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We explore the features of interpolating gauge for QCD. This gauge, defined by Doust and by Baulieu
and Zwanziger, interpolates between Feynman gauge or Lorenz gauge and Coulomb gauge. We argue that
it could be useful for defining the splitting functions for a parton shower beyond order αs or for defining the
infrared subtraction terms for higher order perturbative calculations.
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I. INTRODUCTION

It is an unsolved problem to specify an algorithm for a
parton shower in which the splitting functions are defined at
order α2s or beyond. The splitting functions can be based on
the soft and collinear singularities of quantum chromody-
namics (QCD) [1]. Thus, what one needs is to translate the
singularities of Feynman graphs into functions from which
the parton splitting functions are constructed. This is not a
trivial project beyond leading order in αs because one has
both real emissions and virtual exchanges and both soft and
collinear singularities and combinations of these. Thus, one
seeks a method that constructs the needed singular func-
tions directly from Feynman graphs, without dealing with
exceptions and special cases.
The construction of subtractions for the calculation of

perturbative cross sections at next-to-next-to-leading order
(NNLO) and beyond presents similar problems. Here there
are appropriate algorithms [2–16], but there is a substantial
ongoing effort to systematize and simplify these algorithms
[17,18], cf. [19,20].
These considerations lead to a certain difficulty. The

Feynman diagrams are simplest if one uses a covariant
gauge, particularly Feynman gauge. However, in Feynman
gauge the treatment of collinear singularities is far from
simple. Consider, for instance, a Feynman amplitude in
which a quark with momentum p − q couples to a gluon
with momentum q, becoming a final state quark with

momentum p with p2 ¼ 0. Such an amplitude is singular
when q becomes collinear with p, so that the denominator
of the quark propagator, 1=½ðp − qÞ2 þ i0� and the denomi-
nator of the gluon propagator, 1=½q2 þ i0�, both vanish.
This creates a collinear singularity. In Feynman gauge, the
leading term in the gluon propagator in the collinear limit
becomes pμgμν ∝ qμgμν ¼ qν. This gluon can then couple
to any other line in the Feynman diagram, either an
external, on-shell line or a virtual line. Any such connection
retains the leading collinear singularity. One can deal with
this surfeit of singularities using Ward identities, as we
outline in Appendix A. However at higher perturbative
orders, one can have multiple exchanged gluons with
momenta collinear with different external parton momenta.
These gluons can couple anywhere in the graph, including
to each other. This can lead to the exceptions and special
cases that one would like to avoid.
This argument suggests the use of a physical gauge, for

instance an axial gauge n · AðxÞ ¼ 0 for some fixed vector
n. In such a gauge, gluons never carry longitudinal polar-
izations ενðqÞ ∝ qν, so the problems associated with
longitudinally polarized gluons disappear. However, one
then must deal with gauge-definition singularities 1=q · n,
which need to be regulated somehow.
In this paper, we explore the use of a gauge defined by

Doust [21] and Baulieu and Zwanziger [22]. (We follow
the construction of Ref. [22], although we choose what
we think is a more transparent notation.) This gauge
interpolates between a covariant gauge and Coulomb
gauge. Accordingly, following Refs. [21,22], we will call
it interpolating gauge. The gauge choice depends on a
parameter ξ, where ξ ¼ 1 corresponds interpolating from
Feynman gauge and ξ ¼ 0 corresponds to interpolating
from Lorenz gauge. We mostly choose ξ ¼ 1, correspond-
ing to starting from Feynman gauge. The gauge definition
also depends on a four vector n that defines the time axis of
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a preferred reference frame. Finally, it depends on a
parameter v, where v ¼ 1 gives the starting covariant
gauge and v → ∞ gives Coulomb gauge.
The definition of interpolating gauge is very simple.

The gauge fixing term in the Lagrangian for a standard
covariant gauge with gauge parameter ξ is

LGFðxÞ ¼ −
1

2ξ
ð∂μAμ

aðxÞÞð∂νAν
aðxÞÞ: ð1Þ

Using a reference frame in which n ¼ ð1; 0; 0; 0Þ, the gauge
fixing term for interpolating gauge is

LGFðxÞ ¼ −
v2

2ξ

�
1

v2
∂0A0

aðxÞ −
X3
i¼1

∂iAi
aðxÞ

�

×
�
1

v2
∂0A0

aðxÞ −
X3
j¼1

∂jA
j
aðxÞ

�
: ð2Þ

If we choose v ¼ 1, we have the standard covariant gauge.
With v > 1, we have the same general form of LGFðxÞ
except that the relative normalizations of the ∂0A0

a and ∂iAi
a

terms are modified.
The intent of Refs. [21,22] was to better define Coulomb

gauge. One might think that it would be ideal to use
Coulomb gauge to help manage infrared singularities. It is,
after all, a physical gauge in the sense that only transversely
polarized gluons propagate. However, using Coulomb
gauge requires taking limits v → ∞. As we will see,
interpolating gauge with any finite value of v with v > 1
is physical enough for the purposes that we have in mind.
We could, for instance, choose v ¼ 2. Because of its useful
features, we might call interpolating gauge a quasiphys-
ical gauge.
The definition of interpolating gauge depends on a

parameter ξ and a parameter v with v ≥ 1. Additionally,
interpolating gauge, like Coulomb gauge, depends on a
four vector n with n2 ¼ 1 that defines the time axis in a
preferred reference frame. We define an analog hμν of the
metric tensor gμν. In a reference frame in which the
components of nμ are

nμ ¼ ð1; 0; 0; 0Þ; ð3Þ

the components of hμν are

hμν ¼

0
BBB@

1=v2 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1
CCCA: ð4Þ

For any vector q we define an associated vector q̃ by

q̃μ ¼ hμνqν: ð5Þ

Also

∂̃μ ¼ hνμ∂ν: ð6Þ

We think of hμν as being a modified metric tensor because
in the gauge fixing Lagrangian we replace ∂μA

μ
a ¼ ∂μg

μ
νAν

a

by ∂̃μA
μ
a ¼ ∂μh

μ
νAν

a.
One might also consider gauge choices that interpolate

between a covariant gauge and other physical gauges, such
as the axial gauge defined by n · A ¼ 0. In Ref. [22], one
can consider gauges with choices of hμν that are different
from Eq. (4). In this paper, we analyze the gauge defined by
LGFðxÞ in Eq. (2). We have two reasons for this preference.
First, it uses a timelike vector n, which can be chosen as
the direction of the total momentum for electron-positron
annihilation and, for hadron-hadron collisions, as the
direction of the total momentum of either the incoming
hadrons or of the colliding partons at the Born level of
the process considered. For hadron-hadron collisions, one
could use a lightlike vector n in the direction of one of the
incoming partons, but this choice is not as useful for the
description of the other incoming parton. Once one has
chosen to use a timelike vector n, one still has the choice of
a gauge fixing term in the Lagrangian. We believe that the
choice in Eq. (2) is favored by its simplicity.
In the sections that follow, we define and analyze

interpolating gauge in some detail. In the remainder of
this Introduction, we very briefly review what the gluon
propagator in interpolating gauge is and what advantages it
might offer for calculations.
As explained in Sec. II, the gluon propagator in

interpolating gauge is

iDμνðqÞ ¼ i
q2 þ i0

�
−gμν þ qμq̃ν þ q̃μqν

q · q̃þ i0

−
�
1þ 1

v2

�
qμqν

q · q̃þ i0

−
ξ − 1

v2
q2qμqν

ðq · q̃þ i0Þ2
�
: ð7Þ

The ghost propagator is

iDghostðqÞ ¼
i

q · q̃þ i0
: ð8Þ

There is a new denominator q · q̃ here but it is not ambi-
guous how to define the singularity: it is 1=ðq · q̃þ i0Þ.
We can understand the gluon propagator better by

decomposing it into two parts:

DμνðqÞ ¼ Dμν
T ðqÞ þDμν

L ðqÞ: ð9Þ

In a reference frame in which n ¼ ð1; 0; 0; 0Þ, the
components of Dμν

T ðqÞ are
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D00
T ðqÞ ¼ 0;

D0i
T ðqÞ ¼ Di0

T ðqÞ ¼ 0;

Dij
T ðqÞ ¼

1

q2 þ i0

�
δij −

qiqj

q⃗2

�
: ð10Þ

That is,

Dμν
T ðqÞ ¼ 1

q2 þ i0

X
s¼1;2

εμðq; sÞενðq; sÞ; ð11Þ

where the polarization vectors are the two real valued
solutions1 of

εðq; sÞ · n ¼ 0;

εðq; sÞ · q ¼ 0; ð12Þ

normalized to

εðq; sÞ · εðq; s0Þ ¼ −δs;s0 : ð13Þ

Thus the T gluons are massless bosons with transverse
polarizations.
The difficulty with collinear singularities that occurs in

Feynman gauge is not present for T gluons because when
q ¼ λp we have pμDμνðqÞ ∝ qμDμνðqÞ. Then qμDμνðqÞ ∝
−qμgμν ¼ −qν in Feynman gauge is replaced by
qμ

P
s ε

μðq; sÞενðq; sÞ, but qμεμðq; sÞ ¼ 0.
In a reference frame in which n ¼ ð1; 0; 0; 0Þ, the

components of the propagator for L gluons with the gauge
parameter ξ set to ξ ¼ 1 are

D00
L ðqÞ ¼ −

1

q · q̃þ i0
;

D0i
L ðqÞ ¼ Di0

L ðqÞ ¼ 0;

Dij
L ðkÞ ¼

1

v2
1

q · q̃þ i0
qiqj

q⃗2
: ð14Þ

This describes bosons with polarization vectors propor-
tional to either ð1; 0⃗Þ or ð0; q⃗Þ.
What is remarkable is that the L gluons are on shell

not when q2 ¼ 0 but when q · q̃ ¼ 0.2 Since q · q̃ ¼
ðq0Þ2=v2 − q⃗2, the condition for on-shell propagation is

q0 ¼ �vjq⃗j: ð15Þ

For a boson propagating in the z direction with positive
energy ω ¼ vjq⃗j, the wave function in space-time is
proportional to

e−iðωt−jq⃗jzÞ ¼ e−ijq⃗jðvt−zÞ: ð16Þ

That is, the wave propagates with velocity v. Since we take
v > 1, the L gluons are tachyons.
When we construct a cross section using interpolating

gauge, the initial or final state partons should include
quarks and T gluons, but not ghosts or L gluons. That is, we
have an S-matrix amplitude Si and a conjugate amplitude
S†
j with quarks and T gluons as external, on-shell particles.

The Feynman rule factor for an external T gluon is3

ð2πÞδþðq2Þ
X
s

εμðq; sÞενðq; sÞ; ð17Þ

where δþðq2Þ is δðq2Þ times a factor θðq · n > 0Þ.
The Feynman diagrams used to construct the S matrix for

incoming and outgoing T gluons involve also virtual L
gluons. One might be concerned that this S matrix in
interpolating gauge differs from the S matrix in Feynman
gauge or Lorenz gauge. However, as we will see in
Sec. V F, the theory obeys identities derived from
Becchi-Rouet-Stora-Tyutin (BRST) symmetry that imply
that the S matrix is independent of v and ξ and also
independent of n. Thus the S matrix in interpolating gauge
is the same as the S matrix in one of the covariant gauges.
An instructive way to write Dμν

L ðqÞ in Eq. (14) is

Dμν
L ðqÞ ¼ qμqν − q · nðqμnν þ nμqνÞ

½ðq0Þ2 − v2q⃗2 þ i0�jq⃗j2 þ nμnν

jq⃗j2 : ð18Þ

If we take v → ∞with fixed q, the first term vanishes. This
leaves just nμnν=jq⃗j2, which is the Coulomb potential. We
conclude that interpolating gauge with ξ ¼ 1 interpolates
between Feynman gauge and Coulomb gauge.
What happens if one inserts a virtual L-gluon line with

momentum q into an amplitude, coupled to an external
quark or an external T gluon with momentum p with
p2 ¼ 0? Then there are propagators with momenta p − q
and q. In Feynman gauge, this leads to a collinear
singularity when q ¼ λp since ðp − qÞ2 ¼ ð1 − λÞp2 and
q2 ¼ λ2p2 both vanish in the collinear limit. In interpolat-
ing gauge, ðp − qÞ2 ¼ ð1 − λÞp2 still vanishes, but the
denominator for the L-gluon propagator is q · q̃þ i0. In the
collinear limit, this becomes

1One often chooses complex valued polarization vectors so
that one can represent gluons with definite helicities. However,
one then needs to distinguish between ε and ε�. Since this
complicates the notation, we use real valued polarization vectors
in this paper.

2This tree-level on-shell condition is modified at higher orders
in αs.

3If there is a self-energy graph connected to the external
line, one needs a limiting procedure with q2 → 0 according to
the Lehmann-Symanzik-Zimmerman (LSZ) prescription. See
Sec. V E.
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λ2p · p̃ ¼ λ2

v2
p2 − λ2

�
1 −

1

v2

�
jp⃗j2

¼ −λ2
�
1 −

1

v2

�
jp⃗j2; ð19Þ

which does not vanish. For this reason, exchanging an L
gluon between two external partons can create a soft
(q⃗ → 0) singularity but does not create a collinear singu-
larity. We will see this in a more detailed calculation
in Sec. IV.
In this Introduction, we have outlined very briefly

why interpolating gauge might be useful, in spite of the
complexity of the gluon propagator in this gauge. In Sec. II,
we derive the propagators and vertices in interpolating
gauge from the functional integral formulation of the
theory. In Sec. III, we examine the decomposition of the
gluon propagator into T and L parts in a little more
detail than was presented above. In Sec. IV, we show
how no collinear singularities arise from the exchange of a
gluon between two external partons in interpolating gauge.
In Sec. V, we examine BRST symmetry in this gauge.
Section VI explores the renormalization program. We
examine the gluon self-energy function in Sec. VII and
the quark self-energy function in Sec. VIII. We assemble
results about the infrared poles of the S matrix in Sec. IX.
Finally, Sec. X presents some conclusions. There are four
Appendices.

II. DEFINITION OF INTERPOLATING GAUGE

In this section, we use the functional integral approach to
define SU(3) gauge theory in interpolating gauge, leading
to the Feynman rules that one can use for calculations. The
important step is the introduction of the gauge fixing
function in Eq. (38) below. The rest of the analysis follows
rather standard textbook methods, but we provide this
analysis in order to present a self-contained derivation
in a consistent notation.4

A. Momenta and the tensor h

As sketched in the Introduction, we let n be a timelike
vector with n2 ¼ 1 that defines the time direction in a
preferred reference frame that we often use. We use n to
define tensors Pμν

� that project onto the direction along n
and the directions orthogonal to n:

Pμν
þ ¼ nμnν;

Pμν
− ¼ gμν − nμnν: ð20Þ

Then gμν ¼ Pμν
þ þ Pμν

− . The tensors P� act as projection
operators:

Pμ
�αP

αν∓ ¼ 0;

Pμ
�αP

αν
� ¼ Pμν

� : ð21Þ

We let v be a fixed parameter with v ≥ 1 and define an
analog hμν of the metric tensor gμν by

hμν ¼ 1

v2
Pμν
þ þ Pμν

− : ð22Þ

Using the definition of hμν and the properties of the
projection tensors P�, one derives the useful identity

hμαhαν ¼ −
1

v2
gμν þ v2 þ 1

v2
hμν : ð23Þ

For any momentum q we define a transformed
momentum

q̃μ ¼ hμνqν: ð24Þ

This gives us

q̃ · q ¼ q2 −
�
1 −

1

v2

�
ðq · nÞ2; ð25Þ

so that q · q̃ < q2 when v > 1. Using Eq. (23), we also
obtain

q̃2 ¼ −
1

v2
q2 þ v2 þ 1

v2
q · q̃: ð26Þ

B. Functional integral definition of the gauge

We use a functional integral over quark fields with flavor
f, ψfðxÞ, and gauge boson fields, Aμ

aðxÞ. We use the
covariant derivative acting on quark fields

DμðAÞ ¼ ∂
μ − igAμ

aðxÞta: ð27Þ

For the covariant derivative acting on octet color fields, we
make the color indices explicit:

Dμ
acðAÞ ¼ ∂

μδac þ gAμ
bðxÞfabc: ð28Þ

We also use the field operator

Fμν
a ¼ ∂

μAν
a − ∂

νAμ
a þ gfabcA

μ
bðxÞAν

cðxÞ: ð29Þ

The gauge invariant Lagrangian is
4We follow the convention of Schwartz [23] for the sign of g.

Much of the analysis is along the lines of that in Sterman [24].
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LðxÞ ¼ −
1

4
Fμν
a ðxÞFa;μνðxÞ

þ
X
f

ψ̄fðxÞ½iDμðAÞγμ −mf�ψfðxÞ: ð30Þ

We begin with the functional integral

IF ¼ N 0

Z
Dψ Dψ̄ DA exp

�
i
Z

d4xLðxÞ
�
F½A; ψ̄ ;ψ �:

ð31Þ

The function F½A; ψ̄ ;ψ � consists of gauge invariant combi-
nations of the quark and gluon field operators. The
normalization factor N 0 is not important for the construc-
tion because one considers IF divided by I1 with
F½A; ψ̄ ;ψ � ¼ 1. The functional integral over A is not well
defined at this stage because it implicitly includes an
integral over the gauge group. In order to factor out
an integral over the gauge group, we insert a functional
integral

1 ¼ N 1

Z
Dω exp

�
i
X
c

Z
d4x

−1
2a

ωcðxÞ2
�
: ð32Þ

Here ωcðxÞ is a scalar field with a color index c and a is a
constant parameter. We define another gauge parameter ξ
that we can use in place of a by

ξ ¼ av2: ð33Þ

We also insert

1 ¼
Z

DαδðG½Aα�Þ det
�
δG½Aα�
δα

�
; ð34Þ

where G is the gauge fixing function defined below in
Eq. (38). Here αcðxÞ parametrizes a finite gauge trans-
formation, under which a quark field transforms accor-
ding to

ψfðxÞ → ψf;αðxÞ ¼ expðigαcðxÞtcÞψfðxÞ: ð35Þ

Here the matrices tc are the generators of the fundamental
representation of SU(3). In the adjoint representation of
SU(3), the transformation matrix is

UðxÞ ¼ expðigαcðxÞTcÞ: ð36Þ

Then Aα is A transformed by the gauge transformation,

ðAαÞμaðxÞTa ¼ UðxÞAμ
aðxÞTaUðxÞ−1 − i

g
½∂μUðxÞ�UðxÞ−1:

ð37Þ

The gauge fixing function G½Aα� is a function of a color
index c and a space-time position x defined by

G½A�cðxÞ ¼ ∂̃μA
μ
cðxÞ − ωcðxÞ: ð38Þ

The delta function δðG½Aα�Þ sets G½A�cðxÞ equal to zero for
each c and each x. This gauge fixing function replaces the
function ∂μA

μ
cðxÞ − ωcðxÞ that leads to a covariant gauge.

This gives us

IF ¼ N 2

Z
DαDψ Dψ̄ DADω exp

�
i
Z

d4xLðxÞ
�

× exp

�
i
X
c

Z
d4x

−1
2a

ωcðxÞ2
�

× δðG½Aα�Þ det
�
δG½Aα�
δα

�
F½A; ψ̄ ;ψ �: ð39Þ

We need the determinant δG½Aα�=δα of the functional
derivative ofG½Aα�with respect to the gauge transformation
α. For this purpose, we consider a small variation δα in
the gauge transformation. The corresponding variation in
ðAαÞμaðxÞ is

δðAαÞμaðxÞ ¼ DðAαÞμacδαcðxÞ: ð40Þ

Thus the variation in G½Aα�aðxÞ is

δG½Aα�aðxÞ ¼ ∂̃μDðAαÞμacδαcðxÞ: ð41Þ

This gives us the functional derivative

δG½Aα�aðxÞ
δαcðyÞ

¼ ∂̃μDðAαÞμacδðx − yÞ: ð42Þ

Before going further, we change the integration variable
from A to Aα. The Lagrangian and F½A; ψ̄ ;ψ � do not change
when expressed as functions of Aα since these functions
are gauge invariant. Next, we simply rename Aα as A. This
gives us

IF ¼ N 2

Z
DαDψ Dψ̄ DADω exp

�
i
Z

d4xLðxÞ
�

× exp

�
i
X
c

Z
d4x

−1
2a

ωcðxÞ2
�

× δðG½A�Þ det
�
δG½A�
δα

�
F½A; ψ̄ ;ψ �: ð43Þ
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Now nothing depends on the gauge transformation α, so we
can simply absorb the integration

R
Dα into the normali-

zation constant. Additionally, we can perform the integra-
tion over ω against δðG½A�Þ, thus setting ωcðxÞ to ∂̃μA

μ
cðxÞ.

This gives us

IF ¼ N 3

Z
Dψ Dψ̄ DA exp

�
i
Z

d4xLðxÞ
�

× exp

�
i
X
c

Z
d4x

−1
2a

ð∂̃μAμ
cðxÞÞ2

�

× det

�
δG½A�
δα

�
F½A; ψ̄ ;ψ �: ð44Þ

The final step is to write the functional determinant as an
integral over Grassmann fields ηaðxÞ and η̄aðxÞ, the ghost
and antighost fields:

det

�
δG½A�
δα

�

¼ N 4

Z
DηDη̄ exp

�
−i

Z
d4x η̄aðxÞ∂̃μDðAÞμacηcðxÞ

�
:

ð45Þ

This gives us

IF ¼ N
Z

Dψ Dψ̄ DADηDη̄ exp

�
i
Z

d4xLðxÞ
�

× exp

�
i
X
c

Z
d4x

−1
2a

ð∂̃μAμ
cðxÞÞ2

�

× exp

�
−i

Z
d4x η̄aðxÞ∂̃μDðAÞμacηcðxÞ

�
F½A; ψ̄ ;ψ �:

ð46Þ

We now have a functional integral with the usual gauge
invariant Lagrangian LðxÞ, a gauge fixing Lagrangian

LGFðxÞ ¼ −
1

2a
ð∂̃μAμ

aðxÞÞð∂̃νAν
aðxÞÞ ð47Þ

and ghost fields with a ghost Lagrangian

LghostðxÞ ¼ −η̄aðxÞ∂̃μDðAÞμacηcðxÞ: ð48Þ

This is just the same as with a covariant gauge except that
∂̃μ replaces ∂μ.

C. Propagators

The terms in the Lagrangian that are quadratic in the
gauge field are

LA2ðxÞ ¼ 1

2

�
ð∂μAν

aÞð∂νAμ
aÞ − ð∂μAν

aÞð∂μAaνÞ

−
1

a
ð∂̃μAμ

aÞð∂̃νAν
aÞ
�
: ð49Þ

In momentum space, this becomes a two-point vertex
−iδabΓ

μν
tree for a gluon with momentum q,

Γμν
tree ¼ qμqν − q2gμν −

1

a
q̃μq̃ν: ð50Þ

The tree-level gluon propagator is iδcdDμνðqÞ where
Dμ

αΓαν
tree ¼ gμν:

DμνðqÞ ¼ 1

q2 þ i0

�
−gμν þ qμq̃ν þ q̃μqν

q · q̃þ i0

−
q̃2 þ aq2

ðq · q̃þ i0Þ2 q
μqν

�
: ð51Þ

We can use Eq. (26) for q̃2 and use the gauge parameter
ξ ¼ av2 instead of a. Then the gluon propagator is
expressed as in Eq. (7):

DμνðqÞ ¼ 1

q2 þ i0

�
−gμν þ qμq̃ν þ q̃μqν

q · q̃þ i0

−
�
1þ 1

v2

�
qμqν

q · q̃þ i0

�
−
ξ − 1

v2
qμqν

ðq · q̃þ i0Þ2 :

ð52Þ

Evidently, this is simplest if we choose ξ ¼ 1. That will
be our favored choice. We will return to properties of Dμν

in Sec. III.
In the case that v ¼ 1, we have q̃ ¼ q and

DμνðqÞ ¼ 1

q2 þ i0

�
−gμν þ ð1 − ξÞ qμqν

q2 þ i0

�
: ð53Þ

This is the usual covariant gauge with gauge parameter ξ,
with ξ ¼ 1 giving Feynman gauge. In the case that v → ∞
with any fixed q and with any fixed ξ, we have q̃μ → Pμα

− qα.
Then the limit does not depend on ξ and is

DμνðqÞ → −
1

q2 þ i0

�
Pμν
− þ Pμα

− qαPνβ
− qβ

qαPαβ
− qβ

�
−

nμnν

qαPαβ
− qβ

:

ð54Þ

This is the propagator in Coulomb gauge, expressed in
covariant form. The second term is the Coulomb potential,

D00 ¼ 1

jq⃗j2 ; ð55Þ

in a frame in which nμ ¼ ð1; 0; 0; 0Þ.
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For the ghost propagator, we need the inverse of the part
of the ghost Lagrangian (48) that does not include Aμ

bðxÞ.
The ghost propagator is δabiDghostðqÞ with

DghostðqÞ ¼ 1

q · q̃þ i0
: ð56Þ

The quark propagator iDquark takes the familiar form
derived from the ψ̄ψ part of the Lagrangian,

DquarkðqÞ ¼ =qþmf

q2 −m2
f þ i0

: ð57Þ

D. Vertices

The Feynman rules for the vertices can be read off from
the Lagrangian. The quark-gluon vertex is

Γa;i0i
μ;α0αðq; k; pÞ ¼ igðγμÞα0αðtaÞi0i; ð58Þ

as illustrated in Fig. 1. The triple-gluon vertex (with
momenta leaving the vertex) is given by

Γabc
αβγ ðpa; pb; pcÞ ¼ −gfabcfgαβðpa − pbÞγ þ gβγðpb − pcÞα

þ gγαðpc − paÞβg; ð59Þ

as illustrated in Fig. 2. The four-gluon vertex is

Γabcd
αβγδ ¼ −ig2fāabfācdfgαγgβδ − gαδgβγg

− ig2fāadfābcfgαβgγδ − gαγgβδg
− ig2fāacfābdfgαβgγδ − gαδgβγg; ð60Þ

as illustrated in Fig. 3. The ghost-gluon vertex is

Γabc
μ ðpa; pb; pcÞ ¼ gfabcp̃b;μ; ð61Þ

as illustrated in Fig. 4. The momentum of the outgoing
ghost line is pb.

III. T GLUONS AND L GLUONS

We have seen that the propagator for quarks contains a
pole 1=ðq2 þ i0Þ ¼ 1=ðqαqβgαβ þ i0Þ. On the other hand,
the propagator for ghosts contains a pole 1=ðq · q̃þ i0Þ ¼
1=ðqαqβhαβ þ i0Þ. This implies that in coordinate space
the propagator for quarks is singular on the light cone,
xμxνgμν ¼ 0 while the propagator for ghosts is singular on
the surface xμxνh−1μν ¼ 0. On this surface, x2 < 0. That is,
between interactions, ghosts propagate faster than the speed
of light. In a frame in which n ¼ ð1; 0; 0; 0Þ, we have
xμxνh−1μν ¼ v2t2 − x⃗2, so the ghosts propagate with speed v
in this frame.
For gluons, the situation is a little more complicated.

With our preferred choice ξ ¼ 1, the gluon propagator,
Eq. (52), is

DμνðqÞ ¼ 1

q2 þ i0

�
−gμν þ qμq̃ν þ q̃μqν

q · q̃þ i0

−
�
1þ 1

v2

�
qμqν

q · q̃þ i0

�
: ð62Þ

This propagator contains products of poles 1=ðq2 þ i0Þ and
1=ðq · q̃þ i0Þ. We can simplify it by writing it as a sum
of a propagator Dμν

T ðqÞ with only 1=ðq2 þ i0Þ poles and a
propagator Dμν

L ðqÞ with only 1=ðq · q̃þ i0Þ poles. We use
the projection tensor Pαβ

− , Eq. (20) and obtain factors
q · P− · q ¼ qαPαβ

− qβ in denominators. We find

DμνðqÞ ¼ Dμν
T ðqÞ þDμν

L ðqÞ; ð63Þ

where

FIG. 1. Quark-gluon vertex.

FIG. 2. Triple-gluon vertex.

FIG. 3. Four-gluon vertex.

FIG. 4. Ghost-gluon vertex.
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Dμν
T ðqÞ ¼ Pμα

− Pνβ
−

q2 þ i0

�
−gαβ þ

qαqβ
q · P− · q

�
;

Dμν
L ðqÞ ¼ −

1

q · q̃þ i0

�
Pμα
− qαPνβ

− qβ
v2q · P− · q

þ nμnν
�
: ð64Þ

The components of Dμν
T ðqÞ and Dμν

L ðqÞ in a frame in which
n ¼ ð1; 0; 0; 0Þ are given in Eqs. (10) and (14). The factor
q · P− · q ¼ −q⃗2 appears in denominators. This quantity
is always negative or zero, so it does not need a þi0
prescription. To prove Eq. (64), one manipulates the
components of DμνðqÞ in this frame.
The propagator Dμν

T ðqÞ contains a pole 1=ðq2 þ i0Þ but
no pole 1=ðq · q̃þ i0Þ. It has another important property: it
is entirely transverse. That is

qμD
μν
T ðqÞ ¼ nμD

μν
T ðqÞ ¼ 0: ð65Þ

Thus we can expand it according to Eq. (11),

Dμν
T ðqÞ ¼ 1

q2 þ i0

X
s¼1;2

εμðq; sÞενðq; sÞ; ð66Þ

using polarization vectors εμðq; sÞ that are real valued
functions of an index s∈ f1; 2g and the part of q that is
orthogonal to n, Pμα

− qα. The polarization vectors are
solutions of q · εðq; sÞ ¼ n · εðq; sÞ ¼ 0 that are orthogonal
to each other and normalized to ε2 ¼ −1. These are the
same polarization vectors that one uses in Coulomb gauge.
The propagatorDμν

L ðqÞ contains a pole 1=ðq · q̃þ i0Þ but
no pole 1=ðq2 þ i0Þ. It has another important property: it is
entirely longitudinal:

εμðq; sÞDμν
L ðqÞ ¼ 0: ð67Þ

The two terms in Dμν
L ðqÞ in Eq. (64) correspond to two

additional choices of polarization vectors ε. In the first
term, n · ε ¼ 0 and ε is proportional to the part of q that is
orthogonal to n. In the second term, ε is proportional to n.

IV. EXCHANGE OF A SOFT GLUON

Consider a graph for an S-matrix element involving a
parton with momentum l with l2 ¼ 0 and another parton
with momentum k with k2 ¼ 0. These partons could be
either quarks, antiquarks, or T gluons. We suppose that
these are final state partons, so l0 > 0 and k0 > 0. The
partons exchange a virtual gluon with momentum q, so that
before the exchange the parton momenta are l − q and
kþ q. The amplitude for this exchange is singular in the
limit that the exchanged gluon is soft, q → 0. In this limit,
the part of the S matrix describing the exchange can be
approximated by the eikonal approximation,

Aeik ¼ −i4παs
ðq · l − i0Þðq · kþ i0Þ lμkνD

μνðq⃗Þ: ð68Þ

This multiplies a color factor Tl · Tk.
If we were to calculate Aeik using Feynman gauge, we

would find that in addition to the soft singularity, the
graph has singularities when q is collinear to l or −k. In
the presence of these collinear singularities, the eikonal
approximation is not adequate. We would need to subtract
the collinear singularities from the amplitude and then add
them back using Ward identities to sum their contributions
over all ways of attaching the gluon to the rest of the graph.
This use of Ward identities to organize the infrared
singularities is fairly simple when only one gluon in a
loop can have a momentum that is soft or collinear with the
momentum of an external parton. It is not so simple when
more than one gluon can be collinear with an external
parton momentum or soft [17,18]. We will discuss this in
the simple case in Appendix A.
In this section, we examine this soft gluon exchange in

interpolating gauge with ξ ¼ 1. We analyze Aeik for T and
L gluon exchanges separately. We will see quite directly
that there is a soft singularity but no collinear singularities
for either T or L gluon exchange.
We examine Aeik in a reference frame in which

n ¼ ð1; 0; 0; 0Þ. We will want to integrate over q, so we
define

V ¼ μ2ϵ
Z

d4−2ϵq
ð2πÞ4−2ϵ θðjq⃗j < QÞAeik: ð69Þ

Here we have inserted a factor θðjq⃗j < QÞ with an arbitrary
value of Q to provide an ultraviolet cutoff because we have
assumed that q is very small in order to obtain the eikonal
approximation, but in doing so we have created an artificial
UV divergence.
Consider first the exchange of a T gluon. We have

VT ¼ μ2ϵ
Z

d4−2ϵq
ð2πÞ4−2ϵ θðjq⃗j < QÞ

�⃗
l · k⃗ −

⃗l · q⃗ k⃗ ·q⃗
q⃗2

�

×
−i4παs

ðq · l − i0Þðq · kþ i0Þ
1

q2 þ i0
: ð70Þ

We can now perform the q0 integration by closing the
contour in one half plane or the other. There are two
contributions initially because 1=ðq2 þ i0Þ has two poles.
When we combine the terms, we separate the integrand into
terms even and odd under q⃗ → −q⃗ and throw away the odd
part. There is a singular denominator that we separate into
even and odd parts using
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1

q⃗ · ⃗l=j⃗lj − q⃗ · k⃗=jk⃗j þ i0
¼ 1

½q⃗ · ⃗l=j⃗lj − q⃗ · k⃗=jk⃗j�P

− iπδ

�
q⃗ · ⃗l

j⃗lj
−
q⃗ · k⃗

jk⃗j

�
: ð71Þ

The first term is odd, the second is even. After combining
the terms, the result is

VT ¼ −μ2ϵ
Z

d3−2ϵq⃗
ð2πÞ3−2ϵ θðjq⃗j < QÞ 2παsjq⃗j3

× ½u⃗l · u⃗k − u⃗q · u⃗lu⃗q · u⃗k�

×

�
1þ u⃗q · u⃗lu⃗q · u⃗k

½1 − ðu⃗q · u⃗lÞ2�½1 − ðu⃗q · u⃗kÞ2�

− iπδðu⃗q · u⃗l − u⃗q · u⃗kÞ
2

1 − ðu⃗q · u⃗lÞ2
�
; ð72Þ

where u⃗l ¼ ⃗l=j⃗lj is a unit vector in the direction of ⃗l,
u⃗k ¼ k⃗=jk⃗j, and u⃗q ¼ q⃗=jq⃗j.
The integrand is singular in the soft limit jq⃗j → 0.

This singularity will produce a pole 1=ϵ. The first term
in braces—the real term—is also singular in the collinear
limits u⃗q → u⃗l and u⃗q → u⃗k. These collinear singularities
would be strong enough to produce another 1=ϵ. However,
in these collinear limits, the factor ½u⃗l · u⃗k − u⃗q · u⃗lu⃗q · u⃗k�
vanishes. This eliminates the collinear poles.5 This can-
cellation can be traced back to the fact that q · εðq; sÞ ¼ 0.
We have not at this point examined the possibility that

exchange of a T gluon with momentum q between a parton
with momentum l and another parton could be singular
when q is collinear to l but is not soft, q ∼ xl with a finite
coefficient x. In this case, we cannot use the eikonal
approximation. However, the amplitude is then propor-
tional to a factor Jμεμðq; sÞ, where Jμ is the current function
for the parton. In the collinear limit, we find that Jμ ∝ qμ,
so that we find a factor q · εðq; sÞ ¼ 0 that cancels the
collinear singularity. (See Appendix A.)
Consider next the exchange of an L gluon. We have,

again in the frame in which n ¼ ð1; 0; 0; 0Þ,

VL ¼ μ2ϵ
Z

d4−2ϵq
ð2πÞ4−2ϵ θðjq⃗j < QÞ

�
v2 j⃗ljjk⃗j −

⃗l · q⃗ k⃗ ·q⃗
q⃗2

�

×
i4παs

ðq · l − i0Þðq · kþ i0Þ
1

v2ðq · q̃þ i0Þ : ð73Þ

We perform the q0 integration and collect the resulting
terms that are even under q⃗ → −q⃗. This gives

VL ¼ μ2ϵ
Z

d3−2ϵq⃗
ð2πÞ3−2ϵ θðjq⃗j < QÞ 2παsjq⃗j3

× ½v2 − u⃗q · u⃗lu⃗q · u⃗k�

×

�
v2 þ u⃗q · u⃗lu⃗q · u⃗k

½v2 − ðu⃗q · u⃗lÞ2�½v2 − ðu⃗q · u⃗kÞ2�

− iπδðu⃗q · u⃗l − u⃗q · u⃗kÞ
2

v2 − ðu⃗q · u⃗lÞ2
�
: ð74Þ

Just as with VT, there is a soft singularity from jq⃗j → 0 that
will produce a pole, 1=ϵ. In contrast to the case with VT,
the numerator factor ½v2 − u⃗q · u⃗lu⃗q · u⃗k� does not vanish in
the collinear limits u⃗q → u⃗l or u⃗q → u⃗k. However, again
in contrast to the case with VT, as long as v2 > 1, the
denominator factor 1=½v2 − ðu⃗q · u⃗lÞ2� is not singular when
u⃗q → u⃗l and 1=½v2 − ðu⃗q · u⃗kÞ2� is not singular when
u⃗q → u⃗k. Thus, there are no collinear singularities that
need to be canceled. This nonappearance of collinear
singularities can be traced back to the fact that if l ≠ 0,
q ≠ 0, and v2 > 0, it is kinematically not possible to have
l2 ¼ 0, ðl − qÞ2 ¼ 0, and q · q̃ ¼ 0 at the same time.
We can perform the jq⃗j integration in Eqs. (72) and (74)

to give an infrared (IR) pole:

μ2ϵ
Z

djq⃗j
ð2πÞ−2ϵ

θðjq⃗j < QÞ
jq⃗j1þ2ϵ ¼ −

1

2ϵ
ð1þOðϵÞÞ: ð75Þ

We can then perform integrations over the angles of q⃗ with
ϵ ¼ 0. This gives us the infrared pole in V ¼ VT þ VL for
an exchange between partons l and k:

Vlk ¼
αs
4π

2

ϵ

�
− log

�
1 − u⃗l · u⃗k

2

�
− iπθðpl · pk > 0Þ

þ log

�
v − 1

vþ 1

�
−
v − 1

v
þOðϵÞ

�
: ð76Þ

The −iπ contribution in Eq. (76) appears in the case of a
gluon exchange between two final state partons and also in
the case of a gluon exchange between two initial state
partons. In a cross section, these exchanges cancel (at order
αs) between exchanges in the ket amplitude and in the
conjugate bra amplitude. There is no iπ contribution arising
from an exchange between an initial state parton and a final
state parton. For this reason, we have supplied a factor to
indicate that the −iπ contribution is present only when
pl · pk > 0. We can rewrite this in an instructive form,
including the −iπ term, as

5If u⃗q ¼ u⃗l þ δu⃗q, there is a factor δu⃗2q in the denominator.
There is a factor u⃗k · δu⃗q in the numerator. The left-over
integrable singularity cancels because u⃗k · δu⃗q is an odd function
of δu⃗q.
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Vlk ¼
αs
4π

2

ϵ

�
− log

�
−2pl · pk þ i0
4pl · npk · n

�
þ log

�
v − 1

vþ 1

�

−
v − 1

v
þOðϵÞ

�
: ð77Þ

The log of v − 1 in Eq. (77) is an indication that if we
were to choose Feynman gauge, v ¼ 1, a collinear pole
would appear. With v − 1 > 0 we have

1

ϵ
½1 − ðv − 1Þ−ϵ� ¼ logðv − 1Þ þOðϵÞ: ð78Þ

But if we take ðv − 1Þ → 0with ϵ fixed with ϵ < 0, we have
ðv − 1Þ−ϵ → 0. Then

1

ϵ
½1 − ðv − 1Þ−ϵ� → 1

ϵ
: ð79Þ

The effect of the v and n dependent factors in V can be
better understood by considering the role of color in the
exchange. We have calculated the singular contribution to
the S matrix from exchanging a soft gluon between partons
with labels l and k. This exchange comes with a color factor
Tl · Tk ¼ Ta

l T
a
k , where T

a
l is the color generator matrix for

coupling a gluon with color a to the parton line with index
l. Summing over l and k, the total contribution is

Sexch ¼
1

2

X
l

X
k≠l

VlkTl · Tk þOðϵ0Þ: ð80Þ

Using Eq. (77) and adding and subtracting a logarithm of
the renormalization scale, this is

Sexch ¼
1

2

X
l

X
k≠l

Tl · Tk
αs
4π

2

ϵ

�
− log

�
−2pl · pk þ i0

μ2

�

−
1

2
log

�
μ2

4ðpl · nÞ2
�
−
1

2
log

�
μ2

4ðpk · nÞ2
�

þ log

�
v − 1

vþ 1

�
−
v − 1

v
þOðϵÞ

�
: ð81Þ

Color conservation gives us
P

k Tk ¼
P

l Tl ¼ 0 when the
sums include all index values, including k ¼ l. Thus

Sexch ¼ −
X
l

X
k≠l

Tl · Tk
αs
4π

Sϵ
ϵ
log

�
−2pl · pk þ i0

μ2

�

þ
X
l

T2
l
αs
4π

Sϵ
ϵ

�
v − 1

v
− log

�
v − 1

vþ 1

�

þ log

�
μ2

4ðpl · nÞ2
��

þOðϵÞ: ð82Þ

The factor T2
l ¼ Tl · Tl is either CF or CA depending on

whether parton l is a quark or a gluon. We will combine this
result with the results from self-energy graphs in Sec. IX.

V. BRST SYMMETRY

The definition of interpolating gauge depends on two
gauge parameters, which we can take to be v and a. (We
often use parameters v and ξ ¼ av2, but in this section it is
more convenient to use v and a.) How do Green functions
depend on v and a? To find out, we can use BRST
symmetry [25–27]. We will also use BRST symmetry to
derive the form of a standard Ward identity in the case of
interpolating gauge. This analysis is complementary to the
analysis of BRST symmetry in Refs. [22,28].

A. The fields and the Lagrangian

For the purposes of this section, we replace the ghost
fields ηaðxÞ and η̄aðxÞ by fields caðxÞ and c̄aðxÞ with a
slightly different normalization:

caðxÞ ¼ ηaðxÞ;
c̄aðxÞ ¼

ffiffiffi
a

p
η̄aðxÞ: ð83Þ

We seek to find how Green functions depend on the
gauge parameters v and a. The dependence of the
Lagrangian on the gauge parameters resides in the gauge
fixing term LGFðxÞ, Eq. (47), and the ghost term LghostðxÞ,
Eq. (48), in the Lagrangian. We can write these terms in a
compact form using the matrix

Hμ
α ¼ 1ffiffiffi

a
p hμα: ð84Þ

The gauge dependent parts of the Lagrangian are

LGFðxÞ ¼ −
1

2
½Hν

α∂νAα
aðxÞ�½Hμ

β∂μA
β
aðxÞ�;

LghostðxÞ ¼ −c̄aðxÞHμ
α∂μDðAÞαacccðxÞ: ð85Þ

Now we can define derivatives of Hμ
α with respect to the

parameters that we use to define the gauge. Let us name the
parameters ri, i ¼ 1;…; 6, according to

r1 ¼ a;

r2 ¼ v;

rβþ3 ¼ nβ; β ¼ 0;…; 3: ð86Þ

Then we define a matrix X by

∂

∂ri
Hμ

αðrÞ ¼ Xμ
i;αðrÞ: ð87Þ

Concretely, this is
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∂

∂a
Hμ

α ≡ Xμ
1;α ¼ −

1

2a3=2
hμα;

∂

∂v
Hμ

α ≡ Xμ
2;α ¼ −

2

v3
ffiffiffi
a

p nμnα;

∂

∂nβ
Hμ

α ≡ Xμ
βþ3;α

¼ −
1ffiffiffi
a

p
�
1 −

1

v2

�
ðgμβnα þ nμgαβÞ: ð88Þ

The derivatives of the Lagrangian are

∂L
∂ri

¼ −½Hν
α∂νAα

aðxÞ�½Xμ
i;β∂μA

β
aðxÞ�

− c̄aðxÞXμ
i;α∂μDðAÞαacccðxÞ: ð89Þ

B. The BRST transformation

The theory in interpolating gauge has an exact symmetry
under a BRST transformation [25–27]. For each field
ϕ∈ fA;ψ ; ψ̄ ; c; c̄g, the BRST transformation is

ϕ → ϕþ θδbrstϕ; ð90Þ

where θ is a variable that anticommutes with itself and
with ψfðcÞ, ψ̄fðxÞ, caðxÞ and c̄aðxÞ. If we apply a BRST
transformation to a product of fields, we use

ϕ1ϕ2 � � �ϕn → ϕ1ϕ2 � � �ϕn þ θδbrstðϕ1ϕ2 � � �ϕnÞ; ð91Þ

where

θδbrstðϕ1ϕ2 � � �ϕnÞ ¼ θδbrstðϕ1Þϕ2 � � �ϕn

þ ϕ1θδbrstðϕ2Þ � � �ϕn þ � � �
þ ϕ1ϕ2 � � � θδbrstðϕnÞ: ð92Þ

Then

δbrstðϕ1ϕ2 � � �ϕnÞ ¼ δbrstðϕ1Þϕ2 � � �ϕn

þ ð−1Þn2ϕ1δbrstðϕ2Þ � � �ϕn þ � � �
þ ð−1Þnnϕ1ϕ2 � � � δbrstðϕnÞ: ð93Þ

The signs are ð−1Þnj where nj is the number of fields ψ , ψ̄ ,
c and c̄ that are to the left of the transformed field ϕj.

With this notation, the BRST transformations for the
individual fields are

δbrstA
μ
aðxÞ ¼ Dμ

acðAðxÞÞccðxÞ
¼ δac∂

μccðxÞ þ gfabcA
μ
bðxÞccðxÞ;

δbrstψfðxÞ ¼ igcaðxÞtaψfðxÞ;
δbrstψ̄fðxÞ ¼ igψ̄fðxÞcaðxÞta;
δbrstcaðxÞ ¼ −

g
2
fabccbðxÞccðxÞ;

δbrstc̄aðxÞ ¼ −Hμ
α∂μAα

aðxÞ: ð94Þ

C. Dependence of Green functions
on the gauge parameters

Consider a Green function in interpolating gauge,

G ¼ hAμ1
a1ðx1Þψfðx2Þψ̄fðx3Þ � � �i

¼ N
Z

Dψ Dψ̄ DADηDη̄ eiS

× Aμ1
a1ðx1Þψfðx2Þψ̄fðx3Þ � � � : ð95Þ

We have indicated a gluon field, a quark field, and an
antiquark field, but there could be more of these fields.
Ghost and antighost fields are not included. The Green
function is given as a functional integral over the quark,
antiquark, gluon, ghost and antighost fields, weighted by
expðiSÞ, where S is the action. The normalization N
sets h1i ¼ 1.
The action depends on the gauge parameters ri, Eq. (86).

Accounting for a possible variation of the normalization
factor, the derivative of the Green function with respect to
one of the ri is

∂G
∂ri

¼
	Z

dx i
∂LðxÞ
∂ri

Aμ1
a1ðx1Þψfðx2Þψ̄fðx3Þ � � �




− hAμ1
a1ðx1Þψfðx2Þψ̄fðx3Þ � � �i

	Z
dx i

∂LðxÞ
∂ri



:

ð96Þ

Here ∂LðxÞ=∂ri is given by Eq. (89).
We can use BRST invariance to find ∂G=∂ri. We note

that ∂LðxÞ=∂ri is the BRST variation of another quantity:

∂LðxÞ
∂ri

¼ δbrstRiðxÞ; ð97Þ

where

RiðxÞ ¼ c̄aðxÞXμ
i;α∂μA

α
aðxÞ: ð98Þ

We consider the BRST variation of
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G0 ¼ i
Z

dxhRiðxÞAμ1
a1ðx1Þψfðx2Þψ̄fðx3Þ � � �i: ð99Þ

Since Green functions are invariant under BRST trans-
formations, we have

0 ¼ i
Z

dx

	
∂LðxÞ
dri

Aμ1
a1ðx1Þψfðx2Þψ̄fðx3Þ � � �




− i
Z

dxhRiðxÞ½δbrstAμ1
a1ðx1Þ�ψfðx2Þψ̄fðx3Þ � � �i

− i
Z

dxhRiðxÞAμ1
a1ðx1Þ½δbrstψfðx2Þ�ψ̄fðx3Þ � � �i

þ i
Z

dxhRiðxÞAμ1
a1ðx1Þψfðx2Þ½δbrstψ̄fðx3Þ� � � �i þ � � � :

ð100Þ

This also gives us

	Z
dx i

∂LðxÞ
∂ri



¼ 0: ð101Þ

Thus the second term in Eq. (96), describing a possible shift
in the normalization, vanishes.

This gives us

∂

∂ri
hAμ1

a1ðx1Þψfðx2Þψ̄fðx3Þ � � �i

¼
Z

dxhRiðxÞ½iDμ
a1cðAðx1ÞÞηcðx1Þ�ψfðx2Þψ̄fðx3Þ � � �i

− g
Z

dxhRiðxÞAμ1
a1ðx1Þ½ηaðx2Þtaψfðx2Þ�ψ̄fðx3Þ � � �i

þ g
Z

dxhRiðxÞAμ1
a1ðx1Þψfðx2Þ½ψ̄fðx3Þηaðx3Þta� � � �i

þ � � � : ð102Þ

This equation is illustrated in Fig. 5. The factors RiðxÞ,
written in terms of Xμ

α and a and the antighost field η̄ðxÞ, are

RiðxÞ ¼ η̄aðxÞ
ffiffiffi
a

p
Xμ
i;α∂μA

α
aðxÞ: ð103Þ

These operators destroy a gluon and create a ghost with
the same color index or else destroy an antighost and
create a gluon. We need these operators integrated over x,
so in momentum space the operators

R
d4xRiðxÞ conserve

momentum. In momentum space, if the momentum of the
gluon entering the R vertex is l and the gluon polarization
is α, then the momentum of the ghost leaving the vertex is
also l and the value of the vertex is

Ri;αðlÞ ¼ −ilμ

ffiffiffi
a

p
Xμ
i;α; ð104Þ

FIG. 5. Identity for the derivative of a full Green function with respect to gauge parameter ri, Eq. (102). The shaded circle represents a
full Green function for gluon, quark, and antiquark fields. The rule for the square two-point vertex is given in Eq. (104). The lines with
dots at their ends are propagators. In the first term on the right-hand side of the identity, the open arrow on the ghost propagator
represents a factor of pμ1

1 . The rules for the vertices represented by open circles are given in Eqs. (105), (106), and (108).
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as illustrated by the square two-point vertices in Fig. 5. On
the right-hand side of Eq. (102), there is a contribution for
each external parton.
A quark line with momentum p2 in the original Green

function is replaced with a vertex at which a quark line with
momentum p2 − k meets a ghost with momentum k and
color a. The vertex is simply

Vqðp2; p2 − k; k; aÞ ¼ −gta: ð105Þ

There is no propagator for the quark after this vertex.
An antiquark line with momentum p3 in the original

Green function is replaced with a vertex at which an
antiquark line with momentum p3 − k meets a ghost with
momentum k and color a. The vertex is

Vq̄ðp3; p3 − k; k; aÞ ¼ þgta; ð106Þ

with no subsequent antiquark propagator.
For a gluon line with momentum p1, polarization μ1,

and color a1 in the original graph, there are two terms,
according to the two terms in

iDμ1
a1cðAðx1ÞÞηcðx1Þ ¼ i∂μ1ηa1ðx1Þ þ igfa1bcA

μ1
b ðx1Þηcðx1Þ:

ð107Þ

In the first term, the gluon is simply replaced by a ghost
with the same color index and we multiply by pμ1

1 . In the
second term, the gluon is replaced with a vertex at which a
gluon line with momentum p1 − k, polarization μ1, and
color b meets a ghost with momentum k and color c. The
vertex is

Vgðp1; p1 − k; k; a1; b; cÞ ¼ igfa1bc ð108Þ

with no subsequent propagator.

D. Another Ward identity

We can use BRST invariance to derive another identity
for Green functions. This identity is quite standard, except
that with interpolating gauge the standard ∂μA

μ
aðxÞ is

replaced by ∂̃μA
μ
aðxÞ. We start with the Green function

G0 ¼ −hη̄cðxÞAμ1
a1ðx1Þψfðx2Þψ̄fðx3Þ � � �i: ð109Þ

The BRST variation of η̄cðxÞ is

δbrstη̄cðxÞ ¼ −
1

a
∂̃μA

μ
cðxÞ: ð110Þ

The BRST variation of G0 vanishes, so

1

a
h½−i∂̃μAμ

cðxÞ�Aμ1
a1ðx1Þψfðx2Þψ̄fðx3Þ � � �i

¼ hη̄cðxÞ½iDμ
a1aðAðx1ÞÞcaðx1Þ�ψfðx2Þψ̄fðx3Þ � � �i

− ghη̄cðxÞAμ1
a1ðx1Þ½ηaðx2Þtaψfðx2Þ�ψ̄fðx3Þ � � �i

þ ghη̄cðxÞAμ1
a1ðx1Þψfðx2Þ½ψ̄fðx3Þηaðx3Þta� � � �i þ � � � :

ð111Þ

In this identity, we consider a Green function with gluon,
quark, and antiquark lines as in the previous subsection
and with one additional gluon line with polarization μ and
color index c that carries momentum l into the graph. We
multiply the Green function by ð1=aÞelμ. This gives a sum
of Green functions in which the gluon is replaced by a
ghost with momentum l and color index c. In each of these
Green functions, the ghost line interacts with one of the
external parton lines just as in the identity of the previous
subsection. This identity is depicted in Fig. 6.
In a covariant gauge, with v ¼ 1, ξ ¼ a, the additional

gluon line is multiplied by lμ instead of elμ. Then this is an
identity that is described in many field theory text-
books [24].

E. Dependence of the LSZ factors on the ri
In the following subsection, we will examine how the

S matrix depends on the parameters ri defined in Eq. (86).
As a step in this endeavor, we first consider the factors Rg

and Rq that appear in the LSZ reduction formula that relates
the S matrix to Green functions.
The LSZ factor for gluons is defined from the full gluon

propagator δabGμνðpÞ. Here μ, ν are the Lorentz indices for
the two ends of the gluon line and a, b are the color indices.
We multiply G by polarization vectors εμðp; sÞ and ενðp; sÞ
for the transversely polarized gluons, with ε2 ¼ −1. The
polarization vectors are functions of the part of the
momentum p that is orthogonal to n, as discussed in
Sec. III. The LSZ factor Rg is defined by

εμðp; sÞGμνðpÞενðp; sÞ ∼
iRgðpÞ
p2 þ i0

: ð112Þ

We start with p2 ≠ 0 but then we take the limit p2 → 0 in
Eq. (112). We here use A ∼ B to mean that A=B → 1 in the
limit p2 → 0. Thus iRgðpÞ is the residue of the pole at
p2 ¼ 0. Even with p2 ¼ 0, Rg can depend on ðp · nÞ2. For
this reason, the notation indicates that Rg depends on p.
In Eq. (112), we work in the renormalized theory in

4 − 2ϵ dimensions, with ϵ < 0 to control integrations that
are otherwise divergent in the infrared.Whenwe take ϵ → 0,
infrared poles 1=ϵn appear, as we will see in Sec. VII.
We rewrite Eq. (112) in the form

ip2RgðpÞ ∼ p2εμðp; sÞGμνðpÞενðp; sÞp2: ð113Þ
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Here the factors of p2 on the right-hand side of the equation
are proportional to inverse tree-level propagators for T
gluons.
In order to study the dependence of Rg on the gauge

parameters, we first investigate the structure of the full
gluon propagator Gμν. In Sec. III, we decomposed the tree-
level gluon propagator into separate contributions for T
gluons and L gluons:

DμνðpÞ ¼ Dμν
T ðpÞ þDμν

L ðpÞ; ð114Þ

with

Dμν
T ðpÞ ¼ Pμν

T ðpÞ
p2 þ i0

;

Dμν
L ðpÞ ¼ Pμν

L ðpÞ
p · p̃þ i0

: ð115Þ

The numerator functions are

Pμν
T ðpÞ ¼

X
s¼1;2

εμðp; sÞενðp; sÞ

¼ −gμν þ nμnν −
ðpμ − p · nnμÞðpν − p · nnνÞ

ðp · nÞ2 − p2
;

Pμν
L ðpÞ ¼ −nμnν þ ðpμ − p · nnμÞðpν − p · nnνÞ

v2½ðp · nÞ2 − p2�
−
ξ − 1

v2
pμpν

p · p̃þ i0
: ð116Þ

We can also decompose the gluon self-energy into

ΠμνðpÞ ¼ Πμν
T ðpÞ þ Πμν

L ðpÞ; ð117Þ

where Πμν
T ðpÞ has the structure

Πμν
T ðpÞ ¼ Pμν

T ðpÞπTðpÞ ð118Þ

and where Πμν
L ðpÞ can be decomposed into terms propor-

tional to pμpν, nμnν and pμnν þ nμpν. With this definition,
Πμν

L ðpÞ does not contain any terms proportional to gμν.
Those terms belong in Πμν

T ðpÞ.
Now, the full propagator obeys the Dyson equation

Gμ
νðpÞ ¼ Dμ

νðpÞ þGμ
αðpÞΠα

βðpÞDβ
νðpÞ: ð119Þ

This has the perturbative solution, with dots denoting
contractions in the Lorentz indices,

G ¼ DþD · Π ·DþD · Π ·D · Π ·Dþ � � � : ð120Þ

In each term, we substitute D ¼ DT þDL and Π ¼
ΠT þ ΠL. We note that

Pμν
T ðpÞpν ¼ pνP

νμ
T ðpÞ ¼ 0;

Pμν
T ðpÞnν ¼ nνP

νμ
T ðpÞ ¼ 0; ð121Þ

so that

FIG. 6. Identity (111) for a Green function in which one external gluon line carrying momentum l and polarization μ is multiplied
by l̃μ=a. On the right-hand side of the identity, the gluon line is replaced by a ghost line. The other graphical notations are the same
as in Fig. 5.
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DT · ΠL ¼ ΠL ·DT ¼ 0;

ΠT ·DL ¼ DL · ΠT ¼ 0: ð122Þ

Because of this, the structure of the gluon propagator
simplifies:

GμνðpÞ ¼ Gμν
T ðpÞ þGμν

L ðpÞ; ð123Þ

with

GT ¼ DT þDT · ΠT ·DT þDT · ΠT ·DT · ΠT ·DT þ � � � ;
GL ¼ DL þDL · ΠL ·DL þDL · ΠL ·DL · ΠL ·DL þ � � � :

ð124Þ

The propagatorGμν
T ðpÞ for T gluons has poles at p2 ¼ 0 but

no poles at p · p̃ ¼ 0. The propagator Gμν
L ðpÞ for L gluons,

expanded perturbatively, has poles at p · p̃ ¼ 0 but no poles
at p2 ¼ 0. In Eq. (113), there is a factor p2 and we take the
limit p2 → 0. Thus Gμν

T ðpÞ contributes to Rg but Gμν
L ðpÞ

does not.
The residue Rg defined in Eq. (113) depends on the

gauge parameters ri defined in Eq. (86). To find its
derivative with respect to ri, we can differentiate GμνðpÞ
with respect to ri. Four of the ri are the components of the
vector n that defines the preferred reference frame used to
specify the gauge. For these parameters, we should take
note that the polarization vectors εðp; sÞ depend on n since
they obey n · εðp; sÞ ¼ 0. However, this dependence does
not matter in Eq. (113). To see why, differentiate p · ε ¼ 0
and n · ε ¼ 0 to obtain

pν
∂ενðp; sÞ

∂nα
¼ 0;

nν
∂ενðp; sÞ

∂nα
¼ −εαðp; sÞ: ð125Þ

We can achieve this with

∂ενðp; sÞ
∂nα

¼ −
p · npν − p2nν

ðp · nÞ2 − p2
εαðp; sÞ: ð126Þ

More generally, with n → n0 ¼ nþ δn, one can transform ε
to ε0 ¼ εþ δε using Eq. (126), then rotate ε0 in the plane
orthogonal to p and n0 by an angle δϕ. We define the
transform of ε not to include this extra rotation.
Now suppose that we differentiate ενðp; sÞ in Eq. (113)

with respect to nα. In any graph that contributes to Gμν
T ðpÞ

in Eq. (113), there is a factor Dβν
T ðpÞ that multiplies

ενðp; sÞ. However,

Dβν
T ðpÞ ∂ενðp; sÞ

∂nα
¼ 0 ð127Þ

because Dβν
T ðpÞpν ¼ Dβν

T ðpÞnν ¼ 0. We conclude that the
dependence on n of ενðp; sÞ and εμðp; sÞ in Eq. (113) does
not affect the dependence of Rg on n.
This analysis shows that the derivative of RgðpÞ with

respect to any of the gauge parameters ri is given by

ip2
∂RgðpÞ
∂ri

∼ p2εμðp; sÞ
∂GμνðpÞ

∂ri
ενðp; sÞp2: ð128Þ

To obtain ∂GμνðpÞ=∂ri we use the identity (102). There are
now contributions from both ends of the gluon propagator.
For each end, there is a term in ∂GμνðpÞ=∂ri represented
as the first term in Fig. 5. This term is proportional to pμ

for the left end and pν for the right end. This term does
not contribute to Eq. (128) because p · εðp; sÞ ¼ 0. The
remaining contribution for the right end has a vertex that
combines a gluon with momentum p − k and Lorentz index
ν with a ghost with momentum k, with no attached gluon
propagator. The remaining contribution for the left end has
a vertex that combines a gluon with momentum −p − k
coming out of the graph and Lorentz index μ with a ghost
with momentum k, with no attached gluon propagator. We
can write these contributions as

ip2
∂RgðpÞ
∂ri

∼ p2εμðp; sÞGμ
αðpÞΓανðpÞενðp; sÞp2

þ p2εμðp; sÞΓαμð−pÞGν
αðpÞενðp; sÞp2:

ð129Þ

Here ΓανðpÞ contains the right-hand gluon-ghost-gluon
vertex. It is one particle irreducible: it has no cut that cuts a
single gluon line. Thus ΓανðpÞmust contain the two particle
gluon-ghost vertex R, Eq. (104). There is still at least a tree-
level gluon propagator on the left. Summing over graphs,
there is a complete gluon propagator Gμ

αðpÞ on the left.
Similarly Γναð−pÞ contains the left-hand gluon-ghost-
gluon vertex. This equation is illustrated in Fig. 7.
The Lorentz structure of Γ can be simplified using

invariance under Lorentz transformations that leave p
and n unchanged:

ΓανðpÞενðp; sÞ ¼ εαðp; sÞΓgðpÞ: ð130Þ

Here ΓgðpÞ is a scalar function of p2 and ðp · nÞ2. This
gives us

∂RgðpÞ
∂ri

∼ −ip2εμðp; sÞGμνðpÞενðp; sÞΓgðpÞ

− ip2εμðp; sÞGμνðpÞενðp; sÞΓgðpÞ: ð131Þ

Now we can take the p2 → 0 limit, using the definition
Eq. (112). This gives
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∂RgðpÞ
∂ri

¼ 2RgðpÞΓgðpÞ: ð132Þ

We now turn to the LSZ factor for quarks, which is
defined from the full propagator δijGαβðpÞ for quarks. Here
α, β are the Dirac indices for the two ends of the quark line
and i, j are the color indices. In our analysis below, we do
not write Dirac indices explicitly. The LSZ residue factor
Rq is defined by

GðpÞ ∼ ip
p2 þ i0

RqðpÞ ð133Þ

in the limit p2 → 0.
Our analysis will make use of Dirac spinors uðp; sÞ.

Since we want to take a limit p2 → 0 with p2 ≠ 0 to start
with, we should be careful with the definition. We define a
lightlike momentum vector p0 using a timelike reference
vector nq, which is distinct from the gauge fixing vector n:

p ¼ p0 þ
ð1þ βÞp2

2p · nq
nq; ð134Þ

with

p2
0 ¼ 0: ð135Þ

Then

β ¼ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2n2q=ðp · nqÞ2

q − 1: ð136Þ

That is, β ¼ Oðp2Þ as p2 → 0. We take uðp; sÞ ¼
uðp0ðp; nqÞ; sÞ to be the usual solutions of the massless
Dirac equation for momentum p0:

p0uðp; sÞ ¼ 0;

ūðp; sÞγμuðp; sÞ ¼ 2pμ
0: ð137Þ

With this definition,

ūðp; sÞpuðp; sÞ ¼ ð1 − βÞp2: ð138Þ

We can express the relation (133) between GðpÞ and
RqðpÞ using spinors:

ūðp; sÞpGðpÞpuðp; sÞ ∼ iRqðpÞ
p2 þ i0

ūðp; sÞpppuðp; sÞ

¼ iRqūðp; sÞpuðp; sÞ
∼ iRqp2: ð139Þ

Then our definition of the LSZ factor is

ip2RqðpÞ ∼ ūðp; sÞpGðpÞpuðp; sÞ: ð140Þ

We can also determine how Rq depends on the gauge
parameters ri. We start with

∂GðpÞ
∂ri

∼
ip

p2 þ i0

∂RqðpÞ
∂ri

: ð141Þ

Then the steps in Eq. (139) give us

ip2
∂RqðpÞ
∂ri

∼ ūðp; sÞp ∂GðpÞ
∂ri

puðp; sÞ: ð142Þ

To obtain ∂GðpÞ=∂ri we use the identity (102). There are
contributions from both ends of the quark propagator. The
contribution for the right end has a vertex that combines a
quark with momentum p − k and Lorentz index β with a
ghost with momentum k, with no attached gluon propa-
gator. The contribution for the left end has a vertex that
combines an incoming quark with momentum pþ k and
Lorentz index α with a ghost that supplies momentum k,
with no attached quark propagator. We can write these
contributions as

FIG. 7. Illustration of Eq. (129). The gluon lines terminated with “½” or “�” stand for p2εðp; sÞ. These factors do not vanish as long as
p2 ≠ 0.
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∂RqðpÞ
∂ri

∼
−i
p2

ūðp; sÞp½GðpÞΓðpÞ þ Γ̄ð−pÞGðpÞ�puðp; sÞ:

ð143Þ

This equation is illustrated in Fig. 8.
The Dirac structure of Γ can be specified. We note that Γ

contains an even number of γ matrices and is a function of
p and n. It thus has the form

Γ ¼ Γq1þ
Γ0
q

p2
p0p: ð144Þ

Here ΓqðpÞ and Γ0
qðpÞ are a scalar functions of p and n.

Now, using p0uðp; sÞ ¼ 0,

Γpuðp;sÞ¼Γqpuðp;sÞþΓ0
qp0uðp;sÞ¼Γqpuðp;sÞ: ð145Þ

Similarly,

ūðp; sÞpΓ̄ ¼ Γqūðp; sÞp: ð146Þ

Now Eq. (143) becomes

∂RqðpÞ
∂ri

∼
−i
p2

ūðp; sÞpGðpÞpuðp; sÞ2Γq: ð147Þ

Using Eq. (140) then gives

∂RqðpÞ
∂ri

¼ 2RqðpÞΓqðpÞ: ð148Þ

The same analysis applies to antiquarks, with the same
function Γq.

F. Dependence of the S matrix on the ri
We have seen in Sec. V C how a Green function for

gluons, quarks, and antiquarks depends on the gauge

parameters ri defined in Eq. (86). We can use this result
to find how the S matrix depends on the ri. Let us call the
Green function in momentum spaceGðp1; μ1; a1;p2; α2; i2;
p3; β3; j3;…Þ. Here the gluon with momentum p1 has
vector index μ1 and color 8 index a1; the quark with
momentum p2 has Dirac index α2 and color 3 index i2; the
antiquark with momentum p3 has Dirac index β3 and color
3̄ index j3. There can be more partons, indicted by the
ellipsis. All momenta are defined to be outgoing.
From the Green function, we can construct the S matrix

Sðp1; s1; a1;p2; s2; i2;p3; s3; j3;…Þ. We start with off-
shell partons with momenta pj, but we will then take a
limit p2

j → 0. The variables si label the transverse polar-
izations of the gluons or the spins of the quarks or anti-
quarks. The S matrix is related to the Green function by

Sðp1; s1; a1;p2; s2; i2;p3; s3; j3;…Þ
¼ Gðp1; μ1; a1;p2; α2; i2;p3; β3; j3;…Þ

×
ðip2

1Þεμ1ðp1; s1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rgðp1Þ

p ūα2ðp2; s2Þð−ip2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rqðp2Þ

p
×
ð−ip3Þvβ3ðp3; s3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rqðp3Þ
p × � � � : ð149Þ

This definition applies using the renormalized Green
function G and the factors R in 4 − 2ϵ dimensions, with
infrared divergences regulated by keeping ϵ < 0, as in
Eq. (112). For quarks and antiquarks, we have multiplied
by an inverse tree-level propagator, −ip. For each parton,
we have multiplied by the appropriate polarization vector or
spinor, with an implied sum over the polarization or spinor
index. (This is for final state quarks and antiquarks. The
choice is modified for initial state antiquarks or quarks.)
The polarization vectors and spinors are functions of the
parts of the momenta p1, p2, and p3 that are orthogonal to
n, as in Sec. V E. Thus ūα2ðp2; s2Þp2 and p3vα2ðp3; s3Þ do
not vanish as long as p2

2 and p2
3 are not zero.

FIG. 8. Illustration of Eq. (143). The incoming quark line terminated with a “½” stands for puðp; sÞ and the outgoing terminated quark
line stands for ūðp; sÞp. These factors do not vanish as long as p2 ≠ 0.
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In G, the propagator for T gluons, GT [Eq. (124)]
multiplies εμ1ðp1; s1Þ. The propagator for L gluons, GL,
does not appear because it lacks poles 1=p2

1. We will
differentiate S with respect to the gauge parameters ri.
Four of these parameters are the components of n. The
polarization vector εμ1ðp1; s1Þ depends on n. However, the
derivative of εμ1ðp1; s1Þ with respect to nα gives zero when
contracted with GT, as we saw in Eq. (127). Thus we can
treat εμ1ðp1; s1Þ as if it were independent of all of the ri.

In Eq. (149), we have started with the full Green function
and divided by a factor

ffiffiffiffi
R

p
for each external leg. An

alternative formulation, which we use later in this paper, is to
divide by R for each external leg, giving the Green function
amputated on the external legs, then to multiply by

ffiffiffiffi
R

p
.

We would now like to see how the S matrix depends on
the gauge parameters. We differentiate Swith respect to the
gauge parameter ri. Here we have to differentiate both G
and each factor of 1=

ffiffiffiffi
R

p
. We get

∂S
∂ri

¼
�
∂G
∂ri

ðip2
1Þεμ1ðp1; s1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rgðp1Þ

p ūα2ðp2; s2Þð−ip2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rqðp2Þ

p ð−ip3Þvβ3ðp3; s3Þffiffiffiffiffiffiffiffiffiffiffiffi
Rqðp3Þ

p × � � �
�

− G

�ðip2
1Þεμ1ðp1; s1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rgðp1Þ

p ūα2ðp2; s2Þð−ip2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rqðp2Þ

p ð−ip3Þvβ3ðp3; s3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rqðp3Þ

p × � � �
�

×

�
1

2Rgðp1Þ
∂Rgðp1Þ

∂ri
þ 1

2Rqðp2Þ
∂Rqðp2Þ

∂ri
þ 1

2Rqðp3Þ
∂Rqðp3Þ

∂ri
þ � � �

�
: ð150Þ

Let us examine the term in Eq. (150) proportional to
∂G=∂ri. There is a term in ∂G=∂ri, represented as the first
term in Fig. 5, which is proportional to pμ1

1 . This term does
not contribute to Eq. (150) because p1 · εðp1; s1Þ ¼ 0.
In the next term in ∂G=∂ri, a gluon with momentum

p1 − k joins a ghost with momentum k at a vertex Vg,
Eq. (108). There is no subsequent propagator with a factor
1=p2

1. Since we multiply by p2
1 in Eq. (150), this con-

tribution vanishes when we take p2
1 → 0 for many of the

graphs that contribute to ∂G=∂ri. However, there are some
graphs in which a gluon line carrying momentum p1 enters
a one-particle irreducible subgraph Γ that involves the
special gluon-ghost mixing vertex together with other
interactions and finally creates a gluon and a ghost that
combine in the vertex Vg. This single gluon propagator has
a factor 1=p2

1 that cancels the factor p2
1 to give us a finite

contribution when p2
1 → 0. After analyzing the structure

of the one-particle-irreducible graphs as in Sec. V E, we
obtain a contribution of the form

G
ip2

1εμ1ðp1; s1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rgðp1Þ

p Γg: ð151Þ

In the next term in ∂G=∂ri, a quark with momentum
p2 − k joins a ghost with momentum k at a vertex Vq,
Eq. (105). There is no subsequent propagator with a factor

p2=p2
2. Thus this contribution vanishes when we take

p2
2 → 0 for many graphs. However, there are some graphs

in which a quark line carrying momentum p2 enters a one-
particle-irreducible subgraph that involves the special
gluon-ghost mixing vertex together with other interactions
and finally creates a quark and a ghost that combine in the
vertex Vq. This single gluon propagator has a factor p2=p2

2

that gives us a finite contribution when p2
2 → 0. After

analyzing the structure of the one-particle-irreducible
graphs as in Sec. V E, we obtain a contribution of the form

G
ūα2ðp2; s2Þð−ip2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rqðp2Þ
p Γq: ð152Þ

In the next term in ∂G=∂ri, an antiquark with momentum
p3 − k joins a ghost with momentum k at a vertex Vq̄,
Eq. (106). The surviving contributions come from one-
particle-irreducible subgraphs coupled to a full Green
function. As in the quark case, these give a contribution

G
ð−ip3Þvβ3ðp3; s3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rqðp3Þ
p Γq: ð153Þ

Summing these contributions, we have

∂S
∂ri

¼ G

�ðip2
1Þεμ1ðp1; s1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rgðp1Þ

p ūα2ðp2; s2Þð−ip2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rqðp2Þ

p ð−ip3Þvβ3ðp3; s3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rqðp3Þ

p × � � �
�

×

�
Γg −

1

2Rgðp1Þ
∂Rgðp1Þ

∂ri
þ Γq −

1

2Rqðp2Þ
∂Rqðp2Þ

∂ri
þ Γq −

1

2Rqðp3Þ
∂Rqðp3Þ

∂ri
þ � � �

�
: ð154Þ
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In Sec. V E, we found the derivatives of Rg and Rq with
respect to ri:

Γg ¼
1

2Rg

∂Rg

∂ri
;

Γq ¼
1

2Rq

∂Rq

∂ri
: ð155Þ

Inserting this into Eq. (154), we find that the S matrix is
invariant under changes of the gauge parameters,

∂S
∂ri

¼ 0: ð156Þ

VI. RENORMALIZATION

Reference [22] provided an argument, based on BRST
invariance, that QCD in interpolating gauge can be renor-
malized. In this section, we calculate the one-loop con-
tributions to the renormalization factors Z.
To renormalize the theory in interpolating gauge, we

need to renormalize the coupling g, the gauge parameters v
and ξ, and the field strengths. In each case, we relate a
“bare” quantity, indicated with a subscript B, to a corre-
sponding renormalized quantity by means of a factor Z orffiffiffiffi
Z

p
. In the case of the gluon field,

ffiffiffiffi
Z

p
is a matrix. Each of

the Z factors depend on αs and the gauge parameters v2 and
ξ. We expand the Z factors in powers of αs, beginning with
1 or the unit matrix at order α0s. In this section, we examine
the α1s contributions.
The field strength renormalizations take the form

Aμ
aðxÞB ¼ ½Z1=2

A �μνAν
aðxÞ;

ψαðxÞB ¼ Z1=2
ψ ψαðxÞ;

ψ̄αðxÞB ¼ Z1=2
ψ ψ̄αðxÞ;

ηaðxÞB ¼ Z1=2
η ηaðxÞ;

η̄aðxÞB ¼ Z1=2
η η̄aðxÞ: ð157Þ

The field strength renormalization factor for the gluon field
needs to be a Lorentz tensor instead of just a scalar because
the definition of the gauge uses a fixed vector n. The
coupling and gauge parameters are renormalized as

gB ¼ Zgg;

v2B ¼ Zvv2;

ξB ¼ Zξξ: ð158Þ

A. The renormalization factors

We begin with a statement of the results for the
renormalization factors Z. In the following subsection,
we exhibit the calculation that leads to these results.
At order αs, the renormalization factor for the coupling is

the same as in a covariant gauge,

Zg ¼ 1 −
αs
4π

Sϵ
ϵ
γg þOðα2s Þ; ð159Þ

where

γg ¼
11

6
CA −

2

3
TRnf ð160Þ

and Sϵ is the standard coefficient of 1=ϵ for MS renorm-
alization,

Sϵ ¼
ð4πÞϵ

Γð1 − ϵÞ : ð161Þ

The quark field renormalization is

Zψ ¼ 1 −
αs
4π

Sϵ
ϵ

�ðv − 1Þ2
vðvþ 1Þ þ

ξ

v

�
CF þOðα2s Þ: ð162Þ

The ghost field renormalization is

Zη ¼ 1þ αs
4π

Sϵ
ϵ

�
16v2 þ vþ 1

12vðvþ 1Þ −
ξ

4v

�
CA þOðα2s Þ: ð163Þ

The components of Aμ
aðxÞ along n and orthogonal to n

renormalize differently. We find

Zμν
A ¼ gμν þ αs

4π

Sϵ
ϵ
½cAðv; ξÞgμν þ c̃Aðv; ξÞhμν� þOðα2s Þ;

ð164Þ

where the coefficients are

cAðv; ξÞ ¼
�
22v3 þ 35v2 þ 20v − 1

6vðvþ 1Þ2 −
ξ

2v

�
CA −

4

3
TRnf ;

c̃Aðv; ξÞ ¼ −
4vð2vþ 1Þ
3ðvþ 1Þ2 CA: ð165Þ

Using the projections P� along n and orthogonal to n
defined in Eq. (20), Zμν

A is

Zμν
A ¼ gμν þ αs

4π

Sϵ
ϵ

��
cAðv; ξÞ þ

1

v2
c̃Aðv; ξÞ

�
Pμν
þ

þ ðcAðv; ξÞ þ c̃Aðv; ξÞÞPμν
−

�
þOðα2s Þ: ð166Þ
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The renormalization factors for the gauge parameters are
determined from the renormalization of the gauge field:

Zv ¼ 1 −
αs
4π

Sϵ
ϵ

v2 − 1

2v2
c̃Aðv; ξÞ þOðα2s Þ;

Zξ ¼ 1þ αs
4π

Sϵ
ϵ

�
cAðv; ξÞ þ

v2 þ 1

2v2
c̃Aðv; ξÞ

�
þOðα2s Þ:

ð167Þ

B. Determination of the renormalization factors

The renormalization factors Z at order αs can be
determined by one-loop calculations. We illustrate this
with the gluon propagator. Its renormalization is more
complicated than in Feynman gauge because we are using a
gauge condition that breaks manifest Lorentz invariance.
The inverse gluon propagator is −iΓμνðpÞ with

ΓμνðpÞ ¼ Γμν
treeðv; ξ;pÞ − ΠμνðpÞ: ð168Þ

Here ΠμνðpÞ is the gluon self-energy tensor, which we
calculate at order αs using the graphs in Fig. 9. The tree-
level inverse gluon propagator,

Γμν
treeðv; ξ;pÞ ¼ −gμνp2 þ pμpν −

v2

ξ
p̃μp̃ν; ð169Þ

depends on the gauge parameters v and ξ through the factor
v2=ξ and through the presence of v in the definition (22)
of p̃μ ¼ hμνpν.
The parameters v2 and ξ are renormalized and, in

addition, Γμν is renormalized according to

Γμν ¼ ½Z1=2
A �μαΓαβ

B ½Z1=2
A �νβ; ð170Þ

where

Γμν
B ðpÞ ¼ Γμν

treeðvB; ξB;pÞ − Πμν
B ðpÞ: ð171Þ

We calculate Πμν
B in the bare theory from the diagrams in

Fig. 9. However, in this calculation we substitute the
renormalized versions of g, v2, and ξ for their bare versions
since Πμν is already of order αs. Then Πμν

B thus calculated
will contain ultraviolet (UV) poles 1=ϵ. The renormaliza-
tion program will remove these poles.
We write ½Z1=2

A �μν to first order in the form

½Z1=2
A �μν ¼ gμν þ 1

2
δZIgμν þ

1

2
δZhhμν þOðα2s Þ: ð172Þ

(The subscript I on δZI refers to the fact that the metric
tensor acts as the identity operator on vectors: gμαpα ¼ pμ.)

After using Eq. (23), we find the following for the
counterterms from ZA:

Γμν ¼ Γμν
B − ðδZIgμν þ δZhhμνÞp2 þ δZIpμpν

þ ξþ 1

2ξ
δZhðpμp̃ν þ p̃μpνÞ

−
�
v2

ξ
δZI þ

v2 þ 1

ξ
δZh

�
p̃μp̃ν þOðα2s Þ: ð173Þ

There are also counterterms from the renormalization of
v2 and ξ:

v2B ¼ v2 þ δZvv2 þOðαsÞ;
ξB ¼ ξþ δZξξþOðαsÞ: ð174Þ

When we account for the direct appearance of v2 and ξ in
Eq. (169) and the appearance of v2 in p̃λ ¼ hλαpα, these
relations give us

FIG. 9. Gluon self-energy. There are four graphs: a gluon loop,
a gluon tadpole, a ghost loop, and a quark loop.
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Γμν
B ¼ Γμν

treeðvB; ξB;pÞ − Πμν
B

¼ Γμν
treeðv; ξ;pÞ − Πμν

B þ v2

ξ

1

v2 − 1
δZvðpμp̃ν þ p̃μpνÞ

þ v2

ξ

�
δZξ −

v2 þ 1

v2 − 1
δZv

�
p̃μp̃ν þOðα2s Þ: ð175Þ

We substitute Γμν
B from Eq. (175) into Eq. (173) for Γμν.

Then Γμν ¼ Γμν
tree − Πμν is

Γμν
treeðv; ξ;pÞ − Πμν

¼ Γμν
treeðv; ξ;pÞ − Πμν

B − δZIðgμνp2 − pμpνÞ − δZhhμνp2

þ
�
ξþ 1

2ξ
δZh þ

v2

ξ

1

v2 − 1
δZv

�
ðpμp̃ν þ p̃μpνÞ

−
�
v2

ξ
δZI þ

v2 þ 1

ξ
δZh −

v2

ξ
δZξ þ

v2

ξ

v2 þ 1

v2 − 1
δZv

�
p̃μp̃ν

þOðα2s Þ: ð176Þ

We note that the terms Γμν
treeðv; ξ;pÞ cancel in Eq. (176). The

renormalized one-loop gluon self-energy, Πμν, should not
have ultraviolet poles. We calculate the ultraviolet poles in
Πμν

B ðpÞ at order αs from the diagrams in Fig. 9, giving

Πμν
B ðpÞ ¼ αs

4π

Sϵ
ϵ

�
−cAðv; ξÞ½p2gμν − pμpν� − c̃Aðv; ξÞhμνp2

þ c̃Aðv; ξÞ
2

½pμp̃ν þ p̃μpν�
�
ð1þOðϵÞÞ þOðα2s Þ;

ð177Þ

where cAðv; ξÞ and c̃Aðv; ξÞ are given in Eq. (165).
Evidently, the pole proportional to p2gμν − pμpν is
removed if we choose

δZI ¼
αs
4π

Sϵ
ϵ
cAðv; ξÞ: ð178Þ

The pole proportional to hμνp2 is removed if we choose

δZh ¼
αs
4π

Sϵ
ϵ
c̃Aðv; ξÞ: ð179Þ

Then the pole proportional to pμp̃ν þ p̃μpν is removed if
we choose

δZv ¼ −
αs
4π

Sϵ
ϵ

v2 − 1

2v2
c̃Aðv; ξÞ: ð180Þ

There is no pole proportional to p̃μp̃ν. This can be arranged
if we choose

δZξ ¼
αs
4π

Sϵ
ϵ

�
cAðv; ξÞ þ

v2 þ 1

2v2
c̃Aðv; ξÞ

�
: ð181Þ

This calculation gives the order αs results given in
Eqs. (164) and (167).
The result in Eq. (162) for the quark field renormaliza-

tion can be derived from the quark self-energy, Fig. 10, as
outlined in Appendix D 1. The result in Eq. (163) for the
ghost field renormalization can be derived from the ghost
self-energy, Fig. 11, as outlined in Appendix D 2. The
result in Eq. (159) for the renormalization of αs can be
determined by calculating the one-loop correction to the
quark-gluon vertex, Fig. 12, as outlined in Appendix D 3.
These calculations determine all of the renormalization

factors Z. As a check on these calculations, in Appendix D 4
we calculate the 1=ϵ poles in the one-loop three-gluon vertex
function and verify that the factors Zμν

A and Zg provide the
needed counterterms to cancel these poles.

FIG. 10. Quark self-energy.

FIG. 11. Ghost self-energy.

FIG. 12. Quark-gluon vertex at one loop. There are two graphs.
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VII. THE GLUON SELF-ENERGY

In Appendix B, we use the diagrams in Fig. 9 to calculate
the one-loop gluon self-energy ΠμνðpÞ with MS renorm-
alization with ξ ¼ 1 and p2 < 0. We express the unrenor-
malized Πμν

U ðpÞ as an integral over Feynman parameters
and as an integral in d ¼ 4 − 2ϵ dimensions over the loop
momentum. The integral over the loop momentum can then
be performed analytically. This gives terms with UV poles
1=ϵ. The pole terms are reported in Eq. (177). [In Eq. (177),
we have added a calculation of the UV poles for ξ ≠ 1.] The
UV poles are removed byMS renormalization, as described
in Sec. VI. This gives the renormalized ΠμνðpÞ.
The gluon self-energy has the decomposition

ΠμνðpÞ ¼ αs
4π

fA1p2gμν þ A2p2hμν þ A3pμpν

þ A4p̃μp̃ν þ A5ðpμp̃ν þ p̃μpνÞg: ð182Þ

The coefficients Ai are given as integrals over Feynman
parameters. Using the Feynman rules to construct the
graphs for the first order gluon self-energy function, we
see that it obeys the identity

pμΠμνðpÞpν ¼ 0: ð183Þ

This implies that there is a linear relation among the five
coefficients Ai. When the Ai are computed numerically, this
relation provides a check on the calculation.
These integrals can be performed by numerical integra-

tion. We choose p2 < 0. Since p · p̃ < p2, we also have
p · p̃ < 0. We set the renormalization scale to μ2 ¼ p · p̃.
The coefficients Ai are dimensionless, so they are functions
of p · p̃=p2. We show results in Fig. 13 for the choice v ¼ 2
and nf ¼ 3.
Of special importance are S-matrix elements involving

an initial or final state T gluon. In this case, the final gluon
propagator is amputated and we take p2 → 0 and multiply
by a polarization vector εμðp; sÞ. According to Eq. (149), in
the case that there is a self-energy insertion on the gluon
line, we multiply the one particle irreducible subgraph by
the LSZ factor

ffiffiffiffiffiffi
Rg

p
. Using Eq. (112) for Rg, we derive

ffiffiffiffiffiffiffiffiffiffiffiffi
RgðpÞ

q
− 1 ¼

�
εμΠμνεν
2p2

�
p2→0

þOðα2s Þ: ð184Þ

This quantity has IR divergences. We define Rg from the
renormalized ΠμνðpÞ by taking the p2 → 0 limit with
dimensional regulation to control the IR divergences.
Then we take ϵ → 0, obtaining 1=ϵ2 and 1=ϵ IR poles
plus finite terms. The calculation, with ξ ¼ 1, is described
in Appendix C. The result is given in Eq. (C47). The result
for the pole terms, from Eq. (C49), is

�
εμΠμνεν
2p2

�
p2→0

¼ −
αs
4π

Sϵ
ϵ2

CA −
αs
4π

Sϵ
ϵ
γg

−
αs
4π

Sϵ
ϵ
CA

�
v − 1

v
− log

�
v − 1

vþ 1

�

þ log

�
μ2

4ðp · nÞ2
��

þOðϵ0Þ: ð185Þ

Here γg is the standard coefficient given in Eq. (160). We
will combine this result with results from gluon exchange
graphs and from quark self-energy graphs in Sec. IX.

VIII. THE QUARK SELF-ENERGY

The one-loop quark self-energy −iΣðpÞ is given by
the Feynman diagram shown in Fig. 10. It can be cal-
culated using similar techniques to those used for the
gluon self-energy, although the calculation is simpler
than for the gluon case. One can first find the UV poles
of the unrenormalized one-loop self-energy, ΣUðpÞ, with
the result [Eq. (D1)]

ΣUðpÞ ¼ −
αs
4π

Sϵ
ϵ
pCF

�ðv − 1Þ2
vðvþ 1Þ þ

ξ

v

�
þOðϵ0Þ: ð186Þ

This is the pole that is removed by renormalization and
gives the renormalization factor Zq given in Eq. (162).
For S-matrix elements involving an initial or final state

quark or antiquark, we need the LSZ factor
ffiffiffiffiffiffi
Rq

p
. For this,

we need ΣðpÞ in the limit p2 → 0. Using Eq. (140) and the

FIG. 13. Coefficients Aiðp · p̃=p2Þ in Πμν with v ¼ 2, ξ ¼ 1.
We take p2 < 0, so that also p · p̃ < 0. The renormalization scale
is set to μ2 ¼ jp · p̃j. The number of quark flavors is nf ¼ 3.
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accompanying definition of the Dirac spinor factors, we
have

ffiffiffiffiffiffiffiffiffiffiffiffi
RqðpÞ

q
− 1 ¼

�
ūðp; sÞΣðpÞuðp; sÞ

2p2

�
p2→0

þOðα2s Þ:

ð187Þ

We calculate this with ξ ¼ 1 with a calculation that is similar
to the calculation in Appendix C for gluons, but somewhat
simpler. As for gluons, the result contains infrared double
and single poles. The result for the pole terms is�
ūðp;sÞΣðpÞuðp;sÞ

2p2

�
p2→0

¼−
αs
4π

Sϵ
ϵ2
CF−

αs
4π

Sϵ
ϵ
γq

−
αs
4π

Sϵ
ϵ
CF

�
v−1

v
− log

�
v−1

vþ1

�

þ log

�
μ2

4ðp ·nÞ2
��

þOðϵ0Þ:

ð188Þ

Here γq is the standard coefficient

γq ¼
3CF

2
: ð189Þ

Wewill combine this result with results from gluon exchange
graphs and from gluon self-energy graphs in Sec. IX.

IX. POLES OF THE S MATRIX

We have seen that the S matrix for initial or final state
external partons has infrared poles in ϵ when we include
one virtual loop. Each external parton has a label l and can
be a T gluon or a massless quark or antiquark. One source
of poles is the exchange of a gluon between two of the
external partons. From Eq. (82), this contribution is

1

2

X
l

X
k≠l

VlkTl · Tk

¼ −
X
l

X
k≠l

Tl · Tk
αs
4π

Sϵ
ϵ
log

�
−2pl · pk þ i0

μ2

�

þ
X
l

T2
l
αs
4π

Sϵ
ϵ

�
v − 1

v
− log

�
v − 1

vþ 1

�

þ log

�
μ2

4ðpl · nÞ2
��

þOðϵÞ: ð190Þ

The other source of poles is the self-energy graphs, each of
which contributes

ffiffiffiffiffi
Rl

p
− 1 at order αs. These contributions

are given in Eq. (185) for gluons and Eq. (188) for quarks.
They each include a constant γl, with γl ¼ γg, Eq. (160), if l
is a gluon and γl ¼ γq, Eq. (189), if l is a quark. Otherwise,

they have the same form, with T2
l ¼ CA if l is a gluon and

T2
l ¼ CF if l is a quark. The result is

X
l

ð
ffiffiffiffiffi
Rl

p
− 1Þ ¼ −

αs
4π

X
l

�
T2
l
Sϵ
ϵ2

þ Sϵ
ϵ
γl

�

−
X
l

T2
l
αs
4π

Sϵ
ϵ

�
v − 1

v
− log

�
v − 1

vþ 1

�

þ log

�
μ2

4ðpl · nÞ2
��

þOðϵÞ: ð191Þ

In the sum of these contributions, the terms involving v
and pl · n cancel, leaving

X
l

ð
ffiffiffiffiffi
Rl

p
− 1Þ þ 1

2

X
l

X
k≠l

VlkTl · Tk

¼ −
αs
4π

X
l

�
T2
l
Sϵ
ϵ2

þ Sϵ
ϵ
γl

�
−
X
l

X
k≠l

Tl · Tk
αs
4π

Sϵ
ϵ

× log

�
−2pl · pk þ i0

μ2

�
þOðϵ0Þ þOðα2s Þ: ð192Þ

This is the standard result that one finds in Feynman gauge.

X. CONCLUSIONS

We have investigated the features of interpolating gauge
in QCD or other gauge field theories. This gauge was
proposed by Doust [21] and Baulieu and Zwanziger [22]
as a way to interpolate between a covariant gauge and
Coulomb gauge, with the aim of making Coulomb gauge
better defined. The attraction of this gauge for us is that it
may be useful for QCD constructions in which the infrared
singularities of the theory are of paramount interest.
In any gauge, QCD with massless quarks has infrared

singularities that appear when a gluon with momentum q
attaches to an on-shell parton with momentum p. First,
there is a soft singularity when q → 0. Second, there is a
collinear singularity when q → λp with a fixed value of λ.
There are also soft × collinear singularities when q → λp
with λ → 0. These singularities are important for the
subtractions needed in the calculation of cross sections
for infrared safe observables in high energy processes. The
same singularities are important for the analysis of large
logarithms that appear when a process has a hard momen-
tum scale and a much smaller soft momentum scale. The
infrared singularities control the large logarithms that
appear when one takes the soft scale toward zero. One
way of summing these large logarithms is through the use
of a parton shower algorithm. It is the extension of parton
shower algorithms to use higher order parton splitting
functions that provides our principle motivation for inves-
tigating interpolating gauge.
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As presented in Sec. II, interpolating gauge depends on a
vector n that defines a preferred reference frame and on two
parameters, v and ξ, with 1 ≤ v < ∞. With v ¼ 1, we have
a standard covariant gauge, Feynman gauge for ξ ¼ 1 and
Lorenz gauge for ξ ¼ 0. We obtain Coulomb gauge for
v → ∞ with any ξ. We always choose v > 1 except when
we want to connect to Feynman gauge. We mostly use
ξ ¼ 1 in this paper.
QCD calculations typically use Feynman gauge because

of its simplicity. However, in Feynman gauge, there is a
problem with collinear singularities. A collinear singularity
and a soft × collinear singularity can appear in graphs in
which the gluon couples to a far off-shell internal line in a
graph. After integrating over the gluon momentum in
4 − 2ϵ dimensions, one obtains poles 1=ϵ2 and 1=ϵ.
These poles are unphysical in the sense that they result
from the gluon polarization being proportional to its
momentum q, while a physical gluon has polarization ε
that is orthogonal toq. Graphs inwhich a gluon is exchanged
between two external partons also have a double pole in
Feynman gauge. Again, the double pole is unphysical in that
it results from the gluon polarization being proportional to
its momentum. One must use Ward identities to sort out
these effects, as outlined in Appendix A. After using Ward
identities, the collinear singularities are effectively associ-
ated with self-energy insertions on the external lines.
One could eliminate the collinear singularity problem by

choosing a physical gauge, for instance Coulomb gauge.
However, as emphasized in Ref. [22], one then faces a
problem with an ambiguity in defining the gauge. To
remove this ambiguity in Coulomb gauge, Ref. [22] takes
the v → ∞ limit of interpolating gauge.
For the uses that we have in mind, there is no need to

take a limit v → ∞. As long as v > 1, the problem with
collinear singularities is removed. Any finite value of v
that is not too close to 1 will do. For instance, one can
choose v ¼ 2.
The attraction of interpolating gauge with v > 1 com-

pared to Feynman gauge is that for each graph the collinear
singularity problem does not occur. One does not need to
apply Ward identities and sum over graphs to bring the
collinear singularities into the form of self-energy inser-
tions on the external lines. They have this form from the
beginning. We verified this explicitly at one-loop order in
Secs. VII and VIII.
The properties of the v > 1 theory that are important for

us can be easily understood, as we found in Sec. III. The
four component gluon field AμðxÞ describes two sorts of
gluons, each with two components: T gluons and L gluons.
The T gluons are transversely polarized and propagate with
the speed of light, c ¼ 1. The L gluons carry the remaining
two polarizations and, in the tree-level propagator, propa-
gate with speed v in a frame with n ¼ ð1; 0; 0; 0Þ. In
such a frame, an on-shell L gluon with momentum q has
jq0j ¼ vjq⃗j. This makes it impossible for an on-shell L

gluon to be collinear with an on-shell lightlike particle, with
jp0j ¼ jp⃗j. This property eliminates the collinear singular-
ities for L gluons.
We have provided analysis and calculations for some of

the important features of interpolating gauge:
(i) Reference [22] argues that the renormalization pro-

gram works at all orders of perturbation theory in
this gauge. In Sec. VI, we define the needed
renormalization factors Z and calculate their order
αs contributions from the ultraviolet divergences of
one-loop graphs.

(ii) BRST invariance leads to identities for Green
functions in interpolating gauge. Reference [22]
used BRST invariance to analyze the renormaliza-
tion program. In Sec. V, we derive identities for the
change in Green functions induced by changing the
vector n and the parameters v and ξ. We then use
these identities to show that the S matrix for quarks
and T gluons is invariant under changes of n, v,
and ξ.

(iii) The gluon propagator in interpolating gauge is not
Lorentz covariant and has several terms. Conse-
quently, calculations of loop diagrams are not as
simple as in Feynman gauge. Nevertheless, we
found in Appendix B that results can be obtained
using Feynman parametrization and numerical in-
tegration. Results for the one-loop gluon self-energy
were shown in Fig. 13.

(iv) Poles 1=ϵ and 1=ϵ2 arising from infrared singular-
ities are of particular interest in this paper. Results
for gluon exchange between external on-shell par-
tons were presented in Sec. IV. Results for the self-
energy of an on-shell T gluon were presented in
Appendix C and Sec. VII. Results for the self-energy
of an on-shell quark were presented in Sec. VIII.

We conclude that there may be practical uses for
interpolating gauge.
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APPENDIX A: INFRARED SINGULARITIES
IN FEYNMAN GAUGE

In interpolating gauge, all the collinear singularities are
located in the self-energy graphs on the external legs. In
Feynman gauge, these collinear singularities appear in
many graphs and one has to utilize the Ward identity to
be able to factorize them out. This prevents us from being
able to define infrared singular functions that match the soft
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and collinear singularities with one singular function for
each graph. In this section we demonstrate these compli-
cations at one-loop level.
In interpolating gauge it was natural to decompose the

gluon propagator as a sum of T and L gluons. In Feynman
gauge, we use a different decomposition. We try to separate
the pure soft modes, labeled S, from the collinear and soft-
collinear modes, labeled C. We write

DμνðqÞ ¼ −
gμν

q2 þ i0
¼ Pμν

S ðqÞ
q2 þ i0

þ Pμν
C ðqÞ

q2 þ i0
: ðA1Þ

Here the Pμν
S ðqÞ and Pμν

C ðqÞ tensors are defined as

Pμν
S ðqÞ ¼ Pμν

T ðqÞ þ qμqν þ q2nμnν

ðq · nÞ2 − q2

¼ −gμν þ q · nðqμnν þ nμqνÞ
ðq · nÞ2 − q2

;

Pμν
C ðqÞ ¼ Pμν

L ðqÞ − qμqν þ q2nμnν

ðq · nÞ2 − q2

¼ −
q · nðqμnν þ nμqνÞ

ðq · nÞ2 − q2
: ðA2Þ

Here ðq · nÞ2 − q2 ¼ q⃗2 if we work in a frame in which
n ¼ ð1; 0; 0; 0Þ. When an internal gluon line becomes on
shell, q2 → 0, both parts of the propagator become singular.
However, as we shall see, Pμν

S ðqÞ and Pμν
C ðqÞ contribute

differently to soft and to collinear singularities.
At one-loop level the possible singular graphs with m

external partons can be written in the form illustrated in
Fig. 14,

jMð1Þðfp; fgmÞi ¼ igμϵ
X
l

Z
ddq
ð2πÞd

Ta
l J

μ
l ðqÞDμνðqÞ

ðpl − qÞ2 þ i0

×
X
G

hν; ajRlðG; fp; fgmÞi þ � � � :

ðA3Þ

The ellipsis “� � �” here stands for contributions that do not
have leading infrared singularities. In the singular part,
external parton l, which can be either a quark or a gluon,

absorbs a gluon with momentum q and color index a. Its
propagator is DμνðqÞ. We sum over l and integrate over q.
The gluon couples to a color matrix Ta

l and an effective
current Jμl ðqÞ, described below. The propagator for parton l
before the emission has a factor 1=½ðpl − qÞ2 þ i0�, which
is singular when q is collinear to pl or soft. The current
Jμl ðqÞ includes either a polarization vector or a Dirac spinor
appropriate for the limit ðpl − qÞ2 → 0. The complemen-
tary polarization vector or spinor is included in the rest of
the graph. These on-shell polarization vectors or spinors are
indicated by the orthogonal lines on parton line l.
The amplitude hν; ajRlðG; fp; fgmÞi represents the rest

of the Feynman graph that contributes to the given process.
This is an mþ 1 point graph in Feynman gauge. The extra
leg is a gluon line with color a and polarization index ν.
This extra gluon carries the momentum qμ. The external leg
l of jRlðG; fp; fgmÞi caries a momentum of pl − q, which
is treated as being an on-shell external parton with its
appropriate polarization vector or spinor. The dependence
on the polarizations or spins of parton l is suppressed in the
notation.
In hν; ajRlðG; fp; fgmÞi, the gluon with momentum q is

connected to any internal line in the graph or to any external
leg of the graph except for the leg of parton l.
The currents JlðqÞ are matrices JlðqÞŝ;s in the spin space

for parton l. They also depend on the timelike reference
momentum n and the momentum and flavor of the parton,
pl, fl, but for the sake of simplicity we hide those
arguments and the spin indices. We define

Jμl ðqÞŝ;s ¼ 2pμ
l δŝ;s − Aμν

fl
ðplÞŝ;sqν: ðA4Þ

Here the first term appears in the eikonal approximation for
soft gluon absorption, while the second term is flavor
dependent and has nontrivial dependence on the spins.
For a final state quark, we define [29]

Aμν
q ðpÞŝ;s ¼

ūðp; sÞγμγν=nuðp; ŝÞ
2p · n

: ðA5Þ

Analogous formulas apply for antiquarks and for initial
state quarks and antiquarks.
When parton l is a gluon, an extra step is needed [30].

We have a gluon with momentum that we can call pa
and Lorentz index α and a gluon with momentum that
we can call pb and Lorentz index β combining at a three-
gluon vertex to make an on-shell gluon with momentum
p ¼ pa þ pb and polarization vector εðp; sÞ. There are
three terms in the three-gluon vertex, Eq. (59). One term is
proportional to gαβðpb − paÞ · εðp; sÞ. Since p ·εðp;sÞ¼0,
this term is nonsingular when pa and pb are collinear or
either of them is soft. We neglect this term. One term is
proportional to ðpþ paÞβεαðp; sÞ. In this term, we identify
q in Fig. 14 with pb. The remaining term is proportional to

FIG. 14. Illustration of the right-hand side of Eq. (A3). The
external line terminated by “j” indicates a polarization vector ϵ or
a Dirac spinor u, ū, v or v̄. The double terminations “jj” indicate
that the line is approximated as being on shell, with two
polarization vectors or Dirac spinor factors.
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−ðpþ paÞαεβðp; sÞ. In this term, we identify q in Fig. 14
with pa. With this identification, we have

Aμν
g ðpÞŝ;s ¼ gμνδsŝ: ðA6Þ

The expression in Eq. (A3) is not immediately usable if
we want to define subtraction scheme, since it does not
have a factorized form. To obtained such a form we should
separate the contributions that apply in the soft and
collinear limits. Using the decomposition of the gluon
propagator in Eq. (A1) we have

jMð1Þðfp; fgmÞi

¼ igμϵ
X
l

Z
ddq
ð2πÞd

Ta
l J

μ
l ðqÞ½PSðqÞ�μν

½q2 þ i0�½ðpl − qÞ2 þ i0�
×
X
G

hν; ajRlðG; fp; fgmi

þ igμϵ
X
l

Z
ddq
ð2πÞd

Ta
l J

μ
l ðqÞ½PCðqÞ�μν

½q2 þ i0�½ðpl − qÞ2 þ i0�
×
X
G

hν; ajRlðG; fp; fgmÞi þ � � � : ðA7Þ

We note that the first term cannot be singular in the
collinear limit, in which q becomes parallel to pl, because
in this limit JlðqÞμ ∝ qμ and qμ½PCðqÞ�μν ¼ 0. However,
this term can be singular in the soft limit if the other end of
the gluon is connected to another external leg, say a leg
with index k. Since we have only soft singularity, the
current can be simplified: it is enough to keep the 2pμ

l
part in Eq. (A4) since the term Aμνqν is suppressed by the
factor q. This leads to the eikonal approximation in the first
term of Eq. (A7), depicted in Fig. 15.
The second term in Eq. (A7) can be singular in both the

soft and collinear limits. In the limit in which q is collinear
with pl, JlðqÞμ is proportional to qμ. Then the term in
½PCðqÞ�μν proportional to nμqν gives a leading collinear
singularity, but the term proportional to qμnν does not
contribute because it is suppressed by a factor q2. In the
limit in which q is soft, q → 0, there are two cases to
consider. When the soft gluon connects the external parton
l to an internal line of the graph, there are not enough

powers of 1=q to give a leading singularity.6 When the soft
gluon connects two external partons, there is a leading soft
singularity. In this case, there is one graph, but two ends of
the gluon line, one with a factor nμ and the other with a
factor qν. We can use this symmetry to let the index of the
external line connected to nμ be denoted by l and the index
of the other external line be denoted by something else.
The arguments presented above give for the singular

terms in Eq. (A7),

jMð1Þðfp; fgmÞi
¼ 4iπαsμ2ϵ

X
l<k

Tl · TkjMð0Þðfp; fgmÞi

×
Z

ddq
ð2πÞd

4pl · PSðqÞ · pk

½q2 þ i0�½ðpl − qÞ2 þ i0�½ðpk þ qÞ2 þ i0�

− igμϵ
X
l

Z
ddq
ð2πÞd

Ta
l nμJ

μ
l ðqÞ

½q2 þ i0�½ðpl − qÞ2 þ i0�

×
X
G

q · nqν

ðq · nÞ2 − q2
hν; ajRlðG; fp; fgmÞi þ � � � : ðA8Þ

Here the first term, illustrated in Fig. 15, has a factorized
form with one contribution for each graph. In this term,
jMð0Þðfp; fgmÞi is the amplitude without the soft gluon
exchange. The integration over the loop momentum can be
performed analytically. The second term, illustrated in
Fig. 16, contains a sum over almost every mþ 1 parton
graph, where the extra parton is a gluon carrying the
momentum q. The factor nμ is indicated by a diamond
shape where the gluon line joins line l. The factor qν is
indicated by the open arrow at the end of the gluon line.
This extra gluon can connect to every internal or external
line in the graph except to parton l. Parton l carries a
momentum of pl − q. It becomes on shell either in the soft
or the collinear limit. In the singular regions we can apply
the Ward identity, as

FIG. 15. Illustration of the first term on the right-hand-side of
Eq. (A8), in which a gluon with propagator Pμν

S ðqÞ=½q2 þ i0� is
exchanged between two partons, l and k.

FIG. 16. Illustration of the second term on the right-hand-side
of Eq. (A8), in which a gluon with propagator −q · nnμqν=
½ððq · nÞ2 − q2Þðq2 þ i0Þ� is exchanged between parton l and the
rest of the graph.

6For an attachment to an internal line, there is a collinear
singularity but no soft singularity. However, in one way of
organizing the calculation, there is a sum of two soft singularities
that cancel. Thus we sometimes speak of having both soft and
collinear singularities.
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X
G

qνhν; ajRlðG; fp; fgm; fq; ggÞi

¼ gμϵTa
l jMð0Þðfp; fgmÞi þOðq2Þ: ðA9Þ

This is the negative of the contribution that one would have
obtained from an attachment to parton l. After using the
Ward identity, we can write the singular part of the one-loop
amplitudes in factorized form as

jMð1Þðfp;fgmÞi

¼ 4iπαsμ2ϵ
X
l<k

Tl ·TkjMð0Þðfp;fgmÞi
Z

ddq
ð2πÞd

×
4pl ·PSðqÞ ·pk

½q2 þ i0�½ðpl − qÞ2 þ i0�½ðpk þ qÞ2 þ i0�

þ 4iπαsμ2ϵ
X
l

T2
l jMð0Þðfp;fgmÞi

Z
ddq
ð2πÞd

×
n · JlðqÞq · n

½ðq · nÞ2 − q2�½q2 þ i0�½ðpl − qÞ2 þ i0� þ � � � : ðA10Þ

The first term in Eq. (A10) is illustrated in Fig. 15. The
second term is illustrated in Fig. 17.
We note that by taking the limits in Eq. (A9) and using

the Ward identity we might have introduced some spurious
UV poles. We have to keep in mind that these UV
singularities are fake and they need to be removed.
Now we can perform the integrals, leading to

jMð1Þðfp;fgmÞi

¼ αs
4π

Sϵ
ϵ

X
l≠k

Tl ·TkjMð0Þðfp;fgmÞi

×

�
1

ϵ

�
μ2

−2pl ·pk

�
ϵ

−
1

2ϵ

�
μ2

ð2pl ·nÞ2
�
ϵ

−
1

2ϵ

�
μ2

ð2pk ·nÞ2
�
ϵ
�

−
αs
4π

Sϵ
ϵ

X
l

T2
l jMð0Þðfp;fgmÞi

�
1

ϵ

�
μ2

ð2pl ·nÞ2
�
ϵ

þ 2

1þ δl

�

þ �� � ; ðA11Þ

where δl ¼ 1 if l is a gluon otherwise δl ¼ 0. Using color
conservation, we can simplify the result even further and
obtain the result

jMð1Þðfp; fgmÞi

¼ αs
4π

Sϵ
ϵ

�X
l≠k

Tl · Tk
1

ϵ

�
μ2

−2pl · pk

�
ϵ

−
X
l

2

1þ δl
T2
l

�

× jMð0Þðfp; fgmÞi þ � � � : ðA12Þ

This derivation shows that it is quite practical to use
Feynman gauge to extract the infrared singularities of
amplitudes when we add one gluon exchange to graphs
that are either tree graphs or have only hard momenta in
loops. However, one faces complications if one wants to
extend this method to include more loops with potentially
soft or collinear momenta of the partons in the loops.
In this case, there are more gluons with propagators
Pμν
C ðqÞ=½q2 þ i0�. These gluons can couple to each other,

so that there are nowmultiple special cases to be considered
when applying the needed Ward identities [17,18].

APPENDIX B: CALCULATION OF THE
GLUON SELF-ENERGY

We have seen that interpolating gauge offers the advan-
tage that collinear singularities are eliminated in virtual
exchange graphs. However, manifest covariance is lost
and there are several terms in the gluon propagator. Thus,
calculations of loop diagrams are not as simple as in
Feynman gauge. We have in mind using numerical inte-
gration to perform calculations, so perhaps this lack of
simplicity in not a crucial problem. In this Appendix, we
investigate this issue by performing a numerical calculation
in interpolating gauge.
We discuss the calculation of the gluon self-energy

function ΠμνðpÞ with a spacelike value of p, using
interpolating gauge with ξ ¼ 1. The function ΠμνðpÞ has
an ultraviolet pole, which we eliminate by renormalization.
It has no infrared poles. Infrared poles will emerge if we
take p2 → 0.
The unrenormalized (“U”) version of the self-energy

function that we wish to calculate has the form

−iΠμν
U ðpÞ ¼ 4παsμ

2ϵ

Z
ddq
ð2πÞd

Nμνðq; pÞ
½q2 þ i0�½k2 þ i0�½q · q̃þ i0�½k · k̃þ i0� : ðB1Þ

FIG. 17. Illustration of the second term on the right-hand-side
of Eq. (A10). This is the negative of the one term that was not
included in Fig. 16.
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Here d ¼ 4 − 2ϵ and the loop momentum is q, with k ¼ p − q. The numerator function is

Nμνðq; pÞ ¼ −
CA

2
Γμαβð−p; q; kÞΓνγδðp;−q;−kÞNαγðqÞNβδðkÞ

þ CA

2
q2k2½q̃μk̃ν þ k̃μq̃ν� − CA

2
½NμνðkÞ − gμνNα

αðkÞ�q2q · q̃

−
CA

2
½NμνðqÞ − gμνNα

αðqÞ�k2k · k̃þ 4TRnf ½kμqν þ qμkν − gμνq · k�q · q̃k · k̃: ðB2Þ

The second term is for the ghost loop. The third and fourth
terms are from the tadpole diagram, symmetrized under
q ↔ k. The last term is the quark loop. These contributions
are depicted in Fig. 9. We have defined Γαβγðpa; pb; pcÞ
using

Γabc
αβγ ðpa; pb; pcÞ ¼ gfabcΓαβγðpa; pb; pcÞ: ðB3Þ

Then, from Eq. (59),

Γαβγðpa; pb; pcÞ ¼ −fgαβðpa − pbÞγ þ gβγðpb − pcÞα
þ gγαðpc − paÞβg: ðB4Þ

We have also defined NμνðqÞ as

NμνðqÞ ¼ q2q · q̃DμνðqÞ ðB5Þ

with ξ ¼ 1. From Eq. (62), this is

NμνðqÞ ¼ −gμνq · q̃þ qμq̃ν þ q̃μqν −
v2 þ 1

v2
qμqν: ðB6Þ

The numerator factor omits a factor 4παsδaa0, where a and
a0 are the gluon color indices. The δaa0 has been removed
from ΠμνðpÞ and 4παs has been factored out of the
numerator function.
It is possible to simplify some parts of the integrand.

First, any factors of q2, q · q̃, k2, or k · k̃ in the numerator
can be used to cancel the corresponding factors in the
denominator, giving a simpler denominator. Second, if the
resulting denominator depends only on q but not on k or
depends only on k but not on q, then we have a scaleless
integral. With dimensional regularization, a scaleless
integral consists of an ultraviolet pole that exactly cancels
an infrared pole. Such scaleless integrals can simply
be dropped. However, it is feasible to proceed without
implementing any of these simplifications. Then one
applies the same general method to all contributions to
the integrand. This is the method that we explain below.
We can combine the four denominator factors using three

Feynman parameters x, y and z:

Πμν
U ðpÞ ¼ iμ2ϵ

Z
ddq
ð2πÞd N

μνðq; pÞ
Z

1

0

dxJðxÞ
Z

1

0

dy
Z

1

0

dz

×
1

½xð1 − yÞq2 þ xyk2 þ ð1 − xÞð1 − zÞq · q̃þ ð1 − xÞzk · k̃þ i0�4 ; ðB7Þ

where

JðxÞ ¼ 4παs6xð1 − xÞ: ðB8Þ
To proceed, we manipulate the denominator in Eq. (B7).

We use the projection tensors Pþ and P−, Eq. (20), and
indicate contractions of Lorentz indices with a dot, as in
A · B ¼ C for Aμ

αBα
ν ¼ Cμ

ν. The denominator is

D ¼ xð1 − yÞq2 þ xyðp − qÞ2 þ ð1 − xÞð1 − zÞq · q̃

þ ð1 − xÞzðp − qÞ · ðp̃ − q̃Þ
¼ q · AðxÞ · q − 2q · AðxÞ · wðx; y; zÞ þ xyp2

þ ð1 − xÞzp · p̃; ðB9Þ

where

AðxÞ ¼ 1 − xþ v2x
v2

Pþ þ P−;

AðxÞ−1 ¼ v2

1 − xþ v2x
Pþ þ P−;

wðx; y; zÞ ¼ A−1ðxÞ½xypþ ð1 − xÞzp̃�: ðB10Þ
Notice that we have combined the terms proportional to q2

and q · q̃ into one term q · AðxÞ · q. Completing the square
in the denominator gives

D ¼ ðq − wðx; y; zÞÞ · AðxÞ · ðq − wðx; y; zÞÞ − Λ2ðx; y; zÞ;
ðB11Þ
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where

Λ2ðx; y; zÞ ¼ wðx; y; zÞ · AðxÞ · wðx; y; zÞ
− xyp2 − ð1 − xÞzp · p̃: ðB12Þ

This may be better expressed as

Λ2ðx; y; zÞ ¼ −λ0ðx; y; zÞp2 − λ1ðx; y; zÞp · p̃; ðB13Þ

where

λ0ðx; y; zÞ ¼
xð1 − xÞ2
1 − xþ v2x

ðy − zÞ2 þ xyð1 − yÞ;

λ1ðx; y; zÞ ¼
x2ð1 − xÞv2
1 − xþ v2x

ðy − zÞ2 þ ð1 − xÞzð1 − zÞ:
ðB14Þ

Notice that λ0ðx; y; zÞ and λ1ðx; y; zÞ are positive for
0 < x < 1, 0 < y < 1, 0 < z < 1.
In the integral (B7), we can shift the integration variable

from q to q0 ¼ q − w, so that

Πμν
U ðpÞ ¼

Z
1

0

dx JðxÞ
Z

1

0

dy
Z

1

0

dz i μ2ϵ
Z

ddq0

ð2πÞd

×
Nμνðq0 þ wðx; y; zÞ; pÞ

½q0 · AðxÞ · q0 − Λ2ðx; y; zÞ þ i0�4 : ðB15Þ

Then we can change variables again to l ¼ A1=2ðxÞq0, with
a new Jacobian,

J0ðxÞ ¼ ½ð1 − xþ v2xÞ=v2�−1=2; ðB16Þ

so that

Πμν
U ðpÞ ¼

Z
1

0

dxJðxÞJ0ðxÞ
Z

1

0

dy
Z

1

0

dz i μ2ϵ
Z

ddl
ð2πÞd

×
NμνðA−1=2ðxÞlþ wðx; y; zÞ; pÞ

½l2 − Λ2ðx; y; zÞ þ i0�4 : ðB17Þ

We write NμνðA−1=2lþ w; pÞ as a function of l and p.
We can eliminate terms that are odd in l because they will
integrate to zero. There are then terms in the numerator
proportional to 6, 4, 2, and 0 powers of l. That is, there are
terms proportional to lαlβlγlδlρlσ, lαlβlγlδ, lαlβ and
1. We define Lorentz invariant symmetric tensors by

Tαβ
2 ¼ gαβ;

Tαβγδ
4 ¼ gαβTγδ

2 þ gαγTβδ
2 þ gαδTβγ

2 ;

Tαβγδρσ
6 ¼ gαβTγδρσ

4 þ gαγTβδρσ
4 þ gαδTβγρσ

4

þ gαρTβγδσ
4 þ gασTβγδρ

4 : ðB18Þ

After integration, we obtain terms proportional to Tαβγδρσ
6 ,

Tαβγδ
4 , Tαβ

2 and 1. We can use these to define coefficients A0,
A2, A4, and A6:

A0ðΛ2Þ ¼ iμ2ϵ
Z

ddl
ð2πÞd

1

½l2 − Λ2 þ i0�4 ;

A2ðΛ2ÞTαβ
2 ¼ iμ2ϵ

Z
ddl
ð2πÞd

lαlβ

½l2 − Λ2 þ i0�4 ;

A4ðΛ2ÞTαβγδ
4 ¼ iμ2ϵ

Z
ddl
ð2πÞd

lαlβlγlδ

½l2 − Λ2 þ i0�4 ;

A6ðΛ2ÞTαβγδρσ
6 ¼ iμ2ϵ

Z
ddl
ð2πÞd

lαlβlγlδlρlσ

½l2 − Λ2 þ i0�4 : ðB19Þ

The coefficients AJ are

A0ðΛ2Þ ¼ −
ðϵþ 1Þ

6

1

ðΛ2Þ2 IsðΛ
2Þ;

A2ðΛ2Þ ¼ 1

12

1

Λ2
IsðΛ2Þ;

A4ðΛ2Þ ¼ −
1

24

1

ϵ
IsðΛ2Þ;

A6ðΛ2Þ ¼ 1

48

1

ϵðϵ − 1ÞΛ
2IsðΛ2Þ; ðB20Þ

where the standard factor IsðΛ2Þ is

IsðΛ2Þ ¼ Γð1þ ϵÞ
ð4πÞ2−ϵ

�
μ2

Λ2

�
ϵ

: ðB21Þ

After integration over l, we have a result of the form

Πμν
U ðpÞ ¼

Z
1

0

dx JðxÞ J0ðxÞ
Z

1

0

dy
Z

1

0

dzIμνU ðp; x; y; zÞ:

ðB22Þ

The ðlÞ6 and ðlÞ4 contributions to Iμνðp; x; y; zÞ are
proportional to 1=ϵ. The 1=ϵ pole is to be removed by
renormalization. The ðlÞ2 and ðlÞ0 contributions are finite
when ϵ → 0.
The ultraviolet pole terms are defined by

Iμνpoleðp; x; y; zÞ ¼ ½ϵIμνU ðp; x; y; zÞ�ϵ→0: ðB23Þ

We remove the poles according to the MS prescription by
subtracting

IμνCTðp; x; y; zÞ ¼
Sϵ
ϵ
Iμνpoleðp; x; y; zÞ; ðB24Þ

where Sϵ is the standard factor defined in Eq. (161). The
renormalized version of Iμν is then
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Iμνðp;x;y;zÞ ¼ ½IμνU ðp;x;y;zÞ− IμνCTðp;x;y;zÞ�ϵ→0: ðB25Þ

The integrand IμνU has the form

IμνU ðp; x; y; z; ϵÞ ¼ 1

ϵ
IsðΛ2ÞĨμνðp; x; y; z; ϵÞ

¼ 1

ð4πÞ2
ð4πÞϵΓð1þ ϵÞ

ϵ

�
μ2

Λ2

�
ϵ

× Ĩμνðp; x; y; z; ϵÞ: ðB26Þ

This gives us

Iμνðp; x; y; zÞ ¼ 1

ð4πÞ2 Ĩ
μνðp; x; y; z; 0Þ log

�
μ2

Λ2

�

þ 1

ð4πÞ2
�
dĨμνðp; x; y; z; ϵÞ

dϵ

�
ϵ¼0

: ðB27Þ

For the parts of Iμν that did not have a pole 1=ϵ, this
prescription gives simply the contribution to Iμν evaluated
at ϵ ¼ 0.
The renormalized version of Πμν is then obtained by

integrating Iμν over the Feynman parameters:

ΠμνðpÞ ¼
Z

1

0

dx JðxÞ J0ðxÞ
Z

1

0

dy
Z

1

0

dzIμνðp; x; y; zÞ:

ðB28Þ

This integral can be performed by numerical integration.
Typical results are reported in Fig. 13.
The pole term in Πμν is

Πμν
poleðpÞ ¼

Z
1

0

dx JðxÞ J0ðxÞ
Z

1

0

dy
Z

1

0

dzIμνpoleðp; x; y; zÞ:

ðB29Þ

The integrals over the Feynman parameters can be per-
formed analytically, giving

Πμν
poleðpÞ ¼ C1ðvÞfgμνp2 − pμpνg

þ C2ðvÞf2hμνp2 − p̃μpν − pμp̃νg; ðB30Þ

where

C1ðvÞ ¼
CAαs
4π

−11v3 − 16v2 − 7vþ 2

3vðvþ 1Þ2 þ αs
4π

4

3
TRnf ;

C2ðvÞ ¼
CAαs
4π

2vð2vþ 1Þ
3ðvþ 1Þ2 : ðB31Þ

This calculation has been for ξ ¼ 1. This result for the
ultraviolet pole matches the more general result in
Eq. (177) at ξ ¼ 1.

APPENDIX C: THE GLUON
SELF-ENERGY WITH p2 → 0

We now investigate the one-loop self-energy for a T
gluon that is an external particle in the S matrix. This means
that we need not the full ΠμνðpÞ but only ΠμνðpÞενðp; sÞ.
Given the tensor structure (182) of ΠμνðpÞ, we see that
ΠμνðpÞενðp; sÞ is proportional to εμðp; sÞ. Thus it suffices
to consider εμðp; sÞΠμνðpÞενðp; sÞ. Since an external T
gluon is on its mass shell, and is accompanied by a tree-
level propagator proportional to 1=p2, the quantity that we
need for the S matrix, Eq. (149), is the first order
contribution to

ffiffiffiffiffiffi
Rg

p
, the square root of the residue of

the T-gluon propagator at p2 ¼ 0. This is

ΠIR ¼ lim
p2→0

εμðp; sÞΠμνðpÞενðp; sÞ
2p2

: ðC1Þ

The factor 1=2 gives us the order αs contribution to
ffiffiffiffiffiffi
Rg

p
instead of Rg. In taking the limit p2 → 0, we start with
p2 < 0.
Some care is required in calculating ΠIR because taking

the limit p2 → 0 leads to infrared divergences. We maintain
the dimensional regulation of the calculation with d ¼
4 − 2ϵ, with ϵ < 0 so that we regulate an infrared diver-
gence. We take the limit p2 → 0 in Eq. (C1). Then we let
ϵ → 0, giving poles 1=ϵ2 and 1=ϵ plus a finite ϵ0 con-
tribution. The finite contribution then contains logarithms
of the dimensional regularization scale μ2. Knowing the IR
pole terms and the scale dependence is just what one wants
for use in a parton shower algorithm.
Fortunately, εμΠμνεν is much simpler than the full Πμν.

This simplicity enables us to manipulate the integrand for
εμΠμνεν so that all of the IR poles can be extracted, leaving
only one integral for the coefficient of a finite part that
remains for numerical integration.
The unrenormalized self-energy function that we wish to

calculate is given by the form that we used in Eq. (B1),

εμðp;sÞΠμν
U ðpÞενðp;sÞ

¼ 4παsiμ2ϵ
Z

ddq
ð2πÞd

εμðp;sÞNμνðq;pÞενðp;sÞ
½q2þ i0�½k2þ i0�½q · q̃þ i0�½k · k̃þ i0� :

ðC2Þ

After some manipulation, we can write the numerator in
the form

εμNμνεν ¼ N1 þ N2 þ N3 þ N4 þ N5 þ scaleless; ðC3Þ

where “scaleless” denotes contributions that give scaleless
integrals, which vanish in dimensional regularization, and
where
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N1 ¼ fc1;1ðq · εÞ2 þ c1;2p2gq · q̃k · k̃;

N2 ¼ c2p2ðq · εÞ2k · k̃;
N3 ¼ c3p2q · p̃k · k̃;

N4 ¼ fc4;1p2p · p̃þ c4;2ðp2Þ2gðq · εÞ2;
N5 ¼ c5ðp2Þ2k · k̃: ðC4Þ

Here we have defined coefficients

c1;1 ¼ 4CAð1 − ϵÞ − 8TRnf ;

c1;2 ¼ −4CA þ 2TRnf ;

c2 ¼ −2CA
v2 − 1

v2
;

c3 ¼ 4CA;

c4;1 ¼ CA
v2 − 1

v2
;

c4;2 ¼ −CA
v4 − 1

2v4
;

c5 ¼ −CA
v2 þ 1

v2
: ðC5Þ

We analyze each of these contributions in turn.
We begin with the contribution from N1:

εμΠ
μν
U;1εν ¼ 4παsiμ2ϵ

Z
ddq
ð2πÞd

c1;1ðq · εÞ2 þ c1;2p2

½q2 þ i0�½k2 þ i0� : ðC6Þ

We can write this as an integral over a Feynman para-
meter x as

εμΠ
μν
U;1εν ¼ 4παsiμ2ϵ

Z
ddq
ð2πÞd

Z
1

0

dx

×
c1;1ðq · εÞ2 þ c1;2p2

½ð1 − xÞq2 þ xk2 þ i0�2 : ðC7Þ

Using k ¼ p − q, this is

εμΠ
μν
U;1εν ¼

Z
1

0

dx4παsiμ2ϵ
Z

ddq
ð2πÞd

×
c1;1ðq · εÞ2 þ c1;2p2

½ðq − xpÞ2 þ xð1 − xÞp2 þ i0�2 : ðC8Þ

We change variables to l ¼ q − xp and use ε · p ¼ 0 to
obtain

εμΠ
μν
U;1εν ¼

Z
1

0

dx4παsiμ2ϵ
Z

ddl
ð2πÞd

×
c1;1ðl · εÞ2 þ c1;2p2

½l2 þ xð1 − xÞp2 þ i0�2 : ðC9Þ

We can perform the integration over l using

iμ2ϵ
Z

ddl
ð2πÞd

1

½l2 − Λ2 þ i0�2 ¼ −
1

ϵ
IsðΛ2Þ;

iμ2ϵ
Z

ddl
ð2πÞd

lμlν

½l2 − Λ2 þ i0�2 ¼ −
Λ2IsðΛ2Þ
2ϵð1 − ϵÞ g

μν; ðC10Þ

where IsðΛ2Þ was defined in Eq. (B21). This gives

εμΠ
μν
U;1εν

2p2
¼ −

αs
4π

Z
1

0

dx
xð1 − xÞc1;1 þ ð1 − ϵÞc1;2

2εð1 − εÞ

× Γð1þ ϵÞ
�
−xð1 − xÞp2

4πμ2

�−ϵ
: ðC11Þ

We take −p2 > 0 and take the limit p2 → 0 at a fixed value
of ϵ with ϵ < 0. This gives us

lim
p2→0

εμΠ
μν
U;1εν

2p2
¼ 0: ðC12Þ

Next, we turn to the contribution proportional to N2:

εμΠ
μν
U;2εν

2p2
¼ c2

2
4παsiμ2ϵ

Z
ddq
ð2πÞd

×
ðq · εÞ2

½q2 þ i0�½k2 þ i0�½q · q̃þ i0� : ðC13Þ

We can write this as an integral over Feynman parameters x
and y as

εμΠ
μν
U;2εν

2p2
¼ c2

2
4παs iμ2ϵ

Z
ddq
ð2πÞd

Z
1

0

dx 2x
Z

1

0

dy

×
ðq · εÞ2

½xð1 − yÞq2 þ xyk2 þ ð1 − xÞq · q̃þ i0�3 :

ðC14Þ

With k ¼ p − q, this is

εμΠ
μν
U;2εν

2p2
¼ c2 4παs

Z
1

0

dx x
Z

1

0

dy iμ2ϵ
Z

ddq
ð2πÞd

ðε · qÞ2
½ðq − wðx; y; 0ÞÞ · AðxÞ · ðq − wðx; y; 0ÞÞ − Λ2ðx; y; 0Þ þ i0�3 : ðC15Þ
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Here AðxÞ and wðx; y; zÞ were defined in Eq. (B10) and
Λ2ðx; y; zÞ was defined in Eq. (B13). We change variables
to q0 ¼ q − w, noting that ε · w ¼ 0 since ε · p ¼ 0. Then
we change variables to l ¼ A1=2ðxÞq0, with a Jacobian
J0ðxÞ given in Eq. (B16). Since ε · n ¼ 0 we have
ε · q0 ¼ ε · l. This gives

εμΠ
μν
U;2εν

2p2
¼ c2

Z
1

0

dx x

�
v2

1 − xþ v2x

�
1=2 Z 1

0

dy 4πiαs

× μ2ϵ
Z

ddl
ð2πÞd

ðε · lÞ2
½l2 − Λ2ðx; y; 0Þ þ i0�3 : ðC16Þ

We can perform the l integration using

iμ2ϵ
Z

ddl
ð2πÞd

lμlν

½l2 − Λ2 þ i0�3 ¼ −gμν
1

4

1

ϵ
IsðΛ2Þ: ðC17Þ

This gives us

εμΠ
μν
U;2εν

2p2
¼ c2

Z
1

0

dx x

�
v2

1 − xþ v2x

�
1=2 Z 1

0

dy
αs
4π

×
Γð1þ ϵÞ

4ϵ

�
4πμ2

Λ2ðx; y; 0Þ
�

ϵ

: ðC18Þ

It is straightforward to take the limit p2 → 0. At p2 ¼ 0 we
have from Eq. (B13),

Λ2ðx; y; 0Þ ¼ −
x2ð1 − xÞy2v2
1 − xþ v2x

p · p̃: ðC19Þ

Thus

lim
p2→0

εμΠ
μν
U;2εν

2p2
¼ αs

4π

Γð1þ ϵÞ
4ϵ

�
4πμ2

−p · p̃

�
ϵ

c2

Z
1

0

dx x
Z

1

0

dy

×

�
v2

1 − xþ v2x

�
1=2

�
1 − xþ v2x
x2ð1 − xÞy2v2

�
ϵ

:

ðC20Þ

This has a 1=ϵ pole and a finite part as ϵ → 0. After
performing the integrals over y and x, we find

lim
p2→0

εμΠ
μν
U;2εν

2p2
¼ αs

4π

c2
4

�
μ2

−p · p̃

�
ϵ
�
Sϵ
ϵ
I2;1ðvÞ

þ 2I2;1ðvÞ þ I2;2ðvÞ
�
þOðϵ0Þ: ðC21Þ

The factor ðμ2=ð−p · p̃ÞÞϵ can be expanded to give a
contribution proportional to logðμ2=ð−p · p̃ÞÞ. The needed
integrals are

I2;1ðvÞ ¼
2vðvþ 2Þ
3ðvþ 1Þ2 ;

I2;2ðvÞ ¼
4v

9ðv2 − 1Þ2
�
ð5 − 3 logð2ÞÞv3 − 3v2

− ð12 − 9 logð2ÞÞvþ 10

þ 3vðv2 − 3Þ log
�
vþ 1

v

�
þ 6 log

�ðvþ 1Þ2
4v

��
:

ðC22Þ

For v ¼ 2, I2;1ð2Þ ¼ 0.592593 and I2;2ð2Þ ¼ 1.28204.
We are now ready to consider the contribution propor-

tional to N3:

εμΠ
μν
U;3εν

2p2
¼ 4παs

c3
2
iμ2ϵ

Z
ddq
ð2πÞd

×
q · p̃

½q2 þ i0�½k2 þ i0�½q · q̃þ i0� : ðC23Þ

We can write this as an integral over Feynman parameters x
and y and rearrange the denominator as for εμΠ

μν
U;2εν,

giving

εμΠ
μν
U;3εν

2p2
¼ c3

Z
1

0

dx x
Z

1

0

dy 4παs iμ2ϵ
Z

ddq
ð2πÞd

q · p̃
½ðq − wðx; y; 0ÞÞ · AðxÞ · ðq − wðx; y; 0ÞÞ − Λ2ðx; y; 0Þ þ i0�3 : ðC24Þ

We change variables to q0 ¼ q − w. Then in the numerator, q · p̃ ¼ q0 · p̃þ w · p̃, but we can drop q0 · p̃ since it is odd
under q0 → −q0. Then we change variables to l ¼ A1=2ðxÞq0, with a Jacobian J0ðxÞ. This gives

εμΠ
μν
U;3εν

2p2
¼ c3

Z
1

0

dx x

�
v2

1 − xþ v2x

�
1=2 Z 1

0

dy 4πiαs μ2ϵ
Z

ddl
ð2πÞd

wðx; y; 0Þ · p̃
½l2 − Λ2ðx; y; 0Þ þ i0�3 : ðC25Þ
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We can perform the l integration using

iμ2ϵ
Z

ddl
ð2πÞd

1

½l2 − Λ2 þ i0�3 ¼
IsðΛ2Þ
2Λ2

: ðC26Þ

This gives us

εμΠ
μν
U;3εν

2p2
¼ c3

2

αs
4π

Γð1þ ϵÞ
Z

1

0

dx x

�
v2

1 − xþ v2x

�
1=2

×
Z

1

0

dy
wðx; y; 0Þ · p̃
Λ2ðx; y; 0Þ

�
4πμ2

Λ2ðx; y; 0Þ
�

ϵ

: ðC27Þ

It is straightforward to take the limit p2 → 0. At p2 ¼ 0,
Λ2ðx; y; 0Þ is given by Eq. (C19). For wðx; y; 0Þ · p̃ at
p2 ¼ 0, we use Eqs. (B10), (24), (22), and (20) to derive

wðx; y; 0Þ · p̃ ¼ −
Λ2ðx; y; 0Þ
ð1 − xÞy : ðC28Þ

This gives us

lim
p2→0

εμΠ
μν
U;3εν

2p2
¼ −

c3
2

αs
4π

Γð1þ ϵÞ
�

4πμ2

−p · p̃

�
ϵ Z 1

0

dy
y1þ2ϵ

×
Z

1

0

dx
ð1 − xÞ1þϵ

�
v2x2

1 − xþ v2x

�
1=2−ϵ

:

ðC29Þ

The y integration is trivial and gives a factor −1=ð2ϵÞ. The x
integration produces another 1=ϵ from the end point x → 1.

This gives a double pole, a single pole, and a finite
contribution as ϵ → 0. The integrals over x and y needed
for these contributions can be performed analytically,
giving

lim
p2→0

εμΠ
μν
U;3εν

2p2
¼ −

c3
4

αs
4π

Sϵ
ϵ

�
1þ π2

6
ϵ2
��

μ2

−p · p̃

�
ϵ

×
�
1

ϵ
þ I3;1 þ ϵ

�
I3;2 −

π2

6

��
þOðϵÞ:

ðC30Þ

The integrals I3;1 and I3;2 are given below. We have
included the standard factor Sϵ and compensated by
multiplying by

Γð1þ ϵÞΓð1 − ϵÞ ¼ 1þ π2

6
ϵ2 þOðϵ4Þ: ðC31Þ

This gives

lim
p2→0

εμΠ
μν
U;3εν

2p2
¼ −

c3
4

αs
4π

�
μ2

−p · p̃

�
ϵ
�
Sϵ
ϵ2

þ Sϵ
ϵ
I3;1ðvÞ

þ I3;2ðvÞ
�
þOðϵÞ: ðC32Þ

The factor ðμ2=ð−p · p̃ÞÞϵ can be expanded to give con-
tributions proportional to powers of logðμ2=ð−p · p̃ÞÞ. The
needed integrals are

I3;1ðvÞ ¼
2v

vþ 1
− 2 log

�
2v

vþ 1

�

I3;2ðvÞ ¼
8v

vþ 1
þ 4v
v2 − 1

log

�
2

vþ 1

�
−

4v
vþ 1

log

�
2v

vþ 1

�
þ logð2Þ log

�
2v2ðv − 1Þ2
ðvþ 1Þ4

�
þ 2

�
log

�
v

vþ 1

��
2

þ ½logðvÞ�2 þ logðvþ 1Þ log
�

vþ 1

ðv − 1Þ2
�
− 2Li2

�
−

2

v − 1

�
þ 2Li2

�
−
vþ 1

v − 1

�
þ 2Li2

�
−
1

v

�

− 2Li2

�
v − 1

2v

�
þ 2Li2

�
v − 1

v

�
þ 2Li2

�
−
v − 1

vþ 1

�
− 2Li2

�
v − 1

vþ 1

�
: ðC33Þ

For v ¼ 2, I3;1ð2Þ ¼ 0.757969 and I3;2ð2Þ ¼ 1.27310.
The contribution proportional to N4 is quite simple. We start with

εμΠ
μν
U;4εν

2p2
¼ 4παs

2
iμ2ϵ

Z
ddq
ð2πÞd

½c4;1p · p̃þ c4;2p2�ðq · εÞ2
½q2 þ i0�½k2 þ i0�½q · q̃þ i0�½k · k̃þ i0� : ðC34Þ

We can evaluate this using the method of Appendix B. We introduce integrations over Feynman parameters x, y, and z. Then
we change integration variables from q to l ¼ A1=2ðxÞðq − wðx; y; zÞÞ. The analysis is simpler than for the general
contribution in Appendix B because, since ε · p ¼ ε · n ¼ 0, we have q · ε ¼ l · ε. After performing the l integration,
we have
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εμΠ
μν
U;4εν

2p2
¼ αs

4π

Γð1þ ϵÞ
4

Z
1

0

dx xð1 − xÞ
�

v2

1 − xþ v2x

�
1=2 Z 1

0

dy
Z

1

0

dz
c4;1p · p̃þ c4;2p2

Λ2ðx; y; zÞ
�

4πμ2

Λ2ðx; y; zÞ
�

ϵ

: ðC35Þ

We take the p2 → 0 limit of this by simply setting p2 ¼ 0
in the integral. The integral over the Feynman parameters
does not produce any poles in ϵ, so we can simply set ϵ ¼ 0.
This gives

εμΠ
μν
U;4εν

2p2
¼ αs

4π

c4;1
4

I4ðvÞ þOðϵÞ; ðC36Þ

where

I4ðvÞ ¼
Z

1

0

dx xð1 − xÞ
�

v2

1 − xþ v2x

�
1=2

×
Z

1

0

dy
Z

1

0

dz

�
v2x

1 − xþ v2x
xð1 − xÞðy − zÞ2

þ ð1 − xÞzð1 − zÞ
�
−1
: ðC37Þ

As far as we can see, this integral cannot be expressed in
closed form using logarithms and dilogarithms. For v ¼ 2,
it is I4ð2Þ ¼ 3.67765.
The contribution proportional to N5 vanishes. To see

why, we begin with

εμΠ
μν
U;5εν

2p2
¼ 4παs

c5
2
iμ2ϵ

Z
ddq
ð2πÞd

×
p2

½q2 þ i0�½k2 þ i0�½q · q̃þ i0� : ðC38Þ

We introduce an integral over Feynman parameters x and y
and then integrate over the loop momentum as for εμΠ

μν
U;3εν.

This leads to

εμΠ
μν
U;5εν

2p2
¼ αs

4π

c5
2
Γð1þ ϵÞ

Z
1

0

dx
�

v2x2

1 − xþ v2x

�
1=2

×
Z

1

0

dy
p2

Λ2ðx; y; 0Þ
�

4πμ2

Λ2ðx; y; 0Þ
�

ϵ

: ðC39Þ

We want the limit of this as p2 → 0. There is a factor of p2

in the numerator, but this factor multiplies an integral that
diverges if we set ϵ to zero, so we should be cautious about
taking the p2 → 0 limit inside the integral. The function Λ2

is, from Eq. (B13),

Λ2ðx; y; 0Þ ¼ −
�

xð1 − xÞ2
1 − xþ v2x

y2 þ xyð1 − yÞ
�
p2

−
v2x2ð1 − xÞ
1 − xþ v2x

y2p · p̃: ðC40Þ

In the limit p2 → 0, the integral over y is dominated by very
small y. To capture this behavior, we integrate over y from
0 to ∞ instead of from 0 to 1 and approximate Λ2 by

Λ2ðx; y; 0Þ ≈ −xyp2 −
v2x2ð1 − xÞ
1 − xþ v2x

y2p · p̃: ðC41Þ

We change integration variables from y to y0 defined by

y0p2 ¼ yp · p̃: ðC42Þ

Then

Λ2ðx; y; 0Þ≈ ¼ −ðp2Þ2
p · p̃

�
xy0 þ v2x2ð1 − xÞ

1 − xþ v2x
y02

�
: ðC43Þ

This gives us

εμΠ
μν
U;5εν

2p2
≈ −

αs
4π

c5
2

�
−ðp2Þ2

4πμ2p · p̃

�−ϵ
Γð1þ ϵÞ

×
Z

1

0

dx

�
v2x2

1 − xþ v2x

�
1=2 Z ∞

0

dy0

×

�
xy0 þ v2x2ð1 − xÞ

ð1 − xÞ þ v2x
y02

�−1−ϵ
: ðC44Þ

We take the limit p2 → 0 with ϵ < 0. The factor ½−p2�−2ϵ
vanishes while the integrals over x and y are finite. Thus

�
εμΠ

μν
U;5εν

2p2

�
p2→0

¼ 0: ðC45Þ

The contributions derived above give us the unrenor-
malized εμΠ

μν
U εν=ð2p2Þ. We have to subtract the ultraviolet

counterterms, which we can obtain from Eq. (177):

εμΠ
μν
CTεν

2p2
¼ αs

4π

Sϵ
ϵ

cAðv; 1Þ þ c̃Aðv; 1Þ
2

¼ αs
4π

Sϵ
ϵ

�
CA

3v3 þ 12v2 þ 7v − 2

6vðvþ 1Þ2 −
2

3
TRnf

�
:

ðC46Þ
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The sum of these contributions is the renormalized εμΠμνεν=ð2p2Þ:
�
εμΠμνεν
2p2

�
p2→0

¼ αs
4π

�
c2
4

�
μ2

−p · p̃

�
ϵ
�
Sϵ
ϵ
I2;1ðvÞ þ 2I2;1ðvÞ þ I2;2ðvÞ

�
−
c3
4

�
μ2

−p · p̃

�
ϵ
�
Sϵ
ϵ2

þ Sϵ
ϵ
I3;1ðvÞ þ I3;2ðvÞ

�

þ c4;1
4

I4ðvÞ −
Sϵ
ϵ

cAðv; 1Þ þ c̃Aðv; 1Þ
2

�
þOðϵÞ: ðC47Þ

It is of interest to collect the single and double pole terms. We write −p · p̃ at p2 ¼ 0 using Eq. (25) as
ðv2 − 1Þ=v2�ðp · nÞ2. This gives�
εμΠμνεν
2p2

�
p2→0

¼ −
αs
4π

Sϵ
ϵ2

c3
4
þ αs
4π

Sϵ
ϵ

�
c2
4
I2;1ðvÞ −

c3
4
I3;1ðvÞ −

c3
4
log

�
v2μ2

ðv2 − 1Þðp · nÞ2
�
−
cAðv; 1Þ þ c̃Aðv; 1Þ

2

�
þOðϵ0Þ:

ðC48Þ

Using Eqs. (165), (C5), (C22), and (C33) for the values for the coefficients here, we obtain

�
εμΠμνεν
2p2

�
p2→0

¼ −
αs
4π

Sϵ
ϵ2

CA −
αs
4π

Sϵ
ϵ
γg þ

αs
4π

Sϵ
ϵ

�
−
v − 1

v
CA þ CA log

�
v − 1

vþ 1

�
− CA log

�
μ2

4ðp · nÞ2
��

þOðϵ0Þ: ðC49Þ

Here γg is the standard coefficient defined in Eq. (160). The
first and second terms in Eq. (C49), with double and single
poles, match the standard result for the pole terms in the S
matrix in Feynman gauge. The third term will cancel
against the gluon contributions to the Tl · Tl terms from
gluon exchange graphs.

APPENDIX D: RENORMALIZATION
CALCULATIONS

In Sec. VI, we saw how the UV pole terms in the gluon
self-energy diagrams in interpolating gauge lead to the one-
loop contributions to the renormalization factors ZA, Zv and
Zξ. In this Appendix, we outline the structure of some of
the other UV divergent one-loop diagrams and see how the
UV pole terms lead to the remaining renormalization
factors Z reported in Sec. VI.
We expand each renormalization factor in powers of αs

as Z ¼ 1þ δZþOðα2s Þ and ðZAÞμν ¼ gμν þ ðδZAÞμν þOðα2s Þ,
where δZ contains one power of αs. We compute one-loop
quantities like the renormalized quark self-energy function
ΣðpÞ that are proportional to one power of αs and depend
on gauge parameters v and ξ. The unrenormalized version
is denoted by ΣUðpÞ. This is the same as this quantity in the
bare theory, ΣBðpÞ, except that we use the renormalized g, v
and ξ. Since g ¼ gBð1þOðαsÞÞ, v ¼ vBð1þOðαsÞÞ, and
ξ ¼ ξBð1þþOðαsÞÞ, changing from bare to renormalized
g, v and ξ does not affect the result at order αs.

1. Quark self-energy

A straightforward calculation of the one-loop diagram in
Fig. 10 for the unrenormalized quark self-energy −iΣU
gives the UV pole

ΣUðpÞ ¼ −
αs
4π

Sϵ
ϵ
pCF

�ðv − 1Þ2
vðvþ 1Þ þ

ξ

v

�
þOðϵ0Þ: ðD1Þ

The inverse of the quark propagator is p − ΣðpÞ at order αs,
where ΣðpÞ is the renormalized quark self-energy. This
gives us the relation

½p − ΣUðpÞ� ¼ Z−1
ψ ½p − ΣðpÞ� þOðα2s Þ: ðD2Þ

Then

p − ΣUðpÞ ¼ p − ΣðpÞ − δZψp: ðD3Þ

This gives us

δZψp ¼ ΣUðpÞ − ΣðpÞ: ðD4Þ

We use our result [Eq. (D1)] for the pole term in ΣUðpÞ and
note that by definition the renormalized ΣðpÞ has no pole.
This gives

δZψ ¼ −
αs
4π

Sϵ
ϵ
CF

�ðv − 1Þ2
vðvþ 1Þ þ

ξ

v

�
: ðD5Þ

This is the result reported in Eq. (162).

2. Ghost self-energy

The determination of δZη for the ghost field is slightly
more subtle. A straightforward calculation of the one-loop
diagram in Fig. 11 for the unrenormalized ghost self-energy
−iΠghost

U gives the UV pole
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Πghost
U ðpÞ ¼ αs

4π

Sϵ
ϵ
CA

��
16v2 þ vþ 1

12vðvþ 1Þ −
ξ

4v

�
p · p̃

−
2ð2vþ 1Þðv − 1Þ

3v3ðvþ 1Þ ðp · nÞ2
�
þOðϵ0Þ: ðD6Þ

The inverse of the ghost propagator is p · p̃ − ΠghostðpÞ at
order αs. This gives us

p · p̃B − Πghost
U ðpÞ ¼ Z−1

η ðp · p̃ − ΠghostðpÞÞ þOðα2s Þ:
ðD7Þ

Here p̃B ¼ ðhBÞμνpν is defined using a factor 1=v2B in ðhBÞμν ,
with hμν as in Eq. (22). Since 1=v2B ¼ Z−1

v =v2, we have

p · p̃B ¼ Z−1
v − 1

v2
ðp · nÞ2 þ p · p̃: ðD8Þ

This gives us

p · p̃þ Z−1
v − 1

v2
ðp · nÞ2 − Πghost

U ðpÞ
¼ Z−1

η ðp · p̃ − ΠghostðpÞÞ þOðϵ0Þ: ðD9Þ
Expanding the renormalization factors to order αs gives

p · p̃ −
δZv

v2
ðp · nÞ2 − Πghost

U ðpÞ
¼ p · p̃ − δZηp · p̃ − ΠghostðpÞ: ðD10Þ

Thus

δZηp · p̃ ¼ Πghost
U ðpÞ − ΠghostðpÞ þ δZv

v2
ðp · nÞ2: ðD11Þ

We can use Eq. (D6) for the pole term in Πghost
U ðpÞ. We

already know δZv from the gluon self-energy. It is given in
Eq. (167). Using these results, we have

δZηp · p̃ ¼ αs
4π

Sϵ
ϵ
CA

��
16v2 þ vþ 1

12vðvþ 1Þ −
ξ

4v

�
p · p̃

−
2ð2vþ 1Þðv − 1Þ

3v3ðvþ 1Þ ðp · nÞ2
�

þ αs
4π

Sϵ
ϵ
CA

2ð2vþ 1Þðv − 1Þ
3v3ðvþ 1Þ ðp · nÞ2: ðD12Þ

The terms proportional to ðp · nÞ2 cancel, leaving

δZη ¼
αs
4π

Sϵ
ϵ
CA

�
16v2 þ vþ 1

12vðvþ 1Þ −
ξ

4v

�
: ðD13Þ

This is the result reported in Eq. (163).

3. Quark-gluon vertex

We use the graphs in Fig. 12 to calculate the unrenor-
malized one-loop quark gluon vertex function, −igΓμ

UðpÞ,

Γμ
U ¼ αs

4π

Sϵ
ϵ
γμ

�
CF

�ðv − 1Þ2
vðvþ 1Þ þ

ξ

v

�

þ CA
3v2 þ 2vþ 1

3vðvþ 1Þ2 þ CA
ξ − 1

4v

�

þ αs
4π

Sϵ
ϵ
γ̃μCA

2vð1þ 2vÞ
3ðvþ 1Þ2 þOðϵ0Þ: ðD14Þ

The (renormalized) quark-gluon amputated three-point
function divided by g is γμ þ ΓμðpÞ þOðα2s Þ. To apply
renormalization, we use

γμ þ Γμ
U ¼ ½Z−1=2

A �μνZ−1
ψ Z−1

g ðγν þ ΓνÞ þOðα2s Þ: ðD15Þ

Writing Z ¼ 1þ δZ in each case, this is

γμ þ Γμ
U ¼ γμ þ Γμ −

1

2
½δZA�μνγν − δZψγ

μ − δZgγ
μ: ðD16Þ

That is

Γμ
U − Γμ ¼ −

1

2
½δZA�μνγν − δZψγ

μ − δZgγ
μ: ðD17Þ

Given our result (D14) for Γμ
U and using our previous

results (164) for ZA and (162) Zψ , we have

αs
4π

Sϵ
ϵ
γμ
�
CF

�ðv − 1Þ2
vðvþ 1Þ þ

ξ

v

�
þ CA

3v2 þ 2vþ 1

3vðvþ 1Þ2 þ CA
ξ − 1

4v

�
þ αs
4π

Sϵ
ϵ
γ̃μCA

2vð1þ 2vÞ
3ðvþ 1Þ2

¼ þ αs
4π

Sϵ
ϵ
γμ
�
−CA

�
22v3 þ 35v2 þ 20v − 1

12vðvþ 1Þ2 −
ξ

4v

�
þ 2

3
TRnf

�
þ αs
4π

Sϵ
ϵ
γ̃μCA

2vð2vþ 1Þ
3ðvþ 1Þ2

þ αs
4π

Sϵ
ϵ
γμCF

�ðv − 1Þ2
vðvþ 1Þ þ

ξ

v

�
− δZgγ

μ: ðD18Þ
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The coefficients of γ̃μ and the coefficients of CF match. We
can solve for δZg:

δZg ¼
αs
4π

Sϵ
ϵ

�
−
11

6
CA þ 2

3
TRnf

�
: ðD19Þ

Note that this is independent of v and ξ. This is the result
reported in Eq. (159).

4. Three-gluon vertex

We can check how the renormalization program is
working by calculating the three-gluon vertex function at
one-loop order. We call the one-particle-irreducible three-
gluon Green function Γabc

αβγ ðpa; pb; pcÞ, where the momenta
are directed out of the vertex function. We define
Γαβγðpa; pb; pcÞ by

Γabc
αβγ ðpa; pb; pcÞ ¼ gfabcΓαβγðpa; pb; pcÞ: ðD20Þ

Our aim is to calculate the ultraviolet pole terms in
Γαβγðpa; pb; pcÞ. In this Appendix, we denote the zero loop
version, Γαβγðpa; pb; pcÞ, Eq. (B3), by Γtree

αβγðpa; pb; pcÞ.

The graphs needed for Γabc
αβγ ðpa; pb; pcÞ are illustrated in

Fig. 18. We write the integral for the graph with a single
gluon loop as

gfabcΓαβγðpa; pb; pcÞ

¼ g3fac̄ b̄fbā c̄fcb̄ āμ
2ϵ

Z
ddq
ð2πÞd Γ

tree
αα1α2ðpa; qc;−qbÞ

× Γtree
ββ1β2

ðpb; qa;−qcÞΓtree
γγ1γ2ðpc; qb;−qaÞ

× iDα1β2ðqcÞiDβ1γ2ðqaÞiDγ1α2ðqbÞ: ðD21Þ

Here the momenta on the three sides of the loop are related
to the loop momentum q by [30]

qa ¼ qþ pc − pb

3
;

qb ¼ qþ pa − pc

3
;

qc ¼ qþ pb − pa

3
: ðD22Þ

We sum over the three graphs that have a four-gluon
vertex. The graph in which gluons b and c join at the four-
gluon vertex is illustrated in Fig. 18. This graph is

FIG. 18. Diagrams for the one-loop contributions to the three-gluon vertex function.
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gfabcΓαβγðpa;pb;pcÞ

¼1

2
μ2ϵ

Z
ddq
ð2πÞd gfac̄b̄Γ

tree
αα1α2ðpa;qc;−qbÞiDα1 γ̄ðqcÞiDβ̄α2ðqbÞ

×ð−ig2Þffābcfāb̄c̄½gββ̄gγγ̄−gβγ̄gγβ̄�
þfābc̄fācb̄½gβγgβ̄ γ̄−gββ̄gγγ̄�
þfābb̄fācc̄½gβγgβ̄ γ̄−gβγ̄gγβ̄�g: ðD23Þ

The momenta on the two sides of the loop are related to the
loop momentum q by [30]

qb ¼ qþ 1

2
pa;

qc ¼ q −
1

2
pa: ðD24Þ

We express the integrals needed for the graphs in Fig. 18
using Feynman parameter representations, along the lines
of Appendix B. This allows us to extract the ultraviolet pole
terms in the form

Γαβγðpa; pb; pcÞ ¼
αs
4π

Sϵ
ϵ
fA½gαβðpa − pbÞγ þ gβγðpb − pcÞα þ gγαðpc − paÞβ�

þ B½hαβðpa − pbÞγ þ hβγðpb − pcÞα þ hγαðpc − paÞβ�
þ C½gαβðp̃a − p̃bÞγ þ gβγðp̃b − p̃cÞα þ gγαðp̃c − p̃aÞβ�
þD½hαβðp̃a − p̃bÞγ þ hβγðp̃b − p̃cÞα þ hγαðp̃c − p̃aÞβ�g: ðD25Þ

For the gluon loop graph, we find

A ¼ −CA
5v4 þ 15v3 þ 9v2 þ 23vþ 12

6vðvþ 1Þ3 − CA
9ðξ − 1Þ

8v
;

B ¼ −CA
vð2v2 þ 3vþ 7Þ

12ðvþ 1Þ3 ;

C ¼ −CA
vð10v2 − 3vþ 5Þ

12ðvþ 1Þ3 ;

D ¼ −CA
v
24

: ðD26Þ

For the ghost loop graph, we find

A ¼ 0;

B ¼ 0;

C ¼ 0;

D ¼ CA
v
24

: ðD27Þ

For the graphs with a four-gluon vertex, we find

A ¼ CA
ð3vþ 1Þð3v3 þ 6v2 þ 3vþ 2Þ

2vðvþ 1Þ3 þ CA
3ðξ − 1Þ

8v
;

B ¼ −CA
vð10v2 þ 15vþ 3Þ

4ðvþ 1Þ3 ;

C ¼ −CA
vð2v2 þ 9vþ 1Þ

4ðvþ 1Þ3 ;

D ¼ 0: ðD28Þ

For the graphs with a quark loop, we find

A ¼ −
4

3
TRnf ;

B ¼ 0;

C ¼ 0;

D ¼ 0: ðD29Þ

For the sum of all graphs, we find

A ¼ CA

�
11

3
−
3v2 þ 2vþ 1

vðvþ 1Þ2 −
3ðξ − 1Þ

4v

�
−
4

3
TRnf ;

B ¼ −CA
4vð2vþ 1Þ
3ðvþ 1Þ2 ;

C ¼ −CA
2vð2vþ 1Þ
3ðvþ 1Þ2 ;

D ¼ 0: ðD30Þ

The renormalization factors Z have already been defined.
We now check whether these renormalization factors Z
provide the counterterms needed to remove these poles.
Renormalizing the gluon field gives

Γabc
B;αβγðgBÞ ¼ ðZ−1=2

A ÞᾱαðZ−1=2
A Þβ̄βðZ−1=2

A Þγ̄γΓabc
ᾱ β̄ γ̄

ðgÞ; ðD31Þ

where the subscript B denotes the vertex function in the
bare theory and gB is the bare coupling. This gives us

Γabc
αβγ ðgÞ ¼ ðZ1=2

A ÞᾱαðZ1=2
A Þβ̄βðZ1=2

A Þγ̄γ
× ½gBfabcΓtree

ᾱ β̄ γ̄
þ Γloop;abc

B;ᾱ β̄ γ̄
ðgÞ�: ðD32Þ
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In the first term, we can use gB ¼ Zgg. In the second term,
we can replace gB by g since we work only to order g3. This
is then the full one-loop three-point function but without its
renormalization counterterms, which we denote by a sub-
script U for unrenormalized. Thus,

Γabc
αβγ ðgÞ ¼ ðZ1=2

A ÞᾱαðZ1=2
A Þβ̄βðZ1=2

A Þγ̄γZggfabcΓtree
ᾱ β̄ γ̄

þ Γloop;abc
U;ᾱ β̄ γ̄

ðgÞ þOðgα2s Þ: ðD33Þ

To order g3, this is

Γabc
αβγ ðgÞ ¼ Γtree;abc

αβγ ðgÞ þ
�
1

2
gᾱαg

β̄
βðδZAÞγ̄γ þ

1

2
gᾱαðδZAÞβ̄βgγ̄γ

þ 1

2
ðδZAÞᾱαgβ̄βgγ̄γ þ gᾱαg

β̄
βg

γ̄
γδZg

�
gfabcΓtree

ᾱ β̄ γ̄

þ Γloop;abc
U;ᾱ β̄ γ̄

ðgÞ þOðgα2s Þ: ðD34Þ
For the renormalization factors, we use Eqs. (164) and (159):

ðδZAÞμν ¼
αs
4π

Sϵ
ϵ
½cAðv; ξÞgμν þ c̃Aðv; ξÞhμν �;

δZg ¼ −
αs
4π

Sϵ
ϵ
γg: ðD35Þ

This gives us

Γabc
αβγ ðgÞ− Γtree;abc

αβγ ðgÞ

¼ αs
4π

Sϵ
ϵ

�
3

2
cAðv;ξÞ− γg

�
gfabcΓtree

αβγ

þ αs
4π

Sϵ
ϵ

1

2
c̃Aðv;ξÞ

�
gᾱαg

β̄
βh

γ̄
γ þ gᾱαh

β̄
βg

γ̄
γ þ hᾱαg

β̄
βg

γ̄
γ

�
Γtree
ᾱ β̄ γ̄

gfabc

þΓloop;abc
U;ᾱ β̄ γ̄

ðgÞ þOðgα2s Þ: ðD36Þ

We use Eqs. (165) and (160),

3

2
cAðv; ξÞ − γg ¼

�
11

3
−
3v2 þ 2vþ 1

vðvþ 1Þ2 −
3ðξ − 1Þ

4v

�
CA

−
4

3
TRnf ;

c̃Aðv; ξÞ ¼ −
4vð2vþ 1Þ
3ðvþ 1Þ2 CA; ðD37Þ

and the structure of Γtree from Eq. (B3). This gives

Γabc
αβγ ðgÞ − Γtree;abc

αβγ ðgÞ ¼ −
αs
4π

Sϵ
ϵ

��
11

3
−
3v2 þ 2vþ 1

vðvþ 1Þ2 −
3ðξ − 1Þ

4v

�
CA −

4

3
TRnf

�
gfabc

× fgαβðpa − pbÞγ þ gβγðpb − pcÞα þ gγαðpc − paÞβg

þ αs
4π

Sϵ
ϵ

2vð2vþ 1Þ
3ðvþ 1Þ2 CAgfabc


2hαβðpa − pbÞγ þ 2hβγðpb − pcÞα þ 2hγαðpc − paÞβ

þ gαβðp̃a − p̃bÞγ þ gβγðp̃b − p̃cÞα þ gγαðp̃c − p̃aÞβ
�þ Γloop;abc

U;ᾱ β̄ γ̄
ðgÞ þOðgα2s Þ: ðD38Þ

This is

Γabc
αβγ ðgÞ ¼ Γtree;abc

αβγ ðgÞ þ Γloop;abc
U;ᾱ β̄ γ̄

ðgÞ − Γloop;abc
CT;ᾱ β̄ γ̄

ðgÞ þOðgα2s Þ; ðD39Þ
where

Γloop;abc
CT;αβγ ðgÞ ¼ αs

4π

Sϵ
ϵ

��
11

3
−
3v2 þ 2vþ 1

vðvþ 1Þ2 −
3ðξ− 1Þ

4v

�
CA −

4

3
TRnf

�
gfabc½gαβðpa − pbÞγ þ gβγðpb − pcÞα þ gγαðpc − paÞβ�

−
αs
4π

Sϵ
ϵ

2vð2vþ 1Þ
3ðvþ 1Þ2 CAgfabcf2hαβðpa − pbÞγ þ 2hβγðpb − pcÞα þ 2hγαðpc − paÞβ þ gαβðp̃a − p̃bÞγ

þ gβγðp̃b − p̃cÞα þ gγαðp̃c − p̃aÞβg: ðD40Þ
We can write this as

ΓCT;αβγðpa; pb; pcÞ ¼
αs
4π

Sϵ
ϵ
fA½gαβðpa − pbÞγ þ gβγðpb − pcÞα þ gγαðpc − paÞβ�

þ B½hαβðpa − pbÞγ þ hβγðpb − pcÞα þ hγαðpc − paÞβ�
þ C½gαβðp̃a − p̃bÞγ þ gβγðp̃b − p̃cÞα þ gγαðp̃c − p̃aÞβ�
þD½hαβðp̃a − p̃bÞγ þ hβγðp̃b − p̃cÞα þ hγαðp̃c − p̃aÞβ�g: ðD41Þ
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Then

A ¼
�
11

3
−
3v2 þ 2vþ 1

vðvþ 1Þ2 −
3ðξ − 1Þ

4v

�
CA −

4

3
TRnf ;

B ¼ −
4vð2vþ 1Þ
3ðvþ 1Þ2 CA;

C ¼ −
2vð2vþ 1Þ
3ðvþ 1Þ2 CA;

D ¼ 0: ðD42Þ

We see that the counterterms exactly cancel the pole terms in Eq. (D30).
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