfinement phase transition is first order for the

pure gauge Yang-Mills theory and TYM
c ¼ T0 ¼ 270 MeV.
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The first order transition turns to a crossover in the presence
of dynamical quarks. The parameter T0 depends on the
number of quark flavors and chemical potential in the full
dynamical QCD [55,77,81,84,85] as it is linked to the
mass-scale ΛQCD, which gets modified by the effect of the
fermionic matter fields. T0 → T0ðNf; μÞ is written as

T0ðNf; μÞ ¼ T̂e−1=ðα0bðNf;μÞÞ; ð32Þ

with

bðNf; μÞ ¼
1

6π
ð11Nc − 2NfÞ − bμ

μ2

ðγ̂ T̂Þ2 ; ð33Þ

where the parameter T̂ is fixed at the scale τ,
T̂ ¼ Tτ ¼ 1.77 GeV, and α0 ¼ αðΛÞ at a UV scale Λ.
The T0ðNf ¼ 0Þ ¼ 270 MeV gives α0 ¼ 0.304 and
bμ ≃ 16

π Nf. The parameter γ̂ governs the curvature of
T0ðμÞ with the systematic error estimation range 0.7≲ γ̂ ≲
1 [77,85]. In our calculation, we have taken γ̂ ¼ 1. The Nf,
μ dependence of the T0 accounts only partially for the
unquenching of the pure gauge Polyakov-loop potential to
an effective glue potential in QCD [84].
For the full QCD with dynamical quarks, the Polyakov-

loop potential should be replaced by the QCD glue
potential that accounts for the backreaction of quarks into
the Polyakov-loop effective potential. Applying the FRG
equations to the QCD, Ref. [81] compared the pure gauge
potential UYM to the “glue” potential Uglue, where quark
polarization was included in the gluon propagator, and they
found significant differences between the two potentials.
However, it was observed in their study that the two
potentials have the same shape, and they can be mapped
into each other by relating the temperatures of the two
systems, TYM and Tglue. Denoting the previous equations of
the Polyakov-loop potential by UYM, the improved
Polyakov-loop potential Uglue can be constructed as [81]

Uglue

T4
glue

ðΦ; Φ̄; TglueÞ ¼
UYM

T4
YM

ðΦ; Φ̄; TYMÞ: ð34Þ

Here, the temperature Tglue is related to TYM as

TYM − TYM
c

TYM
c

¼ 0.57
Tglue − Tglue

c

Tglue
c

: ð35Þ

The Tglue
c is the transition temperature for the unquenched

case. The coefficient 0.57 comes from the comparison of
the two effective potentials. Tglue

c lies within a range
Tglue
c ∈ ½180; 270�. In practice, we use in the right-hand

side of the Polyakov-loop potentials, where T0 means TYM
c ,

the replacement T → TYM
c ð1þ 0.57ð T

Tglue
c

− 1ÞÞ, where

(T ∼ TYM) on the left side of the arrow and (T ∼ Tglue)

on the right side. In our calculations, we will keep Tglue
c and

T0 both fixed at 208 MeV and also consider the chemical
potential dependence of T0 and T

glue
c . The μ dependence of

the Tglue
c can be found from the Eq. (32) after making the

replacement T0ðNf; μÞ → Tglue
c ðNf; μÞ.

B. Thermodynamic grand potential in PQM model

In the mean-field approximation, the thermodynamic
grand potential for the PQM model is given as [77]

ΩMFðT; μ; σ̄;Φ; Φ̄Þ ¼ Uðσ̄Þ þΩqq̄ðT; μ; σ̄;Φ; Φ̄Þ
þ UðT;Φ; Φ̄Þ: ð36Þ

The quark/antiquark contribution is given by

Ωqq̄ðT; μ; σ̄;Φ; Φ̄Þ ¼ Ωvac
qq̄ þΩT;μ

qq̄ ; ð37Þ

Ωvac
qq̄ ¼ −2Nc

X
q

Z
d3p
ð2πÞ3 EqθðΛ2

c − p⃗2Þ; ð38Þ

ΩT;μ
qq̄ ðσ̄;Φ; Φ̄Þ ¼ −2Nc

X
q

Z
d3p
ð2πÞ3 T

�
lngþq þ lng−q

�
: ð39Þ

The first term of the Eq. (37) denotes the fermion vacuum
contribution, regularized by the ultraviolet cutoff Λc. In
presence of the Polyakov-loop potential, the gþq and g−q are
specified by the trace in the color space,

gþq ¼
h
1þ 3Φe−E

þ
q =T þ 3Φ̄e−2E

þ
q =T þ e−3E

þ
q =T

i
; ð40Þ

g−q ¼
h
1þ 3Φ̄e−E

−
q =T þ 3Φe−2E

−
q =T þ e−3E

−
q =T

i
: ð41Þ

E�
q ¼ Eq ∓ μq and Eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þmq

2
q

is the flavor depen-

dent single particle energy of quark/antiquark, and mq ¼ gσ̄
2

is the mass of the given quark flavor. μq is the quark
chemical potential.

TABLE I. Parameters of the PolyLog Polyakov-loop potential
have been taken from the Ref. [82].

PolyLog að2Þ0 að2Þ1 að2Þ2 að2Þ3 að2Þ4

22.07 −75.7 45.03385 2.77173 3.56403

að3Þ0 að3Þ1 að3Þ2 að3Þ3 að3Þ4

−25.39805 57.019 −44.7298 3.08718 6.72812

að4Þ0 að4Þ1 að4Þ2 að4Þ3 að4Þ4

27.0885 −56.0859 71.2225 2.9715 6.61433
b0 b1 b2 b3

−0.32665 5.8559 −82.9823 3.0
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Neglecting the quark one-loop vacuum termof theEq. (37)
in the standard mean-field approximation (s-MFA), the PQM
model grand potential is written as

ΩPQMðT;μ; σ̄;Φ; Φ̄Þ ¼ Uðσ̄Þ þΩT;μ
qq̄ ðσ̄;Φ; Φ̄Þ þUðT;Φ; Φ̄Þ;

ð42Þ

∂ΩPQM

∂σ̄
¼ ∂ΩPQM

∂Φ
¼ ∂ΩPQM

∂Φ̄

����
σ̄;Φ;Φ̄

¼ 0: ð43Þ

The global minima of the grand potential in Eq. (43) gives the
σ̄, Φ, and Φ̄ as a function of temperature and chemical
potential.

III. PQM MODEL WITH VACUUM TERM

Here, we give a brief description of the effective potential
calculation when the quark one-loop vacuum divergence of
the Eq. (37) is regularized in the minimal subtraction
scheme, and the σ and π meson curvature masses are used
for fixing the model parameters. The quark one-loop
vacuum contribution of Eq. (38) is written as [67]

Ωvac
qq̄ ¼ Nc

ð4πÞ2
X
q

m4
q

�
1

ϵ
þ 3

2
þ ln

�
Λ2

m2
q

��
; ð44Þ

where Λ is the renormalization scale.

Adding the counterterm δL ¼ Nc
ð4πÞ2

P
q
m4

q

ϵ to the

Lagrangian (4), the thermodynamic potential gets renor-
malized. After replacing the first term of Eq. (37) by the
Ωvac

qq̄ ¼ Nc
ð4πÞ2

P
q m

4
q½32 þ lnðΛ2

m2
q
Þ�, one gets the renormaliza-

tion scale dependent chiral part of the vacuum (μ ¼ 0 and
T ¼ 0) effective potential as

ΩΛðσ̄Þ ¼ Uðσ̄Þ þ Ωvac
qq̄ : ð45Þ

The fixing of the model parameters m2, c, λ1, λ2, and h is
presented in Appendix A. When the calculated new
parameters are substituted in the Eq. (45) and terms are
rearranged, one finds the expression of renormalization
scale Λ independent vacuum effective potential as

Ωðσ̄Þ ¼ 1

2

�
m2

s −
Ncg4f2π
2ð4πÞ2

�
σ̄2 −

1

2
cσ̄2 þ 1

4

�
λ1 þ

λ2s
2

þ 3Ncg4

4ð4πÞ2
�
σ̄4 − hσ̄ þ Ncg4σ̄4

8ð4πÞ2 ln
�
f2π
σ̄2

�
: ð46Þ

After quark one-loop vacuum correction, the thermo-
dynamic grand potential for the Polyakov-loop enhanced
quark-meson model with vacuum term (PQMVT) can be
written as

ΩPQMVTðT;μ; σ̄;Φ; Φ̄Þ ¼Ωðσ̄Þ þΩT;μ
qq̄ ðσ̄;Φ; Φ̄Þ þUðΦ; Φ̄Þ;

ð47Þ

∂ΩPQMVT

∂σ̄
¼ ∂ΩPQMVT

∂Φ
¼ ∂ΩPQMVT

∂Φ̄

����
σ̄;Φ;Φ̄

¼ 0: ð48Þ

One gets the quark condensate σ̄ and the Polyakov-loop
expectation values Φ, Φ̄ by searching the global minima of
thegrand potential at a givenT andμ. It is pointed out that the
pion decay constant fπ does not get renormalized because
the dressing of the meson propagator is not considered in
fixing of the model parameters using the curvature mass of
the pion. The minimum of the effective potential in vacuum
(T ¼ 0, μ ¼ 0) remains fixed at σ̄ ¼ fπ .

IV. RENORMALIZED PQM MODEL

The PQMVT/QMVT model investigations [45–58] use
the curvature (or screening) masses of the mesons to fix the
parameters while the pion decay constant fπ remains
unrenormalized. We know that the poles of the mesons
propagators give their physical masses, and the fπ gets a
correction as it is related to the residue of the pion
propagator at its pole [61–63]. The definition of the meson
curvature masses involves the evaluation of their self-
energies at zero momentum as the effective potential is
the generator of the n-point functions of the theory at
zero external momenta [59,60,64,65]. Furthermore, the
pole definition is the physical and gauge invariant
one [86,87]. If the Dirac sea contributions are neglected,
the pole masses and the curvature masses for mesons
become equivalent, but when the quark one-loop vacuum
correction is considered, the curvature masses of the
mesons become different from their pole masses [61,63].
The above inconsistency is removed in the exact on-shell
parameter fixing method of the renormalized quark-meson
(RQM) model, where the physical (pole) masses of the
mesons and the pion decay constant are put into the relation
of the running mass parameter and couplings by using the
on-shell and the minimal subtraction renormalization
schemes. The derivation of the quark one-loop effective
potential in the large Nc limit and the mathematical details
of the on-shell parameter fixing for the renormalized quark-
meson (RQM) model have been presented in Appendix B.
Combining the RQMmodel chiral effective potential in MS
scheme with the Polyakov-loop potential, we get grand
thermodynamic potential for the RPQM model as

ΩRPQMðT; μ;Δ;Φ; Φ̄Þ ¼ ΩvacðΔÞ þ ΩT;μ
qq̄ ðΔ;Φ; Φ̄Þ

þ UðΦ; Φ̄Þ: ð49Þ

Using the expression ΩvacðΔÞ of Eq. (B77) given in
Appendix B, we write the full thermodynamic potential
for the RPQM model as
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ΩRPQMðT; μ;Δ;Φ; Φ̄Þ ¼ ð3m2
π −m2

σÞf2π
4

�
1 −

Ncg2

ð4πÞ2 ðCðm
2
πÞ þm2

πC0ðm2
πÞÞ



Δ2

m2
q

þ Ncg2f2π
2ð4πÞ2

�
3m2

πCðm2
πÞ − ðm2

σ − 4m2
qÞCðm2

σÞ
2

− 2m2
q



Δ2

m2
q

þ ðm2
σ −m2

πÞf2π
8

�
1 −

Ncg2

ð4πÞ2 ðCðm
2
πÞ þm2

πC0ðm2
πÞÞ



Δ4

m4
q

þ Ncg2f2π
ð4πÞ2

�ðm2
σ − 4m2

qÞCðm2
σÞ −m2

πCðm2
πÞ�

8

Δ4

m4
q
þ 2NcΔ4

ð4πÞ2
�
3

2
− ln

�
Δ2

m2
q

�


−m2
πf2π

�
1 −

Ncg2

ð4πÞ2m
2
πC0ðm2

πÞ



Δ
mq

þ ΩT;μ
qq̄ ðΔ;Φ; Φ̄Þ þ UðΦ; Φ̄Þ; ð50Þ

∂ΩRPQM

∂Δ
¼ ∂ΩRPQM

∂Φ
¼ ∂ΩRPQM

∂Φ̄

����
Δ;Φ;Φ̄

¼ 0: ð51Þ

Searching the global minima of the grand potential for a
given μ and T, one gets the quark condensate σ̄ (Δ ¼
g
MS

σ̄
MS

2
), and the Polyakov-loop fields Φ and Φ̄. It has been

explained in Appendix B that the minimum of the vacuum
(T ¼ 0, μ ¼ 0) effective potential remains at σ̄MS ¼ fπ . In
our calculations, we have used the mπ ¼ 138.0 MeV,
ma0 ¼ 984.7 MeV, and mη ¼ 547.0 MeV. The Yukawa
coupling g ¼ 6.5 and pion decay constant fπ ¼ 93.0 MeV.
The constituent quark mass in the vacuum mq ¼ gfπ

2
¼

302.25 MeV. The parameters of different models have
been presented in the Table II.

V. RESULTS AND DISCUSSION

The temperature axis chiral crossover and confinement-
deconfinement crossover transition at μ ¼ 0 has been
thoroughly investigated and compared with, in different
model scenarios of combining, the chiral effective potential
computed in different parameter fixing schemes to the

different forms of the Polyakov-loop potential with and
without quark backreaction. The subsection A compares
the results for the temperature variations of the chiral
condensate, the Polyakov-loop condensate and their deriv-
atives. The chiral and deconfinement crossover transition
temperatures for different model scenarios have been
computed and presented for comparison in Tables III
and IV. In the subsection B, the PQM, PQMVT,
and RPQM model phase diagrams have been plotted and
compared with each other for different values of mσ

and different forms of the Polyakov-loop potentials with

TABLE II. Parameters of the different model scenarios. The RPQM model parameters are obtained by putting the
Λ ¼ Λ0 in the Eqs. (B53)–(B57). The Λ0 is determined from the condition (B74). The parameters of the PQM
model are used to compute the effective potential of the PQMVT model in the Eq. (46).

Model mσ (MeV) cðMeV2Þ m2ðMeV2Þ λ1 λ2 hðMeV3Þ
PQM 400 ð374.28Þ2 ð297.74Þ2 −30.61 77.51 ð120.99Þ3

500 ð374.28Þ2 ð208.92Þ2 −25.41 77.51 ð120.99Þ3
600 ð374.28Þ2 −ð106.54Þ2 −19.05 77.51 ð120.99Þ3

RPQM 400 ð494.08Þ2 ð282.13Þ2 −28.05 66.94 ð119.8Þ3
500 ð494.08Þ2 ð196.80Þ2 −23.32 66.94 ð119.8Þ3
600 ð494.08Þ2 −ð202.13Þ2 −14.12 66.94 ð119.8Þ3
616 ð494.08Þ2 −ð253.86Þ2 −11.39 66.94 ð119.8Þ3
700 ð494.08Þ2 −ð421.55Þ2 1.70 66.94 ð119.8Þ3

TABLE III. Pseudocritical temperatures for themσ ¼ 500 MeV
at μ ¼ 0.

Polyakov-loop Models Tχ
c (MeV) TΦ

c (MeV)

Log PQM 172.1 168.9
PQMVT 187.1 168.9
RPQM 168.6 167.9

PolyLog-glue PQM 165.6 165.4
PQMVT 186.3 156.1
RPQM 175.8 154.8
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and without quark backreaction. The appearance and
disappearance of the quarkyonic phase in different model
scenarios have been discussed in the subsection C. In order
to understand the μ ¼ 0 chiral and deconfinement transition
occurring at the temperature axis, we have computed and
compared the reduced scale temperature variations of the
thermodynamic quantities namely the pressure, entropy
density, energy density, and interaction measure in the
subsection D while the results for the specific heat, C2

s and
P=ϵ have been presented in the subsection E. We have also
compared the results obtained for thermodynamic observ-
ables with the available lattice QCD data.

A. Order parameters and their derivatives

Figures 1(a) and 1(b) present the respective temperature
variations of the normalized chiral condensate (σ=fπ)
and the Polyakov-loop condensate (Φ) at μ ¼ 0 for the
sigma mass mσ ¼ 500 MeV in the PQM, PQMVT,
and RPQM model for the Log and the PolyLog-glue form
of the Polyakov-loop potential. The term glue denotes the
unquenching of the Polyakov-loop potential when the
quark back-reaction has been taken into account.

Confirming the expected pattern when the models are
augmented with the Log form of the Polyakov-loop
potential, the sharper Log-PQM model chiral transition
becomes quite smooth and delayed on account of the quark
one-loop vacuum correction in the on-shell renormalized
Log-RPQM model while the curvature mass parametriza-
tion for the Log-PQMVTmodel gives rise to an excessively
smooth and very delayed variation of the chiral order
parameter on the temperature axis in the Fig. 1(a). When
the physics of the confinement-deconfinement transition is
coupled with the physics of the chiral transition, the
unquenching of the Polyakov-loop potential in the presence
of the quark backreaction, leads to the significant smooth-
ing effect on the chiral condensate and shifts its temperature
variations early on the temperature scale for the T <
190 MeV in the PolyLog-glue: PQM, RPQM, and
PQMVT model. Furthermore, the Polyakov-loop conden-
sate temperature variations are lifted up and get shifted
early on the temperature scale for the T < 220 MeV, due to
the effect of the quark backreaction when compared to the
corresponding PQM, RPQM and PQMVT model temper-
ature variations with Log form of the Polyakov-loop
potential in the Fig. 1(b).
Presenting the plots of the ∂ðσ=fπÞ

∂T and ∂Φ
∂T versus T when

the μ ¼ 0 and the mσ ¼ 500 MeV in the Figs. 2(a)–2(c),
respectively, for the PQM, PQMVT, and RPQM model
with the Log and PolyLog-glue form of the Polyakov-loop
potential, we have compared how the PQM model results
are changed by the effect of the quark one-loop vacuum
correction in the curvature mass parametrized PQMVT
model versus the on-shell parametrized RPQM model. We
have also compared how the presence of the quark back-
reaction changes the results in one particular model.
For the Log-PQM model in the Fig. 2(a), the very sharp

TABLE IV. Pseudocritical temperatures for themσ ¼ 500 MeV
in the RPQM model at μ ¼ 0.

Models Tχ
c (MeV) TΦ

c (MeV)

Log 168.6 167.9
Log-glue 174.6 145.2
Poly 181.6 176.6
Poly-glue 174.8 159.8
PolyLog 180.1 175.1
PolyLog-glue 175.8 154.8
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FIG. 1. The normalized chiral and Polyakov-loop order parameters for the mσ ¼ 500 MeV and μ ¼ 0 at Tglue
c ¼ T0 ¼ 208 MeV.

(a) Normalized chiral condensate. (b) Polyakov-loop order parameter.
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variation of the temperature derivative of the σ=fπ drives a
double peak structure in the temperature variation of the ∂Φ

∂T ,
whose first peak at lower temperature gives a pseudo-
critical temperature TΦ

c ¼ 168.9 MeV for the confinement-
deconfinement transition and its second peak coincides

with the very sharp and high peak in the ∂ðσ=fπÞ
∂T variation,

which gets located at the higher pseudocritical temperature
for the chiral transition Tχ

c ¼ 172.1 MeV and the two
transitions are separated by the difference Tχ

c − TΦ
c ¼

3.2 MeV as given in the Table III. One notices that the
double peak structure for the ∂Φ

∂T is smoothed out and
the sharper chiral transition also becomes quite smooth as
the peak heights get significantly reduced due to the effect
of the quark backreaction in the PolyLog-glue PQM model,
and the two transitions stand very close to each other having a
difference of only 0.2 MeVas the Tχ

c ¼ 165.6 MeV and the
TΦ
c ¼ 165.4 MeV. As the fermionic vacuum correction with

the curvature mass parametrization leads to excess smooth-

ing of the chiral transition, the ∂ðσ=fπÞ
∂T variation for the Log

PQMVT model shows a very smooth double peak structure
(similar to Ref. [46]) in the Fig. 2(b). Here, in contrast to the
Fig. 2(a), the influence of the Log form of the Polyakov-loop
potential becomes dominant and the sharper temperature

variation of the ∂Φ
∂T generates a double peak for the ∂ðσ=fπÞ

∂T
variation and the separation between the chiral crossover and
the confinement-deconfinement transition is equal to the
18.2 MeV as the Tχ

c ¼ 187.1 MeV and the TΦ
c ¼

168.9 MeV in Table III. It is to be noted that due to the
smoothing influence of the quark backreaction for the
unquenched PolyLog-glue PQMVT model, the double peak

of the ∂ðσ=fπÞ
∂T variation gets completely washed out, and one

gets largest separation of 30.2 MeV between the confine-
ment-deconfinement and the chiral crossover transition
temperatures as the Tχ

c ¼ 186.3 MeV while the TΦ
c ¼

156.1 MeV. The smoothing influence of the quark one-loop
vacuum correction becomes moderate due to the consistent
on-shell parameter fixing for the RPQM model and one

notices that the temperature variations of the ∂Φ
∂T and the

∂ðσ=fπÞ
∂T

rise to almost the same height in the Fig. 2(c) for the Log form
of the Polyakov-loop potential in the RPQM model. The
∂ðσ=fπÞ

∂T variation falls short of developing a second peak, and
one finds that the chiral crossover transition at the Tχ

c ¼
168.6 MeV is very close to the confinement-deconfinement
transition occurring at the TΦ

c ¼ 167.9 MeV. Here, also in
the unquenched PolyLog-glue RPQM model, the robust
effect of the quark backreaction leads to sufficient smoothing
and reduction in the heights of the peaks of the ∂Φ

∂T and
∂ðσ=fπÞ

∂T temperature variations, and a moderate separation of
21.0 MeV is noted between the confinement-deconfinement
and the chiral crossover transition temperatures as the Tχ

c ¼
175.8 MeV while the TΦ

c ¼ 154.8 MeV.
The Figs. 3(a) and 3(b) show how the respective temper-

ature variations of the σ=fπ and Φ are influenced by the
different forms of the Polyakov-loop potential put in
combination with the consistent formulation of the chiral
sector physics in the RPQM model. The falling patterns of
the σ=fπ in the Fig. 3(a), shift early on the temperature
scale because of the quark back-reaction in the unquenched
forms of the Polyakov-loop potentials namely the Log-
glue, Poly-glue, and PolyLog-glue. The lattice QCD data
for the temperature variation of the Φ has also been plotted
in the Fig. 3(b). One can see that the RPQM model
Polyakov-loop condensate temperature variations for the
Log and the PolyLog potential are closer to the [88,89]
lattice results when the T < 170 MeV. For higher temper-
atures, the Φ variation of the Log, the Log-glue, and the
PolyLog-glue RPQM model, stand closer to the two flavor
LQCD data of the Ref. [88].
The Polyakov-loop potential in the Log form has a

stronger influence as one notes that the quite sharp peaks of

the temperature variations of the ∂ðσ=fπÞ
∂T and the ∂Φ

∂T are of
almost the same height in the Log-RPQM model in the
Fig. 4(a), while the corresponding peaks are round and
smoother, respectively, for the polynomial and polynomial

 (a)  (b)  (c)

FIG. 2. The derivatives of the normalized chiral and Polyakov-loop order parameters for the μ ¼ 0 and Tglue
c ¼ T0 ¼ 208 MeV. The

temperature variation of the ∂ðσ=fπÞ
∂T and ∂Φ

∂T with the Log and PolyLog-glue form of the Polyakov-loop potential in the (a) PQM model (b)
PQMVT model (c) RPQM model.
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combined with the Log form of the Polyakov-loop potential

in the Figs. 4(b) and 4(c). Since the height of the ∂ðσ=fπÞ
∂T

peaks are larger than that of the ∂Φ
∂T peaks in the Figs. 4(b)

and 4(c), the chiral order parameter temperature
variation has stronger influence in the Poly-RPQM and
PolyLog-RPQM models. Even though the height of the ∂Φ

∂T
peak is reduced and its sharpness gets moderated due to
the quark backreaction in the Log-glue RPQM model in
the Fig. 4(a), the Log contributionmakes the influence of the
Polyakov-loop potential stronger which gives rise to a
double peak structure in the temperature variation of the
∂ðσ=fπÞ

∂T . The quark backreaction has significant smoothing

effect on both the order parameters as the ∂ðσ=fπÞ
∂T and the ∂Φ

∂T
temperature variations become more flat and rounded with
reduced heights in the Figs. 4(b) and 4(c), respectively, for
the Poly-glue and the PolyLog-glue RPQM model. It is
worth reminding ourselves that the separation (Tχ

c − TΦ
c )

between the pseudocritical temperatures for the chiral

transition and the confinement-deconfinement transition
is very small of only 0.7 MeV for the Log Polyakov-loop
potential, and it increases to 5.0MeVwhenonehas either the
Poly or the PolyLog form of the Polyakov-loop potential.
One can see from the Table IV that the quark backreaction
causes the largest separation of 29.4 MeV in the Log-glue
form while the separation becomes 15 MeV for the Poly-
glue form and 21 MeV for the PolyLog-glue form of the
unquenched Polyakov-loop potential in the RPQM model.

B. Sigma mass and model dependence
of the phase diagrams and CEPs

We have plotted and compared the phase boundaries in
the chemical potential and temperature μ − T plane for the
chiral symmetry breaking-restoring phase transitions in the
Polyakov-loop enhanced chiral models, namely the PQM,
PQMVT, and RPQM having different forms of paramet-
rization for the Polyakov-loop potential. It is well-known
that the first order transition line shrinks and the crossover
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FIG. 3. The RPQM model normalized chiral and Polyakov-loop order parameters when μ ¼ 0 and Tglue
c ¼ T0 ¼ 208 MeV.

(a) Normalized chiral condensate. (b) Polyakov-loop order parameter.

(a) (b) (c)

FIG. 4. The derivatives of the normalized chiral and Polyakov-loop order parameters at μ ¼ 0 and Tglue
c ¼ T0 ¼ 208 MeV. The

temperature variation of the ∂ðσ=fπÞ
∂T and ∂Φ

∂T for the RPQM model with the Polyakov-loop potential in the (a) Log and Log-glue form (b)
Poly and Poly-glue form (c) PolyLog and PolyLog-glue form.
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line gets extended with the increase of sigma meson
mass, and therefore, the CEP shifts rightwards in the phase
diagram. Below we are presenting phase diagrams for
different sigma meson masses. Line types in all the phase
diagrams are labeled and explained in the figures.
The Fig. 5(a) presents the phase diagram for the

mσ ¼ 400 MeV. The complete phase boundary for the
Log PQM model is a first order phase transition line. Since
the quark one-loop vacuum correction with the curvature
mass parametrization in the Log PQMVT generates exces-
sively smooth chiral transition as also reported in earlier
works [46,47,50], one gets a longer length of the line
depicting the chiral crossover transition that terminates at
the critical end point (CEP) at μCEP ¼ 267.2 MeV,
TCEP ¼ 94.77 MeV, and the phase boundary becomes
the first order transition line afterwards. The on-shell
parameter fixing for the Log-RPQM model with the
consistent renormalization of the quark one-loop vacuum
correction gives rise to a relatively moderate smoothing
effect on the chiral transition, and the CEP gets located
higher up in the μ − T plane at the TCEP ¼ 100.1 MeV
and the μCEP ¼ 245.3 MeV. When we consider the chemi-
cal potential dependence of the parameter T0 ≡ T0ðμÞ ¼
Tglue
c ðμÞ together with the unquenched PolyLog-glue form

of the Polyakov-loop potential in the RPQM model, the
quark backreaction generates an additional robust smooth-
ing influence on the chiral transition due to which the CEP
shifts downwards and gets located at μCEP ¼ 242.3 MeV
and TCEP ¼ 66.6 MeV. Note that the influence of the quark
backreaction is quite strong in the temperature direction as
the PolyLog-glue RPQM model TCEP shifts down by
33.5 MeV when compared with the TCEP of the Log
RPQM model, while the corresponding shift in the chemi-
cal potential μCEP is only 3MeV. This effect gives rise to the
increased curvature of the phase transition line as first
reported and discussed in the Ref. [84]. We point out that in

our recent work [67] in the on-shell renormalized quark-
meson (RQM) model where the effect of the Polyakov-loop
potential is absent, the CEP gets located in the bottom right
of the μ − T plane at TCEP ¼ 38.2 MeV and μCEP ¼
253.5 MeV when the mσ ¼ 400 MeV. We see that the
presence of Polyakov-loop potential either in the Log or in
the PolyLog-glue form in the RPQM model leads to
significant upward shift of the CEP in the μ − T plane.
The phase diagram for themσ ¼ 500 MeV case has been

plotted in the Fig. 5(b). We get a small crossover line
ending in the critical end point at TCEP ¼ 165.1 MeV
and μCEP ¼ 98.8 MeV and a quite long first order
line for the Log-PQM model. In the Log-PQMVT model,
similar to the mσ ¼ 400 MeV case, the crossover line
becomes very large at the expense of significantly
shrunk first order region, and the CEP gets located
at TCEP ¼ 78.0 MeV, μCEP ¼ 295.9 MeV. When we con-
sider the unquenched PolyLog-glue form for the Polyakov-
loop potential with the chemical potential dependent
parameter T0 ≡ T0ðμÞ ¼ Tglue

c ðμÞ, the quark backreaction
in the PolyLog-glue PQMVT model causes 36.2 MeV
reduction in the temperature axis location of the CEP when
compared with the TCEP of the Log-PQMVT model as it
gets located at the TCEP ¼ 41.8 MeV, while the chemical
potential location remains almost the same at the
μCEP ¼ 296.0 MeV. Note that the uncertainty bar of the
Log PQMVT model for finding the Tχ

c in the chemical
potential range 100–165 MeV, also disappears in the
PolyLog-glue PQMVT model, and we find a well-defined
crossover transition line with increased curvature. When
compared to the CEP of the Log PQMVT model, the CEP
in the Log RPQM model gets located higher up on the
temperature axis at TCEP ¼ 94.1 MeV with smaller chemi-
cal potential at μCEP ¼ 270.6 MeV. The above result is
expected because the smoothing influence of the on-shell
renormalized quark one-loop vacuum fluctuation on the

(a) (b)

FIG. 5. The PQM, PQMVT, and RPQM model phase diagrams for different forms of the Polyakov-loop potentials. The error bars of
the �4 MeV on the Log PQMVT model crossover transition line have been calculated as in Ref. [46].
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chiral transition remains moderate also when the mσ ¼
500 MeV [67]. The CEP of the Log RPQM model shifts
down in temperature by 38.5MeV due to the effect of quark
backreaction in the unquenched PolyLog-glue RPQM
model with T0 ≡ T0ðμÞ ¼ Tglue

c ðμÞ and gets located at
the TCEP ¼ 55.6 MeV, while the corresponding chemical
potential gets located at the μCEP ¼ 270.9 MeV with a
negligible shift. When the μ dependence of the T0 is
switched off in the PolyLog-glue RPQM model as shown
later in the Fig. 7(a), the CEP gets located at the TCEP ¼
70.1 MeV and the μCEP ¼ 268.1 MeV with a moderate
temperature axis shift of 24.0 MeV in reference to the CEP
of the Log RPQM model. The curvature of the phase
transition line increases significantly for all the cases where
the unquenching of the Polyakov-loop potential has been
considered. In our work, we get confirmation of the obser-
vation of Ref. [84] that the quark backreaction due to the
unquenching of the Polyakov-loop potential links the chiral
and deconfinement phase transitions also at small temper-
atures and large chemical potentials. Here, it is also relevant
to recall that for the mσ ¼ 500 MeV case, the CEP for the
two flavor RQMmodel lies at theTCEP ¼ 36.2 MeV and the
μCEP ¼ 277.3 MeV [67] in the absence of the Polyakov-loop
effect. Thus, whatever be the form of Polyakov-loop poten-
tial when combined with the chiral physics, it generates a
noteworthy upward shift of the CEP in the μ − T plane.
Figure 6(a) depicts the phase diagram for the mσ ¼

600 MeV case. In comparison to the lower σ meson
masses, the CEP in the Log PQM model shifts rightwards
at TCEP ¼ 159.3 MeV and μCEP ¼ 174.5 MeV. The
entire phase boundary for the Log PQMVTmodel becomes
a crossover transition line. The position of the CEP for
the Log RPQM model is found at TCEP ¼ 39.1 MeV and
μCEP ¼ 321.0 MeV. In the PolyLog-glue RPQM model
with the T0 ≡ T0ðμÞ ¼ Tglue

c ðμÞ, due to the effect of
the quark backreaction, the CEP gets located at the

TCEP ¼ 24.8 MeV and the μCEP ¼ 318.9 MeV. In com-
parison to the mσ ¼ 400 and 500 MeV cases, here for the
mσ ¼ 600 MeV, we note that the TCEP registers a smaller
downwards shift of 14.3 MeV with respect to the Log
RPQM model TCEP.
Figure 6(b) presents the comparison of phase diagrams

in the Log RPQM model for the different σ meson masses
of 400, 500, 600, 616, and 700 MeV. The location of the
CEP at TCEP ¼ 100.1 MeV and μCEP ¼ 245.3 MeV for the
mσ ¼ 400 MeV shifts slightly right to TCEP ¼ 94.1 MeV
and μCEP ¼ 270.6 MeV for the mσ ¼ 500 MeV. The
CEP registers a significant rightward shift when the
mσ ¼ 600 MeV and gets located at TCEP ¼ 39.1 MeV
and μCEP ¼ 321.0 MeV. For themσ ≥ 616 MeV, the entire
phase boundary depicts a crossover transition. Two cross-
over transition lines for the mσ ¼ 616 and 700 MeV have
also been shown in the figure.

C. Quarkyonic phase and its disappearance

One can define two pseudocritical temperatures, the TΦ
c

and the TΦ̄
c , for the deconfinement crossover transition of

the fieldsΦ and Φ̄ by identifying the respective peaks in the
temperature variations of the ∂Φ

∂T and ∂Φ̄
∂T . Locus of the

different TΦ
c and TΦ̄

c at different chemical potentials gives
the respective phase boundaries for the crossover transition
for the fieldsΦ and Φ̄. Apart from the phase boundaries for
the chiral crossover transition, the Fig. 7(a) presents the
plots of the deconfinement crossover transition phase
boundaries also for the fields Φ and Φ̄. Phase diagrams
for the RPQM model with Poly, Log, and PolyLog-glue
forms of the Polyakov-loop potential with the constant
T0 ¼ 208 MeV have been plotted in the Fig. 7(a), while the
corresponding plots when the parameter T0 has the chemi-
cal potential dependence, i.e., T0 ≡ T0ðμÞ, have been
plotted in the Fig. 7(b).
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FIG. 6. Phase diagrams in the (a) are for the PQM, PQMVT, and RPQMmodel and in the (b) are for the differentmσ in the Log RPQM
model.
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In the Fig. 7(a), when the μ ¼ 0 to 130 MeV in the Poly
RPQM model for the constant T0, the deconfinement
crossover transition line for the Φ̄ lies below the correspond-
ing line for the Φ, and both of these lines get placed below
the chiral crossover transition line, i.e., TΦ̄

c and TΦ
c < Tχ

c.
TheΦ crossover line, after remaining almost coincidentwith
the chiral crossover line in the μ ¼ 130–170 MeV range,
branches out of it, and the deconfinement transition tempera-
ture TΦ

c jumps to 173.8 MeV, while the Tχ
c ¼ 154.6 MeV

when the μ becomes 175MeV. Thus, we are getting a region
in the phase diagram where the deconfinement crossover
transition line for the field Φ lies significantly above the
chiral crossover line and the TΦ

c > Tχ
c. The abovementioned

portion of the phase diagram, where the chiral symmetry is
restored but the quarks are still confined, has been identified
as the quarkyonic phase in the literature [31,90–92]. Here in
the Poly RPQM model, a significantly large region of the
quarkyonic phase is obtained for the fieldΦ as it starts early
when the μ ≥ 175 MeV. The Φ̄ crossover line remains
below the chiral transition line up till the μ ¼ 205 MeV and
crosses it between μ ¼ 205–210 MeV as the TΦ̄

c jumps to
157.6 MeV, while the Tχ

c stays at 139.1 MeV and the
TΦ̄
c > Tχ

c. Here, the extent of the so-called quarkyonic phase
for the field Φ̄ ismoderate as it starts from theμ ≥ 210 MeV.
When we consider the μ dependence of the T0 ≡ T0ðμÞ for
the Poly RPQM model in the Fig. 7(b), the extent of
quarkyonic phase for the Φ and the Φ̄, is considerably
reduced. The deconfinement transition phase boundary for
the Φ branches out of the chiral transition line for the
μ > 225 MeV, while the corresponding line for the Φ̄ forks
out from the chiral crossover line for the μ > 255 MeV.
Thus, the quarkyonic phase for the Φ begins from the
μ > 225 MeV, while it begins from the μ > 255 MeV for
the Φ̄.

The two deconfinement crossover transition lines for the
Φ and Φ̄ in the Log RPQM model are coincident in the
Fig. 7(a). Lying below the chiral crossover transition line,
these lines keeping a small temperature difference from it in
the chemical potential range 0–220MeV, get merged with it
at the μ ¼ 220 MeV and remain so up till μ ¼ 235 MeV.
Both of the deconfinement crossover lines fork out of the
chiral crossover transition line together at μ ¼ 235 MeV
by registering a significant jump in the deconfinement
crossover temperatures for the Φ and Φ̄ as the TΦ

c becomes
142.1 MeV and the TΦ̄

c becomes 144.1 MeV at
μ ¼ 240.0 MeV, while the chiral crossover temperature
remains at the Tχ

c ¼ 125.6 MeV. Here in the Log RPQM
model with the constant T0 case, one gets the simultaneous
onset of the quarkyonic phase for both the fields Φ and Φ̄,
and its region is considerably smaller when compared to the
Poly RPQM model as it starts from the chemical potential
μ > 240 MeV. When we see the plots for the Log RPQM
model with chemical potential dependent T0ðμÞ in the
Fig. 7(b), we find that the two coincident Φ and Φ̄
deconfinement crossover transition lines do not fork out
of the chiral crossover transition line at higher chemical
potentials and remain merged with it. Thus, the quarkyonic
phase disappears in the Log RPQM model for the chemical
potential dependent T0 ≡ T0ðμÞ.
For the PolyLog-glue RPQM model in the Fig. 7(a) at

the constant T0, the deconfinement crossover transition
phase boundaries for the Φ and Φ̄ are completely degen-
erate and get placed at lower temperatures than the chiral
crossover transition line in the μ ¼ 0 to 250 MeV range,
i.e., TΦ

c ¼ TΦ̄
c < Tχ

c. The coincident deconfinement cross-
over lines are crossing the chiral transition phase boundary
near the μ ¼ 250 MeV and take a robust jump, such that
the TΦ

c ¼ TΦ̄
c ¼ 125.3 MeV at the μ ¼ 255 MeV, while

(a) (b)

FIG. 7. Deconfinement and chiral transition phase boundaries for the Log, Poly, and PolyLog-glue form of the Polyakov-loop
potentials in the RPQM model (a) for the constant T0 ¼ 208 MeV and (b) for the μ dependent T0 ≡ T0ðμÞ ¼ Tglue

c ðμÞ.
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the Tχ
c stays at 86.6 MeV. Thus, one gets the quarkyonic

phase, and the region of its existence is found to be the
smallest in the PolyLog-glue RPQM model as it sets in for
the μ > 255 MeV. When we examine the PolyLog-glue
RPQM model plot for the chemical potential dependent
T0 ≡ T0ðμÞ ¼ Tglue

c ðμÞ case, we do not find any region of
quarkyonic phase as the degenerate deconfinement crossover
lines completely merge with the chiral crossover transition
line for μ ≥ 265 MeV. Here, we recall that Schaefer et al.
[77,85] have argued that the incidence of quarkyonic phase
presents an unphysical scenario because the deconfinement
temperature should be smaller or equal to the chiral transition
temperature. Similar to our Log RPQM model finding, they
have also reported the coincidence of the chiral and decon-
finement transition lines for the entire phase diagram when
the parameterT0 is taken as the μ dependent T0ðμÞ. Thus, the
quarkyonic phase looks like an artifact of the model.
In order to see how the deconfinement transition temper-

atures TΦ
c and TΦ̄

c in one model setting differ from the
corresponding chiral transition temperature Tχ

c in the region

of quarkyonic phase, the temperature variations of the
∂ð σ

fπ
Þ

∂T ,
∂Φ
∂T , and ∂Φ̄

∂T , have been plotted for the μ ¼ 265 MeV,
respectively, in the Fig. 8(a) for the constant T0 case and
in the Fig. 8(b) for the μ dependent case T0 ≡ T0ðμÞ. When
the double peak structure emerges in the temperature
variations of the ∂Φ

∂T and the
∂Φ̄
∂T at higher chemical potentials,

one identifies the quarkyonic phase. Since the chiral
transition dynamics is the driver of the first peak formation
at a lower temperature, its location coincides with the chiral
crossover temperature Tχ

c. The second peak gets located at a
higher temperature respectively for the ∂Φ

∂T and the ∂Φ̄
∂T

temperature variations, and one gets TΦ
c > Tχ

c and TΦ̄
c > Tχ

c.
The ∂Φ

∂T and
∂Φ̄
∂T temperaturevariations in the Fig. 8(a) show the

clear structure of the double peaks in the respective red,

green, and blue line plots for the PolyLog-glue, Log, and
Poly RPQM model, where the quarkyonic phase exists for
the constant T0 case. The first peak of the preceding plots

coincide with the peak of the
∂ð σ

fπ
Þ

∂T temperature variations for
the corresponding model. The temperature variations of the
∂Φ
∂T and ∂Φ̄

∂T in the Fig. 8(b), do not show any double peak
structure in the respective red and green line plots of the
PolyLog-glue and the Log RPQM model because the
quarkyonic phase disappears for the chemical potential
dependent T0 ≡ T0ðμÞ. The corresponding blue line plots
for the Poly RPQM model, show the distinct double peaks
due the presence of the quarkyonic phase.

D. Pressure, entropy density, energy density,
and interaction measure

The thermodynamic observables pressure, entropy,
energy density, and interaction measure are sensitive to
the QCD phase transition. Considering the PolyLog-glue
ansatz for the Polyakov-loop potential, the abovementioned
observables have been computed and compared to see how
the PQM model results are changed by the quark one-loop
vacuum correction in the on-shell parametrization of the
RPQM model versus the curvature mass parametrization of
the PQMVT model. It is also worthwhile to compare, how
the thermodynamic observables are influenced when one
takes different form of the Polyakov-loop potential namely
the Log, Log-glue, or PolyLog-glue for combining it with
the consistent chiral physics of the RPQM model.
The negative grand potential gives us the pressure,

PðT; μÞ ¼ −ΩMFðT; μÞ; ð52Þ

the pressure in vacuum has been normalized to zero, i.e.,
Pð0; 0Þ ¼ 0. When the μ ¼ 0, the ideal gas Stefan-
Boltzmann limit (SB) pressure is defined as

(a) (b)

FIG. 8. The temperature variation of ∂ðσ=fπÞ
∂T , ∂Φ

∂T and ∂Φ̄
∂T for the Log, Poly and PolyLog-glue form of the Polyakov-loop potentials in the

RPQM model at μ ¼ 265 MeV, (a) for the constant T0 ¼ 208 MeV, and (b) for the μ dependent T0 ≡ T0ðμÞ ¼ Tglue
c ðμÞ.
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PSB

T4
¼ ðN2

c − 1Þ π
2

45
þ NcNf

7π2

180
: ð53Þ

Figure 9(a) presents the comparison of the PQM, RPQM,
and PQMVT model plots of the normalized pressure ( P

PSB
)

on the reduced temperature scale when the mσ ¼ 500 MeV
and the PolyLog-glue form of the unquenched Polyakov-
loop potential has been taken. The two flavor lattice QCD
data of pressure normalized with the corresponding SB
limit (on the discretized space-time) [6] have also been
presented for the comparison. The normalized pressure for
the RPQMmodel shows a decent agreement with the lattice
data in the range 0.7 to 1.25 of the Tχ

c. The quark one-loop

vacuum correction leads to the increased pressure and the
largest increase of pressure is noticed in the PQMVT
model. In the Fig. 9(b), one can see that the rise of the
pressure in the Log RPQM model near the chiral transition
temperature gets significantly modified in the Log-glue and
PolyLog-glue RPQM model due to the quark backreaction
and unquenching of the Polyakov-loop potential. The rise
in the pressure is caused by the melting of the constituent
quark masses, and it saturates near 80% of the SB limit.
The entropy density s, energy density ϵ and interaction

measure Δ are defined as

s ¼ −
∂Ω
∂T

; ð54Þ
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FIG. 9. Reduced temperature scale variation of the pressure normalized to its Stefan-Boltzmann limit for the (a) RPQM, PQMVT, and
PQM model with the PolyLog-glue form of the Polyakov-loop potential, (b) RPQM model with the Log, Log-glue, and PolyLog-glue
form of the Polyakov-loop potential. The two flavor LQCD data of the pressure have been taken from the Ref. [6].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  1  1.5  2  2.5  3

s/
s S

B

T/T�c

PolyLog-glue, m�=500 MeV

RPQM
PQMVT
PQM

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  1  1.5  2  2.5  3

s/
s S

B

T/T�c

RPQM, m�=500 MeV

Log
Log-glue
PolyLog-glue

(b)

FIG. 10. Reduced temperature scale variation of the entropy density normalized to its Stefan-Boltzmann limit for the (a) RPQM,
PQMVT, and PQM model with the PolyLog-glue form of the Polyakov-loop potential, (b) RPQM model with the Log, Log-glue, and
PolyLog-glue form of the Polyakov-loop potential.
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ϵ ¼ −Pþ Ts; ð55Þ

Δ ¼ ϵ − 3P: ð56Þ

Figure 10(a) presents the reduced temperature scale plot
of the entropy density normalized to its SB limit. Similar
to the pressure, the quark one-loop vacuum correction
leads to the increased entropy density s=sSB. When the
entropy density plot for the PolyLog-glue RPQM and
PQMVT model are compared with that of the PQM
Model, one gets largest entropy density increase in the
PQMVT model, while the corresponding increase in the

RPQM model is moderate. Even though the smoothing
effect of the quark backreaction is present in the PolyLog-
glue PQM model, the entropy density shows a small kink
at the chiral transition temperature (T=Tχ

c ¼ 1). This kink
gets smoothed out in the RPQM and PQMVT plots. The
quark backreaction in the Log-glue and PolyLog-glue
RPQM model causes a significant smoothing change in
the rapidly increasing entropy density plot of the Log
RPQM model in the Fig. 10(b). The plots of the normal-
ized energy density on the reduced temperature scale in
the Figs. 11(a) and 11(b) show the same trend that we get
for the normalized entropy density respectively in the
Figs. 10(a) and 10(b). The energy density plot for the
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FIG. 12. Reduced temperature scale variation of the interaction measure normalized to the Stefan-Boltzmann limit of energy density
for the (a) RPQM, PQMVT, and PQM model with the PolyLog-glue form of the Polyakov-loop potential, (b) RPQM model with the
Log, Log-glue, and PolyLog-glue form of the Polyakov-loop potential. The two flavor lattice QCD data of the interaction measure have
been taken from the Ref. [6].
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FIG. 11. Reduced temperature scale variation of the energy density normalized to its Stefan-Boltzmann limit for the (a) RPQM, PQMVT,
and PQMmodel with the PolyLog-glue form of the Polyakov-loop potential, (b) RPQMmodel with the Log, Log-glue, and PolyLog-glue
form of the Polyakov-loop potential. The two flavor lattice QCD data of the energy density have been taken from the Ref. [6].
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PolyLog-glue RPQM model shows better agreement with
the lattice QCD data [6] in the temperature range
ð0.7–1.1ÞTχ

c and ð1.6–2.1ÞTχ
c.

Figure 12(a), shows the plots of the normalized inter-
action measure Δ=ϵSB in the RPQM, PQMVT, and PQM
model having the PolyLog-glue form for the Polyakov-loop
potential. The peak of the RPQM model plot stands a little
right to that of the PQMVT and PQM model. The RPQM
model plot agrees well with the lattice QCD data points up
to T ∼ Tχ

c and a point near 1.4Tχ
c. Figure 12(b) presents

the normalized interaction measure Δ=ϵSB plot for the
RPQM model using Log, Log-glue, and PolyLog-glue
forms for the Polyakov-loop potential. Several lattice data
points at the peak of the interaction measure lie on the line
depicting the Log RPQM model result.

E. Specific heat and speed of sound

The specific heat capacity at constant volume is defined
by

CV ¼ ∂ϵ

∂T

����
V
¼ −T

∂
2Ω
∂T2

����
V
: ð57Þ

Figure 13(a) shows the variation of the normalized
specific heat capacity at μ ¼ 0 as a function of the reduced
temperature when the PolyLog-glue form has been taken
for the Polyakov-loop potential in the RPQM, PQMVT,
and PQM model. The highest and sharpest PQM model
specific heat peak at the Tχ

c gets significantly reduced and
smoothed out in the temperature range ð0.7–1.2ÞTχ

c due to
the quark one-loop vacuum fluctuations in the PQMVTand
RPQM model. The very sharp and high specific heat peak
at the Tχ

c for the Log RPQM model in the Fig. 13(b)
becomes quite smooth, reduced, and round due to the

robust effect of the quark backreaction when the Log-glue
and the PolyLog-glue form has been taken for the
unquenching of the Polyakov-loop potential in the
RPQM model. We point out that the two peak structure
in the Log-glue RPQM model plot for the specific heat is
the consequence of the fact that the temperature variation of
the chiral order parameter has two peaks as one can see in
the Fig. 4(a). The specific heat plots for all the cases
approach the corresponding SB-limit at high temperatures.
Since the gluon degrees of freedom contribute differently
[78], the specific heat plot for the Log RPQM model in the
Fig. 13(b) does not merge completely with the Log-glue
and PolyLog-glue RPQMmodel plots even when T ¼ 3Tχ

c.
The speed of sound is fundamental property of the

strongly interacting medium. The square of the speed of
sound at constant entropy density is defined as

C2
s ¼

∂P
∂ϵ

����
s
¼ ∂P

∂T

����
V

.
∂ϵ

∂T

����
V
¼ s

CV
: ð58Þ

The speed of sound and the ratioP=ϵ have been plotted in
the Fig. 14 on the reduced temperature scale. The C2

s is very
close to the P=ϵ for the T < 0.7Tχ

c. While approaching its
ideal gas limit of 1=3 for the T > 2.5Tχ

c, the C2
s comes close

to the P=ϵ again. Similar to the results of Refs. [46,47], the
C2
s plot lies sufficiently above the P=ϵ plot for the temper-

ature interval 0.7Tχ
c < T < 2.5Tχ

c except near the Tχ
c. The

very sharp and a relatively less sharp dip noticed at the Tχ
c,

respectively, in theC2
s and the P=ϵ plot for the PolyLog-glue

PQM model in the Fig. 14(a), becomes very smooth and
moderately smooth for the respective cases of the PQMVT
and RPQM model. In the PolyLog-glue RPQM model, the
speed of sound C2

s plot shows a better agreement with the
lattice QCD data around the Tχ

c and the minimum value
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FIG. 13. Reduced temperature scale variation of the specific heat at constant volume normalized with T3 for the (a) RPQM, PQMVT,
and PQM model with the PolyLog-glue form of the Polyakov-loop potential, (b) RPQM model with the Log, Log-glue, and PolyLog-
glue form of the Polyakov-loop potential.
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0.078 for the ratio P=ϵ is closest to the corresponding
minimum value of 0.075 obtained from the lattice QCD in
Ref. [14]. The Fig. 14(b) shows that the sharp C2

s and P=ϵ
temperature variations for the Log RPQM model becomes
quite smooth due to the quark backreaction in the Log-glue
and the PolyLog-glue RPQM model, where the Polyakov-
loop potential is unquenched. The Log RPQM model plot
for the speed of sound C2

s , lies closest to the lattice QCD
data points at higher temperatures (T > 1.4Tχ

c). Similar to
the findings of the Refs. [46,47], the C2

s value is found to be
less than 0.1 below the 0.5Tχ

c (not shown in the figure) in the
all of our model results. This stands in contrast to the results
of the Ref. [93], where a confinement model has been
applied and the value of C2

s ∼ 0.2 in the vicinity of 0.5Tχ
c

and C2
s ∼ 0.15 near the Tχ

c.

VI. SUMMARY AND CONCLUSION

Computing the phase diagrams and the thermodynamic
quantities for the PQM, PQMVT, and RPQM model, we
have compared how the quark one-loop vacuum correction
in combination of the Polyakov-loop potential influences
the dynamics of both the chiral as well as the confinement-
deconfinement transition. Taking a different parametric
form for the Polyakov-loop potential with/without the
quark backreaction and the μ dependence of the parameter
T0, we have also made a detailed comparison of how the
chiral and Polyakov-loop condensates, their derivatives,
phase diagrams, and the thermodynamic quantities get
affected in the RPQM model, which has the exact chiral
effective potential. The results obtained for the different
thermodynamic quantities have also been compared with
the available lattice QCD data.

The sharp temperature variation of the chiral condensate
and its temperature derivative in the PQM model for the
μ ¼ 0 and mσ ¼ 500 MeV become excessively smooth in
the PQMVT model, while the corresponding smoothness
turns out to be moderate when the effect of the quark
one-loop vacuum correction is computed using the exact on-
shell renormalizedRPQMmodel. The deconfinement corss-
over transition occurs earlier than the chiral transition, i.e.,
TΦ
c < Tχ

c, except for the cases of the PolyLog-glue PQMand
the Log RPQMmodel, where the TΦ

c ∼ Tχ
c. The presence of

the quark backreaction (represented by the glue form of the
Polyakov-loop potential) in all the three chiral models
generates a significant smoothing effect on the temperature
variations of the chiral condensate, the Polyakov-loop
condensate, and their derivatives. The combined effect of
the quark backreaction and the one-loop vacuum correction
for the PolyLog-glue PQMVT model generates the highest
separation of the ðTχ

c − TΦ
c Þ ¼ 30.2 MeV between the

deconfinement and the chiral crossover transition, while
the corresponding separation generated for the PolyLog-
glue RPQM model is ðTχ

c − TΦ
c Þ ¼ 21.0 MeV.

The phase boundary for the RPQMmodel stands closer to
the PQM model phase boundary when compared to that of
the PQMVTmodel. Since the LogPQMVTmodel generates
excessively smooth chiral transition similar to the earlier
findings [46–48,50,51,67], the critical end point (CEP)
respectively for the mσ ¼ 400 and 500 MeV cases gets
located at the (TCEP ¼ 94.77 MeV, μCEP ¼ 267.2 MeV)
and the (TCEP ¼ 78.0 MeV, μCEP ¼ 295.9 MeV) positions
in the right lower corner of the phase diagram. The on-
shell renormalized Log-RPQM model gives rise to a
relativelymoderate smoothing effect on the chiral transition;
hence, the CEP gets located higher up in the phase
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FIG. 14. Reduced temperature scale variation of the square of speed of sound and the ratio of pressure with energy density for the
(a) RPQM, PQMVT, and PQMmodel with the PolyLog-glue form of the Polyakov-loop potential, (b) RPQMmodel with the Log, Log-
glue, and PolyLog-glue form of the Polyakov-loop potential. The two flavor lattice QCD data of theC2

s have been taken from the Ref. [6].
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diagram respectively at the (TCEP ¼ 100.1 MeV, μCEP ¼
245.3 MeV) and the (TCEP¼94.1MeV, μCEP¼270.6MeV)
for the mσ ¼ 400 and 500 MeV.
When compared to the CEP in the Log RPQM model

for the mσ ¼ 500 MeV, the CEP for the PolyLog-glue
RPQM model with the T0 ≡ T0ðμÞ, shifts down in temper-
ature by 38.5 MeV due to the significant smoothing effect
of the quark backreaction in the temperature direction and
gets located at the TCEP ¼ 55.6 MeV, while the chemical
potential registers a negligible shift as the μCEP ¼
270.9 MeV. Due to the above effect, the curvature of
the phase transition line increases significantly for all the
cases where the unquenching of the Polyakov-loop poten-
tial has been considered. In our work, the observation of the
Ref. [84] is confirmed that the unquenching of the
Polyakov-loop potential links the chiral and deconfinement
phase transitions at all temperatures and chemical poten-
tials. Comparing the results of the Polyakov-loop enhanced
calculations with the two flavor RQM model results [67]
where the effect of Polyakov-loop is absent, we note that
the presence of Polyakov-loop potential either in the Log or
in the PolyLog-glue form in the RPQM model leads to
significant upward shift of the CEP in the μ − T plane.
The occurrence of the so-called quarkyonic phase, where

the chiral symmetry is restored but the quarks and
antiquarks are confined, depends on the form taken for
the Polyakov loop potential. It occurs in a large region of the
phase diagram for the Poly RPQM model, while its region
gets reduced for the Log RPQM model. Its region gets
significantly reduced by the quark back-reaction in the
unquenched Polyakov-loop potential. It altogether disap-
pears when the parameter T0 becomes chemical potential
dependent i.e., T0 ≡ T0ðμÞ in the Log or the PolyLog-glue
form of the Polyakov-loop potential in the RPQM model,
while it occurs with a significantly reduced extent for the
corresponding case of the polynomial form of the Polyakov-
loop potential in the RPQM model.
The thermodynamic quantities namely the pressure,

entropy density, energy density, interaction measure, spe-
cific heat, the speed of sound, and the P=ϵ ratio have been
computed for the μ ¼ 0 and the mσ ¼ 500 MeV. As
expected, their variations in the PQMVT model are
smoother than that of the RPQMModel. The sharp reduced
temperature scale variation in the Log RPQM model
becomes quite smooth due to the quark backreaction in
the Log-glue and the PolyLog-glue RPQM model.
Comparing the results with the available lattice QCD data,
we find that near the chiral transition ð0.7–1.2ÞTχ

c, the
PolyLog-glue RPQM model results for all the thermody-
namic quantities are in the best agreement with the lattice
QCD results. The Log RPQMmodel results are close to the
lattice QCD results at higher temperatures. In the PolyLog-
glue RPQM model, the minimum value 0.078 for the ratio
P=ϵ is closest to the corresponding minimum value of
0.075 obtained from the lattice QCD in Ref. [14].
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APPENDIX A: THE QMVT PARAMETER FIXING

The tree level expressionof the curvaturemasses ofmesons
for the QM model are given by the mass matrix evaluated in
Ref. [22]. In this work, the above mass matrix is renamed as
ðmm

α;abÞ2, where superscript m stands for the contribution of
the pure mesonic potential. In the QMVT model, the meson
curvaturemasses get modified by the quark one-loop vacuum
contribution. The total expression of the meson curvature
masses in the QMVT model is written as

m2
α;ab ¼ ðmm

α;abÞ2 þ ðδmv
α;abÞ2; ðA1Þ

where α ¼ s, p; “s” stands for the scalar and “p” stands for
the pseudoscalar mesons and a, b ¼ 0, 1, 2, 3. m2

s;00 ≡m2
σ;

m2
s;11 ¼ m2

s;22 ¼ m2
s;33 ≡m2

a0 and m2
p;00 ≡m2

η; m2
p;11 ¼

m2
p;22 ¼ m2

p;33 ≡m2
π . The ðmm

α;abÞ2 and ðδmv
α;abÞ2 are defined

in the similar fashion. The expressions of the curvature
masses ð mm

α; abÞ2 are presented in the Table V. Superscript
“v” stands for the quark/antiquark vacuum contribution to the
curvature masses. It is written as

ðδmv
α;abÞ2 ¼

∂
2Ωvac

qq̄

∂ξα;a∂ξα;b

����
min

;

¼
X
q¼u;d

2Nc

ð4πÞ2
�
fm2

q;αam2
q;αb þm2

qm2
q;αabg

�
1þ ln

�
Λ2

m2
q

�

−m2

q;αam2
q;αb

�
; ðA2Þ

where m2
q;αa ¼ ∂m2

q

∂ξα;a
and m2

q;αab ¼ ∂m2
q;αa

∂ξα;b
. The ξ fields are

defined in the Eq. (7). When one computes the second
derivative of the Eq. (44) for the quark contribution, the full
dependence of all the scalar and pseudoscalar meson fields,
cf. Eq. (8), in the quark masses has to be considered. The
resulting quark mass matrix is diagonalized similar to the
three flavor case given in Ref. [41]. In all the quark mass

TABLE V. Expressions of the curvature masses ðmm
α;abÞ2 are

calculated from the second derivative of the pure mesonic
potential as has been evaluated in Ref. [22].

ðmm
α;abÞ2

Meson mass found from the
pure mesonic potential

ðmm
s;00Þ2 ðmm

σ Þ2 m2 − cþ 3ðλ1 þ λ2
2
Þσ̄2,

ðmm
s;11Þ2 ðmm

a0Þ2 m2 þ cþ ðλ1 þ 3λ2
2
Þσ̄2,

ðmm
p;00Þ2 ðmm

η Þ2 m2 þ cþ ðλ1 þ λ2
2
Þσ̄2,

ðmm
p;11Þ2 ðmm

π Þ2 m2 − cþ ðλ1 þ λ2
2
Þσ̄2,
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derivatives with respect to the meson fields, the meson fields
are replacedby thenonvanishingvacuumexpectationvalue σ̄,
and the final values are collected in the Table VI.
Using the Table VI in the Eq. (A2), we get vacuum

contributions of meson masses as

ðδmv
σÞ2 ≡ ðδmv

s;00Þ2 ¼
Ncg4σ̄2

2ð4πÞ2
�
1þ 3 ln

�
Λ2

m2
q

��
; ðA3Þ

ðδmv
a0Þ2 ≡ ðδmv

s;11Þ2 ¼
Ncg4σ̄2

2ð4πÞ2
�
1þ 3 ln

�
Λ2

m2
q

��
; ðA4Þ

ðδmv
ηÞ2 ≡ ðδmv

p;00Þ2 ¼
Ncg4σ̄2

2ð4πÞ2
�
1þ ln

�
Λ2

m2
q

��
; ðA5Þ

ðδmv
πÞ2 ≡ ðδmv

p;11Þ2 ¼
Ncg4σ̄2

2ð4πÞ2
�
1þ ln

�
Λ2

m2
q

��
: ðA6Þ

We get ðmm
σ Þ2,ðmm

η Þ2,ðmm
a0Þ2, and ðmm

η Þ2 after substitution
of the Eqs. (A3)–(A6) into the Eq. (A1) as

ðmm
σ Þ2 ¼ m2

σ −
Ncg4σ̄2

2ð4πÞ2
�
1þ 3 ln

�
Λ2

m2
q

��
; ðA7Þ

ðmm
a0Þ2 ¼ m2

a0 −
Ncg4σ̄2

2ð4πÞ2
�
1þ 3 ln

�
Λ2

m2
q

��
; ðA8Þ

ðmm
η Þ2 ¼ m2

η −
Ncg4σ̄2

2ð4πÞ2
�
1þ ln

�
Λ2

m2
q

��
; ðA9Þ

ðmm
π Þ2 ¼ m2

π −
Ncg4σ̄2

2ð4πÞ2
�
1þ ln

�
Λ2

m2
q

��
: ðA10Þ

The parameters in vacuum are obtained as

λ1 ¼
ðmm

σ Þ2 þ ðmm
η Þ2 − ðmm

a0Þ2 − ðmm
π Þ2

2f2π;
ðA11Þ

λ2 ¼
ðmm

a0Þ2 − ðmm
η Þ2

f2π;
ðA12Þ

m2 ¼ ðmm
π Þ2 þ

ðmm
η Þ2 − ðmm

σ Þ2
2

; ðA13Þ

c ¼ ðmm
η Þ2 − ðmm

π Þ2
2

: ðA14Þ

We get the parameters of the QMVT model on substitution
of the Eqs. (A7)–(A10) into the Eqs. (A11)–(A14). λ1,c of
the QMVT model are same with respect to the λ1,c of the
QM model. We observe change in λ2 and m2 as

λ2 ¼ λ2s −
Ncg4

ð4πÞ2 ln
�
4Λ2

g2f2π

�
; ðA15Þ

m2 ¼ m2
s −

Ncg4f2π
2ð4πÞ2 ; ðA16Þ

where λ2s and m2
s are same old λ2 and m2 parameters of the

QM model. Putting the value of the new parameters λ2 and
m2 in Eq. (A10), one can write the expression of pion mass
independent of renormalization scale as

m2
π ¼ m2

s −
Ncg4

2ð4πÞ2 ðf
2
π − σ̄2Þ − cþ

�
λ1 þ

λ2s
2

�
σ̄2

þ Ncg4

2ð4πÞ2 log
�
f2π
σ̄2

�
σ̄2: ðA17Þ

APPENDIX B: FIXING OF THE PARAMETERS
IN THE RQM MODEL

In the RQM model, the divergence of the first term of
the Eq. (37) [as rewritten in the Eq. (44)] is removed by the
renormalization of its parameters. This appendix presents
the relation between the physical quantities and the
parameters of the Lagrangian (4) using the MS and on-
shell renormalization schemes [67,94]. One introduces the
counterterms δm2, δg2, δλ1, δλ2, δc, and δh for the
parameters and the wave function/field counterterms
δZσ, δZa0 , δZη, δZπ , δZψ , and δZσ̄ in the Lagrangian (4)
to define the renormalized fields and couplings,

σb ¼
ffiffiffiffiffiffi
Zσ

p
σ; ηb ¼

ffiffiffiffiffi
Zη

p
η; ai0b ¼

ffiffiffiffiffiffiffi
Za0

p
a0 ðB1Þ

πib ¼
ffiffiffiffiffiffi
Zπ

p
π; ψb ¼

ffiffiffiffiffiffi
Zψ

p
ψ ; m2

b ¼ Zmm2 ðB2Þ

λ1b ¼ Zλ1λ1; λ2b ¼ Zλ2λ2; gb ¼
ffiffiffiffiffi
Zg

p
g ðB3Þ

hb ¼ Zhh; cb ¼ Zcc; σ̄b ¼
ffiffiffiffiffiffi
Zσ̄

p
σ̄ ðB4Þ

where Zðσ;a0;η;π;ψ ;σ̄Þ ¼ 1þ δZðσ;a0;η;π;ψ ;σ̄Þ denote the field
strength renormalization constant, while Zðm;λ1;λ2;g;h;cÞ ¼
1þ δZðm;λ1;λ2;g;h;cÞ denote the mass and coupling renorm-
alization constant.

TABLE VI. Squared quark mass derivatives with respect to the
meson fields evaluated at the minimum. The last two columns
present the first and second derivative of the squared quark mass
summed over two quark flavor. The“s” stands for the scalar and
“p” stands for the pseudoscalar mesons and a, b ¼ 0, 1, 2, 3.

s=p a b m2
q;αam2

q;αb=g
4 m2

q;αab=g
2

s 0 0 1
2
σ̄2 1

s 1 1 1
2
σ̄2 1

p 0 0 0 1
p 1 1 0 1
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The scalar (σ; a0) and pseudoscalar (π, η) meson inverse
propagators with self-energy correction are written as

p2 −m2
σ;a0;π;η − iΣσ;a0;π;ηðp2Þ þ counterterms: ðB5Þ

Implementing the on-shell scheme, one puts the physical
mass equal to the renormalized mass in the Lagrangian, i.e.,
m ¼ mpole

1 and writes

Σðp2 ¼ m2
σ;a0;π;ηÞ þ counterterms ¼ 0: ðB6Þ

The on-shell scheme demands that the propagator residue
becomes unity, and one gets

∂

∂p2
Σσ;a0;π;ηðp2Þ

���
p2¼m2

σ;a0 ;π;η

þ counterterms ¼ 0: ðB7Þ

The quark one-loop correction to the one-point function
and the tadpole counterterm can be written as

δΓð1Þ ¼ −4NcgmqAðm2
qÞ þ iδt; ðB8Þ

when the one-point function Γð1Þ ¼ it ¼ iðh −m2
πσ̄Þ van-

ishes, one gets the equation of motion t ¼ 0 at tree level.
This should hold also at one-loop level, which results into
the renormalization condition δΓð1Þ ¼ 0.
The counterterms of the two-point functions are

Σct1
σ ðp2Þ ¼ i

�
δZσðp2 −m2

σÞ − δm2
σ

�
; ðB9Þ

Σct1
a0 ðp2Þ ¼ i

�
δZa0ðp2 −m2

a0Þ − δm2
a0

�
; ðB10Þ

Σct1
π ðp2Þ ¼ i

�
δZπðp2 −m2

πÞ − δm2
π

�
; ðB11Þ

Σct1
η ðp2Þ ¼ i

�
δZηðp2 −m2

ηÞ − δm2
η

�
; ðB12Þ

Σct2
σ ¼ 3Σct2

π ¼ 3Σct2
η ;

¼ −
24ðλ1 þ λ2

2
Þgσ̄Ncmq

m2
σ

Aðm2
qÞ;

¼ −6iðλ1 þ λ2
2
Þσ̄δt

m2
σ

; ðB13Þ

Σct2
a0 ¼ −

8
�
λ1 þ 3λ2

2

�
gσ̄NcmqAðm2

qÞ
m2

σ

¼ −
2i
�
λ1 þ 3λ2

2

�
σ̄δt

m2
σ

ðB14Þ

δt ¼ −4iNcgmqAðm2
qÞ: ðB15Þ

The respective tadpole contributions to the σ; a0, and
π, η self-energies are canceled by the counterterms in
Eq. (B13). The on-shell evaluation of the self-energies and
their derivatives give all the renormalization constants.
Combining the Eqs. (B6), (B7), and (B9)–(B12), one
obtains the following set of equations:

δm2
σ ¼ −iΣσðm2

σÞ; δZσ ¼ i
∂

∂p2
Σσðp2Þ

���
p2¼m2

σ

; ðB16Þ

δm2
a0 ¼ −iΣa0ðm2

a0Þ; δZa0 ¼ i
∂

∂p2
Σa0ðp2Þ

���
p2¼m2

a0

; ðB17Þ

δm2
π ¼ −iΣπðm2

πÞ; δZπ ¼ i
∂

∂p2
Σπðp2Þ

���
p2¼m2

π

; ðB18Þ

δm2
η ¼ −iΣηðm2

ηÞ; δZη ¼ i
∂

∂p2
Σηðp2Þ

���
p2¼m2

η

: ðB19Þ

Using the above equations and the expressions of meson
self-energies given in Ref. [67], we can write

δm2
σ ¼ 2ig2Nc

�
Aðm2

qÞ −
1

2
ðm2

σ − 4m2
qÞBðm2

σÞ
�
; ðB20Þ

δm2
a0 ¼ 2ig2Nc

�
Aðm2

qÞ −
1

2
ðm2

a0 − 4m2
qÞBðm2

a0Þ
�
; ðB21Þ

δm2
π ¼ 2ig2Nc

�
Aðm2

qÞ −
1

2
m2

πBðm2
πÞ
�
; ðB22Þ

δm2
η ¼ 2ig2Nc

�
Aðm2

qÞ −
1

2
m2

ηBðm2
ηÞ
�
; ðB23Þ

δZσ ¼ ig2Nc

�
Bðm2

σÞ þ ðm2
σ − 4m2

qÞB0ðm2
σÞ
�
; ðB24Þ

δZa0 ¼ ig2Nc

�
Bðm2

a0Þ þ ðm2
a0 − 4m2

qÞB0ðm2
a0Þ

�
; ðB25Þ

δZπ ¼ ig2Nc

�
Bðm2

πÞ þm2
πB0ðm2

πÞ
�
; ðB26Þ

δZη ¼ ig2Nc

�
Bðm2

ηÞ þm2
ηB0ðm2

ηÞ
�
; ðB27Þ

where Aðm2
qÞ and Bðp2Þ are defined in the Appendix C.

The counterterms δm2,δλ1, δλ2, δc, and δg2, δh can be
expressed in terms of the counterterms δm2

σ , δm2
a0 , δm

2
η,

δm2
π , and δmq, δσ̄2. Using Eqs. (12)–(16) together with

Eqs. (B1)–(B4), we can write

δλ1 ¼
δm2

σ þ δm2
η − δm2

a0 − δm2
π

2σ̄2
− λ1

δσ̄2

σ̄2
; ðB28Þ1The imaginary parts of the self-energies are ignored for

defining the mass.
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δλ2 ¼
δm2

a0 − δm2
η

σ̄2
− λ2

δσ̄2

σ̄2
; ðB29Þ

δc ¼ δm2
η − δm2

π

2
; ðB30Þ

δm2 ¼ δm2
π þ

δm2
η − δm2

σ

2
; ðB31Þ

δg2

4
¼ δm2

q

σ̄2
− g2

δσ̄2

4σ̄2
: ðB32Þ

The one loop correction at the pion-quark vertex
is of order N0

c. Hence, Zψ ¼ 1 and the quark self
energy correction δmq ¼ 0 at this order. In consequence,

we get Zψ

ffiffiffiffiffiffiffiffiffiffiffi
Zg2g

2
q ffiffiffiffiffiffi

Zπ
p

≈ gð1þ 1
2
δg2

g2 þ 1
2
δZπÞ ¼ g; thus,

δg2

g2 þ δZπ ¼ 0. Furthermore, the δmq ¼ 0 implies that

δgσ̄=2þ gδσ̄=2 ¼ 0. Eq. (31) gives

δσ̄2

σ̄2
¼ −

δg2

g2
¼ δZπ: ðB33Þ

Now we can rewrite Eqs. (B28) and (28) as

δλ1 ¼
δm2

σ þ δm2
η − δm2

a0 − δm2
π

2σ̄2
− λ1δZπ; ðB34Þ

δλ2 ¼
δm2

a0 − δm2
η

σ̄2
− λ2δZπ: ðB35Þ

The equation h ¼ tþm2
πσ̄ enables the writing of the

counterterm δh in terms of the tadpole counterterm δt,

δh ¼ m2
πδσ̄ þ δm2

πσ̄ þ δt: ðB36Þ

Using Eq. (B33), we can write

δt ¼ −
1

2
m2

πσ̄δZπ − δm2
πσ̄ þ δh: ðB37Þ

Exploiting the Eqs. (B20)–(B27) together with the
Eqs. (B28)–(B33) and (B37), we find the following
expressions for the counterterms in the on-shell scheme:

δλ1OS¼
iNcg2

σ̄

�
−
1

2
ðm2

σ −4m2
qÞBðm2

σÞ−
1

2
m2

ηBðm2
ηÞþ

1

2
ðm2

a0 −4m2
qÞBðm2

a0Þþ
1

2
m2

πBðm2
πÞ
�
−λ1ig2Nc

�
Bðm2

πÞþm2
πB0ðm2

πÞ
�

¼ δλ1divþ
Ncg2

ð4πÞ2
�
2λ1 log

�
Λ2

m2
q

�
þλ1

�
Cðm2

πÞþm2
πC0ðm2

πÞ
	

þðm2
σ −4m2

qÞCðm2
σÞþm2

ηCðm2
ηÞ− ðm2

a0 −4m2
qÞCðm2

a0Þ−m2
πCðm2

πÞ
2σ̄2

�
; ðB38Þ

δλ2OS ¼
iNcg2

σ̄2
�
−ðm2

a0 − 4m2
qÞBðm2

a0Þ þm2
ηBðm2

ηÞ
�
− λ2ig2Nc

�
Bðm2

πÞ þm2
πB0ðm2

πÞ
�
;

¼ δλ2div þ
Ncg2

ð4πÞ2
�
ð2λ2 − g2Þ log

�
Λ2

m2
q

�
þ ðm2

a0 − 4m2
qÞCðm2

a0Þ −m2
ηCðm2

ηÞ
σ̄2

þ λ2
�
m2

πC0ðm2
πÞ þ Cðm2

πÞ
	�
; ðB39Þ

δm2
OS ¼ 2iNcg2

�
Aðm2

qÞ −
1

2
m2

πBðm2
πÞ
�
þ iNcg2

�
−
1

2
m2

ηBðm2
ηÞ þ

1

2
ðm2

σ − 4m2
qÞBðm2

σÞ
�

¼ δm2
div þ

Ncg2

ð4πÞ2
�
m2 log

�
Λ2

m2
q

�
þm2

πCðm2
πÞ þ

m2
ηCðm2

ηÞ − ðm2
σ − 4m2

qÞCðm2
σÞ

2
− 2m2

q

�
; ðB40Þ

δcOS ¼
iNcg2

2
½−m2

ηBðm2
ηÞ þm2

πBðm2
πÞ� ¼ δcdiv þ

Ncg2

ð4πÞ2
�
c log

�
Λ2

m2
q

�
þm2

ηCðm2
ηÞ −m2

πCðm2
πÞ

2

�
; ðB41Þ

δg2OS ¼ −iNcg4½m2
πB0ðm2

πÞ þ Bðm2
πÞ� ¼ δg2div þ

Ncg4

ð4πÞ2
�
log

�
Λ2

m2
q

�
þ Cðm2

πÞ þm2
πC0ðm2

πÞ
�
; ðB42Þ

δσ̄2OS ¼ iNcg2σ̄2½m2
πB0ðm2

πÞ þ Bðm2
πÞ� ¼ δσ̄2div −

Ncg2σ̄2

ð4πÞ2
�
log

�
Λ2

m2
q

�
þ Cðm2

πÞ þm2
πC0ðm2

πÞ
�

ðB43Þ

δhOS ¼
iNcg2

2ð4πÞ2 h½m
2
πB0ðm2

πÞ − Bðm2
πÞ� ¼ δhdiv þ

Ncg2

2ð4πÞ2 h
�
log

�
Λ2

m2
q

�
þ Cðm2

πÞ −m2
πC0ðm2

πÞ
�

ðB44Þ

δZOS
π ¼ δZπ;div −

Ncg2

ð4πÞ2
�
log

�
Λ2

m2
q

�
þ Cðm2

πÞ þm2
πC0ðm2

πÞ
�
: ðB45Þ
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The Bðm2Þ;B0ðm2Þ and Cðm2Þ; C0ðm2Þ are defined in the
Appendix. The divergent part of the counterterms are

δλ1div ¼ Ncg22λ1
ð4πÞ2ϵ , δλ2div ¼ Ncg2

ð4πÞ2ϵ ð2λ2 − g2Þ, δm2
div ¼ Ncg2m2

ð4πÞ2ϵ ,

δcdiv¼ Ncg2c
ð4πÞ2ϵ, δg

2
div ¼ Ncg4

ð4πÞ2ϵ, δσ̄
2
div ¼ − Ncg2σ̄2

ð4πÞ2ϵ , δhdiv ¼ Ncg2h
2ð4πÞ2ϵ,

δZπ;div ¼ − Ncg2

ð4πÞ2ϵ.
For both, the on-shell and the MS schemes, the divergent

part of the counterterms are the same, i.e., δλ1div ¼ δλ1MS,
δλ2div ¼ δλ2MS etc.
Since the bare parameters are independent of the

renormalization scheme, we can immediately write down
the relations between the renormalized parameters in the
on-shell and MS schemes. We find

λ1MS ¼ ZOS
λ1

ZMS
λ1

λ1 ≈ λ1 þ δλ1OS − δλ1MS; ðB46Þ

λ2MS ¼ ZOS
λ2

ZMS
λ2

λ2 ≈ λ2 þ δλ2OS − δλ2MS; ðB47Þ

m2

MS
¼ ZOS

m2

ZMS
m2

m2 ≈m2 þ δm2
OS − δm2

MS
; ðB48Þ

cMS ¼
ZOS
c

ZMS
c

c ≈ cþ δcOS − δcMS; ðB49Þ

hMS ¼
ZOS
h

ZMS
h

h ≈ hþ δhOS − δhMS; ðB50Þ

g2
MS

¼
ZOS
g2

ZMS
g2

g2 ≈ g2 þ δg2OS − δg2
MS

; ðB51Þ

σ̄2
MS

¼ ZOS
σ̄2

ZMS
σ̄2

σ̄2 ≈ σ̄2 þ δσ̄2OS − δσ̄2
MS

: ðB52Þ

The minimum of the effective potential is at σ̄ ¼ fπ , and
masses have been measured in vacuum. Applying in
Eqs. (B38)–(B44), we find the Λ scale dependent param-
eters in MS scheme,

λ1MSðΛÞ ¼ λ1 þ
Ncg2

ð4πÞ2
�
2λ1 log

�
Λ2

m2
q

�
þ λ1

�
Cðm2

πÞ þm2
πC0ðm2

πÞ
	

þ ðm2
σ − 4m2

qÞCðm2
σÞ þm2

ηCðm2
ηÞ − ðm2

a0 − 4m2
qÞCðm2

a0Þ −m2
πCðm2

πÞ
2f2π

�
; ðB53Þ

λ2MSðΛÞ ¼ λ2 þ
Ncg2

ð4πÞ2
�
ð2λ2 − g2Þ log

�
Λ2

m2
q

�
þ ðm2

a0 − 4m2
qÞCðm2

a0Þ −m2
ηCðm2

ηÞ
f2π

þ λ2
�
Cðm2

πÞ þm2
πC0ðm2

πÞ
	�
; ðB54Þ

m2

MS
ðΛÞ ¼ m2 þ Ncg2

ð4πÞ2
�
m2 log

�
Λ2

m2
q

�
þm2

πCðm2
πÞ þ

m2
ηCðm2

ηÞ − ðm2
σ − 4m2

qÞCðm2
σÞ

2
− 2m2

q

�
; ðB55Þ

cMSðΛÞ¼cþNcg2

ð4πÞ2
�
clog

�
Λ2

m2
q

�
þm2

ηCðm2
ηÞ−m2

πCðm2
πÞ

2

�
;

ðB56Þ

hMSðΛÞ¼ hþ Ncg2

2ð4πÞ2h
�
log

�
Λ2

m2
q

�
þCðm2

πÞ−m2
πC0ðm2

πÞ
�
;

ðB57Þ

g2
MS

ðΛÞ ¼ g2 þ Ncg4

ð4πÞ2
�
log

�
Λ2

m2
q

�
þ Cðm2

πÞ þm2
πC0ðm2

πÞ
�
;

ðB58Þ

σ̄2
MS

ðΛÞ¼ σ̄2−
4Ncm2

q

ð4πÞ2
�
log

�
Λ2

m2
q

�
þCðm2

πÞþm2
πC0ðm2

πÞ
�
;

ðB59Þ

Where the physical on-shell parameters are related with
meson and quark mass values obtained in vacuum as given
by Eqs. (17)–(23).
In the large-Nc limit, the parameters λ1MS, λ2MS, m

2

MS
,

cMS, hMS, and g
2

MS
are running with the scale Λ and a set of

simultaneous renormalization group equations are satisfied,
which are

dλ1MSðΛÞ
d logðΛÞ ¼ 4Nc

ð4πÞ2 g
2

MS
λ1MS; ðB60Þ

THERMODYNAMICS AND PHASE DIAGRAMS OF THE … PHYS. REV. D 108, 074014 (2023)

074014-23



dλ2MSðΛÞ
d logðΛÞ ¼ 2Nc

ð4πÞ2
h
2λ2MSg

2

MS
− g4

MS

i
; ðB61Þ

dm2

MS
ðΛÞ

d logðΛÞ ¼ 2Nc

ð4πÞ2 g
2

MS
m2

MS
; ðB62Þ

dcMSðΛÞ
d logðΛÞ ¼

2Nc

ð4πÞ2 g
2

MS
cMS; ðB63Þ

dhMSðΛÞ
d logðΛÞ ¼

Nc

ð4πÞ2 g
2

MS
hMS; ðB64Þ

dg2
MS

d logðΛÞ ¼
2Nc

ð4πÞ2 g
4

MS
; ðB65Þ

dσ̄2
MS

d logðΛÞ ¼ −
2Nc

ð4πÞ2 g
2

MS
σ̄2
MS

: ðB66Þ

The solutions of Eqs. (B60)–(B66) are

λ1MSðΛÞ ¼
λ10�

1 − Ncg20
ð4πÞ2 log

�
Λ2

Λ2
0

��2
; ðB67Þ

g2
MS

ðΛÞ ¼ g20

1 − Ncg20
ð4πÞ2 log

�
Λ2

Λ2
0

� ; ðB68Þ

λ2MSðΛÞ ¼
λ20 −

Ncg40
ð4πÞ2 log

�
Λ2

Λ2
0

�
�
1 − Ncg20

ð4πÞ2 log
�
Λ2

Λ2
0

��
2
; ðB69Þ

m2

MS
ðΛÞ ¼ m2

0

1 − Ncg20
ð4πÞ2 log

�
Λ2

Λ2
0

� ; ðB70Þ

cMSðΛÞ ¼
c0

1 − Ncg20
ð4πÞ2 log

�
Λ2

Λ2
0

� ; ðB71Þ

hMSðΛÞ ¼
h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Ncg20
ð4πÞ2 log

�
Λ2

Λ2
0

�r ; ðB72Þ

σ̄2 ¼ f2π

�
1 −

Ncg20
ð4πÞ2 log

�
Λ2

Λ2
0

��
; ðB73Þ

where the parameters λ10, λ20, g20, m
2
0, c0, and h0, are the Λ

dependent parameters at the value Λ0, where we consider
Λ0 to satisfy the relation,

log

�
Λ2
0

m2
q

�
þ Cðm2

πÞ þm2
πC0ðm2

πÞ ¼ 0: ðB74Þ

1. Effective potential

The vacuum effective potential in the MS scheme is
given by

Ωvac ¼ U
�
σ̄MS

	þΩq;vac
MS

þ δU
�
σ̄MS

	
; ðB75Þ

where

Uðσ̄MSÞ ¼
m2

MS
ðΛÞ
2

σ̄2
MS

−
cMSðΛÞ

2
σ̄2
MS

þ 1

4

�
λ1MSðΛÞ þ

λ2MSðΛÞ
2

�
σ̄4
MS

− hMSðΛÞσ̄MS;

δUðσ̄MSÞ ¼ −
Ncg4

MS
σ̄4
MS

8ð4πÞ2
1
ϵ and Ωq;vac

MS
¼ Ncg4

MS
σ̄4
MS

8ð4πÞ2
h
1
ϵþ

3
2
þ ln

�
4Λ2

g2
MS

σ̄2
MS

�i
as in Ref. [67]. One can define the scale

Λ independent parameter Δ ¼ g
MS

σ̄
MS

2
using the Eqs. (B58)

and (B59) and rewrite the vacuum effective potential in
terms of it as

ΩvacðΔÞ ¼ 2

�
m2

0

g20
−
c0
g20

�
Δ2 þ 4

�
λ10
g40

þ λ20
2g40

�
Δ4

− 2
h0
g0

Δþ 2NcΔ4

ð4πÞ2
�
3

2
þ ln

�
Λ2

Δ2

��
: ðB76Þ

Expressing the couplings and mass parameter in terms of
the Yukawa coupling, pion decay constant, and physical
meson masses, one can write

ΩvacðΔÞ ¼
ð3m2

π −m2
σÞf2π

4

�
1−

Ncg2

ð4πÞ2
�
Cðm2

πÞ þm2
πC0ðm2

πÞ
	
Δ2

m2
q
þNcg2f2π

2ð4πÞ2
�
3m2

πCðm2
πÞ − ðm2

σ − 4m2
qÞCðm2

σÞ
2

− 2m2
q



Δ2

m2
q

þ ðm2
σ −m2

πÞf2π
8

�
1−

Ncg2

ð4πÞ2
�
Cðm2

πÞ þm2
πC0ðm2

πÞ
	
Δ4

m4
q
þNcg2f2π

ð4πÞ2
�ðm2

σ − 4m2
qÞCðm2

σÞ−m2
πCðm2

πÞ
8

�
Δ4

m4
q

þ 2NcΔ4

ð4πÞ2
�
3

2
− ln

�
Δ2

m2
q

�

−m2

πf2π

�
1−

Ncg2

ð4πÞ2m
2
πC0ðm2

πÞ



Δ
mq

: ðB77Þ
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Here, it is relevant to remind ourselves that the
Yukawa coupling and the pion decay constant both get
renormalized in the vacuum due to the dressing of
the meson propagator in the RQM model. However, the
Eq. (B58) gives gMS ¼ gren ¼ g, and the Eq. (B59)
gives σ̄MS ¼ fπ;ren ¼ fπ at the scale Λ0. Applying the

stationarity condition ∂ΩvacðΔÞ
∂Δ to the Eq. (B76), one gets

h0 ¼ m2
π;cσ̄MS ¼ m2

πf1 − Ncg2

ð4πÞ2 m
2
πC0ðm2

πÞgfπ . Note that the

pion curvature mass mπ;c differs from its pole mass mπ on
account of the consistent parameter fixing, and we have

m2
π;c ¼ m2

πf1 − Ncg2

ð4πÞ2 m
2
πC0ðm2

πÞg as in Ref. [63]. The mini-

mum of the vacuum effective potential lies at σ̄MS ¼ fπ .

APPENDIX C: INTEGRALS

The divergent loop integrals are regularized by encorpo-
rating dimensional regularization,

Z
p
¼

�
eγEΛ2

4π

�
ϵ Z ddp

ð2πÞd ; ðC1Þ

where d ¼ 4 − 2ϵ, γE is the Euler-Mascheroni constant,
and Λ is renormalization scale associated with the MS.

Aðm2
qÞ ¼

Z
p

1

p2 −m2
q

¼ im2
q

ð4πÞ2
�
1

ϵ
þ 1þ logð4πe−γEÞ þ log

�
Λ2

m2
q

��
;

we rewrite this after redefining Λ2 → Λ2 eγE
4π ,

Aðm2
qÞ ¼

im2
q

ð4πÞ2
�
1

ϵ
þ 1þ log

�
Λ2

m2
q

��
ðC2Þ

Bðp2Þ ¼
Z
k

1

ðk2 −m2
qÞ½ðkþ pÞ2 −m2

qÞ�

¼ i
ð4πÞ2

�
1

ϵ
þ log

�
Λ2

m2
q

�
þ Cðp2Þ

�
ðC3Þ

B0ðp2Þ ¼ i
ð4πÞ2 C

0ðp2Þ: ðC4Þ

Cðp2Þ ¼ 2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

q

p2
− 1

s
arctan

0
BB@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
q

p2 − 1

q
1
CCA;

C0ðp2Þ ¼ 4m2
q

p4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

q

p2 − 1

q arctan

0
BB@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
q

p2 − 1

q
1
CCA −

1

p2
; ðC5Þ

Cðp2Þ ¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
q

p2

s
ln

0
BB@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

q

p2

q
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

q

p2

q
1
CCA;

C0ðp2Þ ¼ 2m2
q

p4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

q

p2 − 1

q ln

0
BB@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

q

p2

q
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

q

p2

q
1
CCA −

1

p2
; ðC6Þ

The Eqs. (C5) and (C6) are valid with the constraints
(p2 < 4m2

q) and (p2 > 4m2
q), respectively.
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