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We describe numerical simulations of the stochastic diffusion equation with a conserved charge. We
focus on the dynamics in the vicinity of a critical point in the Ising universality class. The model we
consider is expected to describe the critical dynamics near a possible QCD critical point if the coupling of
the order parameter to the momentum density of the fluid can be neglected. The simulations are performed
on a spatial lattice, and the time evolution is performed using a Metropolis algorithm. We determine the
dynamical critical exponent z ≃ 3.972ð2Þ, which agrees with predictions of the epsilon expansion. We also
study nonequilibrium sweeps of the reduced temperature and observe approximate Kibble-Zurek scaling.
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I. INTRODUCTION

Understanding the dynamical evolution of fluctuations in
the vicinity of a critical point in the phase diagram is crucial
for interpreting the data from the Beam Energy Scan (BES)
program at the Relativistic Heavy-Ion Collider (RHIC) at
Brookhaven National Laboratory [1–4]. Given the success
of the fluid dynamic description of heavy-ion collisions
at RHIC, it is natural to assume that the dynamics of
fluctuations can also be understood in a fluid dynamic
framework. The relevant fluid dynamic theories are rela-
tivistic generalizations of the hydrodynamic models clas-
sified by Hohenberg and Halperin [5]. This includes purely
relaxational dynamics (model A) [6,7], the dynamics of a
conserved order parameter (model B) [8–10], a conserved
order parameter coupled to the momentum density of the
fluid (model H) [11], and the dynamics of a chiral order
parameter (model G) [12–14]. Ultimately, the dynamics
near a possible critical endpoint in the QCD phase diagram
is expected to be governed by model H [11], but in the
present work we neglect the coupling to the momentum
density of the fluid and focus on model B. This work builds
on our earlier study of model A [7].
There are two main approaches to fluid dynamic theories

with fluctuations. The first is based on performing the
noise average analytically, and deriving a set of deterministic
evolution equations for n-point functions or nth order
cumulants of hydrodynamic variables [15–22]. This
approach is sometimes described as the hydrokinetic or
Hydroþ method. The second option is to simulate the
equations of stochastic fluid dynamics [6,7,9,10,23,24].
The advantage of the deterministic method is that the issue
of regularization and renormalization of short-distance noise
can be handled analytically. The main advantage of stochas-
tic simulations is that there is no need for additional
approximations. Commonly used approximations include

the truncation of hierarchies of correlation functions, as
well as models for equilibrium two-point functions and
relaxation rates.
In the present work we follow the second approach and

study the stochastic dynamics of a conserved order param-
eter in the vicinity of a phase transition in the universality
class of the Ising model. We employ a simple algorithm
based on the Metropolis method [7,14]. Our goal is to
demonstrate the efficacy of this algorithm in the case of a
fluid dynamic theory with a conserved charge. We focus, in
particular, on the dynamical critical exponent, and on the
observation of Kibble-Zurek scaling for nonequilibrium
sweeps of the parameters of the theory [25–27]. The long-
term objective is to further generalize the methods pre-
sented in this work to model H, and to couple the dynamics
to a nontrivial background flow.

II. MODELS A AND B

Consider a scalar field ϕðt; x⃗Þ which evolves according
to a stochastic relaxation equation,

∂tϕðt; x⃗Þ ¼ −Γ̂A;B
δH

δϕðt; x⃗Þ þ ζðt; x⃗Þ: ð1Þ

For purely relaxational dynamics (model A) Γ̂A ¼ Γ > 0 is
a constant. In the case of a conserved order parameter
(model B) the relaxation rate is proportional to ∇2, i.e.,
Γ̂B ¼ −Γ∇2. The Hamiltonian H is given by

H ¼
Z

ddx

�
1

2
ð∇ϕÞ2 þ 1

2
m2ϕ2ðt; x⃗Þ

þ 1

4
λϕ4ðt; x⃗Þ − hðt; x⃗Þϕðt; x⃗Þ

�
; ð2Þ
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where m is the bare inverse correlation length, λ is the self-
coupling, and h is an external field. The noise term ζðt; x⃗Þ is
a random field constrained by fluctuation-dissipation rela-
tions. This determines the correlation function of the noise

hζðt; x⃗Þζðt0; x⃗0Þi ¼ 2T Γ̂A;Bδðx⃗ − x⃗0Þδðt − t0Þ: ð3Þ

In order to perform numerical simulations we discretize the
Hamiltonian on a lattice with lattice spacing a. We use
periodic boundary conditions on a cubic lattice with sides
of length L ¼ Na, and we adopt units so that a ¼ 1. The
discretized Hamiltonian is

H ¼
X
x⃗

�
1

2

Xd
μ¼1

ðϕðx⃗þ μ̂Þ − ϕðx⃗ÞÞ2 þ 1

2
m2ϕ2ðx⃗Þ

þ 1

4
λϕ4ðx⃗Þ − hϕðx⃗Þ

�
; ð4Þ

where we have suppressed the time argument of the field
ϕðx⃗Þ, and the sum over x⃗ is a sum over integer vectors n⃗ so
that x⃗ ¼ an⃗. We also define a unit vector μ̂ in the direction
μ∈ f1;…; dg, where d is the number of spatial dimensions.
In the present work we will only consider d ¼ 3.
In order to study time evolution we have to determine

the change in the Hamiltonian for an update of the field.
In model A the update is purely local. Changing the field
ϕold → ϕnew at a fixed position x⃗ leads to

ΔHðxÞ ¼ dðϕ2
newðx⃗Þ − ϕ2

oldðx⃗ÞÞ

− ðϕnewðx⃗Þ − ϕoldðx⃗ÞÞ
Xd
μ¼1

ðϕðx⃗þ μ̂Þ þ ϕðx⃗ − μ̂ÞÞ

þ 1

2
m2ðϕ2

newðx⃗Þ − ϕ2
oldðx⃗ÞÞ þ

1

4
λðϕ4

newðx⃗Þ
− ϕ4

oldðx⃗ÞÞ − hðϕnewðx⃗Þ − ϕoldðx⃗ÞÞ: ð5Þ

In model B the order parameter is conserved, and an update
involves two adjacent sites at the position x and xþ ν̂. The
change in Hamiltonian is

ΔHðx; xþ ν̂Þ
¼ ΔHðxÞ þ ΔHðxþ ν̂Þ
− ðϕnewðx⃗Þ − ϕoldðx⃗ÞÞðϕnewðx⃗þ ν̂Þ − ϕoldðx⃗þ ν̂ÞÞ;

ð6Þ

where, for a conserved field, we have q≡ ϕnewðx⃗Þ−
ϕoldðx⃗Þ ¼ −½ϕnewðx⃗þ ν̂Þ − ϕoldðx⃗þ ν̂Þ�, so that the last
term in Eq. (6) is equal to þq2.

A. Model A update

Following our earlier work [7] as well as the recent
publication by Florio et al. [14] we study the stochastic

evolution using the Metropolis method. The basic obser-
vation is that one can use a single Metropolis step to
implement both the diffusive and the stochastic terms in the
equation of motion. There is some rigorous work on this
method in the mathematics literature [28], but it has not
been used widely in either mathematics or physics. For
some exceptions, see [29,30] as well as [31,32]. The time
evolution is discretized using a fixed time step size Δt. We
perform a checkerboard sweep through the spatial lattice.
The checkerboard consists of even lattice sites (the A
lattice) and odd lattice sites (the B lattice). For every site
x⃗∈A we perform a trial update

ϕnewðx⃗Þ ¼ ϕoldðx⃗Þ þ
ffiffiffiffiffiffiffiffiffiffiffi
2ΓΔt

p
ξ: ð7Þ

Here ξ is a random number drawn from a Gaussian
distribution with zero mean and variance one. The trial
update is accepted with probability P ¼ minð1; e−ΔH=TÞ.
In this case, we update the field as

ϕðtþ Δt; x⃗Þ ¼ ϕnewðx⃗Þ: ð8Þ

If the trial update is rejected then the field is not changed.
This update implies that

hϕðtþ Δt; x⃗Þ − ϕðt; x⃗Þi ¼ −ðΔtÞΓ δH
δϕ

þOððΔtÞ2Þ; ð9Þ

h½ϕðtþ Δt; x⃗Þ − ϕðt; x⃗Þ�2i ¼ 2ðΔtÞΓT þOððΔtÞ2Þ: ð10Þ

The first moment ensures that the deterministic part of
Eq. (1) is satisfied, and the second moment reproduces the
variance of the stochastic force in the equation of motion.
The same procedure is repeated for all points in the B

lattice. For the nearest neighbor interaction in Eq. (4) the
updates of all x⃗∈A are independent of each other, and can
be performed in parallel. The same is true for updates in the
B lattice. An important property of the procedure is that the
probability of obtaining a new configuration ðϕA

new;ϕB
newÞ,

where ϕA;B are the fields on the A, B sublattices, only
depends on the difference in the Hamiltonian of the initial
and final states

PððϕA;ϕBÞ → ðϕA
new;ϕB

newÞÞ
∼ exp ð−½HðϕA

new;ϕB
newÞ −HðϕA;ϕBÞ�=TÞ; ð11Þ

and not on the order in which the updates are performed, or
on the intermediate values of the fields. We also note that
the detailed balance condition is satisfied irrespective of
the size of the time step. This means that the Metropolis
algorithm defined by Eqs. (7) and (8) samples the equi-
librium distribution P½ϕ� ∼ expð−H½ϕ�=TÞ even if Δt is not
small. In contrast, if Δt is not small then the model A
dynamics in Eq. (1) is only realized approximately.
However, because the model A/B equation represents the
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general low energy approximation to relaxational dynamics
in the absence/presence of a conservation law, the leading
effect of a nonzero Δt is to modify the value of the
relaxation rate.

B. Model B update

In the case of model B we wish to ensure that the update
of the field respects the conservation law exactly. For this
purpose we write the equation of motion in the form

∂tϕþ ∇! · |⃗ ¼ 0; |⃗ ¼ −Γ∇!δH
δϕ

þ ξ⃗; ð12Þ

with

hξiðx⃗; tÞξjðx⃗0; t0Þi ¼ δijΓTδðx⃗ − x0
!Þδðt − t0Þ: ð13Þ

Equation (12) can be integrated over a cell centered on
x⃗ ¼ an⃗. The integral of ϕ over a cell is ϕcðx⃗Þ ¼ adϕðx⃗Þ and
in units a ¼ 1 there is no need to distinguish between ϕc
and ϕ. The evolution equation for ϕ ¼ ϕc is

∂tϕ ¼ −
Xd
μ¼1

ðqþμ − q−μ Þ; ð14Þ

where q�i are the fluxes through the forward and backward
faces of the cube centered on x⃗ ¼ an⃗ in the Cartesian
i-direction. We can use the Metropolis algorithm discussed
in the previous section to update the fluxes. A trial update
for the cells ðx⃗; x⃗þ μ̂Þ is

ϕnewðx⃗Þ ¼ ϕoldðx⃗Þ þ qμ;

ϕnewðx⃗þ μ̂Þ ¼ ϕoldðx⃗þ μ̂Þ − qμ;
qμ ¼

ffiffiffiffiffiffiffiffiffiffiffi
2ΓΔt

p
ξ: ð15Þ

The update is accepted with probability minð1; e−ΔHÞ.
In the case of the conserving update in Eq. (15) it is

more complicated to construct a checkerboard algorithm.
The update involves two cells, and for a nearest-neighbor
Hamiltonian these two cells have 4d − 2 neighbors. We use
a fourfold checkerboard which is repeated in all d direc-
tions to update all interfaces while avoiding interference
between neighboring cells. This ensures that the detailed
balance condition Eq. (11) is satisfied.
Two stages of the algorithm are shown in the left and

right panel of Fig. 1. The figure shows a two-dimensional
slice in the ðijÞ plane of a three dimensional lattice labeled
by ðxyzÞ ¼ ðijkÞ. In the two stages shown every pair of
green cells is updated by applying a stochastic flux at the
interface in i direction. The figure is replicated in the k
direction by alternating green and blue cells. All these
updates can be performed in parallel. Stages three and four
correspond to repeating the procedure with green and blue
cells interchanged. After these four stages are complete all
interfaces in the x ¼ i direction have been updated. The
process is then repeated for all right-handed permutations
of x, y, and z

ði; j; kÞ → ðx; y; zÞ; ðy; z; xÞ; ðz; x; yÞ: ð16Þ

This completes a full update of the lattice. As in the case
of model A the update satisfies detailed balance exactly,
even for finite Δt. However, the diffusion equation is only
realized up to correction of higher order in Δt.

FIG. 1. Checkerboard algorithm for a conserving (model B) update. For illustration we show two stages (left and right panel) of the
algorithm acting on one plane of a three-dimensional lattice of size L ¼ 8 labeled by indices ðijkÞ. In the first stage (left panel) pairs of
green cells are updated by applying a stochastic flux at their interface. Blue cells are unmodified. In the k-direction (not shown) alternate
layers have green and blue cells interchanged. In the second stage (right panel) the update is applied to a shifted set of cells. Stages three
and four correspond to exchanging green and blue cells relative to stage one and two. Finally, the same pattern is applied in the ðj; kÞ and
ðk; iÞ plane.
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III. NUMERICAL SIMULATIONS

Numerical simulations of model A dynamics were
described in our previous work [7]. In that work we used
Binder cumulants to determine the critical value of m2 at
which the second order phase transition takes place. For
λ ¼ 4 we obtainedm2

c ¼ −2.28587ð7Þ. Since static proper-
ties of model B are identical to those of model A, this result
directly carries over to the present work. As we will discuss
in more detail below, there is a caveat related to the fact that
static correlation functions in a finite volume are affected
by global conservation laws. In particular, in our model B
simulations the total charge is always zero, whereas the
total charge fluctuates in simulations of model A.
In this section we first study the correlation function

directly at the critical pointm2
c, where the correlation length

in the thermodynamic limit diverges. In a finite volume the
correlation length is limited by the system size L, and we
can use this dependence to analyze dynamical scaling.
We then investigate the correlator at m2 ≠ m2

c and extract
the correlation length and relaxation time away from the
critical point. In Sec. IV we study nonequilibrium sweeps,
and in this case the correlation length is limited by critical
slowing down. Note that we have set a ¼ 1, and all lengths
are measured in units of the lattice spacing. We have also
used Γ ¼ 1, and the unit of time is given by a4=Γ. Finally,
we have set T ¼ 1, and the magnetization hϕi is given in
units T=a1=2.
The dynamic correlation function of the density is

defined by

Gðt; k⃗Þ ¼
Z

d3x eik⃗·x⃗hϕð0; 0Þϕðx⃗; tÞi: ð17Þ

In Fig. 2 we show this function for the lowest nontrivial
lattice momentum at the critical point for four different
lattice volumes. Critical scaling predicts that correlation
functions obtained in different volumes collapse to a
universal function if the time argument is scaled by Lz,
where z is the dynamic critical exponent of model B. In
Fig. 2 we show that data collapse occurs for z ¼ 3.972.
A more detailed analysis of the dynamic critical exponent is
shown in Fig. 3. For different values of L we show the
relaxation time extracted from a fit Gðt; k⃗Þ ∼ e−t=τ where
k⃗ ¼ ð2π=L; 0; 0Þ. We observe that the dependence of logðτÞ
on logðLÞ is linear, and from the slope of this relation we
determine the value z ¼ 3.972. We can get an estimate
of finite L corrections by excluding the smallest L-value,
L ¼ 8, from the fit. In this case we get z ¼ 3.970, and
we conclude that z ¼ 3.972ð2Þ. Other sources of error are
more difficult to quantify. As mentioned above there is a
(small) uncertainty in the determination ofm2

c, and we have
not attempted to quantify the impact of this error on the
measurement of z. We can compare our result z ¼ 3.972ð2Þ
to the theoretical prediction of z ¼ 4 − η [5], where η is the

static correlation function exponent defined by Gð0; jk⃗jÞ∼
1=jk⃗j2−η. In the ϵ expansion η ¼ 3ϵ2=162 ≃ 0.019 [33],
and in the conformal bootstrap η ≃ 0.0363 [34,35]. Based
on the latter result we expect z ≃ 3.96, in good agreement
with our result.
We note that the large value of z implies that configu-

rations in model B are very difficult to thermalize. The effort
to update a single configuration scales like the volume
V ∼ L3, and the number of updates required to thermalize
the system scales as Lz ∼ L4. This implies that at the critical
point the effort scales roughly as L7. Away from the critical
point stochastic simulations are significantly faster.
We have also studied correlation functions away from

the critical point m2 ¼ m2
c. In Fig. 4 we show the

correlation length extracted from a fit to the equal-time
correlation function Gð0; x⃗Þ. In particular, we write

FIG. 2. Dynamic density-density correlation function Gðt; k⃗Þ
for the lowest lattice momentum k⃗ ¼ ð2π=L; 0; 0Þ. We show the
results obtained in three different volumes with linear size L ¼ 8,
12, 16, 24. Pale bands indicate the statistical error of the data. The
time variable is scaled by Lz with z ¼ 3.972. The correlation
function is normalized to χ ¼ Gð0; 2π=LÞ.

FIG. 3. Relation between the decay time τ extracted from the
correlation function Gðt; jk⃗j ¼ 2π=LÞ and the linear box size L.
The line shows the best fit with z ¼ 3.972.
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Gð0; x⃗Þ ∼ x−1 expð−x=ξÞ with x ¼ jx⃗j and fit ξ to the
measured correlation function in the regime x < L=2. In
practice, the fit window has to be smaller, because con-
servation of total charge implies that the model B corre-
lation function at x ∼ L=2 is negative. Indeed, we find that
because of finite size corrections the model B correlation
length in any finite system is smaller than the one in model
A, even though the two theories are governed by the same
static universality class. We have fitted the correlation
lengths shown in Fig. 4 to a power law ξ ∼ 1=ðm2 −m2

cÞν.
We find m2

c ¼ −2.267 and ν ¼ 0.542. The value of m2
c is

consistent with (but much less precise than) the value
m2

c ¼ −2.28587ð7Þ extracted from the Binder cumulants.
Similarly, because of finite size effects, the value of ν is
consistent with the expectation ν ¼ 0.6299ð5Þ [34], but not
very precise.
In Fig. 5 we show the dependence of the relaxation time

on the bare mass parameter m2. The relaxation time is
extracted for the lowest Fourier mode k ¼ 2π=L by using a

simple exponential fit Gðt; k ¼ 2π=LÞ ∼ expð−t=τÞ.
Figure 5 clearly demonstrates that the variation of the
relaxation time with m2 is much more dramatic than that of
the correlation length. A simple fit of the form τ ∼ ξz gives
z ≃ 3.73. This fit is consistent with, but not nearly as
accurate, as the determination of z from finite-size scaling
at the critical point m2 ¼ m2

c shown in Fig. 3.

IV. KIBBLE-ZUREK SCALING

In practical applications of stochastic diffusion we are
often interested in far-from-equilibrium dynamics. In our
previous work on the dynamics of model A we studied
quench dynamics [7]. We equilibrated the system in the
high-temperature phase, and performed an instantaneous
sweep to the critical point. We then studied the evolution of
moments of the order parameter towards their equilibrium
values at the critical point.
In this section we study a different situation. We again

equilibrate the system in the high temperature phase, but
then sweep towards the critical regime at a finite rate.
Because of critical slowing down, correlation functions
drop out of equilibrium as the critical point is approached.
This behavior can be characterized in terms of a time scale,
the Kibble-Zurek time τKZ [16,19,25–27,36]. This is the
time at which fluctuations on a length scale defined by the
instantaneous correlation length ξ are no longer in
equilibrium. The correlation length at that time is the
Kibble-Zurek length lKZ. Consider a sweep that passes
the critical point at t ¼ 0. The idea of Kibble-Zurek
scaling is that there is a scaling window t; t0 ∈ ½−τKZ; τKZ�
so that the nonequilibrium two-point function of an
observable O satisfies

GOðt; t0; kÞ ¼ lΔO
KZ gO

�
tþ t0

2τKZ
;
t − t0

τKZ
; klKZ

�
; ð18Þ

where gO is a universal function and ΔO is an anomalous
dimension. In the following we will test Kibble-Zurek
scaling by comparing equal time correlation functions
computed for different quench rates.
We can define an instantaneous relaxation time τðtÞ and

correlation length ξðtÞ. Near equilibrium dynamical scaling
implies τðtÞ ∝ ξðtÞz. The Kibble-Zurek time can be
obtained from the condition

τ̇ðτKZÞ ¼ 1; ð19Þ

which expresses the condition that the rate of change of
the relaxation time is comparable to the relaxation time
itself. In the following we will consider a specific protocol
for changing the parameters of the model. The simplest
possibility is to vary m2 as a function of t. This is not the
most general choice; in connection with simulating the
dynamical evolution in the QCD phase diagram it is more
appropriate to consider the evolution of both m2 and h,

FIG. 4. Model B correlation length ξ as a function of the bare
mass parameter m2. We also show a fit ξ ∼ 1=ðm2 −m2

cÞν with
ν ¼ 0.542 and m2

c ¼ −2.267.

FIG. 5. Model B relaxation time τ as a function of the bare mass
parameter. Here, τ is measured for the lowest nontrivial Fourier
mode k ¼ 2π=L. We also show the best fit τ ∼ ξz with z ≃ 3.73.
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but the details of the trajectory depend on the precise
embedding of the critical equation of state in QCD phase
diagram [37].
Consider a power-law behavior for m2 near the

critical point, δm2 ¼ m2jΓQt̄jã. Here δm2 ¼ m2 −m2
c and

t̄ ¼ t − tc, where tc is the critical time, m2ðtcÞ ¼ m2
c. We

also defined the quench rate ΓQ, the quench exponent ã,
and an amplitude m̄2. We then find

τ̇ðtÞjt̄¼τKZ
¼ d

dt
ξzðtÞ

����
t̄¼τKZ

¼ d
dt

ðδmÞ−2zν
����
t̄¼τKZ

¼ d
dt

ðm̄Þ−2zνjΓQt̄j−zνã
����
t̄¼τKZ

¼ ðm̄2=ãΓQÞ−zνãðτKZÞ−ðzνãþ1Þ; ð20Þ

where ν ≃ 0.6299 [34] is the correlation length exponent.
This result determines the Kibble-Zurek time

τKZ ¼ ðm̄2=ãΓQÞ− zνã
zνãþ1: ð21Þ

The corresponding Kibble-Zurek length is lKZ ∝ τ1=zKZ . The
simplest protocol for the evolution of m2 is a linear sweep
(ã ¼ 1) starting at m2ðt ¼ 0Þ ¼ m2

0. We use

m2ðtÞ ¼ m2
c þ ðm2

c −m2
0Þ
t − tc
tc

¼ m2
c

�
1þ t − tc

τQ

�
ð22Þ

with τQ ¼ Γ−1
Q ¼ tcm2

c=ðm2
c −m2

0Þ. We initialize the sys-
tem in the symmetric phase, m2

0 > m2
c. In practice we have

used m2
0 ¼ −2 [recall that m2

c ¼ −2.28587ð7Þ]. The choice
of tc then fixes the quench time τQ. A scale for τQ is
provided by the relaxation time τR of the slowest mode
k ¼ 2π=L at criticality. The data in Fig. 2 correspond to a
relaxation time τR ≈ 2 × 10−3Lz. In order to observe
Kibble-Zurek dynamics we need to ensure that the slowest
mode is equilibrated at the beginning of the sweep, but
falls out of equilibrium as the critical point is approached.
In the following we consider τ̂Q ¼ ð8; 4; 1; 1

4
Þ, where we

have defined τ̂Q ¼ τQ=τR.
We observe that for a linear sweep the Kibble-Zurek time

and length are given by

τKZ ∝ τ
zν

zνþ1

Q ≃ τ2=3Q ∝ t2=3c ; ð23Þ

lKZ ∝ τ
ν

zνþ1

Q ≃ τ1=6Q ∝ t1=6c : ð24Þ

In Fig. 6 we show the equal time correlation function of
ϕðt; x⃗Þ as a function of the wave number jk⃗j at a fixed
instantaneous value of m2 for different quench rates.

A simple model for the equal time two-point function in
equilibrium is

Geqð0; k2Þ ¼
χ0ðξ=ξ0Þγ=ν
1þ ðkξÞ2−η ; ð25Þ

where ξ0 is the microscopic correlation length, χ0 the
corresponding susceptibility, and γ is the susceptibility
exponent. The scaling relation γ=ν ¼ 2 − η implies that the
asymptotic form Gð0; kξ ≫ 1Þ ∼ k−2þη is independent of ξ.
We note that η ≃ 0.036 is very small, and in practice we
have normalized the correlation function to G0 ∼ k−2 [38].
In a finite volume, the equal time correlation of model B is
zero for k ¼ 0. This is a consequence of charge conserva-
tion, and it is not seen in model A simulations.
Figure 6 shows the correlation functions at a fixed

instantaneous value of m2 ¼ −2.2145. This value is close
to (but slightly larger than) the critical valuem2

c ≃ −2.2858.
As explained above, we consider four different values
of the quench time, τ̂Q ¼ ð8; 4; 1; 1

4
Þ. We observe that the

correlation functions do indeed fall out of equilibrium, and
that the effect is largest for the most rapid quench. In Fig. 7
we show that approximate Kibble-Zurek scaling holds;
Data collapse is seen if k is rescaled by lKZ. Here we have
treated the scaling exponent p in the relation lKZ ∝ τpQ as a
free parameter. The best collapse for all klKZ corresponds to
p ≃ 0.08, compared to the prediction from Eq. (24), which
gives p ≃ 0.16.
We note that Kibble-Zurek scaling is based on the fact

that the correlation length is the only relevant length scale.
On the lattice the microscopic length scale is given by the
lattice spacing, and Kibble-Zurek scaling requires that
ka ¼ 2πnða=LÞ ≪ 1. In practice, this condition is only
satisfied for the lowest modes on our lattice. Indeed, a χ2 fit
to the exponent p, which emphasizes the regime of small k

FIG. 6. Scaled equal time correlation functions k2Gðti; 0; kÞ
obtained by sweeping the system from the high-temperature
phase to an instantaneous value of m2ðtiÞ ¼ −2.2145 (slightly
above the critical value m2

c ≃ −2.2858). We consider four differ-
ent sweep times τ̂Q ¼ ð8; 4; 1; 1

4
Þ, where τ̂Q ¼ τQ=τR.

CHATTOPADHYAY, OTT, SCHÄFER, and SKOKOV PHYS. REV. D 108, 074004 (2023)

074004-6



where the statistical error is small, gives p ≃ 0.16. We
conclude that a precise extraction of p on a lattice with
linear size L ¼ 32 is difficult, and that a conservative
estimate of p is given by p ≃ ð0.08–0.16Þ.
We have also studied the time evolution of the second

moment of the order parameter in a finite volume during a
sweep. This observable is related to the second cumulant
that can be measured in relativistic heavy-ion collisions.
We define

c2ðt; τQÞ ¼
��

1

V

Z
V
d3xϕðx; tÞ

�
2
	

τQ

; ð26Þ

where we take V ¼ ðL3Þ=2 and we average over many
sweeps with the same quench time τQ. The result for
different sweep rates is shown in Fig. 8. As expected, we
observe that the slowest sweep rate leads to the largest

enhancement in c2ðt; τQÞ near tc. In order to check whether
these results respect Kibble-Zurek scaling we first shift the
time variable to t̄ ¼ t − tc. We also normalize c2ðt; τQÞ to
the value at t̄ ¼ 0 and τQ ¼ τR, and denote the normalized
function ĉ2ðt̄; τQÞ.
We look for data collapse by plotting ĉ2ðt̄; τQÞ=τ̂p2

Q

against t̄=τ̂p1

Q . The expectation from Kibble-Zurek scaling
is p1 ¼ zν

zνþ1
and p2 ¼ 2ν

zνþ1
. In Fig. 9 we show the evolution

of the scaled moments for the mean field exponents
p1 ¼ 2=3 and p2 ¼ 1=3. We observe approximate data
collapse, but our data are not sufficiently accurate to
distinguish between the mean field exponents and the
prediction based on the full theory, p1 ¼ 0.72 and
p2 ¼ 0.36.

V. CONCLUSIONS AND OUTLOOK

We have performed numerical simulations of the dif-
fusive dynamics of a conserved density (model B). The
simulations are performed on a spatial lattice, and the time
evolution is governed by a Metropolis algorithm. This
algorithm is designed such that the first moment of the
Metropolis step reproduces the diffusion equation, and
the second moment matches the variance of the stochastic
force. The Metropolis method also ensures that the equi-
librium distribution is governed by the free energy func-
tional even if the time step is not small.
The algorithm for the evolution of a conserved charge

(model B) is based on updating fluxes and satisfies global
charge conservation exactly. We have implemented this
algorithm on a checkerboard which enables the update to be
parallelized. The dynamical critical exponent in model B,
z ≃ 4, is significantly larger than that on model A, z ≃ 2.
This implies that it takes significantly longer to equilibrate
or decorrelate model B configurations compared to

FIG. 8. Time evolution of the second moment c2ðt; τQÞ of the
order parameter integrated over a finite volume V ¼ ðL3Þ=2. The
different curves correspond to different sweep rates as indicated
in the legend. The time is given in units of the critical time tc
defined by m2ðtcÞ ¼ m2

c.

FIG. 9. This figure shows the rescaled second moment
ĉ2ðt̄; τQÞ=τ̂p2

Q as a function of t̄=τ̂p1

Q . Here, we have defined
τ̂Q ¼ τQ=τR and the figure shows four different relaxation rates
τ̂Q ¼ 1, 2, 4 and 8. In this figure we have used the mean-field
critical exponents p1 ¼ 2=3 and p2 ¼ 1=3.

FIG. 7. Same as Fig. 6 as a function of the scaling variable klKZ

where lKZ ∝ tpc . In this figurewe have usedp ¼ 0.08 to achieve the
best data collapse for all values of klKZ. This value should be
compared to the expectation in the scaling regime,p ¼ ν

zνþ1
≃ 0.16.
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model A. Based on a finite size scaling analysis we were
nevertheless able to obtain an accurate value of the dynami-
cal exponent, z ¼ 3.972, consistent with expectation z ¼
4 − η from the dynamic renormalization group [5], com-
bined with a determination of η based on the conformal
bootstrap [34].
In practical applications, for example when attempting to

model the evolution of baryon number in relativistic heavy-
ion collisions, we expect the system to fall out of equilib-
rium as the critical regime is approached. We have modeled
this behavior by considering nonequilibrium sweeps of the
mass parameter in the Ising free energy, starting from the
high-temperature phase. We find evidence for approximate
Kibble-Zurek scaling when we compare results for differ-
ent sweep rates. This result both gives additional credence
to our numerical methods, and it supports the use of Kibble-
Zurek scale to estimate the maximum magnitude of critical
fluctuations in far-from equilibrium systems.
There are several possible extensions and improvement

of the work described here. One important goal is to couple
stochastic diffusion to a fluid dynamic background that

incorporates a realistic trajectory in the QCD phase dia-
gram, and takes into account advection of the conserved
density by the motion of the expanding fluid. A second
objective is to include fluctuations in the fluid velocity. This
corresponds to considering the dynamics of model H [5].
In this theory fluctuations of the order parameter couple
to shear modes of the momentum density. Since the shear
viscosity is only very weakly singular near the phase
transition this coupling is expected to change the dynamical
exponent to z ≃ 3, intermediate between the model A result
z ≃ 2 and the model B exponent z ≃ 4.
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