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Gauge choice for organizing infrared singularities in QCD
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We explore the features of interpolating gauge for QCD. This gauge, defined by Doust and by Baulieu
and Zwanziger, interpolates between Feynman gauge or Lorenz gauge and Coulomb gauge. We argue that
it could be useful for defining the splitting functions for a parton shower beyond order a or for defining the
infrared subtraction terms for higher order perturbative calculations.
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I. INTRODUCTION

It is an unsolved problem to specify an algorithm for a
parton shower in which the splitting functions are defined at
order a? or beyond. The splitting functions can be based on
the soft and collinear singularities of quantum chromody-
namics (QCD) [1]. Thus, what one needs is to translate the
singularities of Feynman graphs into functions from which
the parton splitting functions are constructed. This is not a
trivial project beyond leading order in a, because one has
both real emissions and virtual exchanges and both soft and
collinear singularities and combinations of these. Thus, one
seeks a method that constructs the needed singular func-
tions directly from Feynman graphs, without dealing with
exceptions and special cases.

The construction of subtractions for the calculation of
perturbative cross sections at next-to-next-to-leading order
(NNLO) and beyond presents similar problems. Here there
are appropriate algorithms [2—16], but there is a substantial
ongoing effort to systematize and simplify these algorithms
[17,18], cf. [19,20].

These considerations lead to a certain difficulty. The
Feynman diagrams are simplest if one uses a covariant
gauge, particularly Feynman gauge. However, in Feynman
gauge the treatment of collinear singularities is far from
simple. Consider, for instance, a Feynman amplitude in
which a quark with momentum p — g couples to a gluon
with momentum ¢, becoming a final state quark with
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momentum p with p?> = 0. Such an amplitude is singular
when ¢ becomes collinear with p, so that the denominator
of the quark propagator, 1/[(p — ¢)? + i0] and the denomi-
nator of the gluon propagator, 1/[¢> +i0], both vanish.
This creates a collinear singularity. In Feynman gauge, the
leading term in the gluon propagator in the collinear limit
becomes p,g" « g,g" = g”. This gluon can then couple
to any other line in the Feynman diagram, either an
external, on-shell line or a virtual line. Any such connection
retains the leading collinear singularity. One can deal with
this surfeit of singularities using Ward identities, as we
outline in Appendix A. However at higher perturbative
orders, one can have multiple exchanged gluons with
momenta collinear with different external parton momenta.
These gluons can couple anywhere in the graph, including
to each other. This can lead to the exceptions and special
cases that one would like to avoid.

This argument suggests the use of a physical gauge, for
instance an axial gauge n - A(x) = 0 for some fixed vector
n. In such a gauge, gluons never carry longitudinal polar-
izations €“(q) « ¢“, so the problems associated with
longitudinally polarized gluons disappear. However, one
then must deal with gauge-definition singularities 1/q - n,
which need to be regulated somehow.

In this paper, we explore the use of a gauge defined by
Doust [21] and Baulieu and Zwanziger [22]. (We follow
the construction of Ref. [22], although we choose what
we think is a more transparent notation.) This gauge
interpolates between a covariant gauge and Coulomb
gauge. Accordingly, following Refs. [21,22], we will call
it interpolating gauge. The gauge choice depends on a
parameter &, where £ = 1 corresponds interpolating from
Feynman gauge and £ = 0 corresponds to interpolating
from Lorenz gauge. We mostly choose & = 1, correspond-
ing to starting from Feynman gauge. The gauge definition
also depends on a four vector n that defines the time axis of
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a preferred reference frame. Finally, it depends on a
parameter », where v = 1 gives the starting covariant
gauge and v — oo gives Coulomb gauge.

The definition of interpolating gauge is very simple.
The gauge fixing term in the Lagrangian for a standard
covariant gauge with gauge parameter £ is

1

Eg(aﬂAﬁ(XJ)(ayAZ(x)) (1)
Using a reference frame in which n = (1, 0,0, 0), the gauge
fixing term for interpolating gauge is

;;( A0 (x) ZaAl x))
Za Al (x ) (2)

(o)

If we choose v = 1, we have the standard covariant gauge.
With » > 1, we have the same general form of Lgg(x)
except that the relative normalizations of the d,A? and 0,A!,
terms are modified.

The intent of Refs. [21,22] was to better define Coulomb
gauge. One might think that it would be ideal to use
Coulomb gauge to help manage infrared singularities. It is,
after all, a physical gauge in the sense that only transversely
polarized gluons propagate. However, using Coulomb
gauge requires taking limits » — co. As we will see,
interpolating gauge with any finite value of » with v > 1
is physical enough for the purposes that we have in mind.
We could, for instance, choose v = 2. Because of its useful
features, we might call interpolating gauge a quasiphys-
ical gauge.

The definition of interpolating gauge depends on a
parameter £ and a parameter v with » > 1. Additionally,
interpolating gauge, like Coulomb gauge, depends on a
four vector n with n*> = 1 that defines the time axis in a
preferred reference frame. We define an analog /#* of the
metric tensor ¢**. In a reference frame in which the
components of n* are

Lgp(x) = -

Lgr(x) =

= (1,0,0,0), (3)
the components of A*¥ are
1I/v» 0 0 0
0
h = 0 . (4)
0 0o 0 -1
For any vector g we define an associated vector § by

" = hig". (5)

Also
0, = h4,. (6)

We think of ##* as being a modified metric tensor because
in the gauge fixing Lagrangian we replace d,A% = d,g, AL,
by 9,Al = 0,hL A,

One might also consider gauge choices that interpolate
between a covariant gauge and other physical gauges, such
as the axial gauge defined by n- A = 0. In Ref. [22], one
can consider gauges with choices of 4*¥ that are different
from Eq. (4). In this paper, we analyze the gauge defined by
Lgr(x) in Eq. (2). We have two reasons for this preference.
First, it uses a timelike vector n, which can be chosen as
the direction of the total momentum for electron-positron
annihilation and, for hadron-hadron collisions, as the
direction of the total momentum of either the incoming
hadrons or of the colliding partons at the Born level of
the process considered. For hadron-hadron collisions, one
could use a lightlike vector 7 in the direction of one of the
incoming partons, but this choice is not as useful for the
description of the other incoming parton. Once one has
chosen to use a timelike vector n, one still has the choice of
a gauge fixing term in the Lagrangian. We believe that the
choice in Eq. (2) is favored by its simplicity.

In the sections that follow, we define and analyze
interpolating gauge in some detail. In the remainder of
this Introduction, we very briefly review what the gluon
propagator in interpolating gauge is and what advantages it
might offer for calculations.

As explained in Sec. II,
interpolating gauge is

the gluon propagator in

g 4 ST T
& +i0 q-q+i0

1 q9"q"
(1= 27
( +v2)q-fz+io

E-1 ¢q'q
G (q-a+io)2]' 2

iD"(q) =

The ghost propagator is

i

_ 8
qg-g+i0’ (8)

iD ghost (q )

There is a new denominator g - § here but it is not ambi-
guous how to define the singularity: it is 1/(g - g + i0).
We can understand the gluon propagator better by
decomposing it into two parts:
D (g) = D% (g) + Di*(q)- (9)
In a reference frame in which n = (1,0,0,0), the
components of Di’(g) are
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DY (q) =0,

DY(q) = DY (q) =0,
iy 1 . qq

D¥(q) = S — . 10
e et 3

That is,
v 1 L U
Dy (q) = 70 > e(q.9)e(q. 5). (11)

s=1,2

where the polarization vectors are the two real valued
solutions' of

e(g,s) -n=0,
e(q.5)-q =0, (12)
normalized to
e(q,s) - e(q,s') = —byy. (13)

Thus the T gluons are massless bosons with transverse
polarizations.

The difficulty with collinear singularities that occurs in
Feynman gauge is not present for T gluons because when
q = Ap we have p,D"(q) « q,D"(q). Then q,D"(q)
-q,9"" = —q" in Feynman gauge is replaced by
4 >_s €'(q.5)€"(q. ), but g,£"(q.s) = 0.

In a reference frame in which n = (1,0,0,0), the
components of the propagator for L gluons with the gauge
parameter £ set to £ = 1 are

1

DOO :_7.’

v (q) 7 3 +i0

DY(q) = Di’(q) =0,
. 1 1 q'q’/

D (k) =———— . 14
L (k) q-G+i0 ¢ (14)

This describes bosons with polarization vectors propor-
tional to either (1,0) or (0,3).

What is remarkable is that the L gluons are on shell
not when g2 =0 but when ¢-§=0. Since ¢-§ =
(¢°)?/v* — g*, the condition for on-shell propagation is

q° = Fvlql. (15)

'One often chooses complex valued polarization vectors so
that one can represent gluons with definite helicities. However,
one then needs to distinguish between ¢ and &*. Since this
complicates the notation, we use real valued polarization vectors
in this paper.

*This tree-level on-shell condition is modified at higher orders
in a.

For a boson propagating in the z direction with positive
energy @ = v|qg|, the wave function in space-time is
proportional to

emii=[alz) — p=ildl(vi—z). (16)

That is, the wave propagates with velocity ». Since we take
v > 1, the L gluons are tachyons.

When we construct a cross section using interpolating
gauge, the initial or final state partons should include
quarks and T gluons, but not ghosts or L gluons. That is, we
have an S-matrix amplitude S; and a conjugate amplitude

8; with quarks and T gluons as external, on-shell particles.
The Feynman rule factor for an external T gluon is’

(27)5,(4*)_e"(q.5)e"(q. 5). (17)

where 8, (g?) is 5(g*) times a factor (g - n > 0).

The Feynman diagrams used to construct the S matrix for
incoming and outgoing T gluons involve also virtual L
gluons. One might be concerned that this S matrix in
interpolating gauge differs from the S matrix in Feynman
gauge or Lorenz gauge. However, as we will see in
Sec. VF, the theory obeys identities derived from
Becchi-Rouet-Stora-Tyutin (BRST) symmetry that imply
that the S matrix is independent of v and £ and also
independent of n. Thus the S matrix in interpolating gauge
is the same as the S matrix in one of the covariant gauges.

An instructive way to write D{(g) in Eq. (14) is

tg' —q - n(g'n” + n*q*) n'n*
D) =TE T IR T T (18)
- [(¢°)? = v*@* +i0]|g]> g

If we take v — oo with fixed g, the first term vanishes. This
leaves just n#n*/|g|?, which is the Coulomb potential. We
conclude that interpolating gauge with £ = 1 interpolates
between Feynman gauge and Coulomb gauge.

What happens if one inserts a virtual L-gluon line with
momentum ¢ into an amplitude, coupled to an external
quark or an external T gluon with momentum p with
p* = 07 Then there are propagators with momenta p — g
and ¢. In Feynman gauge, this leads to a collinear
singularity when ¢ = Ap since (p — ¢)*> = (1 —A)p? and
g* = A*p? both vanish in the collinear limit. In interpolat-
ing gauge, (p—q)* = (1 —21)p? still vanishes, but the
denominator for the L-gluon propagator is g - § + i0. In the
collinear limit, this becomes

’If there is a self-energy graph connected to the external
line, one needs a limiting procedure with g*> — 0 according to
the Lehmann-Symanzik-Zimmerman (LSZ) prescription. See
Sec. VE.

074008-3



ZOLTAN NAGY and DAVISON E. SOPER

PHYS. REV. D 108, 074008 (2023)

2. = 2 20 [
lP'P:pP -4 -5 P
1Y,

which does not vanish. For this reason, exchanging an L
gluon between two external partons can create a soft
(¢ — 0) singularity but does not create a collinear singu-
larity. We will see this in a more detailed calculation
in Sec. IV.

In this Introduction, we have outlined very briefly
why interpolating gauge might be useful, in spite of the
complexity of the gluon propagator in this gauge. In Sec. II,
we derive the propagators and vertices in interpolating
gauge from the functional integral formulation of the
theory. In Sec. III, we examine the decomposition of the
gluon propagator into T and L parts in a little more
detail than was presented above. In Sec. IV, we show
how no collinear singularities arise from the exchange of a
gluon between two external partons in interpolating gauge.
In Sec. V, we examine BRST symmetry in this gauge.
Section VI explores the renormalization program. We
examine the gluon self-energy function in Sec. VII and
the quark self-energy function in Sec. VIII. We assemble
results about the infrared poles of the S matrix in Sec. IX.
Finally, Sec. X presents some conclusions. There are four
Appendices.

II. DEFINITION OF INTERPOLATING GAUGE

In this section, we use the functional integral approach to
define SU(3) gauge theory in interpolating gauge, leading
to the Feynman rules that one can use for calculations. The
important step is the introduction of the gauge fixing
function in Eq. (38) below. The rest of the analysis follows
rather standard textbook methods, but we provide this
analysis in order to present a self-contained derivation
in a consistent notation.*

A. Momenta and the tensor h

As sketched in the Introduction, we let n be a timelike
vector with n?> = 1 that defines the time direction in a
preferred reference frame that we often use. We use n to
define tensors P%’ that project onto the direction along n
and the directions orthogonal to n:

P = ntn*,
PH = g — n*n”. (20)

Then ¢ = P’ + P*. The tensors P, act as projection
operators:

*We follow the convention of Schwartz [23] for the sign of g.
Much of the analysis is along the lines of that in Sterman [24].

PﬂiaP(:xFy = 0’
PL,PY = PL. (21)

We let v be a fixed parameter with » > 1 and define an
analog h** of the metric tensor ¢"* by

1
B =P P, (22)

Using the definition of #*¥ and the properties of the
projection tensors P, one derives the useful identity

1 24
Hhe = —— g+ T, (23)
v v

For any momentum ¢ we define a transformed
momentum

g" = h.q". (24)
This gives us
. 1
q-qg=q"—(1-—])(q-n) (25)
v

so that ¢-§ < g> when v > 1. Using Eq. (23), we also
obtain

=-5¢+—754q-7 (26)
v v

B. Functional integral definition of the gauge

We use a functional integral over quark fields with flavor
fs yff(x), and gauge boson fields, A%(x). We use the
covariant derivative acting on quark fields

DH(A) = 0% — igAh(x)1,. (27)

For the covariant derivative acting on octet color fields, we
make the color indices explicit:

DZC (A) = 0040 + gA,l;(x)fabc- (28)
We also use the field operator
Fy = 0" AY — 0" Al + gf ap Al (x)A%(x). (29)

The gauge invariant Lagrangian is

074008-4
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L) =~y P >Fa,w<x>

+ le/f ID‘u

—mylwy(x).  (30)
We begin with the functional integral

IF:NO/DII/DII_/DA exp (i/d“xﬁ(x))F[A,l/?,y/}.
(31)

The function F[A, y, w] consists of gauge invariant combi-
nations of the quark and gluon field operators. The
normalization factor N is not important for the construc-
tion because one considers Iy divided by [; with
F[A,,y| = 1. The functional integral over A is not well
defined at this stage because it implicitly includes an
integral over the gauge group. In order to factor out
an integral over the gauge group, we insert a functional
integral

1=N, / Dw exp (IZ / d4x;—;wc(x)2). (32)

Here w,(x) is a scalar field with a color index ¢ and a is a
constant parameter. We define another gauge parameter &
that we can use in place of a by

&= av’ (33)

We also insert

- / Das(G|A )thG[ q (34)

where G is the gauge fixing function defined below in
Eq. (38). Here a.(x) parametrizes a finite gauge trans-
formation, under which a quark field transforms accor-
ding to

W (x) = vralx) = expliga. ()i (x).  (39)

Here the matrices 7, are the generators of the fundamental
representation of SU(3). In the adjoint representation of
SU(3), the transformation matrix is

U(x) = exp(iga.(x)T.). (36)

Then A, is A transformed by the gauge transformation,

=L gy ]u ),

(Aa)a(x)To = U(x)Aa(x)T,U(x) p

(37)

The gauge fixing function G[A,] is a function of a color
index c¢ and a space-time position x defined by

GlA](x) = 9,A%(x) = @ (x). (38)

The delta function 6(G[A,]) sets G[A],(x) equal to zero for
each ¢ and each x. This gauge fixing function replaces the
function 9,A¢(x) — . (x) that leads to a covariant gauge.
This gives us

IF:NZ/DaDq/Dy’/DADa) exp <i/d4x£(x)>

X exp <IZ / d4x;—;a)c(x)2>

5GA,

x 8(G[A,]) de t{ =

]}F[A,zz/, vl (39)

We need the determinant §G[A,]/da of the functional
derivative of G[A,] with respect to the gauge transformation
a. For this purpose, we consider a small variation da in
the gauge transformation. The corresponding variation in

(Ag)a(x) is
5<Aa)l:l (X) = D(Aa)lt;65ac (X) (40)
Thus the variation in G[A,],(x) is
5G[Aa]a(x) =0 D(A(l)zcéac(x)' (41)

This gives us the functional derivative

6G[Aql,(x)

sa ) 0,D(A,)cd(x = y). (42)

Before going further, we change the integration variable
from A to A,. The Lagrangian and F[A, , y| do not change
when expressed as functions of A, since these functions
are gauge invariant. Next, we simply rename A, as A. This
gives us

Ip :J\/'z/DaDy/Dy'/DADw exp (i/d“xﬁ(x))

X exp <IZ / d4x;a1wc(x)2>

x 8(G[A]) det [%([;4]] FIA 5. y). (43)
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Now nothing depends on the gauge transformation @, so we
can simply absorb the integration [Da into the normali-
zation constant. Additionally, we can perform the integra-
tion over @ against §(GJ[A]), thus setting w.(x) to éﬂA’C‘ (x).
This gives us

Iy —N3/DwDy‘/DA exp (i/d“xﬁ(x))
X exp <IZ / d4x;—;(5ﬂA’C‘(x))2)

x det [%g\q FlA,y,y]. (44)

The final step is to write the functional determinant as an
integral over Grassmann fields 7,(x) and 7,(x), the ghost
and antighost fields:

s P21

oa

— Ny [ DyDiexp (—i [ ﬁa<x)5,,D(A>zcnc<x>>-
(45)

This gives us

IF:N/DI//DI/_/DADﬂDﬁ exp <i/d4x£(x))

We now have a functional integral with the usual gauge
invariant Lagrangian £(x), a gauge fixing Lagrangian

1 ~
Lar(x) = =5 (9,44(x)) (9,45 (x)) (47)
and ghost fields with a ghost Lagrangian

'Cghost ()C) = 1, (x>auD<A)lZC770 (x) . (48)

This is just the same as with a covariant gauge except that
d, replaces d,.

C. Propagators

The terms in the Lagrangian that are quadratic in the
gauge field are

£ = 5{ 020,48 = (0,82) 4,

- @@ | (49)

In momentum space, this becomes a two-point vertex
—i6,45hee Tor a gluon with momentum g,

1_
Diee = 4"¢" — ¢° 9" — -~ (50)

The tree-level gluon propagator is i5.,D**(q) where
Dal'fg. = g™

g +q"q"

) 1
Dla) = q-q+i0

@ +i0
(q-q+i0)?

-
q”q”} : (51)

We can use Eq. (26) for §* and use the gauge parameter
&= av® instead of a. Then the gluon propagator is
expressed as in Eq. (7):

1 q"q" + §"q"
DH(q) = — | ="+ ——
(@) q2+10{g” q-g+1i0
1 1 q'q" -1 4¢"¢"
- +_2 = . - 2 L~ . 2
v?) q-q+i0 v* (g-g+i0)

(52)

Evidently, this is simplest if we choose £ = 1. That will
be our favored choice. We will return to properties of D*
in Sec. IIL

In the case that v = 1, we have § = ¢g and

D*(g) = —

_ [—gﬂ” F(1-9 ﬂ] (53)
g* +10 q*+10]

This is the usual covariant gauge with gauge parameter ¢,
with £ = 1 giving Feynman gauge. In the case that v — oo
with any fixed g and with any fixed &, we have g* — P*%q,,.
Then the limit does not depend on & and is

n*n”
q.P?q5
(54)

D*(q) > - Pq P qﬁ}

-
q* +i0 q.P?q,

This is the propagator in Coulomb gauge, expressed in
covariant form. The second term is the Coulomb potential,

DY = (55)

q1*”

in a frame in which n* = (1,0,0,0).
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For the ghost propagator, we need the inverse of the part
of the ghost Lagrangian (48) that does not include A}, (x).
The ghost propagator is &,,iD&"(q) with

1

_— 56
q-q+i0 (56)

Dghost(q) —

The quark propagator iD%¥* takes the familiar form
derived from the yy part of the Lagrangian,

unark(q) _ % + my

= 57
q2—m]20+i0 (57)

D. Vertices

The Feynman rules for the vertices can be read off from
the Lagrangian. The quark-gluon vertex is

Fzri’ia(q’ k7 [7) = ig(7ﬂ>a’a(ta)i’i’ (58)
as illustrated in Fig. 1. The triple-gluon vertex (with
momenta leaving the vertex) is given by
L4 (Pas Pos Pe) = =G abe {9ap(Pa = Pb), + 95, (Pb = Pe)a

+gya(pc _pa)ﬂ}’ (59)
as illustrated in Fig. 2. The four-gluon vertex is

FZI[;;{L; = _ingﬁabf&cd{gaygﬁé - gaégﬁy}

- ing&adf&bc{gaﬂg}/é - gaygﬂé}
- ing&acfﬁbd{gaﬁg}/é - gaégﬂy}’ (60)

as illustrated in Fig. 3. The ghost-gluon vertex is

szc(pa’ Pb> pc) = gfuhcﬁb,w (61)
a,
i, a i,
FIG. 1. Quark-gluon vertex.

b, 8 G

FIG. 2. Triple-gluon vertex.

Q,a 0,d
B,b 7€
FIG. 3. Four-gluon vertex.

a,

b
<«
b ..... [ - C

FIG. 4. Ghost-gluon vertex.

as illustrated in Fig. 4. The momentum of the outgoing
ghost line is py,.

III. T GLUONS AND L GLUONS

We have seen that the propagator for quarks contains a
pole 1/(¢* +1i0) = 1/(¢*¢”gap + i0). On the other hand,
the propagator for ghosts contains a pole 1/(q - g +i0) =
1/(q%qPhs +10). This implies that in coordinate space
the propagator for quarks is singular on the light cone,
X*x*g,, = 0 while the propagator for ghosts is singular on
the surface x*x*h;,) = 0. On this surface, x* < 0. That is,
between interactions, ghosts propagate faster than the speed
of light. In a frame in which n = (1,0,0,0), we have
XxVhy! = v — X2, so the ghosts propagate with speed v
in this frame.

For gluons, the situation is a little more complicated.
With our preferred choice £ = 1, the gluon propagator,
Eq. (52), is

Dre(g) — ¢ T
& +i0 q-g+i0

1 T"q"
— 1+ )2 62
( +vz>q-51+10} (62)

This propagator contains products of poles 1/(g + i0) and
1/(q - g +i0). We can simplify it by writing it as a sum
of a propagator D4 (g) with only 1/(¢* + i0) poles and a
propagator D{*(q) with only 1/(q - § +i0) poles. We use
the projection tensor P%, Eq. (20) and obtain factors
q-P_-q=q,P”qs in denominators. We find

-

D*(q) = Dr'(q) + D (), (63)

where

074008-7
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Pprapvp qaq
D™ (g) — _ «dp |
“(q) {-amp+ et

¢ +io

1 Prag, PP

e A 2 e L (64)
q-g+10 (v°g-P_-q

Di¥(q) =

The components of D%’ (g) and D{”(q) in a frame in which
n = (1,0,0,0) are given in Egs. (10) and (14). The factor
g-P_-q=—g* appears in denominators. This quantity
is always negative or zero, so it does not need a +i0
prescription. To prove Eq. (64), one manipulates the
components of D**(g) in this frame.

The propagator D4’ (g) contains a pole 1/(g¢? + i0) but
no pole 1/(g - g + i0). It has another important property: it
is entirely transverse. That is

D% (q) = n, DY (q) = 0. (65)

Thus we can expand it according to Eq. (11),

1
DY (q) = —5— ) €(q.5)(q.9), (66)
q* —{—1052’2

using polarization vectors &“(q,s) that are real valued
functions of an index s € {1,2} and the part of ¢ that is
orthogonal to n, P**q,. The polarization vectors are
solutions of g - (g, s) = n - (g, s) = 0 that are orthogonal
to each other and normalized to ¢* = —1. These are the
same polarization vectors that one uses in Coulomb gauge.

The propagator D{”(q) contains a pole 1/(q - § + i0) but
no pole 1/(g* + i0). It has another important property: it is
entirely longitudinal:

£,(¢.5)D(q) = 0. (67)

The two terms in D{*(g) in Eq. (64) correspond to two
additional choices of polarization vectors e. In the first
term, n - € = 0 and ¢ is proportional to the part of ¢ that is
orthogonal to 7. In the second term, ¢ is proportional to n.

IV. EXCHANGE OF A SOFT GLUON

Consider a graph for an S-matrix element involving a
parton with momentum / with /> = 0 and another parton
with momentum k with k> = 0. These partons could be
either quarks, antiquarks, or T gluons. We suppose that
these are final state partons, so [° > 0 and k° > 0. The
partons exchange a virtual gluon with momentum ¢, so that
before the exchange the parton momenta are / — g and
k + g. The amplitude for this exchange is singular in the
limit that the exchanged gluon is soft, ¢ — 0. In this limit,
the part of the S matrix describing the exchange can be
approximated by the eikonal approximation,

—id
1% Lk,D"™ ().  (68)

eik __
A ~ (g-1—-1i0)(q - k +i0)

This multiplies a color factor T; - T.

If we were to calculate A®* using Feynman gauge, we
would find that in addition to the soft singularity, the
graph has singularities when ¢ is collinear to / or —k. In
the presence of these collinear singularities, the eikonal
approximation is not adequate. We would need to subtract
the collinear singularities from the amplitude and then add
them back using Ward identities to sum their contributions
over all ways of attaching the gluon to the rest of the graph.
This use of Ward identities to organize the infrared
singularities is fairly simple when only one gluon in a
loop can have a momentum that is soft or collinear with the
momentum of an external parton. It is not so simple when
more than one gluon can be collinear with an external
parton momentum or soft [17,18]. We will discuss this in
the simple case in Appendix A.

In this section, we examine this soft gluon exchange in
interpolating gauge with £ = 1. We analyze A% for T and
L gluon exchanges separately. We will see quite directly
that there is a soft singularity but no collinear singularities
for either T or L gluon exchange.

We examine A% in a reference frame in which
n=(1,0,0,0). We will want to integrate over ¢, so we
define

v LG 06 < o)A (69)
(2 4-2¢ .

)

Here we have inserted a factor 6(|g| < Q) with an arbitrary
value of Q to provide an ultraviolet cutoff because we have
assumed that ¢ is very small in order to obtain the eikonal
approximation, but in doing so we have created an artificial
UV divergence.

Consider first the exchange of a T gluon. We have

xq - . 1-Gkg

VTIMZS/WG(M <Q)[l'k— 7 ]

o —idna 1
(q-1-i0)(q-k+10) @ +i0°

(70)

We can now perform the ¢° integration by closing the
contour in one half plane or the other. There are two
contributions initially because 1/(g* +i0) has two poles.
When we combine the terms, we separate the integrand into
terms even and odd under § — —¢ and throw away the odd
part. There is a singular denominator that we separate into
even and odd parts using
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1 1
G-Il -G kK +i0 [G-1/1—3-k/ |k

The first term is odd, the second is even. After combining
the terms, the result is

27

, d3—2ezl'
Ve =—u2 [ =L o] < 0) =
T H /(27[)3_25 (|Q| Q) |é>|3

X [ﬁl . ljik - ﬁq . ﬁlﬁq . ﬁk]
{ 143, - %, - B
X = = = =
[1 = (g - 1y)?][1 = (i - 1ig)?]
2
— (i, -ty — U, - ﬁk)ﬁ}v (72)
1 1 - (uq : ul>2

where #; = 1/[I| is a unit vector in the direction of 1,
tiy = k/[k|, and iy = G/1q].

The integrand is singular in the soft limit |g| — 0.
This singularity will produce a pole 1/¢. The first term
in braces—the real term—is also singular in the collinear
limits i, — i, and i, — ;. These collinear singularities
would be strong enough to produce another 1/¢. However,
in these collinear limits, the factor [ii; - il — i, - i, - l]
vanishes. This eliminates the collinear poles.” This can-
cellation can be traced back to the fact that g - (g, s) = 0.

We have not at this point examined the possibility that
exchange of a T gluon with momentum ¢ between a parton
with momentum / and another parton could be singular
when ¢ is collinear to [ but is not soft, g ~ xI with a finite
coefficient x. In this case, we cannot use the eikonal
approximation. However, the amplitude is then propor-
tional to a factor J Me”(q, s), where J¥ is the current function
for the parton. In the collinear limit, we find that J,, & g,
so that we find a factor ¢ - &(q,s) = 0 that cancels the
collinear singularity. (See Appendix A.)

Consider next the exchange of an L gluon. We have,
again in the frame in which n = (1,0,0,0),

7-2112-:,]

9 d4—2e'q . .
VL=u WH(M < Q) |v*|l||k| - 7

m)
§ idra, 1
(q-1-10)(g -k +i0) v*(q- g +i0)

(73)

We perform the ¢° integration and collect the resulting
terms that are even under g — —q. This gives

S1f i, = U + iy, there is a factor 5522 in the denominator.
There is a factor i -6u, in the numerator. The left-over
integrable singularity cancels because iy - §ii, is an odd function
of &ii,,.

2ra;

d3—2€§
v =p* [ ——Lo(3
L H /(271’)3_26 (|Q| < Q) |ZI>|3

Just as with V', there is a soft singularity from |G| — O that
will produce a pole, 1/¢. In contrast to the case with Vr,
the numerator factor [v* — &, - i;ii, - i;] does not vanish in
the collinear limits i, — u, or i, — u;. However, again
in contrast to the case with Vo, as long as v?> > 1, the
denominator factor 1/[v* — (ii,, - i4;)?] is not singular when
ii, > u; and 1/[v* — (i, -ii)?] is not singular when
g = Ux. Thus, there are no collinear singularities that
need to be canceled. This nonappearance of collinear
singularities can be traced back to the fact that if / # 0,
g # 0, and v? > 0, it is kinematically not possible to have
P=0,(l-—q)>=0,and gq-§ =0 at the same time.

We can perform the |g| integration in Egs. (72) and (74)
to give an infrared (IR) pole:

N
u

o [ddl old<0) 1o
i [ e = =3 (14 0). (19

We can then perform integrations over the angles of g with
€ = 0. This gives us the infrared pole in V = V1 + V|, for
an exchange between partons / and k:

> =7 .7
Vik= &—{—bg(M) —in0(p; - px > 0)
€ 2

tlog( =ty o=ty
gv—l—l v

The —iz contribution in Eq. (76) appears in the case of a
gluon exchange between two final state partons and also in
the case of a gluon exchange between two initial state
partons. In a cross section, these exchanges cancel (at order
a,) between exchanges in the ket amplitude and in the
conjugate bra amplitude. There is no iz contribution arising
from an exchange between an initial state parton and a final
state parton. For this reason, we have supplied a factor to
indicate that the —iz contribution is present only when
p; - Pr > 0. We can rewrite this in an instructive form,
including the —iz term, as

Ole) } (76)
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ag 2 —2p;- pr +10 v—1
Vi=-—-1<— T 1
I 471'6{ 0g< 4p;-npy-n +log v+1

vl +(’)(€)}. (77)

The log of v — 1 in Eq. (77) is an indication that if we
were to choose Feynman gauge, » = 1, a collinear pole
would appear. With v — 1 > 0 we have

ép — (=1 =log(v—1)+Oe).  (78)

But if we take (v — 1) — 0 with e fixed with ¢ < 0, we have
(v—=1)"¢ - 0. Then

ép—(v—l)—e]_)é. (79)

The effect of the v and n dependent factors in V can be
better understood by considering the role of color in the
exchange. We have calculated the singular contribution to
the S matrix from exchanging a soft gluon between partons
with labels [ and k. This exchange comes with a color factor
T,-T,=T¢T¢, where T{ is the color generator matrix for
coupling a gluon with color a to the parton line with index
[. Summing over [/ and k, the total contribution is

exch_ZZZVIkTZ Ty + O(e). (80)

I k#l

Using Eq. (77) and adding and subtracting a logarithm of
the renormalization scale, this is

exch_ ZZ I’ Tk__{_l g<M>

T k2l W

(i 37) 3% (a7 a7)
——log(i ——log| ——
27" \Mp-n)?) 2T \Mpe - n)?

+ 0(6)}. (81)

Color conservation gives us  , Ty = >, T; = 0 when the
sums include all index values, including k = [. Thus

2p;- pr +10
S =~ 11, 5 5 (7)
Tkl H

a; S, [v—1
T2 8Z¢€ —
+§l:l47z€{ v

+log <ﬁ) } +O(e). (82)

The factor T2 T, T, is either Cg or C, depending on
whether parton [ is a quark or a gluon. We will combine this
result with the results from self-energy graphs in Sec. IX.

V. BRST SYMMETRY

The definition of interpolating gauge depends on two
gauge parameters, which we can take to be » and a. (We
often use parameters v and & = av?, but in this section it is
more convenient to use v and a.) How do Green functions
depend on » and a? To find out, we can use BRST
symmetry [25-27]. We will also use BRST symmetry to
derive the form of a standard Ward identity in the case of
interpolating gauge. This analysis is complementary to the
analysis of BRST symmetry in Refs. [22,28].

A. The fields and the Lagrangian

For the purposes of this section, we replace the ghost
fields #,(x) and 7,(x) by fields c¢,(x) and ¢,(x) with a
slightly different normalization:

ca(x) = 1,4(x),
Ca(x) = Vai,(x). (83)

We seek to find how Green functions depend on the
gauge parameters » and a. The dependence of the
Lagrangian on the gauge parameters resides in the gauge
fixing term Lgg(x), Eq. (47), and the ghost term L, (x),
Eq. (48), in the Lagrangian. We can write these terms in a
compact form using the matrix

1
HYy = —=Hhh. 84
7 (54)

The gauge dependent parts of the Lagrangian are

Ler(x) =
‘cghost (x) =

3 [0, AL [0, AL o).
e (OHIDA e (). (89)

Now we can define derivatives of H with respect to the
parameters that we use to define the gauge. Let us name the
parameters r;, i = 1,...,6, according to

ry =a,
ry =0,
r/;+3 = n/}, ﬁ: 0, ,3 (86)

Then we define a matrix X by

O H(r) = X" (). (87)

r

Concretely, this is
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0 1
O xn L
da Ho=X10 = 2a/% Fea
d 2
= xt =2,
ov 2a 113\/511 a
[
on? 1o = Xpsa
1 1 p
:—% 1‘; (Gpna + 1" gap).  (88)

The derivatives of the Lagrangian are

oL
5= —[H40,A%(x)][X* ;0,A% ()]

—Cu(x)X% 0,D(A)%.c.(x). (89)

La~p

B. The BRST transformation

The theory in interpolating gauge has an exact symmetry
under a BRST transformation [25-27]. For each field
¢ e{A,y,y,c,c}, the BRST transformation is

¢ - ¢ + 65brsl¢’ (90)

where 6 is a variable that anticommutes with itself and
with y((c), ¥ (x), c,(x) and ¢,(x). If we apply a BRST
transformation to a product of fields, we use

D1y by = Prpy - Py A O (P12 -+~ ), (1)

where

95brst(¢l¢2 T ¢n) = 95brst(¢1)¢2 ey
+ ¢196brst(¢2) o '¢n +oe
+ ¢l¢2 o '95brst(¢n)~ (92)

Then

5brst(¢l¢2 o ¢n) = 6brst(¢l)¢2 T ¢n
+ (_1)n2¢16brst(¢2) o '¢n + e
+ (_1)n,,¢1¢2 o '5brst(¢n>‘ (93)

The signs are (—1)" where n; is the number of fields v, i,
¢ and ¢ that are to the left of the transformed field ¢;.

With this notation, the BRST transformations for the
individual fields are

SbrstAa(x) = Diac(A(x))c.(x)
= 6,0 ¢, (x) + gfabcAl[; (x)cc(x),

Sorstt 7 (X) = igeq (X)tap s (x),

SorsW p(x) = igWrp(x)cq(x)1,,

S Ca(x) = =3 Fanecs(x)ee ().

SprstCa(x) = —H40,A%(x). (94)

C. Dependence of Green functions
on the gauge parameters

Consider a Green function in interpolating gauge,

G = (AL (x)w (X2 s(x3) - - -)
—N/Dl//DI/?DADnDﬁeiS
s Al G (e )iy ) 95)

We have indicated a gluon field, a quark field, and an
antiquark field, but there could be more of these fields.
Ghost and antighost fields are not included. The Green
function is given as a functional integral over the quark,
antiquark, gluon, ghost and antighost fields, weighted by
exp(iS), where S is the action. The normalization N
sets (1) = 1.

The action depends on the gauge parameters r;, Eq. (86).
Accounting for a possible variation of the normalization
factor, the derivative of the Green function with respect to
one of the r; is

20— ([ i s g o))

Ori
oL (x)
ari '

= (AG] (e )y (x2) s (x3) - - '></dXi
(96)
Here 0L(x)/0dr; is given by Eq. (89).

We can use BRST invariance to find dG/dr;. We note
that dL(x)/0r; is the BRST variation of another quantity:

agEX) = 5brstRi (X), (97)
where
Ri(x) = ¢, (X)X’il,aaﬂAZ(x)‘ (98)

We consider the BRST variation of
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Go=i / dx(Ry ()AL (1 )y () () ). (99)

Since Green functions are invariant under BRST trans-
formations, we have

0= i/dx<a§(X) Aty (x1)yr (32 p(x3) - >

—i / dx(R;(x) [BprseAl; (x1)]w p (x2) W p(x3) - - -)
—i / dx(R;(x) A%} (x1) [Borsewr p (x2) [0 p(x3) - - )
+1i / dX<R,(X)AZl (xl)l//f(XZ)[ébrstl/_/f(x3)] o > +oee

(100)

This also gives us

</ dxiagij)> = 0.

Thus the second term in Eq. (96), describing a possible shift
in the normalization, vanishes.

(101)

FIG. 5.

This gives us

air,- (AL (x0 )y (0 (x3) -+ )

- / (R () Do (A ey ) 1o (e ()i () =)
g / (R ()AL (0 ()t 1 () (x3) )

ny / (R ()AL (e Yy o) 3 1 (53] )

4o, (102)

This equation is illustrated in Fig. 5. The factors R;(x),
written in terms of X% and @ and the antighost field ﬁ(x), are
R;(x) = a(x)VaX; ,0,A%(x). (103)

These operators destroy a gluon and create a ghost with
the same color index or else destroy an antighost and
create a gluon. We need these operators integrated over x,
so in momentum space the operators [ d*xR;(x) conserve
momentum. In momentum space, if the momentum of the
gluon entering the R vertex is £ and the gluon polarization

is a, then the momentum of the ghost leaving the vertex is
also ¢ and the value of the vertex is

Ri.a(f) = _ifﬂd \/EX,I:‘,G’

(104)

Identity for the derivative of a full Green function with respect to gauge parameter r;, Eq. (102). The shaded circle represents a

full Green function for gluon, quark, and antiquark fields. The rule for the square two-point vertex is given in Eq. (104). The lines with
dots at their ends are propagators. In the first term on the right-hand side of the identity, the open arrow on the ghost propagator
represents a factor of p/'. The rules for the vertices represented by open circles are given in Egs. (105), (106), and (108).
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as illustrated by the square two-point vertices in Fig. 5. On
the right-hand side of Eq. (102), there is a contribution for
each external parton.

A quark line with momentum p, in the original Green
function is replaced with a vertex at which a quark line with
momentum p, — k meets a ghost with momentum k and
color a. The vertex is simply

Vq<P2’ P2 — k9 ky a) - _gta (105)

There is no propagator for the quark after this vertex.

An antiquark line with momentum p; in the original
Green function is replaced with a vertex at which an
antiquark line with momentum p; — k meets a ghost with
momentum k and color a. The vertex is

Va(p3. p3 — k. k,a) = +gt,, (106)
with no subsequent antiquark propagator.

For a gluon line with momentum p,, polarization u;,
and color a; in the original graph, there are two terms,
according to the two terms in

iDﬁiC(A(xl))r]c(xl) = iaﬂlnal (xl) + igfa]bcAl[;I (xl)rlc(xl)'
(107)

In the first term, the gluon is simply replaced by a ghost
with the same color index and we multiply by p/'. In the
second term, the gluon is replaced with a vertex at which a
gluon line with momentum p; — k, polarization y;, and
color b meets a ghost with momentum k and color ¢. The
vertex is

Vo(p1.p1 —k.kiay.b.c) =igfa pe (108)

with no subsequent propagator.

D. Another Ward identity

We can use BRST invariance to derive another identity
for Green functions. This identity is quite standard, except
that with interpolating gauge the standard d,A%(x) is

replaced by 9,A%(x). We start with the Green function

Go = —(71c(x)Al} (x1)yp (x2)@ (x3) -- ). (109)

The BRST variation of 7.(x) is

ébrslﬁc (x) = - ; ayA,g (x) .

(110)

The BRST variation of G, vanishes, so

[0, AR A G ()i () )
= (e (0D (A Cen) e (e e )+
— g0 (1)) (32) ) (3) )
+ (71 (%) AG) (e )y (02) [ (3 )ma (x3)24) - +) +

(111)

In this identity, we consider a Green function with gluon,
quark, and antiquark lines as in the previous subsection
and with one additional gluon line with polarization y and
color index c¢ that carries momentum £ into the graph. We

multiply the Green function by (1/a)¢,. This gives a sum
of Green functions in which the gluon is replaced by a
ghost with momentum # and color index c. In each of these
Green functions, the ghost line interacts with one of the
external parton lines just as in the identity of the previous
subsection. This identity is depicted in Fig. 6.

In a covariant gauge, with v = 1, £ = a, the additional
gluon line is multiplied by ¢, instead of £,. Then this is an
identity that is described in many field theory text-
books [24].

E. Dependence of the LSZ factors on the r;

In the following subsection, we will examine how the
S matrix depends on the parameters r; defined in Eq. (86).
As a step in this endeavor, we first consider the factors R,
and R, that appear in the LSZ reduction formula that relates
the S matrix to Green functions.

The LSZ factor for gluons is defined from the full gluon
propagator 5,,G*(p). Here u, v are the Lorentz indices for
the two ends of the gluon line and a, b are the color indices.
We multiply G by polarization vectors €,(p, s) and &,(p. s)
for the transversely polarized gluons, with ¢ = —1. The
polarization vectors are functions of the part of the
momentum p that is orthogonal to n, as discussed in
Sec. IIl. The LSZ factor R, is defined by

iR,(p)
p?+i0°

e,(p,s)G"(p)e,(p,s) ~ (112)

We start with p? # 0 but then we take the limit p? — 0 in
Eq. (112). We here use A ~ B to mean that A/B — 1 in the
limit p*> — 0. Thus iR,(p) is the residue of the pole at
p*> = 0. Even with p? = 0, R, can depend on (p - n)*. For
this reason, the notation indicates that R, depends on p.

In Eq. (112), we work in the renormalized theory in
4 — 2¢ dimensions, with € < 0 to control integrations that
are otherwise divergent in the infrared. When we take e — 0,
infrared poles 1/¢e" appear, as we will see in Sec. VIL

We rewrite Eq. (112) in the form

ip’Ry(p) ~ peu(p,5)G* (p)e,(p,s)p*>.  (113)
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M1, Q1

Q|~:I

FIG. 6.

Identity (111) for a Green function in which one external gluon line carrying momentum ¢ and polarization y is multiplied

by 7 ./ a. On the right-hand side of the identity, the gluon line is replaced by a ghost line. The other graphical notations are the same

as in Fig. 5.

Here the factors of p? on the right-hand side of the equation
are proportional to inverse tree-level propagators for T
gluons.

In order to study the dependence of R, on the gauge
parameters, we first investigate the structure of the full
gluon propagator G**. In Sec. III, we decomposed the tree-
level gluon propagator into separate contributions for T
gluons and L gluons:

D*(p) = DY (p) + D" (p). (114)
with
Py (p)
DY (p) = "=,
r(p) p* +i0
P (p)
D¥(p) = —L 115
L (p) P p+i0 (115)

The numerator functions are

PE(p) =Y e (p.5)e"(p,s)

s=1,2
(p" = p-nn")(p* = p-nn*)
:—gﬂy+nﬂny_ ,
(p-n)*—p?
# —p-nn')(p* —p-nn")
Py — g 4 PP
L p) = = = 7]
-1 iV
el A (116)
v> p-p+i0

We can also decompose the gluon self-energy into

¥ (p) = 1y’ (p) + {7 (p), (117)
where IT(p) has the structure
7' (p) = Pr'(p)zr(p) (118)

and where I1¥*(p) can be decomposed into terms propor-
tional to p*p*, n*n* and p*n* + n* p*. With this definition,
I1¥*(p) does not contain any terms proportional to g*.
Those terms belong in I (p).

Now, the full propagator obeys the Dyson equation

GU(p) = Di(p) + Ga(p)Ia(p)Di(p).  (119)

This has the perturbative solution, with dots denoting
contractions in the Lorentz indices,

G=D+D-M-D+D-TM-D-T-D+---. (120)

In each term, we substitute D = Dr+ D; and Il =
IT; + IT;,. We note that

Py (p)p, = PP (p) =
Pl{“y(p)nu = nqu"ﬂ(p) =

’

0
0. (121)

so that
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DT'HL:HL'DTZO,
HT'DL:DL'HT:O' (122)
Because of this, the structure of the gluon propagator
simplifies:

G (p) = G¥(p) + GI*(p). (123)

with

Gr=Dt+Dy-1ly Dy + Dy -y - Dy -y - Dy + - - -,
GL:DL+DL'HL‘DL+DL‘HL'DL'HL‘DL+"'.
(124)

The propagator G4’ (p) for T gluons has poles at p?> = 0 but
no poles at p - p = 0. The propagator G} (p) for L gluons,
expanded perturbatively, has poles at p - p = 0 but no poles
at p> = 0. In Eq. (113), there is a factor p? and we take the
limit p* — 0. Thus G%’(p) contributes to R, but G{*(p)
does not.

The residue R, defined in Eq. (113) depends on the
gauge parameters r; defined in Eq. (86). To find its
derivative with respect to r;, we can differentiate G**(p)
with respect to r;. Four of the r; are the components of the
vector n that defines the preferred reference frame used to
specify the gauge. For these parameters, we should take
note that the polarization vectors &(p, s) depend on n since
they obey n - ¢(p, s) = 0. However, this dependence does
not matter in Eq. (113). To see why, differentiate p - ¢ =0
and n - & = 0 to obtain

oe*(p, s)
— =7,
Pr e
0¥ (p,
nb%:_g(z(p’s) (125)
We can achieve this with
de*(p,s)  p-np*—p’n*
=— ,8). 126
ana (p . n)2 _ p2 sa(p S) ( )

More generally, with n — n’ = n + 6n, one can transform &
to ¢ = e + e using Eq. (126), then rotate ¢ in the plane
orthogonal to p and n’ by an angle 6¢. We define the
transform of ¢ not to include this extra rotation.

Now suppose that we differentiate ¢,(p, s) in Eq. (113)
with respect to n,. In any graph that contributes to G (p)

in Eq. (113), there is a factor D/%”(p) that multiplies
€,(p,s). However,

9e,(p. 5)

pu —
D (p) 2L~ o (127)

because D2’ (p)p, = DX (p)n, = 0. We conclude that the
dependence on n of €,(p. s) and ¢,(p, s) in Eq. (113) does
not affect the dependence of R, on n.

This analysis shows that the derivative of R,(p) with
respect to any of the gauge parameters r; is given by

OR,(p)
0)’,-

9G"(p)
ari

ip? (128)

~ p*e,(p.s) &,(p.s)p”.

To obtain dG*(p)/or; we use the identity (102). There are
now contributions from both ends of the gluon propagator.
For each end, there is a term in dG**(p)/dr; represented
as the first term in Fig. 5. This term is proportional to p#
for the left end and p* for the right end. This term does
not contribute to Eq. (128) because p - &(p,s) = 0. The
remaining contribution for the right end has a vertex that
combines a gluon with momentum p — k and Lorentz index
v with a ghost with momentum k, with no attached gluon
propagator. The remaining contribution for the left end has
a vertex that combines a gluon with momentum —p — k
coming out of the graph and Lorentz index u with a ghost
with momentum k, with no attached gluon propagator. We
can write these contributions as

, ORy(p)

ari

ip ~ p*e,(p.5)Ga(p)T™(p)e,(p.s)p*
+ p?e,(p, s)I™(=p)Gy(p)e,(p. s)p*.
(129)

Here I'(p) contains the right-hand gluon-ghost-gluon
vertex. It is one particle irreducible: it has no cut that cuts a
single gluon line. Thus I'*( p) must contain the two particle
gluon-ghost vertex R, Eq. (104). There is still at least a tree-
level gluon propagator on the left. Summing over graphs,
there is a complete gluon propagator G,(p) on the left.
Similarly I™*(—p) contains the left-hand gluon-ghost-
gluon vertex. This equation is illustrated in Fig. 7.

The Lorentz structure of I' can be simplified using
invariance under Lorentz transformations that leave p
and n unchanged:

I(ple,(p,s) = e*(p,s)Tg(p). (130)

Here I'y(p) is a scalar function of p? and (p -n)?. This
gives us
) o ip? G r
TN —1p 5;4(19’3) (p)e,(p.s) g(P)
—ip%e,(p.5)G" (p)e.(p.s)ly(p).  (131)

Now we can take the p? — 0 limit, using the definition
Eq. (112). This gives
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p p
i? ORs(p) 0

87“2‘ - ah‘

FIG. 7. Illustration of Eq. (129). The gluon lines terminated with “[ or | stand for pe(p, s). These factors do not vanish as long as

p*#0.

(132)

We now turn to the LSZ factor for quarks, which is
defined from the full propagator &;,G* (p) for quarks. Here
a, p are the Dirac indices for the two ends of the quark line
and i, j are the color indices. In our analysis below, we do
not write Dirac indices explicitly. The LSZ residue factor
R, is defined by

ip

G(p) Nqu(P) (133)

in the limit p? — 0.

Our analysis will make use of Dirac spinors u(p,s).
Since we want to take a limit p> — 0 with p? # 0 to start
with, we should be careful with the definition. We define a
lightlike momentum vector p, using a timelike reference
vector ng, which is distinct from the gauge fixing vector n:

(14 p)p?

= ~— 7 ng,, 134
p=po+ 20, (134)

with
p%zO. (135)

Then
- 1. (136)

2
ﬂ:
1+ \/1 —pzn(zl/(p'nq)2

That is, f=O(p?) as p>—0. We take u(p,s)=
u(po(p.ng).s) to be the usual solutions of the massless
Dirac equation for momentum py:

pou(p.s) =0,

iw(p.s)ru(p.s) = 2pj. (137)

With this definition,

a(p.s)pu(p.s) = (1-p)p*. (138)

We can express the relation (133) between G(p) and
Ry(p) using spinors:

iRy(p)
p*+i0
= quﬁ(p’ S)ﬂu(p, S)
~ qupz.

iu(p,s)pG(p)pu(p,s) ~ a(p,s)pppu(p.s)

(139)
Then our definition of the LSZ factor is

ip*Rq(p) ~ a(p.s)pG(p)pu(p.s). (140)

We can also determine how R, depends on the gauge
parameters r;. We start with

oG i OR
arl’ P +10 ari
Then the steps in Eq. (139) give us
. ,0R4(p) oG (p
ip?— =~ a(p.s)p 05- )ﬂu(p,S)- (142)

To obtain 0G(p)/dr; we use the identity (102). There are
contributions from both ends of the quark propagator. The
contribution for the right end has a vertex that combines a
quark with momentum p — k and Lorentz index # with a
ghost with momentum &, with no attached gluon propa-
gator. The contribution for the left end has a vertex that
combines an incoming quark with momentum p + k and
Lorentz index a with a ghost that supplies momentum £,
with no attached quark propagator. We can write these
contributions as
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L OR(p) 0 P P

87“1‘ 87"1‘

FIG. 8.

Tustration of Eq. (143). The incoming quark line terminated with a “[” stands for pu(p, s) and the outgoing terminated quark

line stands for #(p, s)p. These factors do not vanish as long as p? # 0.

PlL) o) PG (P) + -G Pl ),

(143)

This equation is illustrated in Fig. 8.

The Dirac structure of I can be specified. We note that I"
contains an even number of y matrices and is a function of
p and n. It thus has the form

/

Fq
F=Tyl+ 3000, (144)

Here I'y(p) and I'y(p) are a scalar functions of p and n.
Now, using gou(p,s) =0,

Tpu(p.s) =Tqpu(p.s) +Topou(p.s) =Tgpu(p.s). (145)

Similarly,
i(p,s)pl = Fqﬁ(p, s)p. (146)
Now Egq. (143) becomes
L) (. oG putp. )28, (14)
Using Eq. (140) then gives
Zolb) — ary () (p) (145)

The same analysis applies to antiquarks, with the same
function I'y.

F. Dependence of the S matrix on the r;

We have seen in Sec. VC how a Green function for
gluons, quarks, and antiquarks depends on the gauge

parameters r; defined in Eq. (86). We can use this result
to find how the S matrix depends on the r;. Let us call the
Green function in momentum space G(py, uy, a; pa, @, i}
P3, B3, j3;...). Here the gluon with momentum p; has
vector index y; and color 8 index a;; the quark with
momentum p, has Dirac index a, and color 3 index i,; the
antiquark with momentum p5 has Dirac index /3 and color
3 index j;. There can be more partons, indicted by the
ellipsis. All momenta are defined to be outgoing.

From the Green function, we can construct the S matrix
S(p1,S1,ai; P2, 2,625 P3, 53, j35 ...). We start with off-
shell partons with momenta p;, but we will then take a
limit pjz — 0. The variables s; label the transverse polar-
izations of the gluons or the spins of the quarks or anti-
quarks. The S matrix is related to the Green function by

S(p1.S1.a1; Pa. 82,023 P3. 83, j33 )
= G(p1. 11, a1 P2, Ao, 13 P3P, Jizs o)
« (ip})ey, (p1.51) g, (P2. $2)(—ip72)
Ry(p1) Ry(p2)
(—ip3) v, (3. 53) y
Rq(P3)

X (149)

This definition applies using the renormalized Green
function G and the factors R in 4 — 2¢ dimensions, with
infrared divergences regulated by keeping € < 0, as in
Eq. (112). For quarks and antiquarks, we have multiplied
by an inverse tree-level propagator, —ip. For each parton,
we have multiplied by the appropriate polarization vector or
spinor, with an implied sum over the polarization or spinor
index. (This is for final state quarks and antiquarks. The
choice is modified for initial state antiquarks or quarks.)
The polarization vectors and spinors are functions of the
parts of the momenta p, p,, and p5 that are orthogonal to
n, as in Sec. V E. Thus it,, (ps, $2)#, and p30,,(ps3, 53) do
not vanish as long as p3 and p3 are not zero.
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In G, the propagator for T gluons, Gt [Eq. (124)]
multiplies &, (p;.s;). The propagator for L gluons, Gy,
does not appear because it lacks poles 1/p?. We will
differentiate S with respect to the gauge parameters r;.
Four of these parameters are the components of n. The
polarization vector &, (p;,s;) depends on n. However, the
derivative of €, (py, s) with respect to n, gives zero when
contracted with Gr, as we saw in Eq. (127). Thus we can
treat &, (py.s;) as if it were independent of all of the r;.
|

In Eq. (149), we have started with the full Green function
and divided by a factor v/R for each external leg. An
alternative formulation, which we use later in this paper, is to
divide by R for each external leg, giving the Green function
amputated on the external legs, then to multiply by v/R.

We would now like to see how the S matrix depends on
the gauge parameters. We differentiate S with respect to the
gauge parameter r;. Here we have to differentiate both G
and each factor of 1/+/R. We get

ari a_r, Rg(p

95 _ [GG (ipDey, (p1.51) ﬁaz(va $2)(=ip2) (=ip3) v, (p3, 53)
q p2

r X]

—G{(lp 1w (P1551) g, (P2, 52)(=i2) (=ip3) v, (P3, s 3) ]

V Rg (1)

R, (p) 1

V q(l?z)

OR,(p2) 1

V Rq(p3

1
X
|:2Rg (P 1 ) arl

Let us examine the term in Eq. (150) proportional to
0G/0r;. There is a term in dG/0r;, represented as the first
term in Fig. 5, which is proportional to p/'. This term does
not contribute to Eq. (150) because p; - &(p;,s;) = 0.

In the next term in 0G/dr;, a gluon with momentum

—k joins a ghost with momentum k at a vertex V,,
Eq. (108). There is no subsequent propagator with a factor
1/p?. Since we multiply by p? in Eq. (150), this con-
tribution vanishes when we take p? — 0 for many of the
graphs that contribute to 0G/0r;. However, there are some
graphs in which a gluon line carrying momentum p; enters
a one-particle irreducible subgraph I' that involves the
special gluon-ghost mixing vertex together with other
interactions and finally creates a gluon and a ghost that
combine in the vertex V. This single gluon propagator has
a factor 1/p? that cancels the factor p? to give us a finite
contribution when p? — 0. After analyzing the structure
of the one-particle-irreducible graphs as in Sec. VE, we
obtain a contribution of the form

2Rq (pZ)

IRy(p3) +] (150)

+
or; 2R,(p3) Or

I
p>/p3. Thus this contribution vanishes when we take
p5> — 0 for many graphs. However, there are some graphs
in which a quark line carrying momentum p, enters a one-
particle-irreducible subgraph that involves the special
gluon-ghost mixing vertex together with other interactions
and finally creates a quark and a ghost that combine in the
vertex V. This single gluon propagator has a factor z, / 12
that gives us a finite contribution when p3 — 0. After
analyzing the structure of the one-particle-irreducible
graphs as in Sec. V E, we obtain a contribution of the form

g, (P2, 52)(=ip) r

G .
Rq(])z) !

(152)

In the next term in dG/dr;, an antiquark with momentum
p3 — k joins a ghost with momentum k at a vertex Vg,
Eq. (106). The surviving contributions come from one-
particle-irreducible subgraphs coupled to a full Green
function. As in the quark case, these give a contribution

)
Gilp‘g’;(fl’jl)rg. (151)
g pl —i 5
G( lﬂ:;)UﬂS(p:; S3) Fq. (153)
In the next term in dG/0dr;, a quark with momentum Rq(p 3)
—k joins a ghost with momentum k at a vertex V,
Eq. (105). There is no subsequent propagator with a factor Summing these contributions, we have
|
95 _ G[(lpl) 10 (P1:51) e, (P2, 52) (=ip2) (=i73) vg, (P3. 3)
or; VR (p1) Ry(p2) VRq(P3)
1 OR OR 1 OR
% [Fg_ g(pl) _ q(Pz) .- q(p3) (154)
2R, (p1)  Oor; 2Ry(p>)  or; 2Ry(p3)  or;
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In Sec. VE, we found the derivatives of R, and R, with
respect to r;:

1 0R,
&€ 2R, or;’
1 0R,

=——1 155

d 2Rq ari ( )

Inserting this into Eq. (154), we find that the S matrix is
invariant under changes of the gauge parameters,

oS

2o, 1
3. =0 (156)

VI. RENORMALIZATION

Reference [22] provided an argument, based on BRST
invariance, that QCD in interpolating gauge can be renor-
malized. In this section, we calculate the one-loop con-
tributions to the renormalization factors Z.

To renormalize the theory in interpolating gauge, we
need to renormalize the coupling g, the gauge parameters v
and £, and the field strengths. In each case, we relate a
“bare” quantity, indicated with a subscript B, to a corre-
sponding renormalized quantity by means of a factor Z or
\/Z In the case of the gluon field, \/Z is a matrix. Each of
the Z factors depend on a and the gauge parameters v> and
£. We expand the Z factors in powers of a,, beginning with
1 or the unit matrix at order a?. In this section, we examine
the a! contributions.

The field strength renormalizations take the form

Ai(x)p = (274 (%),

Wo(X)p = 2 wa(x),

Fa(X)p = Zy/ 24 (x).

Na(X)p = 2 *na(x),

Ma(X) = 2y *71(x). (157)

The field strength renormalization factor for the gluon field
needs to be a Lorentz tensor instead of just a scalar because
the definition of the gauge uses a fixed vector n. The
coupling and gauge parameters are renormalized as

g8 = Z,9.
0123 = Zvvz,
$p = Z:£. (158)

A. The renormalization factors

We begin with a statement of the results for the
renormalization factors Z. In the following subsection,
we exhibit the calculation that leads to these results.

At order a, the renormalization factor for the coupling is
the same as in a covariant gauge,

a5 Se
Z,=1 —4—— 7o+ O(2), (159)
where
11 2
]/g = ECA —gTRnf (160)

and S, is the standard coefficient of 1/e for MS renorm-
alization,

(161)
The quark field renormalization is

- A Se (1} - 1)2 5

The ghost field renormalization is

ag S, [160> +v+1 &
2= 1+ 5 ey 2| G+ 0

163
dr e | 12v(v+1) 4o (163)

The components of A%(x) along n and orthogonal to n
renormalize differently. We find

v S SE ~
Zi = g + 2= lea(v. g + (0. O] + O(a?).

(164)
where the coefficients are
2203 + 3502 +200 -1 ¢ 4
5 = ——|Cx—5T [y
ca(v.£) 6v(v + 1) 20| A T3 R
4pQv+1)
Ca(v,E) = ———-Ca. 165
CA(U 5) 3(U+ 1)2 A ( )

Using the projections P, along n and orthogonal to n
defined in Eq. (20), Z%" is

S
2 =g o [(cA(v &) + v é))P’f

T (ca(0:8) + 240, aw} o). (166)
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The renormalization factors for the gauge parameters are
determined from the renormalization of the gauge field:

ag S.v? —1 _
Z,=1= = El0.8) + 0(a).
as S, v+ 1
Z‘::l—Fﬁ? CA('U,é:)‘FWCA(U’g) +O(ag)

(167)

B. Determination of the renormalization factors

The renormalization factors Z at order a, can be
determined by one-loop calculations. We illustrate this
with the gluon propagator. Its renormalization is more
complicated than in Feynman gauge because we are using a
gauge condition that breaks manifest Lorentz invariance.

The inverse gluon propagator is —il**(p) with

D (p) = % (0.6:p) —TW(p).  (168)
Here IT"*(p) is the gluon self-energy tensor, which we
calculate at order a, using the graphs in Fig. 9. The tree-
level inverse gluon propagator,

2
Diee(v.8:p) = =g p* + p'p* = %ﬁ”ﬁ”,
depends on the gauge parameters v and & through the factor
v?/& and through the presence of v in the definition (22)
of p* = hp*.
The parameters v~ and £ are renormalized and, in
addition, I['** is renormalized according to

(169)

2

D = (2,216 (2,7, (170)
where
% (p) = Thee (v8, g3 p) — E (p). (171)

We calculate ITg” in the bare theory from the diagrams in
Fig. 9. However, in this calculation we substitute the
renormalized versions of g, 2, and & for their bare versions
since IT" is already of order a. Then ITg” thus calculated
will contain ultraviolet (UV) poles 1/e. The renormaliza-
tion program will remove these poles.

We write [Zi/ *]# to first order in the form
1/2 1 1 5
(ZiV = g% + 562,19 + 382 + O@). (172)

(The subscript I on 6Z; refers to the fact that the metric
tensor acts as the identity operator on vectors: ¢, p* = p*.)

L <p7
q
pP—q
VS
p p
<— <
L
q

FIG. 9. Gluon self-energy. There are four graphs: a gluon loop,
a gluon tadpole, a ghost loop, and a quark loop.

After using Eq. (23), we find the following for the
counterterms from Z:

I =1% — (6Z;9" + 6Z,h* ) p* + 6Z; p* p*

€+1 >4 7 ot v
+7=—0Z,(p*p* + p'p¥)
2£
2 2
1
: %5ZI+U +

8Zy | p'p* + O(ax). (173)

There are also counterterms from the renormalization of
v? and &

vy = 0> + 6Z,0* + O(ay),
&g = E+6Z:L+ Oay). (174)

When we account for the direct appearance of v and & in
Eq. (169) and the appearance of v? in p* = hlp?, these
relations give us
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F’fgy = Fﬁge(ﬂBfB;P) - H’év

2
v " 1 L
=e(v. & p) =TI + ?2—521}(17"17” + p'pY)
2
”5 {(sz~§ v+l oz }p"f?” +O(ad). (175)

We substitute Iy from Eq. (175) into Eq. (173) for I'*.
Then T" = T, — [1* is

Dhee (0, & p) — TI#

= Tiee(v, & p) — g = 8Z,(g* p* — p*p*) — 8Z,h* p?
E+1 v? - -
257 1 (ptpY + prpr

+{2§ e o | (PFPY + P pY)
v? v +1 v? ¥+ 1
Yz, + T sz, Y57, 4 —5Zv PHpY
[5 e £t T

+ O(a?). (176)

We note that the terms [, (v, & p) cancel in Eq. (176). The
renormalized one-loop gluon self-energy, IT#¥, should not
have ultraviolet poles. We calculate the ultraviolet poles in
I’ (p) at order a from the diagrams in Fig. 9, giving

S
H’];y(p) = Z_]s[:e {—CA(U,f)[ng”” - pﬂp”] — EA(U,S)h’”’pz
+ w [p'p" + i?”p”]}(l + O(e)) + 0(a?),

(177)

where cy(v,&) and ¢4(v,&) are given in Eq. (165).
Evidently, the pole proportional to p?g" — ptp* is
removed if we choose

a S,
6Z; = ——cx(v,8).

178
dr € ( )

The pole proportional to #**p? is removed if we choose

s S€~

6Z), _E:CA(U £). (179)

Then the pole proportional to p*p* + p*p* is removed if
we choose

5zvz—ﬁs—”

dr e 212 Y £)-

(180)

There is no pole proportional to p* p*. This can be arranged
if we choose

a Se 2—|—1
ca(v,§) +

0Z¢ = 4r €

ea(v, o). (181)

This calculation gives the order o
Eqgs. (164) and (167).

The result in Eq. (162) for the quark field renormaliza-
tion can be derived from the quark self-energy, Fig. 10, as
outlined in Appendix D 1. The result in Eq. (163) for the
ghost field renormalization can be derived from the ghost
self-energy, Fig. 11, as outlined in Appendix D 2. The
result in Eq. (159) for the renormalization of a, can be
determined by calculating the one-loop correction to the
quark-gluon vertex, Fig. 12, as outlined in Appendix D 3.

These calculations determine all of the renormalization
factors Z. As a check on these calculations, in Appendix D 4
we calculate the 1/¢ poles in the one-loop three-gluon vertex
function and verify that the factors Z/} and Z,, provide the
needed counterterms to cancel these poles.

results given in

FIG. 11.

Ghost self-energy.

FIG. 12. Quark-gluon vertex at one loop. There are two graphs.
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VII. THE GLUON SELF-ENERGY

In Appendix B, we use the diagrams in Fig. 9 to calculate
the one-loop gluon self-energy I1*(p) with MS renorm-
alization with & = 1 and p? < 0. We express the unrenor-
malized ITj(p) as an integral over Feynman parameters
and as an integral in d = 4 — 2¢ dimensions over the loop
momentum. The integral over the loop momentum can then
be performed analytically. This gives terms with UV poles
1/e. The pole terms are reported in Eq. (177). [In Eq. (177),
we have added a calculation of the UV poles for & # 1.] The
UV poles are removed by MS renormalization, as described
in Sec. VL. This gives the renormalized TT**(p).

The gluon self-energy has the decomposition

A
1" (p) = ﬁ {A1 P> + Ay + AspHp*

+APIP+ As(PHP + PPt} (182)
The coefficients A; are given as integrals over Feynman
parameters. Using the Feynman rules to construct the
graphs for the first order gluon self-energy function, we
see that it obeys the identity

p " (p)p, = 0. (183)

This implies that there is a linear relation among the five
coefficients A;. When the A; are computed numerically, this
relation provides a check on the calculation.

These integrals can be performed by numerical integra-
tion. We choose p? < 0. Since p - p < p?, we also have
p - p < 0. We set the renormalization scale to u> = p - p.
The coefficients A; are dimensionless, so they are functions
of p - p/p?. We show results in Fig. 13 for the choice v = 2
and n; = 3.

Of special importance are S-matrix elements involving
an initial or final state T gluon. In this case, the final gluon
propagator is amputated and we take p> — 0 and multiply
by a polarization vector ¢ (p, s). According to Eq. (149), in
the case that there is a self-energy insertion on the gluon
line, we multiply the one particle irreducible subgraph by
the LSZ factor /R,. Using Eq. (112) for Ry, we derive

v
g, 11",

R,(p)—1= [ 2 (184)

} + O(a?).
p*=0

This quantity has IR divergences. We define R, from the
renormalized I1*(p) by taking the p?> — 0 limit with
dimensional regulation to control the IR divergences.
Then we take € — 0, obtaining 1/€? and 1/e IR poles
plus finite terms. The calculation, with £ = 1, is described
in Appendix C. The result is given in Eq. (C47). The result
for the pole terms, from Eq. (C49), is

II*Y COEFFICIENTS

T T T
4t , |
P9z
thHV
2 [ —
pypu
< — =
0l p'p =
9 N
. =y
ptp” + p'p”
| | |
1 1.5 2 2.5 3
p-p/p?
FIG. 13. Coefficients A;(p - p/p?) in [I* with v =2, £ = 1.

We take p> < 0, so that also p - p < 0. The renormalization scale
is set to 4> = |p - p|. The number of quark flavors is n; = 3.

(185)

Here y, is the standard coefficient given in Eq. (160). We
will combine this result with results from gluon exchange
graphs and from quark self-energy graphs in Sec. IX.

VIII. THE QUARK SELF-ENERGY

The one-loop quark self-energy —iX(p) is given by
the Feynman diagram shown in Fig. 10. It can be cal-
culated using similar techniques to those used for the
gluon self-energy, although the calculation is simpler
than for the gluon case. One can first find the UV poles
of the unrenormalized one-loop self-energy, Xy (p), with
the result [Eq. (D1)]

(v—1)°
v(v+1)

ag Se

Zy(p) = _E?pCF|:

+§] + O(e%).  (186)
This is the pole that is removed by renormalization and
gives the renormalization factor Z, given in Eq. (162).
For S-matrix elements involving an initial or final state
quark or antiquark, we need the LSZ factor , /R,. For this,

we need X(p) in the limit p?> — 0. Using Eq. (140) and the
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accompanying definition of the Dirac spinor factors, we
have

O(a?).
2p2 p2—>0 + (as)

(187)

We calculate this with £ = 1 with a calculation that is similar
to the calculation in Appendix C for gluons, but somewhat
simpler. As for gluons, the result contains infrared double
and single poles. The result for the pole terms is

ﬁ(p,S)Z(P)M(P’S)} —_
2p? p*=0

aSe a4 Se

47 e?

(188)
Here y, is the standard coefficient
3C
Yq= TF (189)

We will combine this result with results from gluon exchange
graphs and from gluon self-energy graphs in Sec. IX.

IX. POLES OF THE S MATRIX

We have seen that the S matrix for initial or final state
external partons has infrared poles in ¢ when we include
one virtual loop. Each external parton has a label / and can
be a T gluon or a massless quark or antiquark. One source
of poles is the exchange of a gluon between two of the
external partons. From Eq. (82), this contribution is

_ZZVIle T

Ik
—2p; - pp +10
:—Ziﬁvn——wC—L¥—ﬂ
=y H
ag S, [v— v—1
72 %2 ~lo
+Zl47z€{ v g( +1>
2
+10g<7>}+(96. 190
) J 7O oo

The other source of poles is the self-energy graphs, each of
which contributes \/R; — 1 at order a,. These contributions
are given in Eq. (185) for gluons and Eq. (188) for quarks.
They each include a constant y;, with y; = y,, Eq. (160), if /
is a gluon and y; = y4, Eq. (189), if [ is a quark. Otherwise,

they have the same form, with T2 C, if [ is a gluon and
T? = Cg if [ is a quark. The result is

Z:(f—l———Z[ 2+—y1]
-y e

+log (W) } +O(e).

In the sum of these contributions, the terms involving v
and p; - n cancel, leaving

SR ZZZmﬂn
l I k#l
IR

Q. S
-y -
4r 4 { € Tk

—2p,. i0
x log (%) + O(e%) + O(a?).

(191)

(192)

This is the standard result that one finds in Feynman gauge.

X. CONCLUSIONS

We have investigated the features of interpolating gauge
in QCD or other gauge field theories. This gauge was
proposed by Doust [21] and Baulieu and Zwanziger [22]
as a way to interpolate between a covariant gauge and
Coulomb gauge, with the aim of making Coulomb gauge
better defined. The attraction of this gauge for us is that it
may be useful for QCD constructions in which the infrared
singularities of the theory are of paramount interest.

In any gauge, QCD with massless quarks has infrared
singularities that appear when a gluon with momentum ¢
attaches to an on-shell parton with momentum p. First,
there is a soft singularity when ¢ — 0. Second, there is a
collinear singularity when ¢ — Ap with a fixed value of 4.
There are also soft x collinear singularities when ¢ — Ap
with 1 — 0. These singularities are important for the
subtractions needed in the calculation of cross sections
for infrared safe observables in high energy processes. The
same singularities are important for the analysis of large
logarithms that appear when a process has a hard momen-
tum scale and a much smaller soft momentum scale. The
infrared singularities control the large logarithms that
appear when one takes the soft scale toward zero. One
way of summing these large logarithms is through the use
of a parton shower algorithm. It is the extension of parton
shower algorithms to use higher order parton splitting
functions that provides our principle motivation for inves-
tigating interpolating gauge.
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As presented in Sec. II, interpolating gauge depends on a
vector n that defines a preferred reference frame and on two
parameters, v and &, with 1 < v < co. With v = 1, we have
a standard covariant gauge, Feynman gauge for £ = 1 and
Lorenz gauge for £ = 0. We obtain Coulomb gauge for
v — oo with any & We always choose v > 1 except when
we want to connect to Feynman gauge. We mostly use
£ =1 in this paper.

QCD calculations typically use Feynman gauge because
of its simplicity. However, in Feynman gauge, there is a
problem with collinear singularities. A collinear singularity
and a soft x collinear singularity can appear in graphs in
which the gluon couples to a far off-shell internal line in a
graph. After integrating over the gluon momentum in
4 —2¢ dimensions, one obtains poles 1/€? and 1/e.
These poles are unphysical in the sense that they result
from the gluon polarization being proportional to its
momentum ¢, while a physical gluon has polarization &
thatis orthogonal to ¢g. Graphs in which a gluon is exchanged
between two external partons also have a double pole in
Feynman gauge. Again, the double pole is unphysical in that
it results from the gluon polarization being proportional to
its momentum. One must use Ward identities to sort out
these effects, as outlined in Appendix A. After using Ward
identities, the collinear singularities are effectively associ-
ated with self-energy insertions on the external lines.

One could eliminate the collinear singularity problem by
choosing a physical gauge, for instance Coulomb gauge.
However, as emphasized in Ref. [22], one then faces a
problem with an ambiguity in defining the gauge. To
remove this ambiguity in Coulomb gauge, Ref. [22] takes
the » — oo limit of interpolating gauge.

For the uses that we have in mind, there is no need to
take a limit » — co. As long as v > 1, the problem with
collinear singularities is removed. Any finite value of v
that is not too close to 1 will do. For instance, one can
choose v = 2.

The attraction of interpolating gauge with » > 1 com-
pared to Feynman gauge is that for each graph the collinear
singularity problem does not occur. One does not need to
apply Ward identities and sum over graphs to bring the
collinear singularities into the form of self-energy inser-
tions on the external lines. They have this form from the
beginning. We verified this explicitly at one-loop order in
Secs. VII and VIIL

The properties of the » > 1 theory that are important for
us can be easily understood, as we found in Sec. III. The
four component gluon field A#(x) describes two sorts of
gluons, each with two components: T gluons and L gluons.
The T gluons are transversely polarized and propagate with
the speed of light, ¢ = 1. The L gluons carry the remaining
two polarizations and, in the tree-level propagator, propa-
gate with speed v in a frame with n =(1,0,0,0). In
such a frame, an on-shell L gluon with momentum ¢ has
|¢°| = v|q|. This makes it impossible for an on-shell L

gluon to be collinear with an on-shell lightlike particle, with
|p°| = | p|. This property eliminates the collinear singular-
ities for L gluons.

We have provided analysis and calculations for some of

the important features of interpolating gauge:

(i) Reference [22] argues that the renormalization pro-
gram works at all orders of perturbation theory in
this gauge. In Sec. VI, we define the needed
renormalization factors Z and calculate their order
a, contributions from the ultraviolet divergences of
one-loop graphs.

(i) BRST invariance leads to identities for Green
functions in interpolating gauge. Reference [22]
used BRST invariance to analyze the renormaliza-
tion program. In Sec. V, we derive identities for the
change in Green functions induced by changing the
vector n and the parameters v and £. We then use
these identities to show that the S matrix for quarks
and T gluons is invariant under changes of n, v,
and £.

(iii) The gluon propagator in interpolating gauge is not
Lorentz covariant and has several terms. Conse-
quently, calculations of loop diagrams are not as
simple as in Feynman gauge. Nevertheless, we
found in Appendix B that results can be obtained
using Feynman parametrization and numerical in-
tegration. Results for the one-loop gluon self-energy
were shown in Fig. 13.

(iv) Poles 1/e and 1/€? arising from infrared singular-
ities are of particular interest in this paper. Results
for gluon exchange between external on-shell par-
tons were presented in Sec. IV. Results for the self-
energy of an on-shell T gluon were presented in
Appendix C and Sec. VII. Results for the self-energy
of an on-shell quark were presented in Sec. VIII.

We conclude that there may be practical uses for

interpolating gauge.
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APPENDIX A: INFRARED SINGULARITIES
IN FEYNMAN GAUGE

In interpolating gauge, all the collinear singularities are
located in the self-energy graphs on the external legs. In
Feynman gauge, these collinear singularities appear in
many graphs and one has to utilize the Ward identity to
be able to factorize them out. This prevents us from being
able to define infrared singular functions that match the soft
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and collinear singularities with one singular function for
each graph. In this section we demonstrate these compli-
cations at one-loop level.

In interpolating gauge it was natural to decompose the
gluon propagator as a sum of T and L gluons. In Feynman
gauge, we use a different decomposition. We try to separate
the pure soft modes, labeled S, from the collinear and soft-
collinear modes, labeled C. We write

Pc(q)
¢ +i0  ¢*+i0’

gv  _ PS(q)

D' (g) — — —
(@9)=- 250

(A1)
Here the Pg"(g) and P¢(g) tensors are defined as

a'q" + ¢*n'n”
(q-n)-q*
q-n(g'n’ +n"q")
(q-n)*—q’
a'q" + ¢’n'n
(q-n)-¢*
_gq-n(g'n" +n'q")
(q-n)-q°

P (q) = Pr(q) +

:—g’”’+

bl

Pc(q) = P (q) —

(A2)

Here (q-n)? — ¢> = g* if we work in a frame in which
n = (1,0,0,0). When an internal gluon line becomes on
shell, g — 0, both parts of the propagator become singular.
However, as we shall see, P§(¢) and P{'(g) contribute
differently to soft and to collinear singularities.

At one-loop level the possible singular graphs with m
external partons can be written in the form illustrated in

Fig. 14,
T“J” D, (q)

MO {p, £})) = ign Z/ ) 0
X Z v,alR( G;{P7f}m)> +
G

(A3)

The ellipsis “ - - here stands for contributions that do not
have leading infrared singularities. In the singular part,
external parton /, which can be either a quark or a gluon,

FIG. 14. Illustration of the right-hand side of Eq. (A3). The
external line terminated by “|” indicates a polarization vector € or
a Dirac spinor u, i1, v or . The double terminations ““||”” indicate
that the line is approximated as being on shell, with two

polarization vectors or Dirac spinor factors.

|’!

absorbs a gluon with momentum ¢ and color index a. Its
propagator is D,,(q). We sum over / and integrate over g.
The gluon couples to a color matrix T and an effective
current J% (g), described below. The propagator for parton [
before the emission has a factor 1/[(p; — g)? + i0], which
is singular when ¢ is collinear to p; or soft. The current
J%(g) includes either a polarization vector or a Dirac spinor
appropriate for the limit (p; — ¢)> — 0. The complemen-
tary polarization vector or spinor is included in the rest of
the graph. These on-shell polarization vectors or spinors are
indicated by the orthogonal lines on parton line /.

The amplitude (v, a|R;(G;{p, f},,)) represents the rest
of the Feynman graph that contributes to the given process.
This is an m + 1 point graph in Feynman gauge. The extra
leg is a gluon line with color a and polarization index v.
This extra gluon carries the momentum g¢*. The external leg
1 of |R;(G;{p,f},)) caries a momentum of p; — ¢, which
is treated as being an on-shell external parton with its
appropriate polarization vector or spinor. The dependence
on the polarizations or spins of parton [/ is suppressed in the
notation.

In (v, a|R)(G:;{p. f},,)). the gluon with momentum ¢ is
connected to any internal line in the graph or to any external
leg of the graph except for the leg of parton /.

The currents J,(q) are matrices J,(g); ; in the spin space
for parton /. They also depend on the timelike reference
momentum # and the momentum and flavor of the parton,
p;» f1, but for the sake of simplicity we hide those
arguments and the spin indices. We define

J1(@)s.5 = 2P 855 — AL (P15 590 (A4)
Here the first term appears in the eikonal approximation for
soft gluon absorption, while the second term is flavor
dependent and has nontrivial dependence on the spins.

For a final state quark, we define [29]

a(p.s)r'y tu(p.3) ’

A (p);
a (p) 2p-n

S5

(AS)

Analogous formulas apply for antiquarks and for initial
state quarks and antiquarks.

When parton [ is a gluon, an extra step is needed [30].
We have a gluon with momentum that we can call p,
and Lorentz index a and a gluon with momentum that
we can call p, and Lorentz index f combining at a three-
gluon vertex to make an on-shell gluon with momentum
p = p.+ pp, and polarization vector &(p,s). There are
three terms in the three-gluon vertex, Eq. (59). One term is
proportional to gus(py, — pa) - €(p. ). Since p-e(p,s) =0,
this term is nonsingular when p, and p, are collinear or
either of them is soft. We neglect this term. One term is
proportional to (p + p,)se.(p, s). In this term, we identify
q in Fig. 14 with py,. The remaining term is proportional to
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pr—q l
§/< §: é“
Pk +q pk

FIG. 15. Tllustration of the first term on the right-hand-side of
Eq. (A8), in which a gluon with propagator Pk’ (q)/[¢* +i0] is
exchanged between two partons, / and k.

—(P + Pa)egp(p.s). In this term, we identify ¢ in Fig. 14
with p,. With this identification, we have
A’gw(p)ﬁ,x

= g"6-. (A6)

The expression in Eq. (A3) is not immediately usable if
we want to define subtraction scheme, since it does not
have a factorized form. To obtained such a form we should
separate the contributions that apply in the soft and
collinear limits. Using the decomposition of the gluon
propagator in Eq. (A1) we have

MO {p. fa)
TiJ;(q)[P

= igu Z / (27)? (¢ +10][(p; —
X Z I/,a|Rl G, {p’f}m>

T?Jﬂq){Pe(q)}W
igu Z/ 2n)? [ +10][(p; — ¢)7 + 0]

x Y (v.alR (G {p. f}.) +
G

s(@)]
q)* +10]

(A7)

We note that the first term cannot be singular in the
collinear limit, in which g becomes parallel to p;, because
in this limit J;(¢)* « ¢* and ¢"[Pc(q)],, = 0. However,
this term can be singular in the soft limit if the other end of
the gluon is connected to another external leg, say a leg
with index k. Since we have only soft singularity, the
current can be simplified: it is enough to keep the 2p/
part in Eq. (A4) since the term A* g, is suppressed by the
factor ¢. This leads to the eikonal approximation in the first
term of Eq. (A7), depicted in Fig. 15.

The second term in Eq. (A7) can be singular in both the
soft and collinear limits. In the limit in which ¢ is collinear
with p;, J;(g)* is proportional to g#. Then the term in
[Pc(q)],, proportional to n,q, gives a leading collinear
singularity, but the term proportional to g,n, does not
contribute because it is suppressed by a factor ¢ In the
limit in which ¢ is soft, ¢ — 0, there are two cases to
consider. When the soft gluon connects the external parton
[ to an internal line of the graph, there are not enough

FIG. 16. Illustration of the second term on the right-hand-side
of Eq. (A8), in which a gluon with propagator —q - nn*g*/
[((g-n)?* — ¢*)(¢> +10)] is exchanged between parton / and the
rest of the graph.

powers of 1/¢ to give a leading singularity.6 When the soft
gluon connects two external partons, there is a leading soft
singularity. In this case, there is one graph, but two ends of
the gluon line, one with a factor n, and the other with a
factor g,. We can use this symmetry to let the index of the
external line connected to n,, be denoted by / and the index
of the other external line be denoted by something else.

The arguments presented above give for the singular
terms in Eq. (A7),

MY ({p. f}n)
= 4iﬂasﬂ2€ZT1 . Tk|M(O)({p7f}m)>

I<k
x/ diq 4p;- Ps(q) - px
(27)? [q? + i0][(p; = q)* +10][(pi + q)* +1i0]
Tin,J}(q)
g Z/ “[g* +i0][(p; — q)* +1i0]

x Z (v, alR(G: {p, f}a)) + -+~ (A8)

Here the first term, illustrated in Fig. 15, has a factorized
form with one contribution for each graph. In this term,
MO ({p,f},)) is the amplitude without the soft gluon
exchange. The integration over the loop momentum can be
performed analytically. The second term, illustrated in
Fig. 16, contains a sum over almost every m + 1 parton
graph, where the extra parton is a gluon carrying the
momentum q. The factor n, is indicated by a diamond
shape where the gluon line joins line /. The factor ¢*
indicated by the open arrow at the end of the gluon line.
This extra gluon can connect to every internal or external
line in the graph except to parton /. Parton [/ carries a
momentum of p; — g. It becomes on shell either in the soft
or the collinear limit. In the singular regions we can apply
the Ward identity, as

®For an attachment to an internal line, there is a collinear
singularity but no soft singularity. However, in one way of
organizing the calculation, there is a sum of two soft singularities
that cancel. Thus we sometimes speak of having both soft and
collinear singularities.
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> (v alRi(G:{p. [}, {q.2}))

= guT{ MO ({p.f},)) + O).  (A9)

This is the negative of the contribution that one would have
obtained from an attachment to parton /. After using the
Ward identity, we can write the singular part of the one-loop
amplitudes in factorized form as

MO ({p.f}.)
— 4iﬂas#2€ZTz T MO {p.f},) /

I<k

dlq
(2r)?
4p;- Ps(q) - p
q* +i0][(p; = ¢)* +i0][(pi + q)* +10]
ddq

—|—4i7Z(XS/12€ZT12|M(O)({p’f}m»/(zﬂ)d
1

) n-Ji(g)g-n o
[(q-n)* = ¢*][q* +i0][(p, — q)* +1i0]

1

(A10)

The first term in Eq. (A10) is illustrated in Fig. 15. The
second term is illustrated in Fig. 17.

We note that by taking the limits in Eq. (A9) and using
the Ward identity we might have introduced some spurious
UV poles. We have to keep in mind that these UV
singularities are fake and they need to be removed.

Now we can perform the integrals, leading to

MO {p.fhn))

oS

T TMO({p.£},.)

dr € s

- {l Lzﬁ—p}‘zl [(2pﬂ>} - [(219”)} }
e ] i)

(Al1)

_|_...’

where §; = 1 if [ is a gluon otherwise §; = 0. Using color
conservation, we can simplify the result even further and
obtain the result

d"q

FIG. 17. Illustration of the second term on the right-hand-side
of Eq. (A10). This is the negative of the one term that was not
included in Fig. 16.

MO {p. fm)

< MO{p. frn)) + - (A12)

This derivation shows that it is quite practical to use
Feynman gauge to extract the infrared singularities of
amplitudes when we add one gluon exchange to graphs
that are either tree graphs or have only hard momenta in
loops. However, one faces complications if one wants to
extend this method to include more loops with potentially
soft or collinear momenta of the partons in the loops.
In this case, there are more gluons with propagators
P (q)/|g* +i0]. These gluons can couple to each other,
so that there are now multiple special cases to be considered
when applying the needed Ward identities [17,18].

APPENDIX B: CALCULATION OF THE
GLUON SELF-ENERGY

We have seen that interpolating gauge offers the advan-
tage that collinear singularities are eliminated in virtual
exchange graphs. However, manifest covariance is lost
and there are several terms in the gluon propagator. Thus,
calculations of loop diagrams are not as simple as in
Feynman gauge. We have in mind using numerical inte-
gration to perform calculations, so perhaps this lack of
simplicity in not a crucial problem. In this Appendix, we
investigate this issue by performing a numerical calculation
in interpolating gauge.

We discuss the calculation of the gluon self-energy
function I™(p) with a spacelike value of p, using
interpolating gauge with & = 1. The function I1*/(p) has
an ultraviolet pole, which we eliminate by renormalization.
It has no infrared poles. Infrared poles will emerge if we
take p* — 0.

The unrenormalized (“U”) version of the self-energy
function that we wish to calculate has the form

N"(q, p)

—iILy (p) = 471'0(5#26/

(2m)? [¢? + i0][k* 4 i0][q - g + i0][k - k +i0]
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Here d = 4 — 2¢ and the loop momentum is ¢, with k = p — g. The numerator function is

C
N*(q. p) = =—2T,0p(=p. 4. k)T,5(p. —q. k)N (q)NP (k)

2 H

C ~U TV LU=y C v BN ~
+7Aq2k2[q”k + kg] —TA[N" (k) — ¢“N(k)la*q - g

c _ o
- [N*(q) = ¢*Ni(@IKk - k + ATrnelk'q + g"k* — ¢*q  Klg - gk k. (B2)
|
The second term is for the ghost loop. The third and fourth » . - wrr | v+ 1 o
terms are from the tadpole diagram, symmetrized under (9) =-¢"q-a+4¢"¢" +3"q" - 2 19 (B6)

q <> k. The last term is the quark loop. These contributions
are depicted in Fig. 9. We have defined I'y4,(p,. Pp. Pc)
using

Fﬁg;(l?a’ pb9pc) :gfabcraﬂy(pavpbvpc)' (B3)

Then, from Eq. (59),

Lapy(Pas Pos Pe) = —{9ap(Pa — Pb), + 9p,(Pb — Pe)a

+gya(pc _pa)/}}‘ <B4)
We have also defined N*(q) as
N*(q) = q’q - qD*(q) (BS)

with £ = 1. From Eq. (62), this is

The numerator factor omits a factor 4za,d,,, where a and
a’ are the gluon color indices. The §,, has been removed
from I[1"(p) and 4ma, has been factored out of the
numerator function.

It is possible to simplify some parts of the integrand.
First, any factors of ¢%, g - g, k%, or k - k in the numerator
can be used to cancel the corresponding factors in the
denominator, giving a simpler denominator. Second, if the
resulting denominator depends only on ¢ but not on k or
depends only on k but not on ¢, then we have a scaleless
integral. With dimensional regularization, a scaleless
integral consists of an ultraviolet pole that exactly cancels
an infrared pole. Such scaleless integrals can simply
be dropped. However, it is feasible to proceed without
implementing any of these simplifications. Then one
applies the same general method to all contributions to
the integrand. This is the method that we explain below.

We can combine the four denominator factors using three
Feynman parameters x, y and z:

d
I (p) ZiMZE/ a qu””(q,p)/lde(X)/ldy/ldz
(27) 0 0 0
1

X

where
J(x) = 4rabx(1 — x).

To proceed, we manipulate the denominator in Eq. (B7).
We use the projection tensors P, and P_, Eq. (20), and
indicate contractions of Lorentz indices with a dot, as in

(1 =)@ +xyk2+ (1 =x)(1 —2)g - g+ (1 — x)zk - k +i0]*’ (B7)
|
where
B A =T
1}2
A(x)™h = T G
w(x,y,z) = A~ (x)[xyp + (1 -x)zp].  (B10)

A - B = C for A4B* = C}. The denominator is

D=x(1-y)@*+xy(p—q)*+(1-x)(1-2)g-7
+(1=x)z(p=q)- (P —7)
=q-A(x)-q—2q-A(x) - w(x,y.2) + xyp*

+ (I =x)zp- p, (B9)

Notice that we have combined the terms proportional to g?

and ¢ - g into one term ¢ - A(x) - g. Completing the square

in the denominator gives

D = (q-w(x,y.2)) A(x) - (g = w(x.y.2)) = A*(x.y.2),
(B11)
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where

A (x,y,2) = w(x,y.2) - Ax) - w(x, y,2)

—xyp* = (1 =x)zp - p. (B12)
This may be better expressed as
N (x.y,2) = =do(x.y.2)p* = A (x.y,2)p - b, (BI3)
where
x(1=x)2
i ') =T 5 - 2 1 - ’
ol@y.g) =1 02"+ -y)
x%(1 = x)v?
My =TI (e (11 o)

1 —x+v’x
(B14)

Notice that Ag(x,y,z) and A;(x,y,z) are positive for
O0<x<1,0<y<l,0<z<l1.

In the integral (B7), we can shift the integration variable
from g to ¢’ = g —w, so that

nf(;(p):/ldxj(x)/ldy/ldziu%/ ddq/d
0 0 0 (27)

N*(q' +w(x,y,2), p)
lq'-A(x) - ¢ = A*(x.y.2) +i0]*

(B15)

Then we can change variables again to # = A'/?(x)q/, with
a new Jacobian,

J'(x) = [(1 = x + vx) /0?72, (B16)
so that
d
) = [ asr) [Ny [Nz [ £

N (A™2(x)6 + w(x,y,2). p)
TP =Ny i o

We write N*(A~'/2¢ + w, p) as a function of # and p.
We can eliminate terms that are odd in £ because they will
integrate to zero. There are then terms in the numerator
proportional to 6, 4, 2, and 0 powers of #. That is, there are
terms proportional to £%£P 1 £0¢P ¢, (2P, £%¢F and
1. We define Lorentz invariant symmetric tensors by

Tgﬁ — gaﬂ ,
T = g T8 + g Ty + gy,
Tg/j}"spﬁ — gaﬁT?P" + gayT,Z&/’O' + gaéTgJ’/’U

b T 4 o, (B15)

After integration, we obtain terms proportional to Tgﬂ vove,

T T% and 1. We can use these to define coefficients A,
Ay, Ay, and Ag:

di¢ 1
A AZ — i 26‘/ ,
o) =" | A o
die e

af __ . 2e
AT = i / Qn)? 2 = A2 10"

dd Z A f/} £ l/ﬂﬁ
()4 [* — A2 +10]*
dit ¢rePerederee

AT = [

Ag(AX)TI17 — ¢ / : B19
o(A%)Ts W | i — o B9
The coefficients A; are
+1) 1
Ag(A) = — € I,(A?
0( ) 6 (A2)2 s( )’
A0 == L1
2T A
Ay(N?) = —ill (A?)
ST g
1 1
Ag(A?) = — A% (A?), B20
(W) = e NI (B0)
where the standard factor I(A?) is
C(1+e) [u*\€
I(AN)=—-2 (). B21
ey =T (5 (B21)

After integration over ¢, we have a result of the form

I (p) = /0 L d(6) () /0 Ly /0 Lzl (pixy.2).
(B22)

The (£)® and (¢)* contributions to I**(p;x,y,z) are
proportional to 1/e. The 1/¢ pole is to be removed by
renormalization. The (#)? and (£)° contributions are finite
when € — 0.

The ultraviolet pole terms are defined by

T (P3 %, y.2) = (el (P3 X, . 7)o

(B23)
We remove the poles according to the MS prescription by
subtracting

:&1””

~le(pixy.2), o (B24)

I&(pyx, y,2)

where S, is the standard factor defined in Eq. (161). The
renormalized version of I# is then
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1"(p;x,y,2) = [I7 (p:%,3,2) = Ier (P36, 3, D)o (B25)
The integrand /{7 has the form
uy 1 2\ Juv
I (pix.y.zi€) = —L(A°) I (pix.y. zs€)
1 (4a)T(1 +e) /4_2 ¢
 (4n)? € A?
x 1" (p;x,y,z;€). (B26)
This gives us
| R u?
Il“’(p;x’ Vs Z) = (4”)2 I”U(p’ X, ¥, 25 O) log (F)
1 [dI"*(p;x.y.z;€)
. B27
" (4ﬂ)2 |: de e=0 ( )

For the parts of [ that did not have a pole 1/e, this
prescription gives simply the contribution to /¥ evaluated
at e =0.

The renormalized version of IT* is then obtained by
integrating /*¥ over the Feynman parameters:

I () _Alde(x)J/(x)fdyfdzzﬂv(p;x,y,z).
(B28)

This integral can be performed by numerical integration.
Typical results are reported in Fig. 13.
The pole term in IT* is

1 1 1
M (p) = A dx J(x)J' (x) A dy A dzlpg(p3x.y.2).

(B29)

The integrals over the Feynman parameters can be per-
formed analytically, giving

M (p) = Ci(0){g"p* ~ p"p*}
+ Cy(v) {20 p* — pp* = p*p*},  (B30)
where
Chay,—110° = 160> = Tv +2 a4
Cy(v) = 2% 52 Ty,
1(v) 4z 3v(v+1)2 T a3 R
Caas2v(2v + 1)
C = —_—". B31
) = A 1P (B31)

This calculation has been for £ = 1. This result for the
ultraviolet pole matches the more general result in
Eq. (177) at £ = 1.

APPENDIX C: THE GLUON
SELF-ENERGY WITH p? — 0

We now investigate the one-loop self-energy for a T
gluon that is an external particle in the S matrix. This means
that we need not the full II**(p) but only IT**(p)e,(p, s).
Given the tensor structure (182) of II**(p), we see that
I1*(p)e,(p, s) is proportional to &*(p, s). Thus it suffices
to consider &,(p.s)II"**(p)e,(p,s). Since an external T
gluon is on its mass shell, and is accompanied by a tree-
level propagator proportional to 1/p?, the quantity that we
need for the S matrix, Eq. (149), is the first order
contribution to /R,, the square root of the residue of

the T-gluon propagator at p> = 0. This is

wp ey oy

ITr = lim
R = 2

The factor 1/2 gives us the order a contribution to /R,
instead of R,. In taking the limit p? = 0, we start with
p* <.

Some care is required in calculating Iz because taking
the limit p?> — 0 leads to infrared divergences. We maintain
the dimensional regulation of the calculation with d =
4 — 2¢, with € < 0 so that we regulate an infrared diver-
gence. We take the limit p> — 0 in Eq. (C1). Then we let
€ — 0, giving poles 1/€? and 1/e plus a finite €® con-
tribution. The finite contribution then contains logarithms
of the dimensional regularization scale 4. Knowing the IR
pole terms and the scale dependence is just what one wants
for use in a parton shower algorithm.

Fortunately, ¢,I1"¢, is much simpler than the full TT*.
This simplicity enables us to manipulate the integrand for
€,I1" ¢, so that all of the IR poles can be extracted, leaving
only one integral for the coefficient of a finite part that
remains for numerical integration.

The unrenormalized self-energy function that we wish to
calculate is given by the form that we used in Eq. (B1),

eu(p. )Ty (p)e,(p,s)
=4ﬂa,i/42€/ d’q gu(P,S)NW(CI’P)ey(p,s)~ |
o) @a)lg 0]k +i0][g - g +i0][k -k +i0]
()

After some manipulation, we can write the numerator in
the form
e,N"e, = N; + Ny + N3 + N4 + N5 + scaleless,  (C3)
where “scaleless” denotes contributions that give scaleless

integrals, which vanish in dimensional regularization, and
where
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Ny ={c11(q- 8)2 + Clquz}q - gk - k,
Ny = cyp*(q - €)%k -k,

N3 = c3p*q- pk-k,

Ny ={cy \P’p- P+ cia(p?)*}q-€),

Ns = cs(p?)*k - k. (C4)
Here we have defined coefficients
c11 =4Cx(1 —¢€) — 8Tgny,
C1’2 = _4CA + ZTRl’lf,
2
-1
€y = _ZCA z 2
v
C3 = 4CA,
v -1
= C —_—,
C41 A 2
vt —1
c4p = —Cx Wt
v+ 1
Cs5 = _CA 5 . (CS)
v
We analyze each of these contributions in turn.
We begin with the contribution from N:
d'q ci1(q-€)* +ciop?
Y e, = 4nagi 26/ ol : C6
elloe, = dnau™ | i e o v i) - (Y

We can write this as an integral over a Feynman para-
meter x as

. dig [
g, 17 &, :4”6151/‘26/(2”)01% dx

ci1(q-€)? +ciop?

, 1 [ di
S”H’{J’ISU:A dxdnagip® /(27F)d
cri(f-e)* +ciop?

[£% + x(1 —x)p? +i0)*"

(€9)

We can perform the integration over £ using

di¢ 1 1
= 2€ E—— AZ
" /(Zﬂ)d[fz—A2+iO}2 o159,

- / die o NLWY)
] ot [ = A 10~ 2e(1-e)7

(C10)

where I,(A?) was defined in Eq. (B21). This gives

x(1=x)ey +(1—¢€)cy,
2e(1 —¢)

—x(1 —x)p2) -

ma
allue,  _a 1),
2p? 4z /o

xF(1+€)<

Cl1
471/42 ( )

We take —p? > 0 and take the limit p?> — 0 at a fixed value
of € with ¢ < 0. This gives us

e, I e,
lim 21 = 0. (C12)
p=0  2p

Next, we turn to the contribution proportional to N:

eﬂnﬁbzeu C) . / diq
s =24 2e 1
2p7 2 T | )

(q-¢€)?
[¢? +i0][k* +i0][q - g +i0]

(C13)

[(1- x)q2 + xk? + 10]2 ’ (C7) We can write this as an integral over Feynman parameters x
and y as
Using k = p — ¢, this is
e, I e, d? 1 1
» | [ dig 2% Oy e / 7 / dx 2x / dy
eIy 8, :/ dxdrogip G/W 2p 2 (27)¢ Jo 0
0 . 2
c11(q-€)?+ciop? X 2 <Z g PEETER
Gq=apy +a(i-nprriop e
4= u (C14)
We change variables to £ = g —xp and use €- p =0 to
obtain With k = p — g, this is
gﬂ]’[{}”zgy /1 /1 . 2</ ‘q (e-q)°
——=— = ¢, 4na dxx dyip** —. (C15
T S 277 (g = w(r3.0)) - AG) - (g —wlx3.0) ~ A(ry.0) +i0p ()
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Here A(x) and w(x,y,z) were defined in Eq. (B10) and
A?(x,y,z) was defined in Eq. (B13). We change variables
to ¢’ = g — w, noting that £ - w = 0 since - p = 0. Then
we change variables to £ = A'/?(x)q/, with a Jacobian
J'(x) given in Eq. (B16). Since ¢-n=0 we have
e-q =e¢- . This gives

e, I ¢ 1 2 /2 11
o U’22 Y = cz/ dx x 072 / dy4riag
2p 0 I —x+0vx 0

dit (e-£)?
2 . (Cl6
H /(2;:)[1 = N(xy.0)+i0p 1O
We can perform the ¢ integration using
ai¢ ey 11
iu* =—g“——I(A*). (C17
" /(2ﬂ)d Zongop - g (€1)
This gives us
H’é”ze 1 12 1 g
d dy —
- 0 xx[ —x—|—vx} A y47r
F(l +¢) drp® O\ € (C18)
4e A?(x,,0)

It is straightforward to take the limit p> — 0. At p?> = 0 we
have from Eq. (B13),

(1 =x)y*v®
N(ay,0) = -SULZ

C19
1 —x+ 0% (C19)

Thus

g,IL; e

v
. &y o a T(1+¢€) 471/4 / /1
L= d d
p2—>0 2p2 47'[ 4€ ~ C2 o 0 Y

lim
V2 1—x+vx
X
1—x+112x l—x
(

C20)

This has a 1/¢ pole and a finite part as ¢ — 0. After
performing the integrals over y and x, we find

- gIlhe, a2 \fS
lim 5= 2 ) =1 (1)
pP=0  2p 4z 4 p-p €

#20(0) + 1a(0) | + OO (C21)

The factor (u?/(—p-p))¢ can be expanded to give a
contribution proportional to log(u?/(—p - p)). The needed
integrals are

20(v+2)
I (v) = m
Lra(v) = ﬁ ((5 —31og(2))v? — 31

— (12 = 91og(2))v + 10
+30(v? — 3) log [“—j]} +6log {(” LI)T )

(C22)

For v =2, I,(2) =0.592593 and I,,(2) = 1.28204.
We are now ready to consider the contribution propor-
tional to Nj:

g, I z¢, a3 / dlq
Y R T N CYSY.

q-p
X .
[¢? +i0][k* +i0][q - g + i0]

(C23)

We can write this as an integral over Feynman parameters x
and y and rearrange the denominator as for ¢ HU 2E0s
giving

& C XX ﬂal d qi)
= / . /“'y“ i /< 27) (g = w(x.3.0)) - AQx) - (g = w(x.7.0))

— A%(x,y,0) +1i0]*" (€24)

We change variables to ¢ = ¢ — w. Then in the numerator, g - p = ¢’ - p + w - p, but we can drop ¢’ - p since it is odd
under ¢’ = —¢'. Then we change variables to # = A'/?(x)q’, with a Jacobian J'(x). This gives

gﬂH’é’ng /1 1)2 1/2 /1 ) , / ddf
= dx x| ——— dy4 €
2p? Il St Ry g K (2m)¢ 2

w(x.y.0)-p
— A%(x,y,0) +i0]*"

(C25)
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We can perform the # integration using

o [ L L)
] e = A i~ 2A7

(C26)

This gives us

0 (Y 1 2 1/2
sty Sy )/ dxx|——
2p 2 4x 0 I —x+vx

y Al dyW(x,y,O) P <A24ﬂﬂ2 0)>€' (c27)

A*(x,y,0) (x,,
It is straightforward to take the limit p?> — 0. At p? = 0,
A?(x,y,0) is given by Eq. (C19). For w(x,y,0)-p at
p? =0, we use Egs. (B10), (24), (22), and (20) to derive

This gives a double pole, a single pole, and a finite
contribution as € — 0. The integrals over x and y needed
for these contributions can be performed analytically,
giving

Hv
lim eully 36, =

2 2p2
p~—0 p

The integrals /5, and I3, are given below. We have
included the standard factor S, and compensated by
multiplying by

A2(x,y.0 n*
W(x,y,0) - p = — o %:2.0) (C28) F(1+elf(l—e)=1+2+0(). (C31)
(1-x)y 6
This gives us This gives
e, 17 e c3Q dgp® \¢ (1 dy e, IT e 2 \¢(S. S
lim”U’SD:——3—SF1+€< )/ lim AU 3% [ K Se | Ve
p-0 2p° 2 4n ( ) -p-p) Jo ¥ pznllo 2p? 44 \-p-p 2% 1 (v)
I dx 252 1/2—¢
XA (l_x)1+e [1—X—|—U2x1| . +I3,2(U)}+O(€>' (C32)
(C29)
The factor (u?/(—p - p))¢ can be expanded to give con-
The y integration is trivial and gives a factor —1/(2¢). Thex  tributions proportional to powers of log(u?/(—p - p)). The
integration produces another 1/¢ from the end point x — 1. needed integrals are
|
2v 2v
I = —2log| ——
a0 =075 Og<v+ 1)
8v 4v 2 4v 2v 202 (v —1)? v 2
I = 1 — 1 log(2)log| ———— 2|log| ——
32(v) v+1+v2—1 Og<v+1> v+1 0g<v+1> +log(2) 0g< (v+1)* Telos v+1
2 v+ 1 1
+ [log(v)]* + log(v + 1) log (v ) —2Li, | — 1 + 2Li, ey + 2Li, -
L fv—1 . -1 -1 Cfv—1
- 2L12 ( o ) + 2L12 < ) + 2L12 (— —1 - 2L12 (m) . (C33)
For v =2, I31(2) = 0.757969 and I3,(2) = 1.27310.
The contribution proportional to N, is quite simple. We start with
2p? 2 (27) [¢* +i0][k% 4 i0][q - § + i0][k - k +i0]

We can evaluate this using the method of Appendix B. We introduce integrations over Feynman parameters x, y, and z. Then
we change integration variables from ¢ to £ = A'/?(x)(qg — w(x,y,z)). The analysis is simpler than for the general
contribution in Appendix B because, since € - p = €-n =0, we have g - = ¢ - €. After performing the ¢ integration,

we have
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e,y 46,

We take the p? — 0 limit of this by simply setting p> = 0
in the integral. The integral over the Feynman parameters
does not produce any poles in €, so we can simply set ¢ = 0.
This gives

UU
gﬂ I_IU,4 gv

where

L(v) = /1 dxx(1 - x) {#i”} v

/c@/<hL_x+Ux(1—@(—@

(1 —x)z(1 - z)} (C37)

As far as we can see, this integral cannot be expressed in
closed form using logarithms and dilogarithms. For v = 2,
it is 14(2) = 3.67765.

The contribution proportional to Ns vanishes. To see
why, we begin with

v d
e, I17 s, Cs. / dq
L =2 T —4 -
2p? s 2 iu? (2m)¢
»?

X : : — . C38
P R PR R

We introduce an integral over Feynman parameters x and y

and then integrate over the loop momentum as for eﬂH’{]’g £,

This leads to

e I e 1 2.2 1/2
L;v:ﬁﬁmm/ dr| T
2p 4z 2 0 1 —x+vx

1 2 4 2 €
x/dyzp <2” > (C39)
0 A*(x,y,0) \A*(x,y,0)

We want the limit of this as p> — 0. There is a factor of p?
in the numerator, but this factor multiplies an integral that
diverges if we set € to zero, so we should be cautious about
taking the p> — 0 limit inside the integral. The function A?
is, from Eq. (B13),

x(1 = x)2
A*(x,y,0) = — T (x—l-zzxy +xy(1 —y)|p?
2x2(1 —x) y
I Sk 2N C40
1—x+112xyp p (C40)

;; _aru )/‘““1‘”L—§ivxrﬂ/‘”/

ca1p-P+canp? ( dap® O\ € (C35)
)

A*(x,y,2) A (x,y,z

|
In the limit p?> — 0, the integral over y is dominated by very
small y. To capture this behavior, we integrate over y from
0 to co instead of from O to 1 and approximate A? by

2x2(1 = x) o

A2(x,y,0) R —xyp? ——— 2 B (C4l
(x,,0) = —xyp g (C41)

We change integration variables from y to y’ defined by

y'p?*=yp-p. (C42)
Then
—(p?)? 1 —x)
Ay, 0 =~y ( 2l (8
(x,.0) I A g (C43)
This gives us
e I €, _(n2)\2 1-€
flust @ es| ~P)” 1Ty g
2p Az 2 |dru~p - p
| 252 12 feoo
dx | ————— dy
X[) x{l—x—l—vzx] A Y
1)2)(2(1 _ x) —l—e
T2 . C44
X[xy+(l—x)+v2xy} (C44)

We take the limit p?> — 0 with e < 0. The factor [—p?]~%¢
vanishes while the integrals over x and y are finite. Thus

e, I e,
{7“ U5 (C45)

=0.
2p2 :| p*=0

The contributions derived above give us the unrenor-
malized &,I1{7¢,/(2p?). We have to subtract the ultraviolet
counterterms, which we can obtain from Eq. (177):

e, Iore,  ag S ca(v,1) +Ea(v, 1)
22 dme 2
as S, 30+ 1202+ Tv -2 2
Tdre { A 6v(v+1)? 3 TRnf}

(C406)

074008-34



GAUGE CHOICE FOR ORGANIZING INFRARED SINGULARITIES ...

PHYS. REV. D 108, 074008 (2023)

The sum of these contributions is the renormalized &,[1"¢, / (2p?):

e, [1"e, ag [cr ( w* \°[S. s u \°[S. S.
{ szz ]pzﬁo:ﬁ{z <—p'i7 :12,1(1’)+212.1(U)+12,2(”) "3 \Spp 6—24‘:13,1(”)4'13,2(”)

Cy1 Seea(v, 1) 4 Ca(v, 1)
_*I —__<
+ 1 4(v) B 3

] +O(e).

(C47)

It is of interest to collect the single and double pole terms. We write —p-p at p?> =0 using Eq. (25) as

(v* = 1)/v*](p - n)*. This gives

|:8/4ij€l/:| % Se ‘3
2p2 p*=0

Oy Se

dre*? 4 4dme |4 4

. c c VU
=—-———>—+—— [—12.1(7)) - 215,(v) —flog(

22 ) _caa(w1) ;‘ calv, 1)} +0(e).

(> = 1)(p-n)?
(C48)

Using Eqgs. (165), (C5), (C22), and (C33) for the values for the coefficients here, we obtain

alle,) &S @S @S| vl
2p* | 4re2 N Ar e’ Tane v

Here 7, is the standard coefficient defined in Eq. (160). The
first and second terms in Eq. (C49), with double and single
poles, match the standard result for the pole terms in the S
matrix in Feynman gauge. The third term will cancel
against the gluon contributions to the T, - T; terms from
gluon exchange graphs.

APPENDIX D: RENORMALIZATION
CALCULATIONS

In Sec. VI, we saw how the UV pole terms in the gluon
self-energy diagrams in interpolating gauge lead to the one-
loop contributions to the renormalization factors Z,, Z, and
Z:. In this Appendix, we outline the structure of some of
the other UV divergent one-loop diagrams and see how the
UV pole terms lead to the remaining renormalization
factors Z reported in Sec. VL.

We expand each renormalization factor in powers of o
asZ=1+6Z+O(a?) and (Z,); = g + (6Z,)% + O(a?),
where 6Z contains one power of a,. We compute one-loop
quantities like the renormalized quark self-energy function
¥(p) that are proportional to one power of o, and depend
on gauge parameters v and . The unrenormalized version
is denoted by 2 (p). This is the same as this quantity in the
bare theory, Xz (p), except that we use the renormalized g, v
and &. Since g = gg(1 + O(ay)), v = v(1 + O(ay)), and
& =&(1 + +0(ay)), changing from bare to renormalized
g, v and & does not affect the result at order a.

1. Quark self-energy

A straightforward calculation of the one-loop diagram in
Fig. 10 for the unrenormalized quark self-energy —iXy
gives the UV pole

Cp + Cy log (Z;D — Cylog <4(p”2n)2>] +O().  (C49)

% Se e [M 5] (D1)

U(U+ 1) +; +O(€O).

The inverse of the quark propagator is  — X(p) at order a,
where X(p) is the renormalized quark self-energy. This
gives us the relation

7 —Zu(p)l = Z,'[p - ()| + O(e2).  (D2)
Then
¥ —Zy(p) =p—2(p) - 6Z,p. (D3)
This gives us
6Z,p = Zy(p) - Z(p). (D4)

We use our result [Eq. (D1)] for the pole term in Zy(p) and
note that by definition the renormalized X(p) has no pole.
This gives

57, = - %5 ¢ [M+£] (Ds)

v 4z € v(v+1) o]

This is the result reported in Eq. (162).

2. Ghost self-energy

The determination of 6Z, for the ghost field is slightly
more subtle. A straightforward calculation of the one-loop
diagram in Fig. 11 for the unrenormalized ghost self-energy

—iIE™ gives the UV pole
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_ %S
Cdme
2Qv+1)(v-1)

ETCES) (p.n)2}+o(60). (6)

160> +v+1 €&
thost _ 5 s
v (p) CAHm(vH) 41;]” P

The inverse of the ghost propagator is p - p — [18"%(p) at
order a,. This gives us

p- b = (p) = Z;' (p - b — 11 (p)) + O(a?).
(D7)

Here pg = (hg)i p” is defined using a factor 1/v3 in (hg)’,
with 7% as in Eq. (22). Since 1/v3 = Z;'/v?, we have

. Zy -1 5 .
popp=—5—(p-n)+p-p. (D8)
This gives us
~ ZZI -1 05
b= (p ) ~TE™(p)
=Z,'(p-p—TE""(p)) + O(e’). (DY)

Expanding the renormalization factors to order o, gives

sz, oy
pp- 1;21 (p-n)*=TIF"(p)

=p-p—06Z,p-p—TE%(p). (D10)

Thus

) 57,
5Z,7p p= H%host(p) _ thost(p) + UZ (P . n)z_ (Dll)
We can use Eq. (D6) for the pole term in 15 (p). We

already know 6Z, from the gluon self-energy. It is given in
Eq. (167). Using these results, we have

The terms proportional to (p - n)? cancel, leaving

as S, 160> +v+1 &

§Z, = 2 Cp|l————=|.
"TAre M 120(v+1) 4w

(D13)

This is the result reported in Eq. (163).

3. Quark-gluon vertex

We use the graphs in Fig. 12 to calculate the unrenor-
malized one-loop quark gluon vertex function, —igI';(p),

a S, (v—1)* ¢

M =2"¢ |Cel——ZL 1+ 2

v 47167/”[ F(v(v+1)+v

30+ 20+ 1 E-1
C

3v(v+1)? +Ca }

4p
20(1 + 20)
A 30+ 1)2

+ Ca

+&&~ﬂ

0
ip el + O(€Y).

(D14)

The (renormalized) quark-gluon amputated three-point
function divided by g is y* +I*(p) + O(a?). To apply
renormalization, we use

P = (272, 2 (7 A T) + O(a2). (D15)
Writing Z = 1 4 6Z in each case, this is

1
AT = +T¢— > (6Z A0y — 6Z, 7" — 6Z,y*. (D16)

That is

57 LS, 160 +v+1 &)
PP e A Rov(v+1) a|PP |
22v+1)(v=1) ( y - = -5 (6Z,10y" — 6Z,y* — 6Z,p". (D17)
— -n
e
a5 Se A2(2U :_ D(w-1) (p-n)2. (D12)  Given our result (D14) for Iy and using our previous
4r € 3v°(v+1) results (164) for Z, and (162) Z,,, we have
|

ag S, (v—1)?2 ¢ 307+ 20+ 1 E-11 oS, 20(1 + 2v)

— | Cr| ————— = C 2 yH R S

4z € [ F(v(v+1)+ A 3u(v+1)2 A | Tane ! A3(w+1)2

3 2 _
——I—&&y"{—CA[ZZU + 3507 4200 -1

4r 120(v 4+ 1)?
as Se u (U—1)2 ¢

B e ncg (W0 sz,
Tane F(v(v+1)+v o

4

2 Se o 202v+1
f] +§TRnf}+a__WCAM
T v

(D18)
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b, 8

FIG. 18.

The coefficients of ## and the coefficients of Cr match. We
can solve for 6Z,:

(D19)

Note that this is independent of » and £. This is the result
reported in Eq. (159).

4. Three-gluon vertex

We can check how the renormalization program is
working by calculating the three-gluon vertex function at
one-loop order. We call the one-particle-irreducible three-
gluon Green function Fgg; (Pa> Pbs Pe), Where the momenta
are directed out of the vertex function. We define

Faﬂy(pav Pb> pc) by

ng;(pa’pb’pc) :gfabcr‘aﬂ}/(pa’pb’pc)- (DZO)

Our aim is to calculate the ultraviolet pole terms in
Copy(Pas Pis Pe)- In this Appendix, we denote the zero loop

version, Faﬁy(pa» Pb» pc)’ Eq (B3), by ng;(pa’ Pbs pc)'

Diagrams for the one-loop contributions to the three-gluon vertex function.

The graphs needed for I“gg; (Pa» Py, Pe) are illustrated in
Fig. 18. We write the integral for the graph with a single

gluon loop as

gfabcr‘aﬁy(pa’ Db pc)
d

d'q
= .93fa2‘ be[l Ech Zzﬂze / (277,')d Fgg?az (paa qc> —qb)

x T35 (Pos @as —qc) 7 (Pes Gbs —4a)

< AD (g )iDP (q,)iDN (qy). (D21)

Here the momenta on the three sides of the loop are related
to the loop momentum g by [30]

qa=q+@,
qb:q+pa;pc,
qczq—I—@. (D22)

We sum over the three graphs that have a four-gluon
vertex. The graph in which gluons b and ¢ join at the four-
gluon vertex is illustrated in Fig. 18. This graph is
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gfabcraﬂ}/(pwpb?pc)

1 ,/ddq

— 2
2! (2r)4
X (_igz) {f abeS abe [Qﬂ[jgyy - 9/379;/[1]
+ faveS acb 95,987 — Ipp9r7]

+ fappSace [gﬁyg/}';? - gﬁ;?gy/?]}-

9F aeb T o (Pas Ges =0 JID™7 (g )iDP% (g3

(D23)

The momenta on the two sides of the loop are related to the
loop momentum ¢ by [30]

A Se

Lop,(Pas Pos Pe) = yp

+ Blhap(Pa = Pv),
+ C{gaﬁ(i)a - pb)y

{A [gaﬂ (pa

+ Dlhos(Pa — Pv),

For the gluon loop graph, we find

50 +150° 24+ 230+ 12 -1
A=—C, vt + 1}4—91}4—3 v+ _CA9(£f )
6v(v+1) 8v
v(20? 4+ 3v+7)
B=-Ca—Ppns
12(v+1)
v(100? = 3v +5)
C=-C .
AR+ 1)
v
D=-Chr—. D26
~ (D26)
For the ghost loop graph, we find
A=0,
B =0,
C=0,
v
D=C,—. (D27)

24

For the graphs with a four-gluon vertex, we find

(3v+1)(30° + 607 4+ 3v +2) 3(6-1)
A:C C )
A 20(v +1)3 TeaTy,
v(100% + 150 + 3)
B:— A 5
4(v+1)3
v(20? +9v + 1)
C=-c 1TV
A+ 1)
D=0. (D28)

For the graphs with a quark loop, we find

= Pv), + 95,(Po

1
qn = 4q +§Pa»
1
Ge =4 =5 Pa- (D24)

We express the integrals needed for the graphs in Fig. 18
using Feynman parameter representations, along the lines
of Appendix B. This allows us to extract the ultraviolet pole
terms in the form

- pc)a + gya(pc - pa)ﬂ]

+ hﬂy(pb - pc)a + hya(]’c - pa)/}]
+ g/}y(ﬁb - pc)a + gya(pc - i)a)ﬁ]

+ h/}y(ﬁb - I)c)a + hya(i)c - ﬁa)ﬁ]}‘ (D25)
|
A= —gTRnf,
B =0,
C=0,
D =0. (D29)
For the sum of all graphs, we find
11 302 +20+1 3(6-1) 4
A=Cpl = — - — = Tgny,
A(3 v(v+1)>2 4v 3 R
B 4v(2v + 1)
TOA 3+ 1)
20(2v 4+ 1)
C=-Cr———F5",
A3+ 1)2
D =0. (D30)

The renormalization factors Z have already been defined.
We now check whether these renormalization factors Z
provide the counterterms needed to remove these poles.
Renormalizing the gluon field gives

7T abe
7Ffl/37

(9),  (D31)

abe —1/2\ag/7—1/2\B 1 —>—1/2
rere, (gs) = (232223 Pz ?)

where the subscript B denotes the vertex function in the
bare theory and gg is the bare coupling. This gives us

1/2\ g5 1/27\ 5 1/2\3
T (g) = (Z) )2z )z )
1 ,ab
X [ngabcr‘g%e}f, + F];)%pﬁay C(g)} (D32)
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In the first term, we can use gg = Z,g. In the second term, ~ This gives us

we can replace gg by g since we work only to order ¢°. This
is then the full one-loop three-point function but without its

tree,ab
renormalization counterterms, which we denote by a sub- Fg/l}; (9)— Fa;f;a “(9)
script U for unrenormalized. Thus, a, S, [3 .
_ _4__ |:§CA(Ua§) _yg:| gfabcrog;?/

abe (o — (7V/2\a(7V /2B (71 2i 7 [tree e

Fa[)’y (g) - (ZA )a(ZA )/)’(ZA )}/ ggfuhc aﬁ;‘, a S 1 _ _ _
s Vel a, B apb 7 a p v
+ Fllj)(g)/,_}a}_/bc (g) + O(gaf) (D33) + E:ECA(U’ é) (gﬁz /}hJ/ + gﬁxh[)’g}’ + h;gﬁgy)rg%eygfabc
' loop,abc 2

To order ¢°, this is Hlyap; (9)+O9). (D36)
Fube(g) = T (g) + (5 )(6Zn)] + 5 (62 )}

apr\9) = Lap, 9 5 Ja9p\OLA)y T 5 JalOLA )Ty We use Eqgs. (165) and (160),

. T
+5 (6Z)2dgh + gzgﬁgifszg) 9f a5

3 11 30> +2 1 3(E-1
ECA('U,E)_Yg_(?_ vt (£ )>CA

abe 2 4
+Tgms(9) + Olgad). (D34) ; v+ 1) v
27
For the renormalization factors, we use Egs. (164) and (159): 3 RIE:
4v(2v+ 1)
a, S. i G0 8) = — VT e D37
(70t = 5> ea(v. E)d + Ea (0. ), a8 =5y G (D37)
as S,
67, =——"Cy.. D35
g dr et (D35) and the structure of I'"® from Eq. (B3). This gives

a, S [[11 302420 +1 3(5-1)) 4
. — Ch —

Fabc _ Ftree,abc _ _sPe °T
aﬂy(g) afy (g) Az € |:( 3 U(U + 1)2 4v 3 Rnf:| gfabc

X {9ap(Pa = Pv), + 9p,(Pb = Pe) o + Gyra(Pe = Pa)p}
ag S 20(2v +1)
dr e 3(v+1)?

CAgfahc{Zha/}(pa - pb)y + Zh[)’y(pb - pc)a + Zhya(pc - pa)/}

~ ~ ~ ~ ~ ~ loop,abc

+ 9ap(Pa = Po)y + 9y (Po = Pe)a + Gpa(Pe = Pa)p} + Tinny (9) + Olgas). (D38)

This is
R loop,ab loop.,abc

Lape(9) = Ty (9) + T as(9) = T (9) + O(gad), (D39)

where
a, S, [(11 30> +2v+1 3(£—1 4
T (9) = Z;? [(; R P ( 1o ) Ca =3 Trrte| 9 abe [9ap(Pa = Pb), + 98y (Pb = Pe)a + Gya(Pe = Pa)g]

ag S 2v(2v+1)
dr e 3(v+1)>2

+gﬂy(lbb _ﬁc)a"'gya(ﬁc _i)a)/i}' (D40)

CAgfabc{zhaﬂ(pa - pb)y + 2hﬂy<pb - pc)a + 2hya(pc - pa)ﬁ + ga/}(ﬁa - pb)y

We can write this as

Q.

S
Cetapy(Pas Pos Pe) = ﬁﬁ {Agap(Pa = Pv), + 95, (P = Pe)u + Gra(Pe = Pa) gl

+ B[ha/)'(pa - pb)y + hﬁy(pb - pc)a + hya(pc - pa)ﬁ]
+ C[gaﬂ(pa - i’b)y + gﬂy(i)b - i’c)a + gya(ﬁc - i)a)ﬂ]
+ D[haﬁ(i’a - f)b)y + h//’y(i?b - ﬁc)a + hya(i)c - i’a)ﬁ]}' (D41)
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Then

o )O3l

AZ(E_3112+211+1_3(§—1)) 4

3 v(v +1)?

4v(2v+1)
S 3w+ 1)?

20020 + 1)
S 3w+ 1)?
D =0.

As

Ch,

(D42)

We see that the counterterms exactly cancel the pole terms in Eq. (D30).

[1] Z. Nagy and D. E. Soper, What is a parton shower?, Phys.
Rev. D 98, 014034 (2018).

[2] M. Czakon, P. Fiedler, and A. Mitov, Total Top-Quark Pair-
Production Cross Section at Hadron Colliders Through
O(a}), Phys. Rev. Lett. 110, 252004 (2013).

[3] E. Cascioli, T. Gehrmann, M. Grazzini, S. Kallweit, P.
Maierhofer, A. von Manteuffel, S. Pozzorini, D. Rathlev, L.
Tancredi, and E. Weihs, ZZ production at hadron colliders in
NNLO QCD, Phys. Lett. B 735, 311 (2014).

[4] J. Currie, A. Gehrmann-De Ridder, E. W. N. Glover, and J.
Pires, NNLO QCD corrections to jet production at hadron
colliders from gluon scattering, J. High Energy Phys. 01
(2014) 110.

[5] M. Czakon, A. van Hameren, A. Mitov, and R. Poncelet,
Single-jet inclusive rates with exact color at O (a?), J. High
Energy Phys. 10 (2019) 262.

[6] M. Grazzini, S. Kallweit, and M. Wiesemann, Fully differ-
ential NNLO computations with MATRIX, Eur. Phys. J. C
78, 537 (2018).

[71 R. Boughezal, J.M. Campbell, R.K. Ellis, C. Focke,
W.T. Giele, X. Liu, and F. Petriello, Z-Boson Production
in Association with a Jet at Next-to-Next-to-Leading
Order in Perturbative QCD, Phys. Rev. Lett. 116, 152001
(2016).

[8] V. Del Duca, C. Duhr, A. Kardos, G. Somogyi, Z. Szér,
Z. Trécsanyi, and Z. Tulipdnt, Jet production in the
CoLoRFuINNLO method: Event shapes in electron-
positron collisions, Phys. Rev. D 94, 074019 (2016).

[9] H. A. Chawdhry, M. L. Czakon, A. Mitov, and R. Poncelet,
NNLO QCD corrections to three-photon production at the
LHC, J. High Energy Phys. 02 (2020) 057.

[10] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, and B.
Mistlberger, Higgs Boson Gluon-Fusion Production in
QCD at Three Loops, Phys. Rev. Lett. 114, 212001 (2015).

[11] C. Duhr, F. Dulat, and B. Mistlberger, Higgs Boson
Production in Bottom-Quark Fusion to Third Order in the
Strong Coupling, Phys. Rev. Lett. 125, 051804 (2020).

[12] C. Duhr, F. Dulat, and B. Mistlberger, Drell-Yan Cross
Section to Third Order in the Strong Coupling Constant,
Phys. Rev. Lett. 125, 172001 (2020).

[13] L. Cieri, X. Chen, T. Gehrmann, E. W. N. Glover, and A.
Huss, Higgs boson production at the LHC using the g7
subtraction formalism at N>LO QCD, J. High Energy Phys.
02 (2019) 096.

[14] F. Dulat, B. Mistlberger, and A. Pelloni, Precision predic-
tions at N3LO for the Higgs boson rapidity distribution at
the LHC, Phys. Rev. D 99, 034004 (2019).

[15] F. A. Dreyer and A. Karlberg, Vector-boson fusion Higgs
pair production at N°LO, Phys. Rev. D 98, 114016
(2018).

[16] F. A. Dreyer and A. Karlberg, Vector-Boson Fusion Higgs
Production at Three Loops in QCD, Phys. Rev. Lett. 117,
072001 (2016).

[17] C. Anastasiou, R. Haindl, G. Sterman, Z. Yang, and M.
Zeng, Locally finite two-loop amplitudes for off-shell multi-
photon production in electron-positron annihilation, J. High
Energy Phys. 04 (2021) 222.

[18] C. Anastasiou and G. Sterman, Locally finite two-loop QCD
amplitudes from IR universality for electroweak production,
J. High Energy Phys. 05 (2023) 242.

[19] Z. Nagy and D. E. Soper, General subtraction method for
numerical calculation of one loop QCD matrix elements,
J. High Energy Phys. 09 (2003) 055.

[20] Z. Nagy and D. E. Soper, Numerical integration of one-loop
Feynman diagrams for N-photon amplitudes, Phys. Rev. D
74, 093006 (2006).

[21] P. Doust, Perturbative ambiguities in Coulomb gauge QCD,
Ann. Phys. (N.Y.) 177, 169 (1987).

[22] L. Baulieu and D. Zwanziger, Renormalizable noncovariant
gauges and Coulomb gauge limit, Nucl. Phys. B548, 527
(1999).

[23] M. D. Schwartz, Quantum Field Theory and the Standard
Model (Cambridge University Press, Cambridge, England,
2014), ISBN: 978-1-107-03473-0.

[24] G.F. Sterman, An Introduction to Quantum Field Theory
(Cambridge University Press, Cambridge, England, 1993),
ISBN: 978-0-521-31132-8.

[25] C. Becchi, A. Rouet, and R. Stora, Renormalization of the
Abelian Higgs-Kibble model, Commun. Math. Phys. 42,
127 (1975).

074008-40


https://doi.org/10.1103/PhysRevD.98.014034
https://doi.org/10.1103/PhysRevD.98.014034
https://doi.org/10.1103/PhysRevLett.110.252004
https://doi.org/10.1016/j.physletb.2014.06.056
https://doi.org/10.1007/JHEP01(2014)110
https://doi.org/10.1007/JHEP01(2014)110
https://doi.org/10.1007/JHEP10(2019)262
https://doi.org/10.1007/JHEP10(2019)262
https://doi.org/10.1140/epjc/s10052-018-5771-7
https://doi.org/10.1140/epjc/s10052-018-5771-7
https://doi.org/10.1103/PhysRevLett.116.152001
https://doi.org/10.1103/PhysRevLett.116.152001
https://doi.org/10.1103/PhysRevD.94.074019
https://doi.org/10.1007/JHEP02(2020)057
https://doi.org/10.1103/PhysRevLett.114.212001
https://doi.org/10.1103/PhysRevLett.125.051804
https://doi.org/10.1103/PhysRevLett.125.172001
https://doi.org/10.1007/JHEP02(2019)096
https://doi.org/10.1007/JHEP02(2019)096
https://doi.org/10.1103/PhysRevD.99.034004
https://doi.org/10.1103/PhysRevD.98.114016
https://doi.org/10.1103/PhysRevD.98.114016
https://doi.org/10.1103/PhysRevLett.117.072001
https://doi.org/10.1103/PhysRevLett.117.072001
https://doi.org/10.1007/JHEP04(2021)222
https://doi.org/10.1007/JHEP04(2021)222
https://doi.org/10.1007/JHEP05(2023)242
https://doi.org/10.1088/1126-6708/2003/09/055
https://doi.org/10.1103/PhysRevD.74.093006
https://doi.org/10.1103/PhysRevD.74.093006
https://doi.org/10.1016/0003-4916(87)90120-5
https://doi.org/10.1016/S0550-3213(99)00074-7
https://doi.org/10.1016/S0550-3213(99)00074-7
https://doi.org/10.1007/BF01614158
https://doi.org/10.1007/BF01614158

GAUGE CHOICE FOR ORGANIZING INFRARED SINGULARITIES ... PHYS. REV. D 108, 074008 (2023)

[26] C. Becchi, A. Rouet, and R. Stora, Renormalization of [29] Z. Nagy and D.E. Soper, Parton showers with quantum

gauge theories, Ann. Phys. (N.Y.) 98, 287 (1976). interference, J. High Energy Phys. 09 (2007) 114.
[27] 1. V. Tyutin, Gauge invariance in field theory and statistical [30] Z. Nagy and D. E. Soper, General subtraction method for
physics in operator formalism, arXiv:0812.0580. numerical calculation of one loop QCD matrix elements,
[28] L. Baulieu, Perturbative gauge theories, Phys. Rep. 129, 1 J. High Energy Phys. 09 (2003) 055.
(1985).

074008-41


https://doi.org/10.1016/0003-4916(76)90156-1
https://arXiv.org/abs/0812.0580
https://doi.org/10.1016/0370-1573(85)90091-2
https://doi.org/10.1016/0370-1573(85)90091-2
https://doi.org/10.1088/1126-6708/2007/09/114
https://doi.org/10.1088/1126-6708/2003/09/055

