PHYSICAL REVIEW D 108, 074002 (2023)

On-shell versus curvature mass parameter fixing schemes in the three flavor
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The tree-level parameters of the 2 4 1 flavor quark-meson model become inconsistent when the quark
one-loop vacuum fluctuation is included in its effective potential. Relating the counterterms in the MS
scheme to those in the on-shell scheme, the relations between the renormalized parameters of both the
schemes have been determined, and the consistent effective potential for the renormalized quark-meson
(RQM) model has been calculated using the modified minimal subtraction method where the relations
between the physical quantities (i.e. pole masses of the pseudoscalar 7, K, 57, and " and the scalar ¢ mesons,
the pion and kaon decay constants f, and fg) and the running couplings have been used as input. The
effective potentials, order parameters, and phase diagrams have been computed for the RQM model and
compared respectively with the corresponding calculations in the quark-meson model without the vacuum
term and the quark-meson model with the vacuum term where the curvature meson masses have been used
for fixing the model parameters. The f,, fx, the Yukawa coupling g, and the minimum of the effective
potential do not change but the explicit symmetry breaking strength %, gets a small reduction equal to the
two flavor RQM model correction while the strength /2, becomes weaker by a relatively large amount in the
2 + 1 flavor RQM model because the pion curvature mass m1, . = 135.95 MeV is 2.05 MeV smaller than
its pole mass m, = 138.0 MeV and the kaon curvature mass mg . = 467.99 MeV is 28.01 MeV smaller
than its pole mass mg = 496.0 MeV after the renormalization. Therefore the 2 4 1 flavor RQM model
phase diagrams and the critical end point location differ noticeably from the existing two flavor RQM
model results [S. K. Rai and V. K. Tiwari, Phys. Rev. D 105, 094010 (2022)]. The enhanced coefficient of
the 't Hooft determinant term in the RQM model modifies the T'(u) dependence of the U, (1) axial

symmetry restoration pattern.

DOI: 10.1103/PhysRevD.108.074002

I. INTRODUCTION

The study of a quantum chromodynamics (QCD) phase
diagram and all of its details has been a very active research
area of strong interaction physics since the 1970s when the
first QCD schematic phase diagram appeared [1]. It depicted
a confined phase of hadrons at a low temperature (low
baryonic density) and a deconfined phase of quarks and
gluons [2—5] at a high temperature (zero baryonic density) or
high baryonic density (zero temperature). One gets impor-
tant and valuable information for the QCD phase transition
from the lattice QCD simulations [6—14] at zero chemical
potential, but for the nonzero baryon densities/chemical
potentials, the lattice QCD calculations get seriously com-
promised as the QCD action becomes complex on account of
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the fermion sign problem [8]. For mapping out the phase
diagram regions where the lattice simulations do not work,
one gets much help from the investigations carried out in the
ambit of phenomenological models developed using the
effective degrees of freedom [15,16].

The QCD Lagrangian for the three flavors of massless
quarks has the SU; x(3) x SU;_r(3) symmetry. The
chiral symmetry (axial A = L — R symmetry) gets sponta-
neously broken in the low energy QCD vacuum of the
hadron degrees of freedom. Due to this, the chiral con-
densate forms in the nonstrange and strange directions and
one gets eight massless Goldstone bosons which are
pseudoscalars. The chiral symmetry gets explicitly broken
as well due to the small mass of the light quarks u, d and a
relatively heavy s quark. We find the light pions in nature,
while the kaons and the eta are heavier on account of the
large strange quark mass. Furthermore ’t Hooft [17]
showed that the U, (1) axial symmetry is explicitly broken
to Z,(N ) at the quantum level by the instanton effects. The
7' meson is not a massless Goldstone boson even in the
chiral limit of the massless quarks, as it acquires a mass of
about 1 GeV due to the U,(1) axial anomaly. The three
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(2+ 1) flavor linear sigma model [18,19] is a very
conducive framework for investigating the interplay of
the SU4(3) chiral and the U, (1) axial symmetry breaking
and restoration. One can construct the chiral invariant
combinations using the chiral partners from the respective
octet and the singlet of the scalar and pseudoscalar mesons.
One gets the richer framework of the quark-meson (QM)
model for exploring the QCD phase structure when the nine
scalar and nine pseudoscalar mesons are coupled to the
three flavors of quarks. Futhermore,the QCD confinement
of the quarks inside the hadrons is implemented by the
introduction of the Polyakov loop when the chiral models
are coupled to a constant background SU(N,) gauge field
Aj; [20-24]. Adding the free energy density from the gluons
in the form of the Polyakov loop potential [25,26] to the
QM model, one gets the framework of the PQM model.
Several QCD phase structure studies, have already been
performed in the chiral models [27-41], the two and the
three flavor QM model [42-44] as well as the PQM
model [45-48].

Several QM model studies [19,27,36,42-48] in the
standard mean field approximation (s-MFA) neglected
the quark one-loop vacuum fluctuations assuming that
the redefinition of the meson effective potential parameters
would account for their effects. The QM model in the
s-MFA gives a first-order chiral phase transition at the zero
baryon density which looks inconsistent in the light of the
general theoretical arguments [49,50] that the chiral phase
transition at y = 0 is of second order. The proper treatment
of the Dirac sea was first done in the Ref. [51] to remove
this inconsistency. Afterwards, the quark one-loop vacuum
corrections were included in the two and three flavor QM/
PQM models and its detailed impact on the QCD phase
structure and the thermodynamics were investigated in
several research papers [52-65]. These publications used
the curvature masses of the mesons for the model parameter
fixing while the pion decay constant is identified with the
vacuum expectation value of the nonstrange condensate,
and the kaon decay constant needed for the three flavor
QM/PQM model studies [54,55,58,59,65] is fixed by the
combination of the vacuum expectation values of the
strange and the nonstrange condensate. The minimal
subtraction scheme has been used in the above-mentioned
works to regularize the quark one-loop vacuum divergence.
The above parameter fixing procedure becomes inconsis-
tent when one notes that the curvature masses are defined
by the evaluation of the self-energies at zero momentum
because the effective potential is the generator of the
n-point functions of the theory at vanishing external
momenta [66—70]. This model setting has been termed
the quark-meson model with vacuum term (QMVT).

The use of the tree-level parameters for calculating the
effective potential becomes inconsistent because the radi-
ative corrections to the physical quantities change their tree-
level relations to the parameters of the Lagrangian.

The parameters in the MS scheme are running and renorm-
alization scale A dependent while the on-shell (OS) param-
eters have their tree-level values. Following the correct
renormalization prescription, one calculates the counter-
terms both in the MS scheme and in the on-shell scheme and
then connects the renormalized parameters of the two
schemes. Afterwards the effective potential is calculated
using the modified minimal subtraction procedure where the
relations between the on-shell parameters (physical quan-
tities) and the running parameters are used as the input [67].
In a series of papers, Adhikari and collaborators [67,71-73]
used this renormalization prescription for including the
quark one-loop fluctuation in the two flavor QM model
which uses the O(4) sigma model with the scalar ¢ and the
pseudoscalar 7 meson. In our recent work, we also applied
[74] the on-shell renormalization method for fixing the
model parameters to that version of the quark-meson (QM)
model in which the two flavors of quarks is coupled to the
eight mesons of the SU; (2) x SUg(2) linear sigma model,
and we made a comparative study of the effective potential
and the phase diagram.

In the present work, we will be calculating the consistent
effective potential and the on-shell renormalized parame-
ters for the 2 4 1 flavor quark-meson (QM) model where
the quark one-loop vacuum fluctuation is properly renor-
malized. The application of the exact on-shell renormali-
zation prescription to the 2 + 1 flavor QM model becomes
quite involved and complicated because (i) one does not
have the direct relations between the parameters and the
masses where the mixed states are involved and (ii) in
addition to the self-energy corrections for the pion and the
kaon, one needs to calculate the self-energy corrections also
for the scalar ¢ and the pseudoscalar 7 and ' mesons which
are the mixed states of the 00 and 88 components in the
respective scalar and pseudoscalar directions. The seven
parameters are to be fixed after the renormalization in the
present 2 + 1 flavor renormalized quark-meson (RQM)
model. The two flavor RQM model results [74] together
with the results obtained in the 2+ 1 flavor QM and
QMVT model provide the benchmark against which, the
consistency, correctness, similarities, and differences of the
241 flavor RQM model results can be compared and
checked. Since the U, (1) axial anomaly coefficient has a
condensate-dependent component [75-79], it becomes
interesting to know how the coefficient of the 't Hooft
determinant term gets affected (renormalized) by the on-
shell renormalization of the quark one-loop vacuum fluc-
tuation. Calculating the temperature (chemical potential)
dependence of the curvature masses of the mesons a, o, 7,
n, and 7', the modification of the U, (1) axial symmetry
restoration pattern will also be investigated in the present
work. The exact on-shell parameter fixed 2 + 1 flavor
RQM model provides us the framework in which the
consistent physics of the chiral symmetry restoration can
be integrated with the deconfinement transition physics.

074002-2



ON-SHELL VERSUS CURVATURE MASS PARAMETER FIXING ...

PHYS. REV. D 108, 074002 (2023)

The paper is arranged as follows. The SU; (3) x SUg(3)
QM model is presented in Sec. II. Section III presents the
effective potential calculation for the quark-meson model
with vacuum term together with its parameter fixing
procedure. The on-shell scheme counterterms and self-
energy calculations are presented in the Sec. IVA. The
relations between the physical quantities and the running
parameters are derived in Sec. IV B, and the derivation of
the effective potential in the RQM model is presented in
Sec. IVC. Section V presents the calculation of the
curvature masses of the mesons. The result and discussion
are presented in Sec. VI. Section VIA presents the
comparison of the effective potentials, the order parame-
ters, and the phase diagrams while Sec. VI B discusses the
differences between the results of the present 2 + 1 flavor
work and the existing results of the two flavor RQM model.
Section VI C presents the results for the modification of the
U,(1) axial symmetry restoration pattern. Finally the
summary and conclusion are presented in Sec. VIIL.

II. MODEL FORMULATION

We present the formulation of the SU;(3) x SUg(3)
quark-meson model in this section. Three flavors of quarks
in this model are coupled to the SUy(3) x SU4(3) sym-
metric meson fields. The model Lagrangian is written in
terms of quarks, mesons, and couplings as

Lom = wlir"o, — gTa(o, + iysma)ly + LIM), (1)

where y is a color N,.-plet, a four-component Dirac spinor,
as well as a flavor triplet

w=14d|. (2)

The flavor blind Yukawa coupling g couples the three
flavors of quarks with the nine scalar (¢,,J” = 0%) and
nine pseudoscalar (7, J¥ = 07) mesons.

The massless quarks become massive due to the sponta-
neous breaking of the chiral symmetry as the chiral
condensate assumes nonzero vacuum expectation value.
The Lagrangian for the meson fields has the following form
[19,28,48]:

L(M) = Tr(0,M"*M — m*(M' M))
= 2 [Tr(MIM)]? = 2, Tr(MTM)?
+ c[det M + det MT] + Tr[H(M + MT)]. (3)

Here the field M is a complex 3 x 3 matrix which contains
the nine scalars ¢, and the nine pseudoscalar 7z, mesons,

M=T,(E,=T,(0,+in,). (4)

Here the T, represent nine generators of U(3) with T, = ’17“
where a =0,1,...,8. The A, are standard Gell-Mann

matrices with 4y = \/%]I3X3. The generators follow the
U(3) algebra [Tav Tb] = ifabcTc and {Tav Tb} = dabcTc
where f,,. and d,,. are the standard antisymmetric
and symmetric structure constants respectively with

faro =0 and d ;0 = \/%6(1,7 and matrices are normalized

as Tr(T,Tp) = %b The following term breaks the
SU;(3) x SUR(3) chiral symmetry explicitly:

H=T,h, (5)

Here H is a 3 x 3 matrix with nine external parameters. On
account of the spontaneous breaking of the chiral sym-
metry, the filed & picks up the nonzero vacuum expectation
value, £. Only three possible nonzero parameters A, s,
and hg might cause the explicit breakdown of the chiral
symmetry because £ must have the quantum numbers of the
vacuum. We are choosing kg, hg # 0 and isospin symmetry
breaking is neglected. Thus having the nonzero conden-
sates oy and oy, one gets the 2+ 1 flavor symmetry
breaking scenario. The model has five other parameters
in addition to the h, and hg. These are the tree-level mass
parameter squared m?, quartic coupling constants A, and /1,,
a Yukawa coupling g, and a cubic coupling constant ¢
which models the U,(1) axial anomaly of the QCD
vacuum.

A. Grand potential in the mean field approach

The considered system is spatially uniform and it is in
thermal equilibrium at temperature 7 and quark chemical
potential y(f = u,d, s). The partition function is obtained
by the path integral over the quark/antiquark and meson
fields [19,48]

Z = Trexp [—ﬁ(ﬂ -y ﬂf/\A/fﬂ

f=u.d,s
B
= /HDaaDna/Dij/exp [—/ dr/d3x
P 0 14
X <ESM + ”f‘pﬂo‘///)]’ (6)
f=ud.s
where f :iT and the three-dimensional volume of the

system is V. In general, the three quark chemical potentials
will be different for the three quark flavors. It is assumed
that the SU (2) symmetry is preserved in this work. Hence
the small difference in the mass of u and d quark is
neglected. Thus the quark chemical potential for the u and
d quarks is equal x4, = u, and the strange quark chemical
potential is .
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In the standard mean-field approximation [19,27,48], the
partition function is calculated by replacing the meson
fields with their vacuum expectation values (M) = Ty, +
Tgog and neglecting the thermal as well as quantum
fluctuations of the meson fields while retaining the quarks
and antiquarks as quantum fields. Using the standard
method given in Refs. [21,45,80], one can find the
expression of the grand potential as the sum of meson
and quark/antiquark contribution,

TInZ

QMF<Tv/‘) = %

= Ul(og. 03) + Qqy(T. ). (7)
The 2+ 1 flavor case is studied by performing the
following basis transformation of condensates and external
fields from the original singlet octet (0, 8) basis to the
nonstrange strange basis (x, y):

2 1
6y =X =160+ —=bg. 8
3 0 \/§ 8 ( )
1 _ 2_
GV :y:—30'0— 50-8' (9)
The grand potential is written in x, y basis as

The external fields (h,, h,) are written in terms of the
(hy, hg) by similar expressions. Since the nonstrange and
strange quark/antiquark decouple, the quark masses are
written as

_ Y
m, =g

=, mg=g-——.
2 NG

The tree-level effective potential in the nonstrange-strange
basis is written as

(11)

TABLE L

Ulery) =™ (2 +92) — hx -y — =<2
xy) =—(x —hx—hy——=x
V)= y 3R
/11 2.2 1 4
+—=x y +*(2ﬂl +/12)X
2 8
1
+ 5 20+ 20" (12)

(

The stationarity conditions 224 =0= w x y sy

|x—x y=y =y

for the effective potential (12) give

2
h, = xm2 and hy:{g(m%(—m

Dx+ m%(j/}. (13)
The tree-level curvature masses of the pions, kaons, and
other mesons in the QM model are given by the mass
matrix (m, ,;,)? evaluated in Refs. [18,19]. Here a = s, p;
“s” stands for the scalar and “p” stands for the pseudoscalar
mesons and a, b =0, 1,2, ..., 8. In the scalar sector, the q,
meson mass is given by the 1 1 element (degenerate with the
22 and 33 elements) and the x meson mass is given by the
44 element (degenerate with the 55, 66, and 77 elements).
The ¢ and f; meson masses are found by diagonalizing the
(00)-(88) sector of the scalar mass matrix. In exactly

analogous manner for the pseudoscalar sector mgllz

m;,zz = m§.33 =m; and m§,44 = mg.ss = m§,66 = m§,77 =my.
Diagonalization of the pseudoscalar (00)-(88) sector of the
mass matrix gives us the masses of the physical # and #/
mesons. All the meson masses are given in the Table I.
The quark/antiquark contribution is given by
Qy(T, 13 x,y)

vac T,
= Q7 + Q.7 (x.y), (14)

vac d3p 2 _)2
Qe — _QNCZ/WEfG(AC -p%)., (15)

u,d,s

Meson masses calculated from the second derivative of the grand potential at its minimum as given in Refs. [19,33].

Scalar meson masses

Pseudoscalar meson masses

(mgy,)? m2+11(x2+y2)+”2 2+\f< (m,)? m? + 2, (x? +y2)+’1’ 2 \/'C

(my)? m? + 2, (X +y?) + %2 (x? +ﬂxy+2y2)+2x (mg)*  m?+ 4 +y?) + 2 (2 —\fxy+2y)—fx

(my.00)* m? + 4 (7% + 4v/2xy + 5%) + o (x® +y?) — f‘(\/ix+y) (mpoo)®  m? + 24 (x% +y%) +2 (X2 +2) +£(2x + V2y)

(my85)* m? + 4 (5x% — 4v/2xy + 7y?) +/12(§+2y )+%(\/§x—§) (mys8)®  m? + A, (x> + y?) +2(x+4y%) - £(4x — V2y)
(me0s)* 2 (V22— xy = V2y?) + V20 (5 - ) + 75 (x=v2y) (m.08)* \/le (x? 2y ) —£(V2x = 2y)

() m? + 34 +3)x° + 4y’ = 5 (mp.xx)? - (1 + 5+ 4y* + fy

(ms,yy)2 m? + 4 x* 4+ 3(A + 4)y? (mp‘yy)z m? 4+ %% + (4 + A)y

(my ) 24 xy — N (mpy)? Vol

mz 3 (m3 o0 +m3gg) — %\/(mzoo —mgg)? 4 4m3, my 3 (M2 00 +m7 ) =3 \/(mfa,oo —m? 3)? 4 4m; o
m%" 5 (m2 o0 + mig) +%\/(’"500 —mgg)* +4mi, mi, %(mi.oo +mf;,88) +%\/(m§00 _mf;.sg)2 +4m’,

074002-4



ON-SHELL VERSUS CURVATURE MASS PARAMETER FIXING ...

PHYS. REV. D 108, 074002 (2023)

&p _Et
T, _ EF/T
Qqq”(x, y) =—2N, E /(2 B Tlln(1+e%77)

u,d,s

+1In (1 +e7E/T). (16)

The fermion vacuum contribution is given by the first
term of Eq. (14), where A, is the ultraviolet cutoff. E+ =

E; Fu; and Ep = \/p> +m;* is the flavor-dependent

single particle energy of the quark/antiquark, m, =
m, =% is the mass of the light quarks u, d, and the

strange quark mass is m; = % For the present work, it is

assumed that u, = pg; = p, = u.

In the standard mean-field approximation, the quark one-
loop vacuum term of the Eq. (14) is neglected and the QM
model grand potential is written as

Qom(T. p.x.y) = Ulx,y) +Q (x.y).  (17)

The chiral order parameters x for the nonstrange and y for
the strange sector are obtained by minimizing the thermo-
dynamic potential the Eq. (17) in the nonstrange and
strange directions

OQQM(T,,M,)C,_)}) _ aQQM(TJl’x’ y)
ox dy

X,y

=0. (18)

X,y

B. Parameter fixing

The six model parameters m?, 1,, A,, ¢, h,, and h, are
obtained using six experimentally known quantities in the
vacuum. The pion, kaon mass, the average squared mass of
the 7 and ' mesons (m% + mi,) from the pseudoscalar side,

and the mass m, of the scalar meson o together with the
pion and kaon decay constants f, and fx are used as the
input [18,19] for determining the six model parameters.

In accordance of the partially conserved axial-vector
current (PCAC) relation, the vacuum condensates values
are X = f, and j = (2fg — f»)/V/2. The minimum of the
effective potential in Eq. (18) for 7 = 0, u = 0 is located at
the above values. The parameters 4, and ¢ in the vacuum
are obtained as

_ 2 m2
b= (2 + 4 (V2y - x) (V2

— (V2y +2x)m2 = (V2y — x)(m} + m2) |, (19)

m2 - m2
c= 2((#_;)) —V2yh,. (20)

The difference of the ¢ and 7 mass squares (m2 — m2) does
not have any mass parameter m?> dependence. It depends on
the parameters 4, 4,, and c. When the 1, and c as obtained

from the above two equations are put into the expression of
(my—m3) and x =% = f, and y =5 = (2fx = [+)/V2.
one gets the vacuum value of the parameter 4;. Using the
expression of m2, the mass parameter m> can be written as

A
m? = m2 =2y +%) =22

2V T

Putting the vacuum values of m,z,, A1, 42, ¢, X, and y in

Eq. (21), one gets the value of the mass parameter m?.

Putting the X and y values in Eq. (13), one gets

(21)

1
V2

Finally, the Yukawa coupling is fixed from the nonstrange
constituent quark mass g = 2;"” For the f, =92.4 MeV
and m, ~300.3 MeV, the g ~ 6.5 and strange quark mass
are predicted to be mg ~334.34 MeV. The experimental
value m, =547.5MeV and m, = 95778 MeV. In
Ref. [19], the parameter 1, is determined by taking the
m, = 539.0 MeV and m,, = 963.0 MeV as inputs because

the sum of the squared masses mj +m;, = (539.0)* +
(963.0)? is almost equal to the (547.5)% + (957.78)* and
the calculated parameters reproduce m, = 539.0 MeV and
m, = 963.0 MeV in the output.

hy=f,m2 and h, = V2fgm}y ——=fm2 (22)

II1I. QM MODEL WITH VACUUM TERM

This section contains a brief description of the effective
potential calculation when the scalar and pseudoscalar
mesons curvature masses are used for the parameter fixing
and the vacuum value of the nonstrange condensate is put
equal to the pion decay constant while the strange condensate
vacuum value is a combination of the pion and kaon decay
constant. The quark one-loop vacuum divergence given by
the first term of Eq. (14) is regularized under the minimal
subtraction scheme using the dimensional regularization as
done for the two flavor case in Refs. [51,53,57] and the three
flavor case in Refs. [54,55,58,59]. The quark one-loop
vacuum term is written as

Qpe=-2N, } / Lp g (23)
94 Cf:u.m (27[)3 N

The dimensional regularization of Eq. (23) near three
dimensions d = 3 — 2¢ yields the ¢ zeroth order potential as

- Y

f=u.d,s

Ncmj‘[ l_{—3+2y5+41n(2mﬁ)}
16722 |e 2

| e

Here A is the arbitrary renormalization scale. When the
following counterterm 5L is added to the QM model
Lagrangian,
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16 [ Lo+ 2mameyin]. @9

one gets the renormalized fermion vacuum loop contribu-
tion as

vac __ NC 4 mf
o =3 gomn(Y). 09

f=ud.s

The vacuum grand potential becomes the renormalization
scale A dependent when the quark one-loop contribution in
the first term of Eq. (14) is replaced by Eq. (26) and one writes

QMx,y) = U(x,y) + Q5 (27)
Here the six unknown parameters m2, 2y, Ay, h, hy, and ¢ of
the meson potential U(x, y), are obtained from the x- and
y-dependent curvature masses of the mesons. The procedural
details of finding the different parameters are presented in the
Appendix A. When the parameter 4, is determined, the
logarithmic A dependence in the term €% generates a
renormalization scale A-dependent part /12/\ and one gets
Ay = Aoy + 1+ Aoy 4 Ayp. Ay, 1s the same old 4, parameter
of the QM/PQM model in Refs. [18,19,48]. Here, n = ]3\’2,-‘53

T 2fk— z — 2 _ ./r

by = gty 2l = dnIn{*25L).
When this value of the A, is substituted in the expression
of U(x, y) and all the terms of the summation in Q37

expression are written explicitly, Eq. (27) takes the form

and 12 A

2
m C o

— (X +y) —hx—hy——=x
2( ¥?) W5 R%Y

A
+4(x + y* +2x%y%)

QMx,y) =

n (Aoy + ’; + Aoa) (4 2%)

L <ﬁ> _nyﬂn(%). (28)

Then 4y, = Ay, + 4>,.. When the terms are rearranged,
one finds that the scale dependence of all the terms in Q37
gets completely cancelled by the logarithmic A dependence
of the 1, contained in 4,,. The scale-independent vacuum
effective potential expression is

2

m C
Q(x,y) = 7(’52 +y?) — hx —hyy - mxz)’
! !
+ Zl (x* + y* + 2x52) + Gyt ) 2V8+ ") (x* 4+ 2y%)

o <<2fo fﬂ>> —m'n <(2fz<ﬁyf”)>
(29)

One notes that the parameters m?, A;, and A, are modified

by the fermionic vacuum correction in this parameter fixing

scheme while the parameters h,, hy, and c are not affected.

The thermodynamic grand potential with the renormal-

ized fermionic vacuum correction in the quark meson
model with vacuum term is written as

T,
QQMVT(T,M;X,)’) =Q(x,y) + Qqq”(x,y). (30)
The nonstrange and strange quark condensates x and y are

found by searching the global minimum of the grand
potential for a given temperature 7" and chemical potential g,

0Qomvt(T. 3%, y) _ 0Qomvr (T, 43 X,y)
ox dy

x.y

=0. (31)

x.y

Here it is relevant to remind the reader that the dressing
of the meson propagator is not considered in the curvature
mass scheme of parameter fixing. Hence the pion and kaon
decay constants f, and fx do not get renormalized. The
quark one-loop vacuum correction to the effective potential
modifies the parameters in such a way that the stationarity
conditions in the nonstrange and strange directions for
T =0 give the same result for i, and h, as in the QM
model. The modified curvature masses of the pion and kaon
as presented in Appendix B of Ref. [59] remain the same as
their pole masses. The minimum of the vacuum effective

potential remains at X = f, and y = %

IV. RENORMALIZED QUARK MESON MODEL

Model parameters in several of the recent research works
were fixed by taking the z, K, 7, 7/, and ¢ meson masses
equal to the their curvature (or screening) masses [52—65]
while the nonstrange condensate is put equal to the pion
decay constant and the strange condensate is related to the
pion and kaon decay constant. However, we know that the
poles of the meson propagators give their physical masses,
and the residue of the pion propagator at its pole is related to
the pion decay constant [68—70]. Furthermore, the curvature
masses are akin to defining the meson masses by evaluating
their self-energies at zero momentum [66,67,71,72] as it is
known that the effective potential is the generator of the
n-point functions of the theory at zero external momenta. It
is also to be noted that the pole definition is the physical and
gauge invariant one [81,82]. In the absence of the Dirac sea
contributions, the pole mass prescription is equivalent to the
curvature mass prescription for the parameter fixing of the
model, but when the quark one-loop vacuum correction is
taken into account, the pole masses of the mesons start to
differ from their screening masses [68,70]. The above
arguments necessitate the use of the exact on-shell parameter
fixing method for the renormalized quark-meson (RQM)
model where the physical (pole) masses of the mesons, the
pion, and kaon decay constants are put into the relation of the

074002-6



ON-SHELL VERSUS CURVATURE MASS PARAMETER FIXING ...

PHYS. REV. D 108, 074002 (2023)

running mass parameter and couplings by using the on-shell
and the minimal subtraction renormalization prescriptions
[71,73,74].

A. Self-energies and counterterms

When the quark one-loop vacuum corrections are
included, the tree-level parameters of Eqgs. (19)-(22)
become inconsistent unless one uses the on-shell renorm-
alization scheme. The divergent loop integrals in the on-
shell scheme are also regularized by the dimensional
regularization but the counterterm choices are different
from the minimal subtraction scheme. The suitable choice
of counterterms in the on-shell scheme leads to the exact
cancellation of the loop corrections to the self-energies.
Since the couplings are evaluated on-shell, the renormal-
ized parameters become renormalization scale independent.
The parameters and wave functions/fields of Eq. (1) are
bare quantities. The counterterms 5m?, 5A,, 64,, dc, Sh,,
ohy, and 5g* for the parameters and the counterterms 6Z,,
6Zg, 6Z,, 6Z,, 6Z,, 6Z, 6Z,, and 6Z, for the wave
functions/fields are introduced in the Lagrangian (1) where
the couplings and renormalized fields are defined as

o = T, m=Zp (32)
My, =/ Zy. 6, = \/Z,0, m; = Z,,m? (33)

K, = \/ZxK.

Yy = \/Zl//, Aip = Z/Ml Aop = 242/12’ (34)
9p = \/Z_ggv hy, = thhx’ hyb = Zhyhy’ (35)
cp =2, Xp = \/Z_x% Yo = \/Zy (36)
Here the Zikyyoyry) =1+ 0Zknyyry denote
the field strength renormalization constants while

Z<m,,1h,12,g,hx,hy‘c> =1+ 5Z((m,11,lz,g,hx,hy,c)) denote the mass
and coupling renormalization constants. One-loop correc-
tion to the quark fields and the quark masses is zero because
in the large N, limit, the 7 and o loops that may renormalize
the quark propagators are of the order N Hence the
Z, =1 and the respective quark self-energy corrections
for the nonstrange quarks and the strange quarks are

|

S iNumI = \/(mg,oo —mlgg)? + 4m oo (6m3 — 6m37) — {512

N {5/12 (x2 _42y2) _56\/5(4\€x+y)}( 5

(x* + 6y?)

om, =0 and om; = 0. Also, the one-loop correction at
the pion-quark 7y vertex is of order N, and hence gets

neglected. As a consequence, we get Z, Zggzs/Z,,%

g(1 +%i—%2+%52,,) =g. Thus ‘Zi; +6Z, = 0. Furthermore
the 6m, =0 and ém;=0 implies that 5gx/2 + géx/2 =0

and 8gy/v/2 + g8y/v/2 =0. This gives éx/x = 8y/y =
—d8¢g/g which is written as

57

2 2 2

5Z,. (37)
Xy g

Following Refs. [67,71-74] and using Egs. (32)—(36)
together with Egs. (19) and (20), the counterterm 064,
can be expressed in terms of the counterterms om2, 6m%(,
5m$, 5m’27, and 6Z, while the dc is expressed in terms of the
om2, ém%, 5Z, and the preceding 51,. The resulting
expressions of the 64, and dc are the following:

2 2z _ X)6m>
5/12_(x2—|—4y2)(\/§y—x) {(3\/§y)5m,< (V2y +2x)6m2
— (V2y—x)(6m? +5m§,)] — 67, (38)

 2(6m% —6mZ)

oZ
— V2960, — (2V2y) +¢)—=Z. (39)
(V2y-x) 2
Once the 64, and Sc are written, using the expression of
(6mZ — 6m2) and doing some algebraic manipulations, one
can write the counterterm 64, as follows:

52
54 = —INML_ ) 57, (40)
AIDENOM

AIDENOM = (\/(m?,oo - m?,ss)z + 4m?,08) (x* + )’2)

m? ., — m?
_ ( 5,00 3 3.88) (X2 + 4\/§xy _ yz)

(V2x* —xy = V2y?), (41)

2
dms g
3

2
+ oc \[y

5,00 ~ m?,ss) + {5/12\/5()52 —2y?) +éc

_bﬁ4@%@3w

6Z, [V2y
—C5 {T \/(mioo — mgg)” + 4mog +

(¥* =2y%)
m3 g0 — M gg)> 4 4ml g —

V2(4v2x + y)

) 1 }\/(mf,oo —m3gg)® +4m o

\/Z(x - \/EY)} 2

3 ms o8
(mf.oo - m?.ss) - \/E(xz - 2)’2)’”?,08}

\/E(\/iy - x) 2
- 3 s 08 } (42)

4

12 (mz,oo - m?,ss) +
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Finally the counterterm 5m? is written in terms of 6m2, 54,
04y, 6c, and 67,

(6)x> Sy

S 2:5 2_5 2 2\ _
m mg — 641 (x* + y?) 2 +ﬂ
57 {/1 (> + 2)+E i} (43)
A Y 2 22

Figure 1(a) depicts the Feynman diagrams of the self-
energy and tadpole contributions for the scalar particles
while Fig. 1(b) depicts the corresponding counterterm
diagrams. The Feynman diagrams of the self-energy and
tadpole contributions for the pseudoscalar particles are given
in Fig. 2(a) and the corresponding diagrams for the counter-
terms are presented in the Fig. 2(b). The self-energies of the
scalar sigma o, pseudoscalar eta (17), eta-prime (17'), pion (z),
and kaon (K) are required for the on-shell parameter fixing.
The scalar o self-energy correction is obtained in terms of the
self-energy corrections X oo(p?), Zs3(p?), and Z og(p?)
while pseudoscalar # and 7' self-energy corrections are
obtained in terms of self-energy corrections X g( P?),
2, 55(p?), and X, 05(p?). The expressions of scalar and
pseudoscalar self-energies are written below:

2
Zooo(p?) = =3 Neg’[2A(my) = (p? = 4mi) B(p*, m, )]

- %Ncgz 2A(m3) = (p* = 4m3)B(p*. m,)]

+ ZGo- (44)

,
/{\ .
o \)/ 0 o =0

(a)

FIG. 1.

2 11(p?) = =N g*2A(m}) — (p* — 4m)B(p*. m,))
+z2), (45)

25,44(172) = _Ncgz [A(mi) + A(m%)

- (p2 - (mu =+ ms)2)8<p2’ my, ms)]
+ (46)

1
Zss(p?) = —chgz[ZA(mﬁ) — (p? = 4m2)B(p*. m,)]

= NP RAGR) = (57 = 4m2)B(p2 m,)

+ s, (47)
V2
Z,08(p?) = =5 N’ RA(m}) = (p* = 4mi)) B(p?.m, )
+ chgz 2A(m3) = (p* = 4m3)B(p?, m,)]
+ Zs. (48)

2
2“p,()()(pz) = —gNng[ZA(m%,) - ng(pzv mu)]

1
- =N .F2A(m3) — p*B(p?, my)|

3
+p )
2'p.l 1 (p2> = er(p2>
==N.g*[2A(m;) - p*B(p*.m,)| +Z34;.  (50)
s,d
™ s,c
s,a . s,b s,a s,b

(b)

The solid line represents scalar particles and an arrow on the solid line denotes a quark. (a) One-loop self-energy and tadpole

diagrams. (b) One-loop self-energy and tadpole counterterm diagrams.

@ = = = -
p;a p,b

(a)

@ = = - *- --- -
p,a p,b p,a p,b

(b)

FIG. 2. The dashed line represents pseudoscalar particles and an arrow on the solid line denotes a quark. (a) One-loop self-energy and
tadpole diagrams. (b) One-loop self-energy and tadpole counterterm diagrams.
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2, 44(p?) =Z¢(p?)
= _Ncgz[A(mth) +A(m§) - {p2 - (mu - ms)z}
x B(p*,m,,my)]+2%,, (51)

1
Zp,88(p2) = —chgz[zA(mi) - sz(pzv mu)]

—INPRAGR) = B )

+ X%, (52)

—_ chgz [2A(m2) — p*B(p*. m,)]

+ ?N G [2A(m3) = p*B(p*.m,)]

+ 25{38. (53)

2p.os(Pz)

The one-point function diagram for the quark one-loop
correction to the nonstrange component of the scalar ¢ and
its counterterm is shown in the Fig. 3. It is written as

oTl) = —4N .gm, A(m?) + idt,. (54)

Figure 4 presents the one-point function diagram for the
quark one-loop correction to the strange component of the
scalar ¢ and its counterterm. It can be written as

ST = V2N gm A(m?) + idt,. (55)

B. Parameters with renormalization

The one-point functions i =it,=i(h,—m2x) for the
nonstrange and T'{" = it,=i{h,— ‘/TE(m%< —m2)x—m%y}
for the strange degree of freedom become zero and we get
two tree-level equations of motion ¢, = 0 and 7, = 0. Thus

the classical minimum of the effective potential gets fixed.

S, T ( ; S,

FIG. 3. One point diagram for the nonstrange scalar and its
counterterm.

.—*
S,y ( ; S,y

FIG. 4. One point diagram for the strange scalar and its
counterterm.

The first renormalization condition for the nonstrange
(6,) =0 and the strange degree of freedom (o,) =0
)

requires that the respective one-loop corrections oI Ecl

and 5F_§;1) to the one-point functions are put to zero such
that the minimum of the effective potential does not change.

Thus the oI )(Cl) =0 and 5F§,1) =0 give us

Sty = —4iN gm, A(m?), (56)

Sty = —2V/2iN gmgA(m?). (57)

Using the equation h, =1, +m2x and h,=1,+
{% (m% — m2)x + m%y}, one can write the counterterms
oh, and 5h,, in terms of the corresponding tadpole counter-
terms 67, and o1, as the following:

Sh, = m28x + m2x + 8t,, (58)
2 2
Shy = {g (m% —m2)6x + g (6m% — 5m,2,)x}
+ m%58y + dmyy + 6t,,. (59)

Using Eq. (37), one can write

1
Shy = 5 MixSZy + Smix + Oty (60)
3 67, 2
5hv = £ (m%( — m,z,,)x z + \/—_ (5m%( - 5m72r)x
) 2 2 2
+miy ==+ Smgy + 8ty (61)

The inverse propagator for the pseudoscalar 7z, K mesons
can be written as

p* — m2 g — i%, g(p*) + counterterms. (62)

The mixing in the 00 and 88 components for the scalar (s)
and pseudoscalar (p) particles gives us the physical states of
the o and f|, as the scalar particles and the # and #’ as the
pseudoscalar particles. The inverse propagator is given by
the 2 x 2 matrix showing the mixing of the 00 and 88
components. When the determinant of this matrix is put to
zero, the negative root of the resulting equation gives the
inverse propagator of the physical ¢ in the scalar and 7 in
the pseudoscalar channel. The positive root gives the
inverse propagator of the physically observed particles
fo and #' in the respective scalar and pseudoscalar
channels,

074002-9



VIVEK KUMAR TIWARI

PHYS. REV. D 108, 074002 (2023)

_mz(p),()g - izs(p),OS (pZ) p2 - mg(p),gg - izs(p),88 <p2>
We obtain two solutions for p2:
1 .
= |2 00 + Zuon(PD)} + {2 g5 + iZsa8(p2)})
F (200 + B on(P2)} = {2 g5 + s (P} +40m2 o + Zos ()] (64)

Neglecting the higher order (N2) terms like {Zs(p).00
above expression is written as

(P?)) = Zypyss(p?)}* and T3 g

(p?) in self-energy corrections, the

1
PP=3 [(’”S@),OO +m) 58) F \/ (m3
1
\/ (3 5).00 = M) 88)” T4 08

:F

00~ mf(p),ss)z +4(”13(;,),08)2J +

1

3 |:(izs(p).00(p2) +iZ(p)88(P?))

{(izs(p),OO(p2) - izs(p),SS (pZ)) (ms(p),o() - mg(p),gg) +4izs(p),08 (pZ)mg(p),OS}] . (65)

The negative root of Eq. (65) gives the sum of the mass and self-energy correction for the scalar ¢ (pseudoscalar #):

2

1
o (PP =3

. 1
P = mg + 2o (p?)  where mg,) =5 [(’”ipmo 1 58) \/ ()00 = M5p).88)" + 4<m§<p>,08>2J and

D) |:Zs(p),00(p2) + z:s(p),88(p2) -

\/ (mf(p),oo - mf(p).ss)z + 4m§(p).os

X {(Zs(p).00(P?) = Zqpy.88(P?)) (M) 00 = M) 85) + 425(;,),08(172)”1?@),08}] : (66)

The positive root of Eq. (65) gives the sum of the mass and self-energy correction for the scalar f,, (pseudoscalar #'):

p>= me o iZs ) (p?) where m?o(ﬂl) =

N[ —

[(mf@),oo + M) ss) + \/ (5,00 = M3(py.88)" + 4<m§<p>.08>2J and

21y (1) = 5 | Zsr00(P?) + Zups8(p7) +

\/ (720100 = 7500).88)" 47 08

S {(Zs(p),oo(l’z) - Zs(p),88 (pz))(ms(p),oo - mg(p),gg) + 4Zs(p),08 (pz)mz(p),og }:| . (67)

Thus the inverse propagator for the scalar ¢ and the
pseudoscalar 7,7’ mesons can be written as

p*=m, = i%s,,(p?) + counterterms.  (68)

The renormalized mass in the Lagrangian is put equal to the
physical mass, i.e. m = mpole,l when the on-shell scheme
gets implemented and one can write

'The contributions of the imaginary parts of the self-energies
for defining the mass are neglected.

2 )+ counterterms = 0. (69)

2 _
2(]? - mo,fm a.K

Since the propagator residue is put to unity in the on-shell
scheme, one gets

0
— X, 2
apg o.n.n ,n,K(p ) N

=m
P [/E r//.n.K

+ counterterms = 0. (70)

Using the diagrams of Figs. 1(b) and 2(b), the counterterms
of the two-point functions of the scalar and pseudoscalar
mesons can be written as

074002-10



ON-SHELL VERSUS CURVATURE MASS PARAMETER FIXING ...

PHYS. REV. D 108, 074002 (2023)

23 (p?) = i[6Z,(p? = m3) — om3)]. (71)
23 (p?) = i[6Z4(p* — m3) — 6mz], (72)
2% (p?) = i[6Zk (p? — mi) — omg]. (73)
=1 (p?) = i[6Z,(p* — my) — Smy], (74)
3 (p?) = i6Zy (p? — myy) — omy]. (75)

The tadpole contributions to the scalar and pseudoscalar
self- energies contain two independent terms proportional to

N.gm,A(m2) and N.gm,A(m?) respectively as presented
in the Appendix B. The tadpole counterterms X for the
scalar and pseudoscalar particles are chosen (negative of
the respective tadpole contributions to the scalar and
pseudoscalar self-energies) such that they completely
cancel the respective tadpole contributions to the self-
energies. The evaluation of the self-energies and their
derivatives in the on-shell conditions give all the
|

renormalization constants. When Egs. (69)—(75) are com-
bined, we obtain the following set of equations:

9
omy, = —iZ (mz);  6Zy =i 5% (p?)| . (76)
14 pP=m}
. o a
oy =—iSx(m}); SZg=i=—Te(p)| . (77)
op pr=mj
. 7 a
omy = —iZy(my); 8Ly =iz % (pY) . (78)
P pP=m;
. o a
5m§, = —lZ”’(mi/); 0Zy = la_pzzn’(l’z) it (79)
i
9
om2 = —iZ,(md);  6Z,—i—=2,(p?)| . (80)
op pr=m}

When the self-energy (neglecting the tadpole contributions)
expressions from Eqs. (49)—(51), and (67) are used, we get
the following set of equations:

o = 2PN, | A1) = mEB(0.m,) 1)
dmy = ig? N [A(m3) + A(m3) — {m§ — (m, —m)*}B(mg, m,,m,)], (82)
Smy = - [Zp.oo(m%) + X, 85 (m;5) —
2 \/(mfa,oo p88) +4m
X {(Zpo0(2) = Zp s (72)) (7200 = i) + AT p s (2 }] (83)
o = PN |{ A1)+ A = S0 m,) = 3 m)}
2 4+/2 2
3\/(mp00 my gg)” 4 4ms g
] 1
5m2/ = ! |:Zp,00(m /) + Zpygg(m /) +
T2 ! ! \/(mg,oo p88) +4m
X {(Zp0(m2) — Zpss (m2)) (7200 — 1225) + AT pgu(m }] (85)
. 1 1
5m$, =ig’N, HA(mﬁ) + A(m?) _Emi/B(mi/’mu) Fm ,B (m ,,m }
2 2 442 2
+ {(mp,OO mp.88) + \/_mp,08} {A(mi) _ A(mg) _ %m?],B(mf’,’ mu) + %m?],B(m%,, ms)}:| , (86)

2 RV 4
3\/ (Mg 00 — My g8)” + 4mi o
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1
\/ (mZ oo — mgg) + 4mog

X {(Z00(m3) — Zsg5(m2)) (m2 ) — mZgq) + 425,08(mr27)m£,08}:| ; (87)

l
smy = 5 [Zs.oo(mg) + o gs(m3) —

o, = N, | { A+ AGE) = 3 02 = 402 (02, m,) = 5 2 = 4 Bz m,)

S00 — M3 4v2m? 2 —am? 2 —am?
— {(ms.OO ms,88) + \/_ms,OS} {A(mi) _ .A(m?) _ (mo- 24"’1“) B(mg’ mu) + (mrr 24m¥) B(mg’ ms)}:| , (88)
3\/ (m2 g — mgg)> 4 4mi g
6Z, = ig?N.[B(m2,m,) + m2B'(m2,m,)], (89)
8Zx = ig’N [B(mg., m,, my) + (my — (m, — m,)*)B (mg, m,.m,)], (90)
ig’N. 2 2 y y
67, = 5 {B(m;, m,) + B(m;, m) + mnB (mn, m,) + mnB (mn, my)}
m> +4V2m?
4 Lmaoo = ) P“g}{ —B(m,m,) + B(mZ,m,) = mB (m2, m,) +m%6’<m%;,ms>}} (91)
3\/ 200 = M2 gg)? + 4m3 oo
6Z, = ig°N. {B(m?%,m,) + B(m?, m,) +m2B (m%,m,) + m2B (m?,mg)}
) o w7 " o " s
m2 g — m2 oo ) + 4v2m?
Ao M) P°8}{ B0 m) + Bl m) =B om,) + B )] 92
3\/(’”5.00 m;, 88) + 4m
6Z, = ngN [{B(mm my) + B(mg, my) + (mg — 4my)B'(mz, m,) + (mg — 4m3)B' (mg, m) }

{( 20— s88)+4\/_ms08}
3\/ 5,00 s88 +4m

{B<mm ms) - B<m¢27’ mu) - <m¢27 - 4mi)3/(m(2,, mu) + (mzzf - 4m?>6/(mg7 ms>}] .

(93)

The expressions of 6Zg, 6Z,, 6Z,, and 6Z, are given above. However, in the calculations below, only the simplified
expression of the 6Z,, is needed. Substituting the expressions of §Z,, Sm%, 5m2, 5m and 5m2 from the above in Eq. (38),
04, 1s written as

Sta0s = i s | (V23 { Al) + Ald) = (k= (m, = )7 ) Bl )

m2
- (V2y + 2x){2A(m5) - m2B(m2, mu)} - (V2y - x){ZA(mLz,) +2A(m?) — 7"{ (my, m,) + B(m;, m )}
(mi,oo - mi.ss + 4\/5’";,08)

(\/(mi,oo - mfz,ss)z + 4’”;,08)

s {ma{ =Boom,) 4 8003 m) | = { =Bz ) + Bz b, (94)

m?,
n
-5 {B(mn,,m )+B(m,,m)} p
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We defined a common factor that occurs in several of the equations below as:

2
SCF = []n <::2) +C(m2, m,) + m2C'(m2, mu)] . (95)
N.g7)A
04r0s = 0Aagiv + AoriN + dascrs Adascr = % SCF. (96)
N.g* A2\ N.# 2 (v2y + 2x) m
MFIN = 75 (A — ¢%) In < 2 _m2d1-2In(—
2FIN (47[)2( 9°) (m > + (47[) (x2+4y2) (\ﬁy—x) my, — mg n m,
200 2 3v2y 2 2 2 my
- mﬂc(ml[’ mu) + m{mK - (mx - mu) }C(mIO my, ms) - 7 C(m m ) + C(m m )

my, m2 oo — m2 ¢ + 4V/2m?
B DY ) I G C(m%,m, )+C(m,,m) o2 by (7,00 = M55 V2 p08)
m, 2 n m, 6

(V/ 0 = 0 + 401500
x {mg{C(m,%, m,) — C(m2,m,) +21n (Z—> } - mg,{C(mg,, m,) = Clm2.my) +2In (”Z—) }H . 97)

Substituting the expressions of 8Z,, sm%, dm2, 54, in Eq. (39), dc is written as

2iN.¢?
Geos = 1 S AAGE) + A(md) — (= (s =) B0 s ) = 24 () & mB(om3 )}
y—x
57,
- \/Ey&zos - (2\6)’/12 +¢) 72 0cos = 6Cgiy + CrINTOT T CSCFS CFINTOT = —V2yhopN + Crns (98)

C C 2 nA_2 # le—n’l—n’l2 I’Vlzl’l’ll/l’l—l’n2 m2m
i = T (e V230 = b () = O = P ) <l m,)

g 2%y m\].  ~_ (Neg’)c
(\/_ y+x) + V2 < x)ln(m—uﬂ,cSCF—WSCF. (99)

Using Eq. (40) and substituting the expressions of 6Z,, dm2, dm2, 51,, and c in Eq. (42), 64, is written as

A

Shiog = —NUMOS _ ) 57 (100)
1DENOM

2

— 4m?
Ainumos = iN.g* K\/(m?oo —mjgg)* +4m os) {A(m%t) +A(m?) - <w> B(mZ,m,)

_<m‘2’_24m%>6(m{,, my) —2A(m )+m3,8(m%,mu)}

2?44 am? 2 _ g2 2 _ g2
_ <m~*~00 m~‘-f883+ \/—m“'()g) {A(mﬁ)—A(m?)— <7m6 24m”>8(m,27,mu)+ (L’ 24ms>8(m,2,,ms)}]

m2 , —m?
+ w {(3)62 — 6?)8A0s = V2(4V2x + y)écos}

\/Emiog ) ) 1 2 2 2 4 2 2
- # {(2)1 —X )6/1203 + (\/Ey - X)(SCOs} - Z \/(ms’oo - ms,gg) + 4m5_08{(x + 6y )5/1205 + \/Ey(sCOS}

o, [ =) - oS} -2 f e+ (- )

1 c
7 (\/(m?,oo —migg)’ + 4’”;‘,08) {(XZ +6y%) 1 + \/Eyz}} ; (101)
A N.g* A
0A10s = 6d1giv + AipN + Aiscrs AIFIN = LY AiNnumE = AiNnumEs + AinumEn Aiscr = —<Z ZLSCF. (102)

(4n)

A IDENOM
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The expression of A;ppnom 18 given in Eq. (41),

m2 . — m?2
AINUMF1 = w {(3x2 +8v2xy - 4y?)Agpin — \/5(4\/5)6 + y)CFIN}

V2m?
- %08 {(\/Ey —x)cpN + (4y* + V2xy — 3x2)/12FIN}
1 2 2 2 V2
- (1 \/(ms.OO myg, 88) + 4”1; 08) {(x + 4y ) dapiN + 2yCFIN}’ (103)

N, & A2
AINUMED = W {<\/(m%00 - mf’gg)2 + 4mi08> {Z (x> =2y?) + (m2 —=m2 —m2 —3m?) In )

u

2 g2 22
+2m21n <%> + wamﬁ, m,) —l-w (C(m%, my) —21n <%)) — m2C(m2, mu)}

_ <(’"500 - ’"38?2 + 4‘@’”308) {QZZ (29 — x?) (1 +3In <2—2>> + (m2 —6m?)In (Z)

<m¢27_4m%> (mtzi _4m%) C(mg,ms)}], (104)

+ C(m%,, mu) -

2 2

Using Eq. (43) the ém? is written as:

S = N P 2AG) — 2B m,)} — 61052 + 32) — Sags . 4+ 25O _ 57 {/1 (2 +y2) + 2 x—z—i}
oS — f.d o My 108 208 B \/E f4 1 2 ) 2\/5 ’
dmpg = dmg, + miy. (105)
N.g* A? x? y
My = (@) =2m;; + (mz = 2m )111( ) +mzC(mz, m )] - [/111F1N(X2 +?) +/12FIN?_ CFINTOTE ; (106)
|
Using Egs. (60) and (61), the 6k, and 6h, can be written as:  §h o5 = 6hygiy + hyrin, (111)
i N.g* [hy A2
Shios = <5 NP (B m) =B (k). (100 o= N [0 () i my) - mm,)
Shyos = 6hygiy + hapNs (108) \/§ xc( ,my,)
N ¢ A? my
hxFIN :W}l |:1n (mu> —|—C(mﬂ,m ) m%C/(m%,mu)} , <——y> { — mg —|—2m2 In (mu> }
(109) V2x
# (M5 ) 0= =PI
2
sios =i, (Lx - ) 1lm) - Al (112)

Using Egs. (37) and (89), the 6Z,, 6x> and §y*> can be

V2
- <2x —I—y> {m% — (m, — mg)*}B(m%k, m,,mg)  written as:

V2 m3 , 2 2
+ <7x + ) = [Blmz,m,) +mzB (mzm,)] 6795 = 67,4, - Neg” 11 A +C(m2, m,)
o (4n)? ‘
\/E 2 2 2R 2
+Txm7r[8(m7umu) - mﬂB (mﬂ’mu)] ’ (110) + mzzrc/(mzzt’mu) ) (113)
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8g6s = —iNcg'[mzB (mz.m,) + B(mz. m,)]

N.g* A?
= 5g§iv + (471_)2 |:1I1 (m—i + C(mizw mu)
e nm,)| (1)
5325 = NP 2B (2 m,) + B2, m,)]
N g*x? A?
= 5x§iv - (47,[)2 |:ln<mu +C(mﬂ’m )
i nm,)| (115)
8yps = INcgy* [mzB (mg. m,) + B(mz. m,)]
N, A2
= Vg — dn)? In ) +C(mz, m,)
+nicnm,)| (116
A(m3),  B(m*, my),  B(m* m,,mg), B(m* my),
C(mz,mf), C(m?, m,, my), C’(mz,mf), and
C'(m?,m,, m,) are defined in the Appendix C The diver-
gent parts of the counterterms are 5,4, = ( s ) - (2/1 -9,
_ 3N.g’c _ N.g?22 2 _ N.g’m* _
Ocgiy = 2(4—,32., gy = (43:)%1’ omg;, = nle’ Oh.aiy =
N.g*h, _ Negh, 2 _ N, _ _ N
i Oy = i O = Gk O =~
2 _Ng _ N.&
Vi =~ ”])3 s 0L gy = —ﬁ. For both, the on-shell

and the MS schemes, the divergent parts of the counter-
terms are the same, i.e. 414iy = 64,35, Oadiv = Sdypg €tC.

Since the bare parameters are independent of the
renormalization scheme, we can immediately write down
the relations between the renormalized parameters in the
on-shell and MS schemes as the following:

Aowis = A2 + 0408 — Sy (117)
Cyis = € + 0cos — Ocyg (118)
Aisis = A1+ Shios — Ohrs. (119)
m = m> + Smyg — dm2 . (120)
hsis = i + Shios — Sh s, (121)
s = hy + Shyos — Sh 555, (122)
G = O+ 0% — 592@* (123)
X = X+ Bxg (124)

Vi = ¥+ Vs — Vi (125)
The minimum of the vacuum effective potential is at x =
fr and y = % Using the above set of equations

together with Egs. (96), (98), (102), (105), (108), (111), and
(113)—(116), one can write the scale A-dependent running
parameters in the MS scheme as the following:

Aonis (A) = Ao + Aopiy + Aascr, (126)

cys(A) = ¢ + crtor + Cscrs (127)

As(A) = 41+ Aipw + Aiscrs (128)

migs(A) = m? + miyy, (129)

hais(A) = by + hapin, (130)

hym(/\) = hy + hypins (131)

2 (7) = ¢+ M s 132

gm( )=y +W ; (132)

4N m?2

2 u SCF, 133

XN = fr - (47)? (133)
2fK - f 2 2]\’J’)’l2

A = 7) —Z<TISCE. (134

s = (F57) - Taser o

The parameters 4,, ¢, 4;, m?, h,, h,, and g* in Eqgs. (126)-
(132), and also in the earlier expressions, have the same
tree-level values of the QM model that one obtains after
putting x = f, and y = (2/,(_\/%];) in the expressions of the
parameters described in Sec. II B.

In the large-N, hmlt the parameters A,yrs

m2
MS’ thS’ hyMS’

satisfy a set of the following simultaneous renormalization
group equations:

M0 CMse AMse
and gm are running with the scale A and

dlys(A) 2N,

din(A) ~ (any P ~ Gl (139)
i gs(x\)) - (z]Z)Cz RisONs: (136)
djzllh;_?/(\/;) - (1N)Cz TS (137)
dm2(A) 2N, 5 )

din(A)  (4n)2 "
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dhgs(A) N,

2
dIn(A) (4 )? MsthS’ (139)
WsN) - Ne 5 (140)
din(A)  (4n)? Sis'Hwis:
2
A __ 2N, G (141)
din(A) ~ (4r)2 s
W _ 2N o o 142
din(A)  (4n)2 s (142)
dyZs 2N
MS c 2 2
din(A) ~  (dx)? VN (143)

Solving the differential Eqs. (135)-(143), we get the
following solutions:

ﬂzo - % In (A—z)

2

g
s (A) =—N(_g(2)° - (150)
1= el 1n(A—g)
N.g3 . [N
2 — 2|1 -0 , 151
: fﬁ{ (4n)’ “<A2>} 131)

2

- f 7:)2 N cgo A?

1- In 152
2 (4r)2 \A2 (152)
where the parameters A9, Ao, g§, m§, o, iy, and hyg are
the running parameter values at the scale Aj,. We can
choose Ay to satisfy the following relation:

In @2) FCm) +m2C(m2) =0.  (153)

u

Now, we can calculate the parameters of Egs. (126)—(134)

Lyis(A) = ; el (144) at the scale A =Aq and find 4y, Ay, g3 m3, co hyo,
(1=t (3)) o
eyis(A) = ‘o . (145) C. Effective potential
\/ [1 — Z‘é 1n(2_§>]3 Using the values of the parameters from Egs. (144)-
i 0 (150), the vacuum effective potential in the MS scheme can
1 be written as
AIM_S(A) - Neﬂélo A2 27 (146) ,vac
(1 ~ @ny hl(/Té)) Quae = Ulxygs, igs) + Qo + 0U (xigg. vis)» - (154)
2 my where
mm(A) = - (go ( ) (147)
(4 \AG 2
hyo U(x55. Yiis) = _gls (x s T )’%) — h s Xnis
hsis(N) = - , (148) 1
R s 2 IMS 2
- (4;;)0 In (AZ) — hy§isVnis — 272 Nsoms T D) MSy
Iy + 2 us tAonis R 2 us + 2howis e
his(A) = S : (149) 3 MS 3 NS’
1= (ﬁ—) (155)
0
_ 5mlz\ﬁ 2 2 ml%/I_S 2 2 h h h h
OU (s i) = (s T Vigs) T (0% 0v) = Oh s — hs s — Ohwisywis — It wisOVvas
RS X2 VS (5.2 2 s o o s 2
Wi X VRS — 2\/_2.(5)cmym + x5 Oviis) + >y s Ty ((Sx_yMS +x S5yMS)

8 8

. (25/1,M—S+5/12M—s)xid_s+ (2A,M—S+/12M—S

Sxd _ 4

MS MS’

20055 + 2055\ 4 2085 T 24005 \ . 4
§——§———ym+'——§——‘5—

(156)
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;Frlllg (()?l(eN%gt;erms are dropped as these are two-loop terms U(ALA) = mi/[_s(/\) (202 1 A2) 2 h 55 (A) A
g o) =gy A A =2 Ay
hyyis(A) cris(A)
4 4 4 2 MSY TN piMsVY AZA,
Uy ) — — Y ais s 2 1 a2 ()
e 8(4z)’ ¢ A (A) (2575 + i)
N.(2AY £ AY) 1 + 4 IS A202 4 o VS " 2oms) 4
= —TTE T (157) ng (A) i (A)
(4n)* €
g_
The quark one-loop vacuum correction for the two non- VS
strange and one strange flavor is written as 2
U(AA)) = =0 (202 + A2) - 2i°A -V2 yOA
9 '
NeggeXia 13 4N
Qpse = A [+2+ln <2 3 ﬂ 2 AZA +411° AA2
8( 71') € WSXWS
4 04 24 A A A
N g2y 1.3 2A2 ) ( 10+ zo)A4+( 10+ ZO)A),. (161)
8(4r)? 2 2 2 2 9% 9%
_N (2A% + AY) 1 2N A} [3 < )] The infinite part of Q%ac gets completely cancelled by
4 € (4n) Xy, Vo) in Eq. and Q,, is written in terms o
(47)? ) 12 SU vz, yyis) in Eq. (154) and Q. is written i f
N.A* T3 A2 A, and A as
2>+ In| = | |. 158
i (5] 159
Qvac(Axv Ay) = U(Axv Ay) + Qg/[_s o, (162)

2
£ 2N.AY[3 A? N A} [3 A2 _ M5 a2 A2 hxo hyo
qvaciF Quuc(ALA) =—2(2A2 4+ A2) —22A, \/E A
Q [ + In < >}~|— [ +ln< ﬂ ( v) g%( ) g

MS  (47)% |2 A2 (47)% |2 A2
(159) 2% IA2A, +4l A2A2+2MA§
% 9%
) (A10+ 420) 4 2N A3 A2
One can define the scale A-independent parameters + r AY + (@r)? 2+1 A2
A, = gMS MS and A, = JusTus using Eqgs. (132)—(134). It is 0
V2 N A% T3 A2
1nstruct1ve to write Eq. (155) in terms of the scale- + 214 In[— ). (163)
47)2 (2 A2
independent A, and A, as (47) ¥

When the couplings and mass parameter are expressed in terms of the physical meson masses, pion decay constant, kaon
decay constant, and Yukawa coupling, one can write

g< f,J(:;) o) iy (ii) (=)
+{2(/11+/11F1N);('12+’12F1N)}f4 <mu> {(/11+/11F1N)16(/12 +/12F1N)}(2f ) <A_%>
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It is to be noted that the pion decay constant, the kaon
decay constant, and the Yukawa coupling get renormalized
in the vacuum because of the dressing of the meson
propagator in the on-shell scheme of the RQM model.

But Egs. (132)—(134) at the scale Ay give us gyg =
— 2fl(.ren_fzt.ren J—

Gren = 9o Xys = fﬂ,ren = f” and YMs = 5 =
% Applying the stationarity condition % =0

to Eq. (164) in the nonstrange direction, one gets

2 . .
ho = ma  xygs = mi{1 — Z‘;;z m2C' (m2)} f,. This relation
makes the curvature mass of the pion as given below in
Eq. (165) different from its pole mass. The stationarity
0Q\Vac(Ax‘7Ay)
oA,

condition =0 in the strange direction, gives

hOy - (x% + yM_s>m%(,c - %mzzzc = \/Eme%(,c - f_\/%mzzrc
Using the expression of hym(/\o) = hy in Eq. (131), one
gets the expression of kaon curvature mass m%(_c as written
below in Eq. (166). It is pointed out that the pion curvature
mass m, . (as in Refs. [68,70]) and the kaon curvature mass
are different from their pole masses m, and my due to the

|

QRQM(AJH Ayv T? /’l) =

2 2

(2f1if; £2) (A_> )

mg

m
— (hy + hypin)

A A
+( 1 IFIN)

AZ
A o)

u

n {4 + AipN) + (A + Aopin) }
16

2

(m* + miy) {f72[ <A§> " (2fk — f2)?

m;

A}
s (5) +

consistent on-shell parameter fixing. The minimum of
the effective potential remains fixed at xyg = f, and

2 —Jr
Vas = ( fK\/Zf ),
N.
m2. = m3 {1 - ﬁmﬁ@(m%)], (165)
2 2 N.g 2 2000, 2
mK.c = myg 1 - (4 )2 C(mﬂ’mu) + mﬂc (mmmu)
7
(ms _mu)z)
-1 -—==")C(m%, m,,m,)
(1=t e
m% —m? + 2m3 In(==
4 (1 —&) - ('"")ﬂ. (166)
K my

The grand potential of the RQM model is written as

QRQM(Ax’ Ayv T» /“l) = Qvac(Ax7 Ay) + ng” (x’ y)'

A A,
<m_?) } - (hx + hxFIN)fﬂ <m_u>

A2\ /A,
woor) g - (55 (32)

(167)

(¢ + cpNroT)

A i {2041 + Aipn) + (2 + /12F1N)}f4 AY
8 \mi

2N A% [3 A2 5 2tf
e [3-n(51) ~com) - mc )]

N u

N A A
2 [2on(22) - cto) - i

(4n)?

mLt
d3

—2N.T Z /—P{ln 1+ e_E-?/T)] +1In[l + e_E.?/T)]}.

f=ud,s (2”

One gets the nonstrange condensate A, and strange
condensate A, in the RQM model by searching the global
minimum of the grand potential in Eq. (168) for a given
value of temperature T and chemical potential y

0Q.RQM(AX, A),, T, ,Ll) _ ()QRQM(AX, Ay, T,/l)

oA, oA,

=0. (169)

In our calculations, we have used m, = 138.0 MeV,
and mg = 496 MeV. Here in the RQM model, fixing
my + my, = (547.5)* + (957.78)> and then taking the
mass as 527.58 MeV, one gets the 7/ mass equal to

968.89 MeV. The pole masses m, = 527.58 MeV and

(168)

|
m, = 968.89 MeV have been used for calculating the
self-energy corrections (for 7, %) and fixing of the param-
eters in the on-shell scheme because it has been checked
that when the masses are calculated with the new set of
renormalized parameters and respective self-energy cor-
rections are added, the same pole masses are reproduced.

V. CURVATURE MASSES OF THE MESONS

The respective curvature of the QM, QMVT, and RQM
models’ grand potential in Eqgs. (17), (30), and (168) at its
global minimum gives the temperature and chemical
potential dependence of the scalar and pseudoscalar masses
of the mesons,
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2 _ PQqwyomvryrom (T 43 %, Y)

m b =
“|1.om/QMvT/RQM 084,098 a1

The a=s and p respectively denote the scalar and
pseudoscalar mesons,

mi.ab'T,QM/QMVT/RQM = mi,ab'QM/QMVT/RQM + (5m2,ab>2-
(170)

The meson masses get their temperature (chemical poten-
tial) dependence from the temperature (chemical potential)
dependence of the x and y. The explicit temperature
(chemical potential) dependence of the quark-antiquark
potential in the grand potential gives rise to the term
(6m} ,,)* which remains the same in the QM, QMVT,
and RQM models. The QMVT model meson mass matrix
in the vacuum is written as

QA (x,y)
aga,aagmb min

= (mgap)® + (6my )%

2 _
m(l,ab |QMVT -

(171)

The QM model vacuum meson masses ma . evaluated in
Refs. [18,19] from the second derivatives of the pure meson
potential U(x, y)] as presented in Table I have been renamed
in the above as (mQ,,)* because the parameteres will be
different in the QMVT (RQM) model. The mass modifica-
tions (&m}, ,,)* caused by the one quark-loop vacuum
correction are presented in the Appendix A. The renorm-
alization scale A dependence of the parameter 1, in the
QMVT model makes the mass expressions (mQ,,)?* scale
dependent. The above dependence is completely cancelled
by the scale A dependence present in the (5ma ) The
scale-independent vacuum meson masses 1, ., [omyr have
been calculated in Appendix B of Ref. [59].

Mass modifications due to the quark-antiquark contri-
butions at the finite temperature (chemical potential) are
calculated by taking into account the complete depend-
ences of all the scalar and pseudoscalar mesons in Eq. (4).
Diagonalizing the resulting quark mass matrix, the finite
temperature expressions of the mass modifications in the
QM model were calculated in Ref. [19] as the following:

QI (T, u, x,y)
sm 2 a9 I 172
( aab> QM ag(z,uaéa,h min ( )
d3p 1 |: _ 2 mjzf,am%,b
E n; +nf) My =25
= xy/ Ef a 2Ef

nry m
+ (b} +b7) <7f ”’)} : (173)
f ! 2EfT

The notations n; and by have the following definitions:

and by =ny(l-ny). (174)

+ _
ny = EX)T

1+e"r
The m%a = 0m‘}2¢ /0,4 is the first partial derivative and the
M, = 0m7 ,/0&,, is the second partial derivative of the
squared quark mass with respect to the meson fields &, .
Table III of Ref. [19] shows the calculated values of these
derivatives.

The meson mass expressions at the finite temperature in
the QM and QMVT model are written as

mrzl,ab T.QM = (z ab + (5maab) ‘QM' (175)
mlzx,ab T.QMVT = mrzl,ab QMVT + (6m(l;.ab)2‘QM (176)

The vacuum curvature masses and pole (physical) masses of
the mesons are the same in the QM and QM VT mode, but the
curvature masses of the mesons in the RQM model are
different from their pole masses due to the on-shell parameter
fixing in the RQM model. In the RQM model, the curvature
meson mass matrix is calculated by taking the double
derivative of Eq. (162) with respect to the meson fields &,

az'Q'vac (Ax’ A))
aga,aagmb min
= () + (G

a,ab

mi.uh|RQM = mrzl,ubc =
(177)

Here c has been used to denote the curvature masses for the
RQM model. The (m) ,,)* are evaluated from the double
derivatives of U(A,, A,) which is the pure meson potential
written in terms of scale-independent masses. The expres-
sions of the masses (m® ,)? are the same as that of the

a,ab

vacuum masses (m,.,,)> in the QM model, but here the
superscript O signifies the fact that the parameters are
evaluated in the MS scheme at the scale A,. Here it is
relevant to point out that the finite part of the quark one-loop
vacuum correction in the RQM model contains the terms
2N AL(3) N.AY(3) .
) 204 G
while in the QM VT model only scale-dependent terms have
been considered as the finite part of the correction. Therefore
the quark one-loop vacuum corrections to the curvature
masses in the RQM model (6m,; RQM) are different from the
QMVT model vacuum corrections (5my, ,,)*. If one con-
siders the QMVT model finite part of the quark one-loop
vacuum corrections, exactly the same as those of the RQM
model, the QMVT model parameters of the present calcu-
lation will change such that the resulting effective potential
remains the same as in the present calculation. The RQM
model quark one-loop vacuum corrections are defined as

in addition to the scale-dependent terms
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(6 VyRQM)z _ azg%ac:l:
aab aga,aaga.b min

0A2 0A2 2
_Ne S () () A
8”2 f=ud.s aga,a afax,b A?

A2 A%
2 _J
+Af(1 +ln< )) aéaaa‘flxb]

(178)

where f=u,d = x, Ay = A, and for f = s —y,Af =A,.
The first partial derivatives 0AZ 7/00a = om?> #/080a @ d
the second partial derivatives 62A2 [(064.0080) = O*m3
(0&4.40E,p) of the scale-independent squared quark masses
with respect to the different meson fields &, ;, can be taken
from Table III of Ref. [19]. Evaluating the above corrections
using the condition in Eq. (153) for the A = A, the final
expressions of the vacuum curvature masses in the RQM
model are calculated and presented below:

4
(Mye)? = mi+ Ajo(x* +y?) + ’1_§0x2 \/—Coy + 3269 x*[1 +2Inf, —C(m2) — m2C'(m2) — 21Inx], (179)
(mg,c)* = m§ + Ao(x* + y?) + %xz + i;i) ]3\]29 x*[1 +61Inf, —3C(m2) —3m2C' (m2) — 61nx], (180)
A
(my ) = mg + Ao(x* +y*) + % (x* = V2xy +2y?) — 5%
N
PN 2 ey 1 22)(1 4+ 217, — Clm2) - m2C () ~ (F*Inx + (vV2y) Inv2y)|,
2 (x+ fy)
(181)
A
(mpp0c)* = m§ + Ao (x* +y?) + % (x* +y%) + % (2x + V/2y)
N
- 48‘9’2 (02 +32)(1 +21n f, = C(m2) — m2C'(m2)) = 2(* Inx + y? In v/2y)], (182)
A
(i s5e)> = m 4 g (37 +3%) + 22 (2 +32) = L (4 = V/2y)
Ncg4 b 2 2 2000, 2 2 2
+ o6 (x4 4y?)(1 +2In f,, — C(m2) — m2C'(m2)) — 2(x2 Inx + 4y2 In v/2y)]. (183)
V22 C
(mp08)* = —20 (¥ +y?) - go (V2x —2y)
+ \/;é\’zg [(x2 = 2y?)(1 +2In f, — C(m2) — m2C'(m2)) — 2(x*Inx — 2y? In v/2y)], (184)
A 2
(mgp0c)* = mg + % (722 + 4V2xy + 5y2) + oo (x> +y2) — @ (V2x +y)
N
+ 4803 (2 +y2)(1 +6Inf, —3C(m2) — 3m2C'(m2)) — 6(x*Inx + y*In v/2y)], (185)
A x2 2
(ms,880)2 = (2) ?O(SX —4\/§xy+7y )+,{20<2 +2y2> +\/;CO <\/_x_§>
N.g* 2 2000, 2 2 2
+ == 96,2 [(x? +4y>)(1 +61In £, —3C(m2) — 3m2C' (m2)) — 6(x*Inx + 4y*In \/Ey)], (186)
22 x2 c
(ms,080)2 - 310 (\/E}C —Xy - \/'yz) + \/’/120 (? -y ) -+ ﬁ (X - \/Ey)
N 2¢*
+ ;6{129 [(x2 = 2y?)(1 + 61n £, — 3C(m2) — 3m2C (m2)) — 6(x2 In x — 2y* In V/2y)]. (187)
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We have checked that in vacuum for x = f, and

— (sz_fn'> 2
y= V2 p.llc

mass my. calculated from Eq. (165) and m; 4. =

, m becomes equal to the pion curvature
i s
equal to the kaon curvature mass calculated from Eq. (166).

mZ . = mj, .. The curvature masses of the scalar ¢ and

pseudoscalar 7 are obtained as

Mo).c = 2 [(mz(p) 00c T m; s(p). 8gc)
- \/ ).00c ( )88c) +4m3(p),080J‘ (188)

The pseudoscalar 7' meson curvature mass is given by

1
Mye =75 [(mﬁ.mc + m? gs.)

+ \/(mg,OOC -

The curvature masses of the mesons at finite temperature
(chemical potential) in the RQM model are obtained as

mﬁ.ssf + 4m3,08cJ . (189)

mi,ah'T,RQM = mi,uhc + (5mI,uh)2|QM' (190)

VI. RESULTS AND DISCUSSION

Table II presents the parameters of the different models
when the o masses are different. The pion decay constant
[ the kaon decay constant f, and the Yukawa coupling ¢
do not get any correction at the scale A, in the RQM
model. Therefore, the RQM model minimum of the
vacuum effective potential at A, = m, ,; = 300.3 MeV
and A, =m;=433.34 MeV (as x = f, =924 MeV

k=)

and y = WT =94.5 MeV) does not change from its

corresponding position in the QM and the QMVT model.
The curvature masses of the pion and kaon are the same as
their physical (pole) masses in the QM and QMVT model.
Due to the consistent on-shell parameter fixing in the RQM
model, the curvature mass of the pion calculated from
Eq. (165) m, . = 135.95 MeV is different (and 2.05 MeV
smaller) from its physical mass m, = 138.0 MeV while the
kaon curvature mass obtained from Eq. (166) mg . =
467.99 MeV is 28.01 MeV smaller than its pole mass
myg = 496.0 MeV. We point out that the respective explicit
symmetry breaking strengths /2, and &, in the nonstrange
and strange directions which do not change in the QMVT
model, get modified (reduced) by the consistent on-shell
treatment of the quark one-loop vacuum fluctuation in the
RQM model. The consistency and exactness of the RQM
model results are buttressed by the findings in Table II
which show that the strength 4, gets reduced by a small
amount when compared to its QM model reference value
while the strength &, gets reduced by a relatively large
amount. The above-mentioned changes are expected
because f, and fx do not change while the pion and kaon
curvature masses get reduced respectively by a small and a
relatively large amount. Another important result in Table II
worth pointing out is the noteworthy increase of the
coefficient ¢ of the 't Hooft determinant term for the
2 4+ 1 RQM model. Thus due to the modification caused by
the fermionic one-loop vacuum fluctuation, the Uy,(1)
anomaly gets enhanced in the RQM model. The modifi-
cations of the U,(1) anomaly caused by the vacuum
fluctuations and its enhancement caused by the meson
vacuum fluctuations have already been reported in
Refs. [75-79].

TABLE II. Parameters of the different model scenarios. The RQM model parameters are obtained by putting

A = Aq in Egs. (126)—(131).

Model m, (MeV) A c(MeV?) A m?(MeV?) h,(MeV?3) h,(MeV?)

QM 400 46.43 4801.82 -5.89 (494.549)? (120.73)* (336.43)3
500 46.43 4801.82 -2.69 (434.305)? (120.73)3 (336.43)°
600 46.43 4801.82 1.141 (342.139)? (120.73)3 (336.43)3
648 46.43 4801.82 3.75 (275.92)? (120.73)3 (336.43)°
700 46.43 4801.82 6.63 (160.93)2 (120.73)3 (336.43)3

QMVT 400 46.43 4801.82 -8.17 (282.338)? (120.73)3 (336.43)°
500 46.43 4801.82 -5.28 (171.167)? (120.73)° (336.43)°
600 46.43 4801.82 —1.66 —(184.28)? (120.73)3 (336.43)3
648 46.43 4801.82 0.369 —(263.494)? (120.73)3 (336.43)°
700 46.43 4801.82 2.82 —(334.918)? (120.73)3 (336.43)3

RQM 400 34.88 7269.20 1.45 (442.447)? (119.53)3 (323.32)°
500 34.88 7269.20 3.676 (396.075)? (119.53)3 (323.32)°
600 34.88 7269.20 8.890 (256.506)> (l 19.53)3 (323.32)3
6438 34.88 7269.20 13.905 —(147.619)? (119.53)3 (323.32)3
700 34.88 7269.20 19.23 —(338.906)? (119.53)3 (323.32)°
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A. Comparing the effective potentials, the order
parameters, and the phase diagrams

The normalized vacuum effective potential difference

Quac (A,,334.43)-0Q0 (0,334.43 :
{2 A )4 2 (0. 1} versus the scale-independent non-

T

strange constituent quark mass A,, has been plotted in
Fig. 5(a) when m, =400 MeV and the strange quark
constituent mass A, is fixed at the 433.34 MeV. The most
shallow nonstrange direction effective potential for the s-
MFA QM model becomes deeper and deepest respectively
in the RQM and the QMVT models. The same trend is
repeated in the plots of Fig. 6(a) where the effective
potentials for all of the models become deeper due to
the increased m, = 500 MeV. The RQM model effective
potential coincides with that of the QM VT model when the

m, becomes 658.8 MeV in Fig. 6(b) and the trend of
Fig. 6(a) gets reversed in Fig. 6(c) where the RQM model
effective potential becomes deepest for m, = 700 MeV
(>658.8 MeV). It is to be noted that such trend reversal in
the effective potential of the two flavor case [74] occurs at a
lower sigma meson mass when m, > 616 MeV.
Emphasizing the important difference in the plots of
Fig. 7(a) for the strange direction A -dependent variations
of the normalized vacuum effective potential difference

{QV“<300‘3'A"';4_Q“°(300'3’0)}, we note that the RQM model
effective potential is shallower even than the QM Model
plot while the plot of the QMVT model is deepest when
m, = 500 MeV. This happens because the explicit sym-

metry breaking strength s, becomes more weak in the
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(a) m, = 500 MeV. (b) m, = 658.8 MeV. (c) m, =700 MeV.

—[0(300.3,4,)-0(300.3,0)]

2

1

= = [}
o S
] x]
g g ™
q a
1 a 20
q)o <).
3 o
S S
[ [ -40
=X =X

- |2 ) ~ | Tk -s0

[) 100 200 300 400 500
Ay

(b) (c)

FIG.7. Normalized effective potential difference in the strange direction for the QM, RQM, and QM VT models. (a) m, = 500 MeV.

(b) m, =785 MeV. (c) m, = 850 MeV.

074002-22



ON-SHELL VERSUS CURVATURE MASS PARAMETER FIXING ...

PHYS. REV. D 108, 074002 (2023)

100

100

80 80

60 60

X,y (MeV)
X,y (MeV)

401 401

20 20

100

80

60

X,y (MeV)

401

20

0 0

L
100

L
50

0

FIG. 8. Temperature variation of the nonstrange and strange order parameter. (a)

(c) m, =700 MeV.

strange direction due to the on-shell parameter fixing in the
RQM model (as is evident from Table II), and its effect on
the strange direction effective potential is more dominant
than the smoothing effect of the quark one-loop vacuum
correction for the smaller m, = 500 MeV, while the use of
the curvature masses for fixing the model parameters does
not affect the h, in the QMVT model. The strange direction
effective potentials for all of the models become deeper
with the increasing ¢ mass and, as shown in Fig. 7(b), the
strange direction variation of the RQM model effective
potential becomes degenerate with that of the QMVT
model when m, becomes 785.0 MeV. The trend of
Fig. 7(a) gets reversed in Fig. 7(c) for m, = 850 MeV
(>785.0 MeV) as the strange direction effective potential
for the RQM model becomes deepest while the QM model
effective potential is most shallow.

The temperature variations of the nonstrange and strange
quark condensates x and y (obtained from A, and A, since
the renormalization does not change the Yukawa coupling
g) at y =0 MeV are plotted in Figs. 5(b), 8(a)-8(c)
respectively for m, = 400, 500, 648, and 700 MeV. The
temperature derivative of the condensate in the nonstrange
and the strange direction when p = 0 MeV defines the
chiral crossover transition temperature (called the pseu-
docritical temperature) 7% for the nonstrange direction and
T for the strange direction. Table III gives the summary of
the pseudocritical temperatures 7% and T% for the chiral
crossover transition in the nonstrange and strange direction
for the different values m, = 400, 500, 600, 648, and
700 MeV. The sharpest QM model temperature variation
of the nonstrange quark condensate x in Fig. 5(b) when
m, =400 MeV gives rise to an early chiral crossover

0

L
100

L
50

0

m, = 500 MeV. (b) m, = 648 MeV.

transition at 7% = 112.5 MeV and a smoother condensate
variation generates a smooth chiral transition for the RQM
model occurring at T% = 121.1 MeV while a most smooth
temperature variation of the condensate causes quite a
delayed chiral crossover transition at T% = 144.1 MeV in
the QMVT model. The above trends for the nonstrange
chiral condensate temperature variations in the QM, RQM,
and QMVT models are repeated in Fig. 8(a) when m, =
500 MeV and the chiral crossover transition occurs respec-
tively at 7% = 129.0, 133.6, and 156.8 MeV in the QM,
RQM, and QMVT models.

The RQM model temperature variation of the non-
strange quark condensate merges with that of the QMVT
model when m, = 648 MeV in Fig. 8(b) and the y =0
chiral crossover transition in the nonstrange sector occurs at
T% = 178.1 MeV in both models. This pattern is a conse-
quence of the coincidence of the RQM model plot of

the normalized vacuum effective potential difference

{Q‘”““(A*’334'43}4_QV"‘“(0’334'43)} with the corresponding plot in

the QMVT model in Fig. 6(b) for the m, = 658.8 MeV
case. Here, it is relevant to remind the reader that in
the recent two flavor work [74], it was shown that the
constituent quark mass (A) dependent variation of the
vacuum effective potential and the temperature variation of
the chiral order parameter for the on-shell parameter fixing
scheme in the RQM model completely merges with the
corresponding variations computed with the curvature mass
parametrization in the QMVT model. In the present 2 + 1
flavor work, since the vacuum effective potential depends
on the nonstrange and strange constituent quark mass
parameters A, and A, variations in the two independent

TABLE III.  Critical temperature in MeV of the chiral crossover transition at 4 = 0 MeV for the nonstrange sector
T% and the strange sector T% for m, = 400, 500, 600, 648, and 700 MeV.

m, (MeV) QM T% RQM T% QMVT T% QM T% RQM T QMVT T%
400 112.5 121.1 144.1 231.6 210.1 236.1
500 129.0 133.6 156.8 238.6 2133 241.1
600 146.1 158.6 170.8 248.3 220.6 247.8
648 154.5 178.1 178.1 254.8 229.1 251.8
700 163.9 195.8 186.3 261.7 240.3 256.7
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directions, the A, variation of the effective potential is
somewhat influenced by its A, variation. Hence even

though the RQM model nonstrange direction variation of

the vacuum effective potential {QV“°<AX’334'43}4_QV“(0’334'43)}

coincides with the corresponding effective potential varia-
tion in the QMVT model for m, = 658.8 MeV, the
consequential coincidence of the nonstrange order param-
eter temperature variations for both model settings of the
RQM and QMVT occurs when the ¢ mass is smaller by
about 10 MeV, i.e. m, = 648 MeV.

Figure 8(c) for m, = 700 MeV shows that the most
smooth nonstrange quark condensate temperature variation
takes place in the RQM model and the x = O chiral crossover
transition occurring at 7% = 195.8 MeV is very delayed
while a less smooth chiral crossover transition is noticed in
the QMVT model occurring earlier at 7T 7 —186.3 MeV.
Note that the above trend for m, = 700 MeV is opposite of
what one observes in Fig. 8(a) for the m, = 500 MeV case.
This happens because the nonstrange direction effective
potential in the RQM model becomes deepest for the m, =
700 MeV (>658.8 MeV) case while it is shallower than that
of the QMVT model for m, = 500 MeV (<658.8 MeV).

The temperature variations of the strange quark con-
densate y have been plotted by the purple dashed line for
the RQM model, the dotted blue line for the QM model,
and the thick dashed green line for the QMVT model in
Figs. 5(b), 8(a)-8(c) respectively for m, = 400, 500, 648,
and 700 MeV. The temperature variations of the strange
condensate in Figs. 5(b) and 8(a) develop a small kink-like
region near the 7% due to the sharper and the faster chiral
transition occurring in the nonstrange direction of the QM
Model. The above kink-like structure gets smoothed out
due to the quark one-loop vacuum correction in the RQM
and QMVT models. The strange condensate melting in the
QMVT model for the 160-240 MeV temperature range is
larger than that of the QM model result. When the
temperature variations of the strange condensate y for all
three model scenarios are compared, its melting is most
significant in the RQM model. Due to a significantly large
and early melting of the strange condensate, the pseudoc-
ritical temperatures 7% for the different m,, values are found
to be significantly smaller in the RQM model by about 21

200

200

to 28 MeV when those are compared with corresponding
values of 7% in the QM and QMVT models as is evident
from Table III. The RQM model strange condensate
melting comes closer to its temperature variation in the
QM model for the large m, = 700 MeV case. The signifi-
cantly large melting of the strange condensate in the 2 + 1
flavor RQM model gets explained when one notes that the
on-shell parameter fixing gives rise to a relatively large
reduction in the explicit symmetry breaking strength £, in
the strange direction while the nonstrange direction
strength /1, is reduced by a small amount.

Figure 5(c) depicts the phase diagram for the m, =
400 MeV case where the line types for different models are
labeled. The QM model critical end point (CEP) at
(Tcep, pcep) = (96.76,113.3) MeV  shifts  significantly
(as also reported in [53-55,57,58]) to a far right position
in the lower corner of the u-T plane at (Tcgp, Ucpp) =
(32.23,285.91) MeV for the QMVT model. Note that
the CEP moves higher up in the phase diagram at
(Tcgps ticep) = (37.03,243.12) for the RQM model. The
phase diagrams for m, = 500 MeV have been presented in
the p-T plane of Fig. 9(a). The QM and RQM model
phase diagrams stand in close proximity of each other.
Here also, the CEP of the QM model at (Tcgp, tcgp) =
(97.52,165.24) MeV shifts to a far right lower corner of
the phase diagram at (Tcgp, ucgp) = (19.8,311.85) MeV
in the QMVT model. The robust shift in the present 2 + 1
flavor QMVT model is quite large (i.e. pcgp is larger by
11 MeV and Tcgp is smaller by about 10 MeV) when it is
compared with the corresponding shift reported [74] for the
two flavor QMVT model setting. The CEP in the RQM
model moves to a significantly higher position in the phase
diagram at (T cgp, scep) = (38.71,265.42) MeV when it is
compared with the position of the CEP in the QMVT
model. Similar to the two flavor [74] result, here also in
the 2 4 1 flavor investigation, the RQM model and the
QMVT model phase diagrams (crossover lines in the entire
u-T plane) merge with each other in Fig. 9(b) for
m, = 648 MeV. The above overlap is a consequence of
the coincidence that occurs in the normalized vacuum
effective potential difference and the nonstrange order
parameter plots respectively in Figs. 6(b) and 8(b) for both
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FIG. 9. Phase diagrams for different m,. (a) m, = 500 MeV. (b) m, = 648 MeV. (c) m, = 700 MeV.
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models RQM and QMVT. The QM model CEP is at
(TcEp, porp) = (88.37,223.3) MeV in Fig. 9(b). For the
m, = 700 MeV case in Fig. 9(c), the phase diagrams for
the RQM and QMVT models are crossover lines in
the entire u-7 plane and here again, the familiar trend
reversal is witnessed as instead of the RQM model phase
diagram, the phase diagram of the QMVT model stands
closer to the QM model phase boundary. The first order
line gets terminated at the CEP position (7T cgp, gcpp) =
(82.3,273.12) for the QM model phase diagram.

B. Differences with the two flavor results

Here, we discuss and underline the important differences
that exist between the results of the present 2 + 1 flavor
QM, QMVT, and RQM model studies and the results of
Ref. [74] for the corresponding two flavor model inves-
tigations. Table IV presents the comparison of the pseu-
docritical temperature data of the chiral crossover transition
at u = 0 for the two flavor (data taken from Table II in
Ref. [74]) and the 2 4 1 flavor of the QM, QMVT, and
RQM models. Denoting the chiral crossover transition
temperature by (T¢),r and (T¢). ) respectively for
the two and the 2 + 1 flavor models, the difference AT% =
(T€)2r = (TE)(241)F for each model has also been tabulated
in Table IV for comparison. Note that the chiral transition
temperatures in the 2 + 1 flavor models are in general
smaller than those in the two flavor models and the
difference AT% is positive for all m, except for m, =
400 MeV in the QMVT model where the AT% =
—0.5 MeV is marginally negative. Table IV clearly shows

that the difference AT% = 10.7, 12.0, and 10.7 MeV
respectively for m, = 400, 500, and 600 MeV between
the two flavor and the 2+ 1 flavor chiral transition
temperature is highest for the RQM model while the
corresponding difference AT% for the QM and QMVT
models is very small (i.e. two flavor and 2 + 1 flavor chiral
transitions at ¢ = 0 are almost overlapping).

Table V compares the crucial differences that exist
between the location of the CEP in the two flavor (taken
from Ref. [74]) and the 2 + 1 flavor calculations of the QM,
QMVT, and RQM models when m, = 500 MeV. The
location of the CEP in the 24 1 flavor computation
coincides with that of the two flavor calculation for the
QM model. In the QM VT model, the two flavor position of
the CEP at (Tcgp, ficep)ar = (29.48,299.6) MeV  goes
down and after registering a decrease (increase) of about
10 MeV (12 MeV) in the temperature (chemical potential)
direction, the CEP gets located at (Tcgp, UcEp)(241)r =
(19.8,311.85) MeV in the 2+ 1 flavor calculation. In
complete contrast to the QMVT model result, the two
flavor location of the CEP in the RQM model at
(TcEp, picrp)ap = (36.2,277.3) MeV moves up leftward
and after registering an increase (decrease) of the
2.51 MeV (about 12 MeV) in the temperature (chemi-
cal potential) direction, the CEP gets located at
(Tceps Heep) o11)r = (38.71,265.42) MeV in the 2+ 1
flavor RQM model calculation. The CEP locations for
the two and the 2 + 1 flavor have been compared in the
RQM model also when the m, = 400 and 600 MeV in
Table V. When m, =400 and 600 MeV, the shift in
the location of the CEP from the two flavor calculation

TABLEIV. The ¢ = 0 MeV chiral crossover transition pseudocritical temperature is denoted by (7%), (data has
been taken from Table II in Ref. [74]) for the two quark flavor and the (7% )(2 S)F (data from Table III) for the 2 + 1
quark flavor of the QM, QMVT, and RQM models when m, =400, 500, 600, and 700 MeV.

AT¢ = (T)f‘)zp - (T{)(2+1)F-

QM (MeV) QMVT (MeV) RQM (MeV)

m, (MeV) Tirr Téainr AT Teor T (241)F AT% Ttor Té(41)F ATY
400 113.3 112.5 0.8 143.6 144.1 -0.5 131.8 121.1 10.7
500 130.2 129.0 1.2 157.3 156.8 0.5 145.6 133.6 12.0
600 147.8 146.1 1.7 173.1 170.8 2.3 169.3 158.6 10.7
700 166.1 163.9 2.2 189.8 186.3 3.5 203.6 195.8 7.8

TABLE V. The position of the critical end point in the phase diagram has been denoted as (7' cgp, ficgp ), for the two quark flavor and
(Tceps Hcrp) (2+1)F for the 2+ 1 quark flavor of the QM, QMVT, and RQM models. m, = 400, 500, and 600 MeV.

QM (MeV) QMVT (MeV) RQM (MeV)

m, MeV)  (Tcep.icep)or  (Teeps#eep)ornyr (Teepspicer)or (Tcepsbcer)oinyr (Tcepsbeep)ar (Tceps Hoep) o4 1)r
400 e (96.76, 113.30) e (32.23, 285.91) (38.20, 253.50) (37.03, 243.12)
500 (97.70, 165.20) (97.52, 165.24) (29.48, 299.60) (19.80, 311.85) (36.20, 277.30) (38.71, 265.42)
600 e e e e (7.20, 322.50) (17.70, 317.45)
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FIG. 10. Phase diagrams of the present 2 + 1 flavor calculations are compared with the two flavor phase diagrams for the QM, QM VT,
and RQM model calculations taken from Ref. [74] when m, = 500 MeV.

to the 2 + 1 flavor calculation in the RQM model follows
the same pattern that has been observed for the m, =
500 MeV case.

The above discussed findings of Tables IV and V are
confirmed when one compares the two flavor and the 2 + 1
flavor model phase diagrams in Figs. 10(a)-10(c) respec-
tively for the QM, QMVT, and RQM models. The phase
boundary and the location of the CEP for the two flavor
QM model completely coincide with those of the 2 + 1
flavor QM model in Fig. 10(a). The two flavor phase
diagram in the QM VT model nearly coincides with that of
the 2 + 1 flavor QM VT model up to u = 180 MeV and the
2 4 1 flavor phase boundary shifts rightwards after cross-
ing the two flavor phase boundary near u ~ 200 MeV in
Fig. 10(b). Further, it is noticed that the CEP location for the
2 41 flavor case registers a noticeable downward shift
towards the right side of the phase diagram (as also discussed
in the preceding paragraph) when it gets compared with the
CEP of the two flavor QMVT model. Our findings in the
exact on-shell renormalized RQM model are worth empha-
sizing, because unlike the QM and in complete contrast to the
QMVT model, the 2 4 1 flavor RQM model phase boundary
lies at a noticeable distance below the two flavor RQM model
phase boundary in Fig. 10(c) and the CEP for the 2 + 1 flavor
RQM model gets located upward on the left side of the
location of the two flavor CEP and phase boundary in the
RQM model. The above-mentioned findings are corrobo-
rated in Fig. 11 where the two flavor and the 2 + 1 flavor
phase diagrams for the RQM model have been plotted when
m, = 400, 600, and 700 MeV.

The well separated 2+ 1 flavor RQM model phase
boundary gets located to the left of the two flavor phase
boundary and remains below it even when the two and
2+ 1 flavor phase transitions become crossover in the
entire yu-T plane for the m, = 700 MeV case. The temper-
ature direction upward shift of the 10.5 MeV (while
the chemical potential decreases by 5.05 MeV) is
noticeable when the two flavor RQM model CEP at
(Tceps tcep)or = (7.20,322.50) MeV moves up in the
phase diagram for the m, = 600 MeV case and gets
located at (T'cgp, fcep) o11)r = (17.70,317.45) MeV in

the 2 + 1 flavor calculation.

It is clear from Figs. 10(c) and 11 that when the ¢ meson
mass increases, the downward shift in the location of the
CEP is smaller in the 2 + 1 flavor case if it is compared
with that of the two flavor case of the RQM model. It means
that the difference between the two flavor and the 2 4 1
flavor location of the CEP in the temperature direction
increases with the increasing m,. The above behavior in the
2 41 flavor RQM model is caused by a relatively large
reduction in the explicit symmetry breaking strength &,
while &, gets reduced by the same small amount in both the
2 + 1 and the two flavor RQM models. Recall that /2, and
hy do not change in the curvature mass parameter fixing of
the QM VT model where one gets an opposite trend of what
one observes in the RQM model when the CEP for the
2+ 1 flavor QMVT model shifts noticeably down in
reference to the CEP of the two flavor case.

C. Modification of the U, (1) restoration pattern

The temperature and chemical potential variations of the
meson masses have been computed and the results obtained
in the RQM model have been compared with the corre-
sponding results in the QMVT model. We have taken
m, = 600 MeV in all of these computations. Figures 12(a)
and 12(b) depict the respective plots in the RQM and
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First order ——
CEP O

241 F m=400 MeV, Crossovel

200F T mem e Y
First order ———

150

. 2F m,=700 MeV, Crossover — - —
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N
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FIG. 11. Phase diagrams of the present 2 4 1 flavor calcula-

tions are compared with the two flavor phase diagrams for the
RQM model calculations taken from Ref. [74] when m, = 400,
600, and 700 MeV.

074002-26



ON-SHELL VERSUS CURVATURE MASS PARAMETER FIXING ...

PHYS. REV. D 108, 074002 (2023)

1600

!
u=0MeV /¢
1400 - ]
gt
i
-
1200} n
=== - //
0 .,\ '/
~ 1000} N P
3 N -
=
>~ 800[ ,/
a P
L] ’
= 7
600 5 ,
- o R '/
400} S 0 ]
~ _’/ RQM Model m = - =
’ G= =
Gl SO S - e |1
n'—
"0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3
TITX
(a)

QMVT models for the temperature variations of the a, o,
7, and 77/ meson masses on the reduced temperature scale at
zero chemical potential. Note that the chiral crossover
transition temperature is 7% = 158.6 MeV in the RQM
model while it is 170.8 MeV in the QMVT model. In the
RQM model calculation, we have found that the curvature
mass of the ' meson m,y . = 1142.48 MeV in the vacuum
(at T, u = 0 MeV) is significantly larger than its pole mass
of m, = 968.89 MeV. A significant enhancement in the
vacuum curvature mass of the a; meson has also been
obtained in the RQM model as m, .= 1125.46 MeV
while the vacuum curvature mass of o gets noticeably
reduced to m, . = 526.8 MeV from its pole mass value of
m, = 600 MeV, and the curvature mass of 7z gets reduced
to m, . = 135.95 MeV. The sizeable increase in the vac-
uum curvature masses of the 5/ and a, mesons and the
noticeable reduction in the vacuum curvature masses of the
o and 7 mesons are explained when one notes that the quark
one-loop vacuum correction causes significant enhance-
ment in the coefficient ¢ (see Table II) of the ’t Hooft
determinant term for the 2 + 1 RQM model.

When T—T, = 1, the masses of the chiral partners (o, ) and
(ay,n') become degenerate because of the chiral symmetry
restoration. One can clearly see from Figs. 12(a) and 12(b)
that the mass difference between m, = m, and m,, = m,
at T—TI = 1 is significantly larger in the RQM model when it
is compared with that of the QMVT model. Thus at the
chiral transition temperature, the U, (1) anomaly is sig-
nificantly larger in the RQM model. The U, (1) symmetry

restoration will take place for T—T,, > | when the degenerate

temperature variations of the ¢ and z meson masses
coincide with the degenerate temperature variations of
the ay and #' meson masses. The nature of the U,(1)
symmetry restoration pattern for % > 1 can be inferred by

noticing how the merged temperature variation lines for o
and z masses are approaching the coincident temperature
variations of the a, and #’ meson masses. We find that the
degenerate temperature variation lines for m,; . and m, . on
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The reduced temperature scale variations of ag, ¢, #, and 77/ meson masses for 4 = 0 MeV and m, = 600 MeV.

the reduced temperature scale for T—TI > 1 approach the
degenerate temperature variations of m, . and m, . quite
slowly in the RQM model in Fig. 12(a) when the results are
compared with the corresponding results for the QMVT
model in Fig. 12(b). Thus it is inferred that the U,(1)
restoration gets delayed and a sizable U,(1) anomaly

persists even up to % = 2.6 due to the quark one-loop

vacuum correction when the parameters are fixed by the
exact on-shell method in the RQM model. We point out that
the vacuum curvature mass of the @y meson increases in the
QMVT model also as m, = 1086.26 MeV, but this
increase (of about 60 MeV over m, = 1028 MeV) is
noticeably less than the increase calculated in the RQM
model. The modifications of the U, (1) anomaly caused by
the vacuum fluctuations and its enhancement caused by the
meson vacuum fluctuations have been investigated in the
functional renormalization group framework and reported
in Refs. [75-79].

The RQM and QMVT model plots for ay, o, z, and #’
meson mass variations on the reduced chemical potential
scale are shown respectively in Figs. 13(a) and 13(b) when
the temperature is 7 = 30 MeV. The pseudocritical chemi-
cal potential for the chiral crossover transition is p,. =
312.2 MeV in the RQM model while the chiral crossover in
the QMVT model occurs at . = 328.5 MeV. One notices
that the masses of mesons are nearly constant up to Mﬁ =0.8

and the masses register a rapid drop afterwards and attain
their minimum  at ﬂﬁ = 1. The m, variation in the RQM

model in Fig. 13(a) shows a very sharp drop as it becomes
92.7 MeV at the chiral crossover transition when ﬂﬂ =1,

while correspondingly for the QMVT model in Fig. 13(b),
the m,, variation drops to the minimum of 165.6 MeV. The
above behavior is expected because in the RQM model we
are near the critical end point as we recall that in the RQM
model the CEP lies at (Tcgp = 17.7, pcgp = 317.45) MeV,
while the chiral phase transition in the QMVT model for
m, = 600 MeV is a crossover in the entire 7-u plane and
the model does not have a CEP. The scalar susceptibility
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of n and ' meson masses for T = 30 MeV. m, = 600 MeV.

behaves as ~# and it diverges at the CEP where m,

becomes zero. Similar to the case of temperature variation,
itis evident that the U4 (1) anomaly is significantly larger in
the RQM model when ”ﬁ = 1. It is also clear that the larger

U, (1) anomaly persists in the RQM model even when £

becomes 3. Thus the U,(1) anomaly restoration with
respect to the increasing chemical potential also gets
delayed in the RQM model.

Figure 14(a) depicts the reduced temperature scale
variations of the # and 7/ meson masses at g = 0 while
Fig. 14(b) plots the variations of the # and #' meson masses
on the reduced chemical potential scale for 7 = 30 MeV.
The vacuum curvature mass of the # meson in the RQM
model is m,. = 523.97 MeV which shows a slight
decrease from its pole mass m, = 527.58 MeV. The
difference between the vacuum masses of ' and 7 mesons
is (m, . —m,.) = 618.5 MeV in the RQM model while it
is (m, —m,) = 423.6 MeV in the QMVT model. The #’
meson mass initially decreases and its minimum in the

RQM model occurs at the %: 1.13 where the mass
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The reduced chemical potential scale variations of m, , m,, m,, and m, at T = 30 MeV. m, = 600 MeV.
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(a) Reduced temperature scale variations of 77 and 7’ meson masses at 4 = 0. (b) Reduced chemical potential scale variations

difference becomes (m,; . — m, ) = 183.7 MeV. The cor-
responding minimum in m,, occurs in the QMVT model
at % = 1.11 where the 5 and #' mass difference is
(my —m,) =767 MeV. The significantly larger mass
difference between n and 5 masses in the RQM model
at % = 1.13 tells us that the U (1) anomaly is quite large in
the RQM model even after the chiral crossover transition
has taken place. The above findings corroborate our ear-
lier conclusion that the enhanced U 4 (1) anomaly persists in
the RQM model even up to T—§ =3 and Uy(1l) axial
symmetry restoration gets delayed in the RQM model.
The above trend becomes stronger if we consider 7 and #’
mass variations on the reduced chemical potential scale in
Fig. 14(b) as the mass difference is (m, —m,.) =
287.6 MeV in the RQM model, while in the QMVT model

(m, —m,) = 137.93 MeV when £ = 1.06. For £ > 1.06,
He He

the 7’ and # mass difference in the RQM model keeps on
getting reduced as it gradually approaches the correspond-
ing mass difference in the QMVT model.
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The QM, RQM, and QMVT model plots of #' and 7
meson masses with respect to the quark chemical potential
are presented in Figs. 15(a) and 15(b) for the respective
cases of T = 30 MeV and 100 MeV. Comparing the #’ and
n mass splitting in the QM model with that of the RQM and
QMVT models, one can see the effect of the quark one-loop
vacuum correction on the Uy (1) symmetry restoration
pattern at high baryon densities/chemical potentials.
Since the coefficient ¢ of the 't Hooft determinant term
increases significantly due to the consistent on-shell
parameter fixing, one gets the largest (m, . —m,.) for
the RQM model in the vacuum and near the chiral transition
(u. = 312.2MeV). It is worth emphasizing that when y =
400 MeV in Fig. 15(a), the mass splitting (m,; . — m, ;) =
272.3 MeV in the RQM model becomes smaller than that
of the QM model which is 274.7 MeV. The above behavior
is caused by the fastest growth of m, . in the RQM model
for the 4 > p,. The largest mass splitting is observed in the
QM model with respect to the increasing chemical poten-
tial. When u =500 MeV, the respective values of the
(my o —m, ) in the QM, RQM, and QMVT models are
220, 152, and 127 MeV. One gets a mass gap in the 77/ and n
masses at u,. = 306.9 because the chiral phase transition is
first order in the QM model when 7' = 30 MeV. The chiral
transition is a crossover for the QM, RQM, and
QMVT models for T = 100 MeV in Fig. 15(b) and the
respective values of pseudocritical chemical potential y,. in
the QM, RQM, and QMVT models are 205.6, 238.3, and
265.2 MeV. Figure 15(b) shows that for higher temperature
T =100 MeV, 2094 MeV of equal mass splitting
(my.—m,.) is observed in both the QM and RQM
models at a smaller chemical potential y = 336 MeV.
For p > 336 MeV, the mass splitting becomes largest in
the QM model. The respective values of (m, . —m, ) in
the QM, RQM, and QMVT models are 162, 119, and
94 MeV when u = 500 MeV.

The masses of m, and m, versus the baryon chemical
potential yp have been plotted in Fig. 3 of Ref. [83] for the
QM model (for m, = 550 MeV) where the maximum g is
1.5 GeV which gives the quark chemical potential
u =500 MeV. The results of Fig. 3 (middle panel for
T = .1 GeV) in Ref. [83] are very similar to the QM model
result of the present work in Fig. 15(b) where it has been
shown that (m, . —m, ) is significantly large in the QM
model. The results [in Figs. 15(a) and 15(b)] discussed in
the preceding paragraph enable one to conclude that the
fermionic vacuum one-loop correction even in the RQM
model calculations facilitates the U, (1) symmetry restora-
tion at high baryon densities y > 350 MeV. The U,(1)
symmetry restoration pattern sets up quite early (on the
chemical potential scale) in the QMVT model after the
chiral transition but some U,(1) axial breaking persists
even for very large chemical potentials. It is worthwhile to
point out that Ref. [83] has calculated the topological
susceptibility as an alternative observable of the U,(1)
symmetry restoration at high baryon density. The topo-
logical susceptibility has two components: the condensate
controlled one and the meson fluctuation one and the
U4 (1) restoration is governed by their competition. The
condensates melt at high temperatures but the fluctuations
are enhanced. Therefore the U, (1) symmetry restoration
cannot be achieved by the temperature effect alone. Since
the baryon density reduces both the condensates and
fluctuation, the authors of Ref. [83] reach apparently a
model-independent qualitative conclusion that the U4(1)
symmetry can only be restored in dense or dense and hot
mediums. However they have pointed out that the quarks
and mesons in their work have been treated in mean field
approximation while the susceptibility has been calculated
above the mean field by including the thermal fluctuation.
In their calculation the above kind of perturbative treatment
may bring in some inconsistency.
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VII. SUMMARY AND CONCLUSION

This work presents the consistent calculation of the
effective potential in the QCD-like framework of the 2 4 1
flavor renormalized quark-meson model where the quark
one-loop vacuum fluctuation is properly renormalized
when it is included in the 2 4 1 flavor quark-meson model.
The seven running parameters of the model A, 4,, ¢, m?,
hy, hy, and g are determined by relating the MS, on-shell
schemes, and the experimental values of the pion decay
constant f, the kaon decay constant f g, the scalar 6 meson
mass m,, the pseudoscalar pion, kaon, eta, and eta-prime
meson mMasses 1, My, My, My, and the nonstrange as well
as the strange constituent quark masses. The computed
effective potentials, order parameters, and the phase
diagrams for the RQM model have been compared
respectively with the corresponding calculations in the
quark-meson model without the vacuum term and
the quark-meson model with the vacuum term where the
curvature meson masses have been used for fixing the
model parameters. The pion, kaon decay constant f,, fx,
the Yukawa coupling g, and the position of the minimum of
the effective potential do not change after the renormaliza-
tion in the RQM model. In contrast to the QMVT model
where the explicit symmetry breaking strengths £, and h,
do not change, the strength 7, is reduced by a small amount
while the strength &, gets reduced by a relatively large
amount in the RQM model because the pion curvature mass
m, . = 135.95 MeV is 2.05 MeV smaller than its physical
mass m, = 138.0 MeV and the kaon curvature mass
mg . = 467.99 MeV is 28.01 MeV smaller than its pole
mass myg = 496.0 MeV. Due to the above-mentioned
reason, the 2+ 1 flavor phase diagrams and the CEP
location in the RQM model differ noticeably from the
existing results of the two flavor RQM model. Noteworthy
increase of the ’t Hooft coupling ¢ has also been found in
the RQM model. The increase of the U (1) anomaly due to
the meson vacuum fluctuations has already been reported in
Refs. [75,76].

The o meson mass dependent similarities and differences
are observed in the plots of the vacuum effective potentials,
the nonstrange and strange order parameters, and the phase
diagrams for the QM, QMVT, and RQM models. The
normalized vacuum effective potential difference in the
nonstrange direction is most shallow in the QM model and
becomes deeper in the RQM model; it turns deepest in the
QMVT model when m,; = 400 and 500 MeV. The sharpest
chiral transition occurring in the nonstrange direction of the
QM model becomes quite smooth in the RQM model while
the excessively smooth and delayed chiral transition is
witnessed in the QMVT model. The RQM model vacuum
effective potential difference in the nonstrange direction
coincides with that of the QMVT model when m, =
658.8 MeV while the temperature variation of the non-
strange condensate and the phase diagrams for both models

coincide with each other when the mass of the 6 meson is
10 MeV smaller, i.e. m, = 648.0 MeV.

The above behavior gets explained when one notes that in
addition to its A,-dependent variation, the vacuum effective
potential depends also on the strange constituent quark mass
parameter A,. For the higher m, = 700(>658.8) MeV, the
trends that one obtain for the respective plots of the non-
strange direction effective potential, order parameter, and
the phase diagram for the m, = 500 MeV case get reversed
and the deepest effective potential together with an exces-
sively smooth order parameter temperature variation is
noticed in the RQM model, and the QMVT model phase
boundary stands close to that of the QM model. Since the
explicit symmetry breaking strength &, becomes weaker, the
strange direction vacuum effective potential difference looks
most shallow in the RQM model while it is deeper in the QM
model and deepest in the QM VT model for m, = 500 MeV.
The above nature of the effective potential causes a signifi-
cantly large melting of the strange condensate in the
RQM model. On increasing the m,, the RQM model
effective potential becomes deeper in the strange direc-
tion and merges with the rising QMVT model effective
potential when m, = 785 MeV. Here, the trend of the
effective potential plot for the m, = 500 MeV case gets
reversed for quite large m, = 850 MeV when the effective
potential becomes shallower (deepest) in the QMVT
(RQM) model.

The phase boundary and the CEP for the 2 4 1 flavor and
the two flavor calculations overlap with each other in the
QM model. The 2 + 1 flavor phase boundary in the QMVT
model separates from that of the two flavor case near
u~200 MeV and the 2 + 1 flavor CEP shifts noticeably
down to the right side of the phase diagram when it gets
compared with the two flavor CEP for m, = 500 MeV.
Unlike the QM and opposite to that of the QM VT model, the
phase boundary obtained in the 2 4 1 flavor RQM model
lies at a noticeable distance below the two flavor RQM
model phase boundary and the 2 + 1 flavor case CEP moves
upward on the left side the phase boundary (and the CEP)
that one gets in the two flavor RQM model [74]. The above-
mentioned findings are corroborated also when the 2 + 1
flavor phase diagrams for the m,; = 400, 600, and 700 MeV
cases are compared with the corresponding two flavor phase
diagrams in the RQM model. Note that when m,, increases,
the downward shift of the 2 + 1 flavor case CEP is smaller
than the down shift of the two flavor CEP in the RQM
model. The above behavior is again the consequence of the
fact that the strength h,, for the 2 + 1 flavor model becomes
weaker by a relatively large amount while the strength /4,
gets reduced by the same small amount in both the 2 + 1 and
the two flavor RQM model. Recall that £, and hy do not
change in the QMVT model where one gets an opposite
trend of what one observes in the RQM model when the
CEP for the 2 4 1 flavor QMVT model shifts noticeably
down in reference to the CEP of the two flavor case.
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The variation of ag, o, z, i/, and  meson masses, with
respect to the reduced temperature and chemical potential,
tells us that the enhanced U A( ) anomaly persists in the
RQM model even up to T/ =3 and ” = 3. The mass

difference (m, . —m, ) between the curvature masses of
the # and ' is significantly larger in the RQM model near
the chiral transition when T—Tl = 1.11 and ”ﬁ = 1.06. Thus

immediately after the chiral transition, significant U,(1)
anomaly strength persists in the RQM model and the U4(1)
axial symmetry restoration gets somewhat delayed in
comparison to the QMVT model. The quark one-loop
vacuum correction even in the RQM model calculations
facilitates the U, (1) symmetry restoration at high baryon
densities u > 350 MeV and the U, (1) restoration trend
sets up early on the chemical potential scale in the RQM
model when the results are compared with the QM model.
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APPENDIX A: QMVT PARAMETER FIXING

This appendix presents a brief description of the param-
eter fixing procedure in the QMVT model as given in
Ref. [59]. The vacuum meson mass matrix is written as

QN (x,y)
az.fa,a aé:(l b |min

= (mgl,ab) (5ma ab)z'

mg,ab |QMVT =
(A1)

Here, the (m™,,)? expressions for a =s,p and a,b =
0,1,...,8 are the same as the vacuum values of the meson
masses mi’ab which were originally evaluated for the QM
model under s-MFA in Refs. [18,19] by taking the second
derivatives of the pure mesonic potential at its minimum.
|

3(2fK - fﬂ)(mrlr{l)z -

(2fK +fn:)(m§rn

The vacuum (7 = 0, u = 0) mass modifications on account
of the fermionic vacuum correction are given by

aZquc

smY 2 _ 99

( * ab) aé:a,aaéa.b min
N. mg 3 0mj% 6mj2c
e 2 K “( A) B 2) (az:a,a %u

)
dmf

2
+<2 ”’”fl“( ))ae:aaaéab] (42)

Here |;;, denotes the global minimum of the full grand
potential in Eq. (10). The first m} , = dm3/0&,, and

second m%‘uh Edm}%’a/afa‘b partial derivatives of the

squared quark mass with respect to the different meson
fields are evaluated in Ref. [19] in the nonstrange-strange
basis. The values of these derivatives can be found from
Table III of Refs. [19,59]. The mass modifications given in
Eq. (A2) due to the fermionic vacuum correction were
evaluated in Ref. [59] and different expressions of
(6my, ,,)* are presented in Table VI for all the mesons
of the scalar and pseudoscalar nonet.

In the QMVT model calculations, the vacuum mass
expressions in Eq. (Al) that determine A, and c are
my = (m7)* + (dmy 1,)?, my = (mR)* + (dmy, 44)%, and
m%+m§/:m§,oo+mﬁ.ss where m oo = (m)?+(6my o)*
and my gg = (Mg )* + (5my g5)*. We can write my + my, =
(mi)* 4 (m3)? =+ (8my 59)* + (5my ¢5)* where  (m))? +
(m)? = (mgpg)* + (my'ss).

expressions (6m?, ,,)* given in Table VI, one writes

Using mass modification

my2 _ 2 X =V2y\ 3
= X+2 Y
(mp)? = my + 2% < _2y>( +2v2y°Y);
N.g*
m\2 _ .2 ¢ ZX d
(m) m”+647z an
4
m m — Cg
(my)? + (m)?) = (my +my,) 92,2 (3x2X + 6y°Y).

(A3)

f» and fg give vacuum condensates according to the

partially conserved axial vector current (PCAC) relation.
x=fr,andy = (%} at T = 0. The parameters A, and ¢

in vacuum are obtained as

)2 = 2((m7)* + (m)*)(fx = fz)

/12:

(3f2+8fk(fx — f2)(fx

- fﬂ) ’ (A4)
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TABLE VI.  The superscript m in (m™_,)* symbolizes the meson curvature masses calculated from the second derivatives of the pure
mesonic potential U(x, y). The mass modifications (&m;, )7 due to the fermionic vacuum correction are shown in the right half.
Symbols used in the expressions are defined as X = {1 +41In({5)} and ¥ = {1 +4In(-%,)}.

V2A

Meson masses calculated from pure mesonic potential Fermionic vacuum correction in meson masses
(mg,)? m? + 2y (2 + y?) + a2 4 Y2y (6my 1) 8 % x2(4 + 3X)
(i)’ W02 )+ (2 4 VI + 2y2) +5x (0 4a)* ~ i ("?zfvv)( X -2V2y°Y)
(m0)®  m? + L(Tx2 + 4V2xy + 55) + A (o +3?) - @ (V2x +y) (6mYg)? %ﬂz L A3(2X + y2Y) + 4(x2 +y2)}
(m35s)® m? +4 (5x% = 4v/2xy +T9%) + Ao (5 +2%) + 26 (Vax =) (9mygy)? 96 : {3 (X2X +4y2Y) +2(x> + 4y?)}
(M0 (VIR = xy = VD) + V(S — ) 455 (= VA (Omil - (3K —2027) 1 (22 - 22))
() m? 44y (2 4 y%) + 52 =y (o 11)° — Gl X
(mP)? m* + A (x* +y?) + %Z( —V2xy +2y%) —£x (5’”;,44)2 641): (X__\zf;)( 3X +2v2y%Y)
(300 m? 4 Ay (2 9% + % (2 4 5%) + 5 (20 + V2y) (6500)° §6—< X+y7Y)
(my'ss)? m? 4 2y (22 + )%) + & (F +4y?) — £ (4x - V2y) (6my g5)° NI (X + 4y%Y)

2 v 2
(mg0s) @ (x? = 2y%) = £(V2x —2y) (6my og) - 9év\/§ > (XX = 2y7Y)
mo 2 _ mo 2
o= R ZURY 1. (A3)

fK - fzr
When expressions of (m7)?, (mg)?, and ((m)')* + (m})*) from Eq. (A3) are substituted in Eq. (A4), Eq. (A5) and the
vacuum value of the condensates are used, the final rearrangement of terms yields:
3(2fK_fn)m%(_(2fK+fn)m72z_2(mi1+m )(fx = fz)
(3f2+8fk(fx = f2))(fx = fx) ’
2f, —
f”) and scale dependent part A,y = 4nln <g(fo,,)) (A6)

Ay =ldoy+n+ A + Ay where Ay =

Ncg4 o nfﬂ2 sz -
=R T T b (

n—=

I 2A
[
Mol — m.2 A-dependent addition 1,, to the expression of the 4, in
= ]If—f Aas(2fk = [x)- (A7)  Eq. (A6). The A dependence completely cancels in the
K n

evaluation of ¢ and its value remains the same as in the QM

model. The parameter m* can be expressed in terms of A,

Note that 1, is the old 4, parameter fixed in the QM/PQM . . 2 . .
model calculations in Refs. [18,19,48]. Here, the curvature Zsmg t(?e slcgale fA—l;n(flepesn 9d ent fo(li“mulit'of M _(glven H(;
mass parametrization in the QMVT model generates an PP e;lf;ff of Ref. [59]), and putting x =f, an
addition of (n+ 4,,) to 4, and further, one gets a scale Y = (*5 "), one gets

_ Cfx =12\ _ 13 fx c
mz—mi—ﬂl{f3,+2} 2[@ ‘““{(m fﬂ)}]+2<2f,<—f,,>. (A8)

When the formula of m? (given in Table I) is used with the vacuum values of the masses m? ,, m2 g, m2 os and the above

expression of m? is substituted in it, one gets the numerical value of A, for different values of m,. The fermionic vacuum
correction does not change the explicit symmetry breaking parameters 4, and h,,.
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APPENDIX B: TADPOLE TERMS

The expressions of tadpole contributions in the self-energies are
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where F(m,, m,) = 2m, A(m?%) + myA(m?) and G(m,, m;) = m,A(m2) — m,A(m?). Substituting 5, = ‘/E\/";y and o3 =

x_f‘ in Egs. (B1)—(B8) and rearranging the terms, one gets the following x- and y-dependent expressions of self-energies

for the tadpole terms:

2 2 2
M 00 3mg gg 3mg g

+y{\ﬁ<i— : >(3/11+/12) (él_zﬂz)HchgmsA(m?) [_c(m;.oo_\?>

s 00 s 88 s o8 3 s o3
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8N 2(34 A 2v/2(24
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Zs 88
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+y{\/§(41+242) ﬂ (17,11+1042)H+4Ncgms,4(m§) [C< 1 N V2 3188>
)

(34 +24,) —
3 6’”3 00 3’”5 08

3m?.oo s 88 3mg g
24 + 4 144, + A 61 +/1 2(Ay +24 4(5A4, + 41 24/2(32, +2A
I e
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APPENDIX C: INTEGRALS 2 B 1
i i i i Bl me) = (k> —m?%)[(k + p)> — m3)]
The divergent loop integrals are regularized by incor- k f p f
porating dimensional regularization, i1 A2
= eam( S ) +cprompy)|, (C3)
(47)* |e m;
/ B eJ’EAZ e/ ddp <C1)
» ~\ 4z (2m)d’
where d = 4 — 2¢, yg is the Euler-Mascheroni constant, B( prom f) = %C’ ( pr.om f), (C4)
and A is the renormalization scale associated with the MS: (47)
A(m2) = / !
' ’ p2 - m} 4m? 1
im% 1 A2 C(p?m;)=2-24/—L —tarctan| —— |;
= f2 -+ 1+ 11’1(477.’6_}/5) + In — |- (p f) P2 4m>
(47)* |e m; p_zf_
We rewrite this after redefining A* — A?47, A2
C'(p*my) = L arctan -—. (C5)
m2 A2 4 [4m? | 4m? p
A(mj%)— Ty [ +1+1In ( )] (C2) P77~ o
(47)* mf
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C(p ,mf):2—|— ——21n 5 C(p ,mf): In - (C6)
P 1 1 4m§ 4 4m.2[ 1 1 1 4m; P
+ -7 p 2 + -
Equations (C5) and (C6) are valid with the constraints (p? < 4m%) and (p* > 4m%) respectively:
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