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The chiral magnetic wave (CMW) is a macroscopic quantum phenomenon that arises due to the mixing
of the electric and chiral charge oscillations induced by the chiral anomaly. In this study we report the first
quantum simulation (on classical hardware) of the real-time dynamics of CMWs in the Schwinger model.
Our quench protocol is the following; at t ¼ 0 we suddenly place an electric dipole at the middle of our
lattice. Due to chiral anomaly, this dipole excites the CMW that propagates towards the edges of the lattice.
In the Schwinger model tuned to the conformal critical point (at θ ¼ π,m=g ≃ 0.2), we find a gapless linear
CMW that propagates with the speed of light. For a massless Schwinger model (θ ¼ 0, m ¼ 0), we find a
gapped linear CMW, in accord with previous analytical analyses. For a massive Schwinger model (that is
dual to strongly interacting bosonic theory), we enter the new regime of nonlinear CMWs, where we find a
surprise. Specifically, form=g > 1, the frequency of electric charge oscillations becomes much smaller than
the frequency of the oscillations of the chiral charge. For m=g ¼ 4, we find a solution corresponding to a
nearly static electric dipole with fast oscillations of the chiral charge confined within. We call this solution a
“thumper” and study its properties in detail. We speculate that thumpers might be relevant for CMWs in the
strange quark sector of quark-gluon plasma and narrow gap semiconductors.
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I. INTRODUCTION

In the presence of an external magnetic field, the chirality
imbalance (i.e., the difference in the densities of right- and
left-handed fermions) induces an electric current directed
along the direction of magnetic field—this is the chiral
magnetic effect (CME) [1–3]; for reviews, see [4–7]. CME is
an inherently nonequilibrium phenomenon stemming from
the nonconservation of chiral charge dictated by the chiral
anomaly. The nonequilibrium nature of CME becomes
particularly apparent in the emergence of a collective chiral
excitation stemming from the anomaly-induced coupling of
chiral chargeoscillations to the oscillations of electric charge;
the chiral magnetic wave (CMW) [8].
It is instructive to investigate the physics of CMW in

(1þ 1) dimensional models, corresponding to the strong

magnetic field limit of (3þ 1) theories. In particular, the
case of (1þ 1)-dimensional massless QED (Schwinger
model) has been discussed already in [8]. As is well-
known, massless Schwinger model is exactly solvable by
bosonization, and its free-massive bosonic excitation can be
interpreted as a result of mixing between the gauge field
and the CMW [8].
In this paper, we will extend the analysis of the CMW to

the massive Schwinger model. This model is interesting
because it possesses confinement, and in bosonic repre-
sentation describes nonlinear strongly interacting theory.
Since the massive Schwinger model is not solvable
analytically, and we are interested in the real-time, non-
equilibrium behavior, we will rely on quantum simulations
(on classical hardware). Many interesting aspects of
(1þ 1)-dimensional quantum field theories have been
successfully addressed using quantum simulations (see
[9–17] for examples and [18] for a recent review of
quantum simulation approach).

II. SCHWINGER MODEL

The Lagrangian density of the Schwinger model [19] is

L ¼ −
1

4
FμνFμν þ ψ̄ðiγμ∂μ − gγμAμ −mÞψ : ð1Þ
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We label the space-time coordinate by xμ ¼ ðt; zÞ. We
denote the Pauli matrices as X, Y, and Z, and use the
following convention for the Dirac matrices: γ0 ¼ Z,
γ1 ¼ iY, γ5 ¼ γ0γ1 ¼ X. In (1þ 1) dimensions, the axial
charge density q5ðxÞ≡ ψ̄γ5γ0ψðxÞ and the vector current
density jðxÞ≡ ψ̄γ1ψðxÞ are related by q5ðxÞ ¼ −jðxÞ.
Likewise, the vector charge density qðxÞ≡ ψ̄γ0ψðxÞ and
the axial current density j5ðxÞ≡ ψ̄γ5γ1ψðxÞ are related
by qðxÞ ¼ j5ðxÞ.
Because of these relations, the conservation of vector

charge can be expressed as

∂tq − ∂zq5 ¼ 0: ð2Þ

To obtain the equation for the CMW, we combine this
relation with the conservation of axial charge ∂μJ

μ
5 ¼

2imψ̄γ5ψ (in the absence of an external electric field),
and use the bosonization dictionary, in which q → − ∂zϕ

ffiffi

π
p ,

q5 → − ∂tϕ
ffiffi

π
p , and iψ̄γ5ψ → −cM sinð2 ffiffiffi

π
p

ϕÞ, with M ¼
g=

ffiffiffi

π
p

and c ¼ eγ=ð2πÞ. The resulting equation describing
the CMW in the Schwinger model then reads

ð∂2t − ∂
2
z þM2Þϕþ 2

ffiffiffi

π
p

cmM sinð2 ffiffiffi

π
p

ϕÞ ¼ 0: ð3Þ

It is clear that for the massless case m ¼ 0, the equation is
linear and describes the propagation of a gapped excitation
with mass M ¼ g=

ffiffiffi

π
p

-this is a familiar noninteracting
bosonic representation of the Schwinger model. The
dispersion relation of this bosonic excitation can be derived
as a result of mixing between the gapless CMW and a
plasmon mode (see [8]). For massive casem ≠ 0, the CMW
equation becomes nonlinear. The case of θ ¼ π can be
obtained by flipping the sign of fermion mass, m → −m.
Near the critical point at θ ¼ π and m=g ≃ 0.3 (in the
continuum case), the potential in (3) becomes nearly flat,
and the dynamics become close to conformal (see [17]). In
this case, we expect to see a gapless linear CMW.

III. THE LATTICE HAMILTONIAN

To discretize our Hamiltonian, we use staggered fer-
mions [20,21]

ψ1ðxÞ →
χ2n
ffiffiffi

a
p ; ψ2ðxÞ →

χ2nþ1
ffiffiffi

a
p ; ð4Þ

where a is the finite lattice spacing. Then the lattice
Hamiltonian corresponding to Eq. (1) is

H ¼ −
i
2a

X

N−1

n¼1

½χ†nþ1χn − χ†nχnþ1�

þm
X

N

n¼1

ð−1Þnχ†nχn þ
ag2

2

X

N−1

n¼1

L2
n; ð5Þ

where Ln is the electric field operator satisfying the Gauss’
law constraint

Ln − Ln−1 ¼ χ†nχn −
1 − ð−1Þn

2
: ð6Þ

For the purpose of quantum simulation, let us put the
lattice Hamiltonian in the spin representation using the
Jordan-Wigner transformation [22],

χn ¼
Xn − iYn

2

Y

n−1

i¼1

ð−iZiÞ: ð7Þ

The Hamiltonian of the model then becomes

H ¼ 1

4a

X

N−1

n¼1

½XnXnþ1 þ YnYnþ1�

þm
2

X

N

n¼1

ð−1ÞnZn þ
ag2

2

X

N−1

n¼1

L2
n; ð8Þ

and the local vector and axial charge densities are,
respectively,

Qn ≡ ψ̄γ0ψ ¼ Zn þ ð−1Þn
2a

; ð9Þ

Q5;n ≡ ψ̄γ5γ0ψ ¼ XnYnþ1 − YnXnþ1

4a
: ð10Þ

For later convenience, we define the total charge operator
Q≡ a

P

N
n¼1Qn, which commutes with the Hamiltonian.

With the boundary condition L0 ¼ 0, the Gauss’ law
constraint (6) leads to the solution

Ln ¼ a
X

n

j¼1

Qj: ð11Þ

IV. THE QUENCH PROTOCOL

To study the real-time dynamics of CMW, we first
prepare the ground state of the system and then perform
a quench by introducing at time t ¼ 0 an electric dipole at
the center of our lattice. The time evolution is then
described by the Hamiltonian (8).
To be more specific, the Hamiltonian (8) is a high-

dimensional, yet sparse, matrix. We first obtain the vacuum
state j0i as the Hamiltonian’s ground state by exact
diagonalization. Then at t ¼ 0 we introduce the electric
dipole at the center of our lattice. We truncate the Hilbert
space by keeping a hundred of the lowest energy levels, and
write the state at t ¼ 0 as

jψit¼0 ¼
X

Ntrunc

k¼0

ckjki; ð12Þ
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where the superposition coefficients are fixed so that the
initial state contains a vector charge dipole on top of the
vacuum,

hψ jQnjψit¼0 ¼ h0jQnj0i þDðδn;N
2
− δn;N

2
þ1Þ;

hψ jQ5;njψit¼0 ¼ h0jQ5;nj0i: ð13Þ

Here, D is the magnitude of electric charges in the dipole,
and we choose the coefficients so that D is maximized,
within our truncated Hilbert space and on our lattice. With
the initial state prepared, we evolve the quantum state

according to jψit ¼ e−iHtjψit¼0, and measure the local and
global observables as a function of time.
We set up the calculationwith 20 staggered sites (N ¼ 20),

and take the lattice spacing as a ¼ 0.5=g. We explore several
values of the fermion mass; massive (m ¼ 4g, 2g, and g),
massless (m ¼ 0), and critical mass of the phase transition
(m ¼ m� ¼ −0.2g). For each of these values, we solve the
vacuum state and time evolution and measure the local
charges. Results are presented in Fig. 1. Here, we have
combined the staggered fermion-antifermion pairs to
obtain the physical vector charge density, i.e., QðznÞ ¼
Q2n−1 þQ2n, whereas the axial charge is defined on the
link between two sites, Q5ðznþ1=2Þ ¼ 2Q5;2n. The charge
conservation requirement (2), as manifested in staggered
observables, ∂tQ2n−1 ¼ ðQ5;2n−1 −Q5;2n−2Þ=a and similarly
for ∂tQ2n, automatically lead to the continuity equation,1

∂tQðznÞ ¼ Q5ðznþ1=2Þ−Q5ðzn−1=2Þ
2a .

At each site, we observe oscillations of the local vector
and axial charges, and these oscillations propagate from the
middle of the lattice toward its edges forming a light cone
structure. For the massive m ≠ 0 scenario, we observe a
stronger damping of the oscillation amplitude, compared to
the massless and critical point scenarios. This can be
attributed to the nonlinear nature of CMW in the massive
case.

V. THUMPER SOLUTION

In particular, in the massive cases of m ¼ g, 2g, and 4g,
we observe that the oscillation period for vector charge is
much longer than that of the axial charge, and the ratio
between them increases with fermion mass. This is espe-
cially striking in the case of m ¼ 4g (see the upper panel of
Fig. 1); the electric dipole is nearly static and does not
oscillate at all, whereas the axial charge rapidly oscillates
within the dipole. We refer to this solution as a “thumper”.
Unfortunately, so far we have not been able to find the
corresponding classical solution of (3) analytically.
To understand the real-time evolution of the vector and

axial charges in terms of the eigenstates of Hamiltonian,

Hjki ¼ Ekjki: ð14Þ

we start with the initial state

jΨðt ¼ 0Þi ¼
X

k

ckjki; ð15Þ

and consider the time dependence of an operator O in the
Heisenberg picture

FIG. 1. (From top to bottom) Propagation of local electric
charge and electric current for m ¼ 4g, m ¼ 2g, m ¼ g, m ¼ 0,
and m ¼ m� ¼ −0.2g. Expectation values of the vacuum states
have been subtracted.

1Note that a physical site contains two lattice sites, therefore it
has volume 2a.
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OðtÞ≡ hΨðtÞjOjΨðtÞi
¼

X

k;l

c�l cke
iðEl−EkÞthljOjki: ð16Þ

It is a superposition of different oscillation modes. In each
mode, the oscillation frequency is the difference between
two energy eigenvalues. In Fig. 2, we show the energy
eigenvalues and matrix elements for operators Qmid ≡
QðzN=2Þ and Q5;mid ≡Q5ðzðNþ1Þ=2Þ. While we have
extracted 100 lowest energy states in the Q ¼ 0 subspace,
only those with nonvanishing overlap ðjckj2Þwith the initial
states are presented in this plot. We note that all excited
states are above the ground-state energy by Ek − E0 ≳ 2m,
which correspond to bound states consisting of a fermion-
antifermion pair. Meanwhile, the energy difference
between different excited states is of the order of OðgÞ.
From Fig. 2 (lower), it is clear that the axial charge operator
is dominated by the excitation between the vacuum and the
excited bound states (see leftmost column), whereas the
vector charge operator is dominated by scattering between
excitations. Therefore, in the massive limit that 2m ≫ g,
the oscillation frequency of the axial charge is much greater
than that of the vector charge. In the massless limit (m ¼ 0)
or critical mass m ¼ m�, there is no longer ∼2m mass gap
between the vacuum and the bound states, and the axial and
vector charges oscillate with the same frequency.

VI. CONCLUSION

We have presented the study of real-time dynamics of
chiral magnetic waves (CMWs) in massless and massive
Schwinger model using quantum simulations on a classical
hardware. For Schwinger model tuned to the conformal
critical point (θ ¼ π, m=g ≃ 0.2) we have observed a
gapless CMW propagating with the speed of light. For
massless case, we found a gapped CMW corresponding to
the familiar noninteracting massive boson representation.
In the case of a massive Schwinger model (m=g > 1), we

have uncovered the existence of novel “thumper” solutions
in which the electric charge density oscillates much slower
than the axial charge density. In particular, at m=g ¼ 4 we
have observed a nearly static electric dipole with rapid
oscillations of chiral charge confined within. Qualitatively,
this happens because at large m=g it becomes difficult to
break the confining electric string between the charges in
the dipole, which prevents the dipole from expanding. On
the other hand, the interplay of chiral anomaly and the large
fermion mass results in rapid oscillations of chiral charge
inside the string. The confining electric string thus contains
rapid fluctuations of chiral charge. It will be interesting to
explore the possible link [23,24] between the fluctuations
of topology and confinement in (3þ 1) dimensions. It will
also be interesting to explore the nonlinear CMWs and the
“thumpers” in real systems.
Our results may be relevant for chiral magnetic waves in

quark-gluon plasma and in condensed matter systems.
Indeed, at strong magnetic field B the behavior of chiral
magnetic waves was shown [25] to become effectively
(1þ 1) dimensional, with the dimensionful coupling
g2 ≡ e × eB=2π. Assuming a magnetic field eB ∼ 10M2

π

(where Mπ is the pion mass) at early moments of a heavy-
ion collision justifies the reduction to (1þ 1) dimensions
since

ffiffiffiffiffiffi

eB
p

≃ 3Mπ > T, where T is the temperature of the
plasma. The corresponding dimensionful coupling is
g ≃ 0.25 GeV. Therefore the dynamics of the chiral mag-
netic wave in the u, d quark sector is linear, but it does
become nonlinear in the strange quark sector, with the mass
of the s quark ms ∼ g. Therefore, when the experimental
studies of chiral magnetic waves are extended to strange
hadrons, they have to take into account the nonlinear
dynamics of the chiral magnetic wave studied here.
In the case of condensed matter physics, nonlinear

dynamics of chiral magnetic waves can be studied in
narrow gap semiconductors, with gap Δ, for magnetic
fields satisfying ð2π=eÞΔ2 > eB > T2, where T is the
temperature. The first of these inequalities enforces the
nonlinear regime, and the second enforces the validity of
dimensional reduction.
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APPENDIX: EIGENSTATE ANALYSIS
OF OSCILLATIONS IN VECTOR

AND AXIAL CHARGES

For completeness, we present the energy eigenvalues and
the matrix elements of vector and axial charge operators for
fermion mass m ¼ 2g, g, 0, and critical mass m�.

FIG. 3. Same as Fig. 2 of the main text but for masses m ¼ 2g (upper left), g (upper right), 0 (lower left), and m� (lower right).
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