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Heavy quarks are excellent probes to understand the hot and dense medium formed in ultra-relativistic
collisions. In a hadronic medium, studying the transport properties, e.g. the drag (γ), momentum diffusion
(B0), and spatial diffusion (Ds) coefficients of open charmed hadrons can provide useful information about
the medium. Moreover, the fluctuations of charmed hadrons can help us to locate the onset of their
deconfinement. In this work, we incorporate attractive and repulsive interactions in the well-established van
der Waals hadron resonance gas model (VDWHRG) and study the diffusion and fluctuations of charmed
hadrons. This study helps us understand the importance of interactions in the system, which affect both the
diffusion and fluctuations of charmed hadrons.
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I. INTRODUCTION

In a quest to explore the deconfined medium of partons
and to create an early universelike condition, ultrarelativ-
istic heavy-ions have collided at the Relativistic Heavy Ion
Collider (RHIC) and the Large Hadron Collider (LHC).
Under such extreme conditions, an asymptotically free
and locally thermalized system of deconfined partons is
formed, called the quark-gluon plasma (QGP). Under-
standing the dynamics and interactions of such a medium
is very interesting yet tricky, but estimating the thermo-
dynamic and transport properties of the system formed in
heavy-ion collisions can help us to understand the medium
in a better way. One of the most effective probes to study
the strongly interacting medium is the heavy quarks (HQs).
This is because many heavier quark-antiquark pairs are
produced in the initial hard scatterings. The relatively
heavy quarks undergo Brownian motion in a medium of
thermalized light-flavor quarks. Due to their large masses,
their relaxation time is larger than the lifetime of the QGP,
thus resulting in intermediate and high pT heavy quarks not
getting thermalized in the medium [1]. According to some
phenomenological estimations, the QGP lifetime is esti-
mated to be 4–5 fm=c at RHIC [2] and 10–12 fm=c at the
LHC [3]. In contrast, the thermalization time of charm
quarks is estimated to be of the order of 10–15 fm=c. Their
mass is also much greater than the temperature of the

system; thus, the probability of them being produced or
annihilated in the medium is almost negligible. Hence, the
HQs traverse the medium unaffected, but their momenta
get modified due to their interaction with thermalized
lighter quarks. These quarks hadronize around critical
temperatures to form open-charm or open-bottom hadrons.
However, it is crucial to notice that the momentum spectra
of these hadrons undergo significant modification in the
hadronic medium. Exploring the diffusion of these hadrons
would help us to separate the contribution due to the
hadronic sector from the deconfined phase. Thus, along
with the charm quark, the study of drag and diffusion ofD0

meson (cū) is of utmost importance.
The heavy-meson semi-leptonic decay produces elec-

trons that serve as a mode to investigate the dynamics of the
heavy meson. Generally, the nuclear suppression factor
and elliptic flow of these electrons are analyzed to under-
stand the drag and diffusion of the heavy mesons. Such
experimental studies have been done at the RHIC and the
LHC [4,5]. For the charm sector, the nuclear suppression
factor and elliptic flow ofD0 mesons have been obtained at
ALICE [6,7]. Theoretically, many studies have also been
done to explore the dynamics of heavy mesons in the
hadronic medium. In a thermal bath of lighter hadrons, the
D0 mesons are significantly heavier, and their mass is much
greater than the temperature of the system. One can exploit
this fact to study the diffusion process of D0 mesons in a
dynamically changing medium, which can be mathemati-
cally described by the Fokker-Planck equation [8].
In recent times, this idea has been utilized to study the

diffusion of the open charmed state as well as the charm
quark in thermalized hadronic and partonic media, respec-
tively. In our previous work, we employed the color string

*Corresponding author: Raghunath.Sahoo@cern.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 074011 (2023)

2470-0010=2023=108(7)=074011(12) 074011-1 Published by the American Physical Society

https://orcid.org/0000-0002-0476-1005
https://orcid.org/0000-0002-3224-7089
https://orcid.org/0000-0001-8980-1362
https://orcid.org/0000-0003-3334-0661
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.074011&domain=pdf&date_stamp=2023-10-17
https://doi.org/10.1103/PhysRevD.108.074011
https://doi.org/10.1103/PhysRevD.108.074011
https://doi.org/10.1103/PhysRevD.108.074011
https://doi.org/10.1103/PhysRevD.108.074011
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


percolation model to study the drag and diffusion coef-
ficients of the charm quark in the deconfined medium [9].
HQ diffusion has also been studied extensively using
perturbative QCD (pQCD) theory at leading order (LO)
and next-to-leading order (NLO) [8,10,11]. There are also
modifications to the pQCD theory, with addition of
“hadronic” states in the deconfined phase, which shows
a better agreement with other models [12]. In Refs. [13,14],
the authors have taken the lattice QCD (lQCD) approach to
study the drag and diffusion of the charm quark. Moreover,
works with T-matrix calculations explore the diffusion of
charm quarks in the deconfined medium [15]. On the other
hand, in the hadronic sector, the interaction of D0 meson
has also been studied using Born amplitudes [16], and the
spatial diffusion coefficient is found to have a smooth
transition from the hadronic to the partonic medium. The
drag and diffusion coefficients have also been evaluated in
the framework of chiral perturbation theory (ChPT) [17]
and heavy meson chiral perturbation theory [18]. More-
over, the ideal hadron gas approach has been used to
estimate the D0 meson diffusion in Ref. [19]. In a recent
work, the authors explore the magnetic field dependence on
the Dþ meson diffusion using the fluctuation-dissipation
theorem [20].
Apart from studying the drag and diffusion of an open

charmed hadron, one can also explore the melting of
charmed hadrons in the medium to understand the medium
in a better way. This may be explored by studying the
fluctuations of open charmed hadrons. As the hot and dense
medium expands violently, fluctuations in locally con-
served quantities, e.g., net baryon number, electric charge,
and strangeness show different behavior in the hadronic
medium as compared to a deconfined medium of quarks
and gluons. In the hadronic medium, the baryon number
carried by the particles is �1 or 0; however, for the QGP
medium, it is only� 1

3
. Thus, a particle coming in or out of a

subvolume would produce quantitatively different fluctua-
tions in the hadronic medium as compared to a QGP
medium [21]. These fluctuations show nonmonotonic
behavior at the phase boundary and hence can act as a
potential probe to locate the phase boundary in the QCD
phase diagram. Many have used this to explore the temper-
ature at which there is a change in the degrees of freedom.
Previously, studies [21,22] on fluctuations in the net baryon
number and the electric charge have been done to explore
the emergence of the deconfined medium and as a probe
of chiral symmetry restoration. Similarly, net strangeness
fluctuations and the appropriate ratios of their cumulants
and cross-correlations give us an idea about the melting
of strange mesons and baryons near the transition temper-
ature [23–25]. Fluctuations of net baryon number, electric
charge, and strangeness have been explored broadly by the
hybrid Polyakov–Nambu–Jona-Lasinio model [26,27],
the Polyakov linear-σ model [28], van der Waals hadron
resonance gas model (VDWHRG) [29], and the functional

renormalization group approach [30]. Likewise, to under-
stand the transition from charmed hadrons to charm quarks,
one of the key methods is to investigate the melting point of
the charmed hadrons. One can deploy the same strategy to
understand the melting of open charm hadrons since it has
been well established that charmonium states exist well
above Tc [31,32]. However, the charm number fluctuations
are rarely studied, making it a very intriguing topic of
interest. In Ref. [31], Bazavov et al. have estimated the
open charm fluctuations by using the lQCD theory. Thus, it
would be interesting to see the results from other phenom-
enological models and their agreement with the lQCD
results.
The ideal hadron resonance gas (IHRG) model is a

simple statistical model which successfully explains the
lQCD results up to temperatures of 140–150 MeV. But near
the transition temperature, the hadrons start to melt, and this
model breaks down. There are various improvements to the
IHRG model, such as the excluded volume hadron reso-
nance gas (EVHRG) model, where the finite volume takes
care of the repulsive interaction due to the hardcore radius
of the hadrons. Recently, Vovchenko et al. [29] found that
incorporating the van der Waals interaction between the
hadrons improves the agreement with the lQCD results
near the transition temperature. This van der Waals
hadron resonance gas (VDWHRG) model has been used
to explore various thermodynamic and transport properties
of the hadronic matter [33–38]. In this work, we study the
diffusion ofD0 meson, the net charm fluctuations, and their
correlation with net baryon fluctuation, electric charge, and
strangeness using the van der Waals hadron resonance gas
model. In Sec. II, we briefly describe the formulation of the
van der Waals HRG model. In Sec. III, we present the
results of diffusion of D0 meson in an interacting hadronic
medium. Finally, in Sec. IV, we briefly discuss the melting
of open charm hadrons and present our result. Finally, we
discuss and summarize our results in Sec. V.

II. VAN DER WAALS HADRON RESONANCE
GAS MODEL (VDWHRG)

The ideal HRG model is a thermally and chemically
equilibrated statistical model consisting of noninteracting
pointlike hadrons. It can successfully reproduce results
of various thermodynamic quantities from lQCD calcula-
tions [39]. In addition, the IHRG model can also be
extended to a high baryochemical potential regime where
the applicability of lQCD breaks down due to the fermion
sign problem [39,40]. However, some disagreement with
the lQCD data can be observed near the critical temper-
ature. The major disagreements come while explaining the
higher-order conserved charge fluctuations. A way out of
this disagreement is to introduce interaction among hadrons
at high temperatures. This is to take care of the qualitative
features of the strong interaction that becomes much more
significant as the temperature approaches Tc. To include
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the short-range repulsive interactions, one introduces a
finite hardcore radius to all the hadrons, giving them a finite
volume. This gives rise to the excluded volume HRGmodel
(EVHRG). Although it improves the result near critical
temperature, this model ignores the long-range attractive
interactions.
The van der Waals HRG model (VDWHRG) takes care

of both attractive and repulsive interactions by introducing
the a and b parameters, respectively. In the VDWHRG
model [29], the authors have assumed that the interaction
exists between baryon-baryon (antibaryon-antibaryon).
However, the interactions between meson-meson, baryon-
antibaryon, and meson-baryon (antibaryon) are not con-
sidered. One can safely exclude the short-range interactions
between baryon-antibaryon as it is dominated by annihi-
lation processes [41]. The interactions between mesons are
neglected due to the fact that there is substantial suppres-
sion in the thermodynamic observables, which disagrees
with lQCD results near the critical temperature at vani-
shing chemical potential. However, in recent years meson-
meson repulsive interaction was included in the model by
choosing a finite hardcore radius for the mesons, rM [34].
Moreover, the attractive interaction among mesons leads to
resonance formation, which is already present in the HRG
model [42,43] and hence not included in the formalism.
Owing to the number fluctuation, the system created in a

relativistic heavy-ion collision resembles the grand canoni-
cal ensemble (GCE). In the ideal HRG model, the grand
canonical partition function of the ith hadronic species can
be expressed as [41]

lnZid
i ¼�Vgi

2π2

Z
∞

0

p2dp ln
�
1� exp½−ðEi − μiÞ=T�

�
; ð1Þ

where gi, Ei, and μi are the degeneracy, energy and
chemical potential of the ith hadron, respectively. The
energy of the ith hadronic species is given as Ei ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

p
, and μi can be further expanded in terms of

the baryonic, strangeness, charge, charm chemical poten-
tials and the corresponding conserved numbers as,

μi ¼ BiμB þ SiμS þQiμQ þ CiμC; ð2Þ

where Bi, Si, Qi, and Ci are, respectively, the baryon
number, strangeness, electric charge, and charm quantum
number of ith hadron. In the ideal HRG formalism, pressure
Pid
i , and number density nidi of an ideal hadron gas in the

GCE can be written as,

Pid
i ðT; μiÞ ¼ � Tgi

2π2

Z
∞

0

p2dp lnf1� exp½−ðEi − μiÞ=T�g

ð3Þ

nidi ðT; μiÞ ¼
gi
2π2

Z
∞

0

p2dp
exp½ðEi − μiÞ=T� � 1

ð4Þ

To introduce van der Waals interaction, we start with the
van der Waals equation of state in the canonical ensemble,
which reads,

�
Pþ a

�
N
V

�
2
�
ðV − bNÞ ¼ NT; ð5Þ

where P, N, V, and T are the pressure, number of particles,
volume, and temperature of the system, respectively. The
van der Waals parameters are a and b, where b is the
eigenvolume of the hadron given by

b ¼ 16

3
πr3;

r is the hardcore radius of the hadron. In literature the
parameters a and b are obtained either by reproducing
the ground state of nuclear matter properties [44] or by
fitting lQCD data of thermodynamic variables of hadronic
gas [33,34]. In Ref. [34], the parameters a and b are
determined by simultaneously fitting the thermodynamic
quantities obtained by lattice calculations, which, unlike
earlier studies, also includes a finite radius for mesons
making it a more realistic approach to study the hadronic
system. Hence, for our study, we choose the values as
obtained in Ref. [34] as a ¼ 0.926 GeV:fm3 and for the
parameter b, the hardcore radius for mesons and baryons
(antibaryons) are taken as rM ¼ 0.2 fm and rBðB̄Þ ¼
0.62 fm respectively. In the following formulation, b is
the repulsive parameter, where we take bM as the excluded
volume for mesons and bBðB̄Þ as the excluded volume for
baryons (antibaryons). Equation (5) can be expressed in
terms of number density, N ¼ n=V as,

PðT; nÞ ¼ nT
1 − bn

− an2 ð6Þ

In the GCE, we can express pressure as [44,45],

PðT; μÞ ¼ PidðT; μ�Þ − an2; ð7Þ

where, n is the number density calculated within the
VDWHRGmodel and μ� is the effective chemical potential
given by,

nðT; μÞ ¼
P

in
id
i ðT; μ�Þ

1þ b
P

in
id
i ðT; μ�Þ

ð8Þ

μ� ¼ μ − bPðT; μÞ − abn2ðT; μÞ þ 2anðT; μÞ: ð9Þ

The total pressure in the VDWHRG model can be
written as,

PðT; μÞ ¼ PMðT; μÞ þ PBðT; μÞ þ PB̄; ðT; μÞ; ð10Þ
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where PMðT; μÞ, PBðT; μÞ, and PB̄ðT; μÞ are the pressure of
the three subsystems defined in a VDW hadron gas, mesons
with repulsive interaction, baryons and antibaryons with
VDW interactions respectively. The pressure of these
subsystems can further be expressed as,

PMðT; μÞ ¼
X
i∈M

Pid
i ðT; μ�MÞ ð11Þ

PBðT; μÞ ¼
X
i∈B

Pid
i ðT; μ�BÞ − an2BðT; μÞ ð12Þ

PB̄ðT; μÞ ¼
X
i∈ B̄

Pid
i ðT; μ�̄BÞ − an2B̄ðT; μÞ; ð13Þ

where M;B; B̄ stands for mesons, baryons and antibaryons
respectively. μ�M and μ�BðB̄Þ are the effective chemical
potential, for mesons and baryons(antibaryons) respectively.
Considering vanishing chemical potential corresponding to
electric charge, strangeness, and charm quantum number,
i.e., μQ ¼ μS ¼ μC ¼ 0, the modified chemical potential for
mesons and baryon can be expressed as,

μ�M ¼ −bMPMðT; μÞ ð14Þ

μ�BðB̄Þ ¼ μBðB̄Þ − bBðB̄ÞPBðB̄ÞðT; μÞ − abBðB̄Þn2BðB̄Þ þ 2anBðB̄Þ;

ð15Þ

where nM and nBðB̄Þ are the number density of mesons and
baryons (antibaryons) in a VDW hadron gas and is given
by Eq. (8).
Using the above VDWHRG formalism, we estimate

the drag and diffusion coefficient of the D0 meson in an
interacting hadron gas in the following section.

III. DRAG AND DIFFUSION OF D0 MESON

The charmed states are considerably heavier in a thermal
bath of light hadrons, consisting mainly of pions, kaons,
and protons. Hidden charm mesons like J=ψ have much
lower scattering cross sections in the hadronic medium [46]
as compared to that of open charmed mesons such as D0

mesons. Thus, D0 meson will diffuse sufficiently larger
than J=ψ in the hadronic medium. This affects the elliptic
flow of D0, while the v2 of J=ψ will remain unaffected,
giving unfiltered information about the QGP phase. Thus,
the interactions in the hadronic medium make the D0

mesons an interesting probe to explore the hadron gas.
Owing to the large mass difference, it has been established
that one can reduce the Boltzmann transport equation or
Boltzmann-Uehling-Uhlenbeck (BUU) equation to the
Fokker-Planck equation to study the dynamics of the heavy
meson in the hadronic medium. Although the Fokker-
Planck and BUU methodologies exhibit significant differ-
ences, the drag and diffusion coefficient computed using

these formalisms agree with each other considerably
well [47].
The Fokker-Planck equation is given as,

∂fðt;pÞ
∂t

¼ ∂

∂pi

��
AiðpÞfðt;pÞ	þ ∂

∂pj

�
BijðpÞfðt;pÞ	



;

ð16Þ
where, fðt;pÞ is the momentum space distribution of D0

meson with i; j ¼ 1; 2; 3 are the spatial indices. The
collision kernels AiðpÞ and BijðpÞ are given by [19],

AiðpÞ ¼
Z

dkωðp;kÞki; ð17Þ

BijðpÞ ¼ 1

2

Z
dkωðp;kÞkikj: ð18Þ

Here, ωðp;kÞ is the collision rate of D0 meson with initial
momenta p, transferred momenta k, and final momenta
p-k. Considering an isotropic medium and taking a static
limit p → 0, where p is the relative transverse momenta of
the D0 meson with the thermal bath. The collision kernels
can be expressed in terms of drag and momentum diffusion
coefficients as [19],

Ai ¼ γpi; ð19Þ

Bij ¼ B0P⊥
ij þ B1P

k
ij; ð20Þ

where γ is the drag coefficient, B0 and B1 are the transverse
and longitudinal momentum diffusion coefficients respec-

tively. P⊥
ij and Pk

ij are the perpendicular and parallel
components of the projection operator. The D0 meson
undergoes Brownian motion in a thermal bath of lighter
hadrons losing its momenta. The average momenta of theD0

meson in the hadronic medium can be expressed as [48],

hpi ¼
R∞
−∞ dp p fðt; pÞR
∞
−∞ dp fðt; pÞ ¼ p0e−

t
τ; ð21Þ

where, τ is the relaxation time of theD0 meson and p0 is the
initial momenta. The relaxation time of the D0 meson is
related to the drag coefficient as τ ¼ 1=γ [48].
In accordance with the widely used relaxation time

approximation [49], the relaxation time for D0 meson in
a hadron gas can be expressed as,

τ−1 ¼
X
j

njhσjvji; ð22Þ

where nj is the number density of jth hadronic species. σj
and vj are the cross section and relative velocities between
jth hadronic species and D0 meson. Their thermal average
can be approximated as [50],
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hσjvji ¼
σDj

8Tm2
Dm

2
jK2ðmD

T ÞK2ðmj

T Þ
Z

∞

ðmDþmjÞ2

× ds
s− ðmD −mjÞ2ffiffiffi

s
p ðs− ðmD þmjÞ2ÞK1

� ffiffiffi
s

p
T

�
:

ð23Þ

Here, mj is the mass of jth species of hadron and mD is the
mass of D0 meson. s ¼ ðpD þ pjÞ2 is the Mandelstam
variable, and Kn is the modified Bessel function of nth
order. Following the Refs. [19,51], Dm → Dm and
DBðB̄Þ → DBðB̄Þ elastic scattering cross section is taken
as σ ¼ 10 mb and σ ¼ 15 mb respectively, where m, B,
and B̄ are mesons, baryons, and antibaryons respectively.
On estimating τ−1, we obtain the drag coefficient, γ as
a function of temperature. In an isotropic medium and
the static limit (p → 0), the transverse and longitudinal
momentum diffusion coefficient follows, B0 ¼ B1. It
describes the broadening of momentum spectra of final
state hadrons. From Einstein’s relation, we can express
momentum diffusion coefficients in terms of drag coef-
ficient, temperature, and mass of D0 meson as [47],

B0 ¼ γmDT; ð24Þ

Finally, we estimate the spatial diffusion coefficient, Ds,
to understand D0 meson diffusion in coordinate space. The
mean quadratic displacement of D0 meson as a function of
time is given as [48],

hðxðtÞ − xðt ¼ 0ÞÞ2i ¼ 2Dst ð25Þ

It can be understood as the speed of D0 diffusion in space
in a hadronic medium. Under the static limit, Ds can be
obtained as,

Ds ¼
T

mDγ
: ð26Þ

In Fig. 1, we estimate the D0 meson drag coefficient, γ,
in a thermal bath with different mass cutoffs by using the
Eq. (22), where the number density is estimated using the
van der Waals formalism. For only pion gas, the D0 meson
drag coefficient increases as a function of temperature. The
trend remains the same for a gas of pions, kaons, and
protons, but the magnitude of γ increases. This is because
the D0 meson will undergo significantly more interactions,
in a (π þ K þ p) gas as compared to a pion gas, resulting in
an increase in γ. We also use a mass cutoff of 1 GeV for the
hadrons in the medium, for that case the D0 meson drag
increases in magnitude as compared to the (π þ K þ p)
gas. Finally, for a 1.2 GeV mass cutoff, it can be seen that
the drag coefficient does not change much as compared
to the previous 1.0 GeV mass cutoff case. This can be
attributed to the negligible contribution of heavier hadrons

due to their reduced number density in the hadron gas. For
further calculations in this section, we use the mass cutoff
of 1.2 GeV for the hadron gas.
In the left panel of Fig. 2, we study the variation of drag

coefficient with temperature for various HRG models. We
compare the values obtained from ideal HRG, EVHRG,
and VDWHRG models. The ideal HRG model, where the
number density of the hadronic medium is the highest,
gives higher drag coefficient values. On the other hand, for
the EVHRG model, due to the inclusion of the hardcore
radius, the number density is suppressed. This causes the
drag coefficient to be lower. However, the drag coefficient
estimated using the VDWHRG model is slightly higher
than the EVHRG model due to the attractive interaction,
compensating for some repulsive effects. On the right panel
of Fig. 2, we compare our VDWHRG estimation of the
drag coefficient with different phenomenological models.
Ghosh et al. [16] use an effective field theory to study the
interaction between open charm mesons in a hot hadronic
medium comprising of pions, nucleons, kaons, and eta
mesons. Using the Kadanoff-Baym approach, Torres-
Rincon et al. [52] derived the off-shell Fokker-Planck
equation that encodes the heavy-flavor transport coeffi-
cients. The drag and diffusion coefficients of D0 mesons in
a hadronic matter as a function of the momentum of D0

mesons and the temperature of the medium at zero
chemical potential have been computed by Ozvenchuk
et al. [19]. In Ref. [51], authors estimate the drag coefficient
using empirical elastic scattering amplitudes. It is observed
that our estimation of the drag coefficient seems to agree
well with the other models.
We study the variation of the transverse momentum

diffusion coefficient as a function of temperature in Fig. 3.
The transverse momentum diffusion coefficient accounts

0.08 0.1 0.12 0.14 0.16 0.18

 T(GeV)

0

0.1

0.2

0.3

0.4

0.5

)
-1

 (
fm

�

Pion gas

+K+p�

 1.0 GeV�Mass cutoff 

 1.2 GeV�Mass cutoff 

FIG. 1. Drag coefficient of D0 meson as a function of temper-
ature at μB ¼ 0 GeV with different mass cutoff.
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for the broadening of the momentum spectra. A correlation
has been observed between temperature, T, and the trans-
verse momentum diffusion coefficient, B0, showing that a
rise in temperature increases the momentum broadening.
From the left panel of Fig. 3, we observe maximum
momentum broadening of D0 spectra in the thermal bath
of an ideal hadron gas, while reduced number density
reduces the momentum diffusion coefficient. Comparing
our VDWHRG estimation with other phenomenological
works in the right panel of Fig. 3, we find that our
estimation is consistent with the results reported by
Ghosh et al. [16] and Torres-Rincon et al. [52].
In Fig. 4, we compute the spatial diffusion coefficient

and observe its variation with temperature. We observe a

decreasing trend with an increase in temperature. The
AdS=CFT calculation yields a lower bound of 2πTDs ¼ 1
near the critical temperature; as we approach Tc, we can
see that the value of 2πTDs tends toward a minimum. A
slight difference in the estimation of 2πTDs from different
HRG models is due to the effect of interactions in the
models. EVHRG estimates the maximum spatial diffusion
coefficient; this can be understood as due to the repulsive
interactions in the EVHRG model, the number density
decreases significantly, allowing the D0 meson to diffuse
with relative ease. On the right panel, we compare our
VDWHRG results with other studies estimating the spatial
diffusion coefficient. In the hadronic medium, the results
obtained by Torres-Rincon et al. [52], Ozvenchuk et al. [19],

0.08 0.1 0.12 0.14 0.16 0.18
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0
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fm
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FIG. 2. Variation of drag coefficient of D0 meson with temperature at μB ¼ 0 GeV. A comparison among the Ideal HRG, EVHRG,
and VDWHRG models (left). A comparison between our result and different phenomenological models (right). The green dashed-
dotted-dotted line is taken from Ref. [52], the red dot-dash line is obtained from Ref. [16], the black dotted line is the result from
Ref. [19], and the cyan dashed line is from Ref. [51].
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and He et al. [51] align well with our result and show a
decrease with an increase in temperature. This is because as
the temperature increases, the number density increases,
and as a result, the interaction in the medium increases as
well, which in turn, decreases the spatial diffusion coef-
ficient. We can observe minima near the critical temper-
ature owing to the emergence of a deconfined medium. In
the partonic phase, our previous work [9] and the result
obtained from the T-matrix approach [15] show an increase
in Ds with increasing temperature. This is because, at
higher temperatures, the partons will be asymptotically
free, resulting in the weakening of strong interaction, which
causes 2πTDs to increase at higher temperatures.
In Fig. 5, we study the drag coefficient, transverse

momentum diffusion coefficient, and spatial diffusion
coefficient of D0 meson in a van der Waals HRG model
for finite baryonic chemical potential. The μB values taken
correspond to various colliders at different collision

energies. μB ¼ 0 GeV corresponds to the LHC, μB ¼
0.025 and 0.200 GeV correspond to RHIC at

ffiffiffiffiffiffiffiffi
sNN

p ¼
200 GeV and 19.6 GeV respectively. Similarly, μB ¼ 0.436
and 0.630 GeV correspond to RHIC/FAIR at

ffiffiffiffiffiffiffiffi
sNN

p ¼
7.7 GeV and NICA at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 3 GeV respectively [53–56].
We observe a trend of increasing values of γ and B0 with an
increase in μB. However, as the number density saturates at a
higher temperature, the distinction between high and low μB
becomes nonexistent. As μB increases, the spatial diffusion
coefficient displays a similar pattern of decreasing value at
lower and intermediate temperatures. However, at higher
temperatures, 2πTDs approaches a consistent value regard-
less of the μB value. For μB ¼ 0.630 GeV, we observe a
nonmonotonic change in the value of γ, B0, and Ds at a
lower temperature. It is more visible for the spatial diffusion
coefficient, 2πTDs. This might be due to the possible
approach of the system toward the liquid-gas phase transition
in the VDWHRGmodel. It is to be noted here that the critical
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point for the liquid-gas phase transition depends on the
choice of VDW parameters. With the parameters obtained
from ground state nuclear matter, a ¼ 329 MeV fm3 and
b ¼ 3.42 fm3, the critical point lies at T ¼ 19.7 MeV and
μB ¼ 908 MeV [44]. In Ref. [33], the critical point is found
at T ¼ 62.1 MeV and μB ¼ 708 MeV corresponding to
the parameters a ¼ 1250 MeV fm3 and b ¼ 5.75 fm3 (for
r ¼ 0.7 fm). In this work, the VDW parameters used are,
a ¼ 926 MeV fm3, rBðB̄Þ ¼ 0.62 fm and rM ¼ 0.2 fm,
which are taken from the Ref. [34], where the critical point
is found to be around T ≃ 65 MeV and μB ≃ 715 MeV.
Therefore, we expect that if we go lower in temperature
toward 65 MeV and high μB up to 715 MeV, the curve for
2πTDs may show the discontinuity due to the beginning of
the liquid-gas phase transition.

IV. CHARM ABUNDANCES IN THE HADRONIC
MEDIUM

The critical temperature for the transition from hadronic
to partonic degrees of freedom at zero baryochemical
potential is estimated to be around 155 MeV from the
lQCD calculations [39]. The light quark bound states
dissolve at or around this temperature, demonstrating the
strong connection between the chiral crossover and decon-
finement of light quark degrees of freedom. This results in
an abrupt change in the bulk thermodynamic observables,
such as the speed of sound, which gives a minimum around
Tc [39]. This change is even more evident in the behavior
of fluctuations of conserved charges, such as baryon
number, electric charge, or strangeness fluctuations. The
quick shift in the degrees of freedom carrying the necessary
conserved charges is directly reflected in the ratios of the
various moments (cumulants) of net-charge fluctuations
and their correlations in the transition zone. The overall
number of hadronic degrees of freedom or the precise
hadronic mass spectrum also affects bulk thermodynamics.
To illustrate, the high rise of the trace anomaly, which was
discovered in lattice QCD computations, may indicate
contributions from hadron resonances that have not yet
been seen [57]. In addition, some recent works have shown
that the chemical freeze-out temperature for the light
hadrons is not the same as that of the strange hadrons
[58,59]. The single strange, doubly strange, triply strange
hadrons all freeze out at different temperatures, thus
emphasizing the case for a differential chemical freeze-
out scenario [60,61]. In the same line, one can assume that
such a condition may be observed in the charm sector as
well. Thus, a thorough investigation is necessary for the
charm sector.
Although it appears to be established that charmonium

states, or bound states with hidden charm, continue to exist
in the QGP at temperatures much higher than Tc [62],
this may not be true for the heavy-light mesons or baryons,
such as open charm mesons (D0; Dþ; D−; Ds) or charmed

baryons (Λc, Ξc, Ωc) [31]. To answer this query of melting
charmed hadrons, one needs to compute net-charm fluctua-
tions, cumulants, and correlations between their moments
and moments of net baryon number, electric charge, or
strangeness fluctuations. We can compute the susceptibilities
of the conserved charges by the formula given by

χBSQCijkl ¼ ∂
iþjþkþlðP=T4Þ

∂ðμB=TÞiðμS=TÞjðμQ=TÞkðμC=TÞl
: ð27Þ

Mathematically, an nth order cumulant is an nth order
derivative of pressure with respect to corresponding chemi-
cal potential. Such an nth order derivative of pressure with
respect to μC, gives us a quantity with a coefficient Cn.
Thus, one can take suitable ratios of such cumulants to find
the appropriate ratios of desired quantum numbers. For this
section of the calculation, we use the particle list from
the Particle Data Group (PDG) [63]. In addition, we have
included the undiscovered charmed states predicted by the
quark model [64,65], without which one underestimates
the lQCD data [31]. In the upper panel of Fig. 6, we study
the variation of second-order, (χC2 ), cumulant with temper-
ature. We observe an increase in their values with an
increase in temperature. This is primarily because, numeri-
cally, second-order fluctuation is the second derivative of
pressure with respect to the corresponding chemical poten-
tial. As the pressure increases, the second-order suscep-
tibility increases as well. A slight deviation can be observed
between the IHRG, VDWHRG, and EVHRG estimations.
In the lower panel of Fig. 6, we plot the ratio of fourth-order
net charm fluctuation to second-order net charm fluc-
tuation. This ratio gives the kurtosis of the net-charm
distribution. From the lQCD calculations, the ratio is
estimated to be unity within errors, which means that the
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distribution is normal. Our results are in line with the
findings from the lQCD calculation. One can see a slight
deviation of the VDWHRG results from the HRG results at
high temperatures.
In the left panel of Fig. 7, we plot the ratio of fourth-order

cumulants, χBC13 and χBC22 . Mathematically, it can be under-
stood as the ratio of charm number to baryon number. In the
hadronic sector, we have jBj ¼ jCj ¼ 1, so the ratio should
ideally be unity in an uncorrelated hadronic medium. In the
partonic phase, we have jCj ¼ 1 and jBj ¼ 1=3, thus the
ratio rises to 3. For this study, as mentioned in [31], we have
only considered hadrons with jCj ¼ 1. This is due to the
reason that hadrons with jCj ¼ 2 and jCj ¼ 3 are much
heavier and their contribution is negligible. Our results
depict that an ideal HRG model fails to explain the trend,
while estimations from the VDWHRGmodel are consistent
with lQCD data. The VDWHRG model can explain the
lQCD data up to 200 MeV. The van der Waals interactions
between the hadrons with increasing temperature mimic
the behavior of a deconfined medium up to a certain

temperature. An analogy can be drawn by understanding
the PNJL model, where the quarks gain masses below
the critical temperature, and the model can explain the
hadronic sector even though no hadrons are present in the
model [66]. On the right panel of Fig. 7, we plot the ratio
of cumulants that receive contributions from the open
charmed mesons. We calculate the contribution due to
the charmed meson fluctuation from any second-order or
fourth-order charmed fluctuation by subtracting the con-
tribution of the charmed baryons. In this plot, one observes
that the HRG model again fails to explain the rise in the
ratio of the cumulant with temperature. However, findings
from the VDWHRG model are consistent with lQCD up to
around 180 MeV.
Finally, in Fig. 8, we compute fourth-order cumulants of

net charm fluctuations and their correlation with conserved
charges like net baryon number, electric charge, and
strangeness. We take ratios of appropriate cumulants
sensitive to the melting of charmed hadrons and study
their dependence on temperature. On the left panel, we plot
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the ratio of net charmed baryon fluctuation to net charmed
meson fluctuation. The middle panel shows the fluctuation
ratio of all charged-charmed baryons to all charged-
charmed mesons. On the right panel, we show the variation
in the ratio of all strange-charmed baryons to all strange-
charmed mesons. We observe a similar trend in all the plots:
the ideal HRG model increases almost monotonically with
temperature, deviating from the lQCD results after temper-
atures 160–170MeV. However, results from the VDWHRG
model reach a peak of around 160–170 MeV and then
decrease toward higher temperatures. The disagreement
between the lQCD and VDWHRG at high temperatures
may be due to the reason that in our study, we have
excluded the meson-meson attraction, meson-anti(baryon)
interactions, and baryon-anti baryon interactions. However,
one can clearly see that the VDWHRG model explains the
lQCD data very well compared to the IHRG and EVHRG
models.

V. SUMMARY AND DISCUSSION

In this work, we present a phenomenological estimation
of the drag and diffusion coefficients of the D0 meson. We
also study the effect of baryon chemical potential and the
interactions in the system on the D0 meson diffusion. We
estimate the drag force experienced by D0 meson in a pion
gas, ðπ þ K þ pÞ gas, and in a hadron gas with mass
cutoffs 1 and 1.2 GeV at μB ¼ 0 GeV. D0 meson interact
substantially more in a denser medium which leads to a
higher drag force. Further, we study the temperature
dependence of the transverse momentum diffusion coef-
ficient, B0, which accounts for the broadening of the final
state particle momentum spectra. One can observe a linear
increase of B0 with temperature. Such an increase can be
attributed to the fact that number density increases with
temperature, which enables D0 mesons to diffuse more in
momentum space. Finally, we study the spatial diffusion of
D0 meson, scaled by a factor of 2πT. Our estimation of
2πTDs approaches the minima around the critical temper-
ature. Our results are compatible with various phenom-
enological models. We also study the effect of finite baryon
chemical potential on the drag and diffusion coefficients.
Due to the van der Waals interaction, a nonmonotonic
behavior can be seen at low temperatures and high-μB
regime.
Moreover, we estimate the charm number fluctuations

within the van der Waals hadron resonance gas model. By
taking an appropriate ratio of cumulants we study the
melting of open-charmed hadrons. The ideal HRG model
fails to explain the lQCD data, whereas by introducing

VDW interactions, we observe that our results show a good
agreement with the lQCD results up to T ≃ 180 MeV. This
study can help us to understand the melting of charmed
hadrons in a hot and dense medium formed in an ultra-
relativistic collision.
The study of heavy-flavor hadron dynamics provides us

with unique opportunities to understand the hot and dense
matter produced in heavy-ion collisions at ultrarelativistic
energies. The D0 meson, which is the lightest neutral
charmed hadron, can give us information about the medium
through its study of the drag and diffusion coefficients. This
is encoded within the elliptic flow (v2) and the nuclear
suppression factor (RAA) of D0 meson, which can be
measured in experiments. On the other hand, one can, in
principle, study the net charm number fluctuation by taking
net Dþ and D− meson fluctuations as a proxy. This is
because, for net charm cumulants calculation, one needs
to take two particle species (particle and antiparticle,
ΔNc ¼ Nc − N̄c) into consideration. By default, D0 and
D̄0 should have been the ideal choice, as they are the
lightest charmed hadrons. However, as observed in the
LHCb experiment with a significance of 8.2 standard
deviations, the D0 and D̄0 suffer from oscillations [67].
Hence, it is not an ideal probe for net charm cumulants
estimation. However, looking at net Dþ and D− meson
fluctuations, one can use them as probes to study charm
number fluctuations at both ALICE and STAR experi-
ments. In view of ALICE run-3 and a high luminosity
collision environment, the charm sector will be of high
importance. Results such as D0 meson v2 and RAA will be
more accurate with smaller uncertainties. This means the
theoretical and phenomenological models must be fine-
tuned to explain the data. In addition, with higher statistics,
it would be interesting to see the charm number cumulants,
which would shed light on the melting of charmed hadrons
in a hot and dense medium.
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