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Simulation is crucial for all aspects of collider data analysis, but the available computing budget in the
High Luminosity LHC era will be severely constrained. Generative machine learning models may act as
surrogates to replace physics-based full simulation of particle detectors, and diffusion models have recently
emerged as the state of the art for other generative tasks. We introduce CaloDiffusion, a denoising
diffusion model trained on the public CaloChallenge datasets to generate calorimeter showers. Our
algorithm employs 3D cylindrical convolutions, which take advantage of symmetries of the underlying data
representation. To handle irregular detector geometries, we augment the diffusion model with a new
geometry latent mapping (GLaM) layer to learn forward and reverse transformations to a regular geometry
that is suitable for cylindrical convolutions. The showers generated by our approach are nearly
indistinguishable from the full simulation, as measured by several different metrics.
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I. INTRODUCTION

High quality simulation plays a crucial role in modern
particle physics experiments. Most experiments rely on the
GEANT4 [1–3] toolkit to simulate interactions of particles
with their detector. Achieving accurate results requires
simulating the interactions of both the primary particle
incident on the detector and the numerous secondary
particles produced through interactions with the detector
material. For this reason, simulations of calorimeters,
which are designed to capture the energy produced by
the shower of secondary particles, usually requires the most
computational resources. Simulating calorimeters currently
consumes a significant fraction of the computing resources
of modern collider experiments [4]. The problem will
be exacerbated at the High Luminosity LHC, which will
feature larger data volumes, more complex detectors [5],
and a higher pileup environment. Future high granularity
detectors will require more computational resources to
simulate because of their more complex geometries and
higher levels of precision [6]. At the same time,
reconstruction will require a larger fraction of the comput-
ing budget because of the expected superlinear scaling of
important algorithms with increasing pileup [7].
These resource constraints mean that full, detailed

detector simulation using GEANT4 will not be possible
for every simulated event. Instead, “fast simulation” meth-
ods that approximate the output of GEANT4 using less
computation will be employed. Most major experiments

have developed fast simulation frameworks based on
parametric approximations manually tuned to GEANT4

[8–13]. These parametric models generally suffer from
deficiencies in modeling detailed observables of calorim-
eter showers, limiting their usage in physics analysis.
In order to overcome these challenges, machine learning

(ML) models are increasing in popularity as fast surrogate
models for GEANT4 [13–32] (see Ref. [33] for an overview
and Ref. [34] for a recent review). These techniques borrow
from the growing field of ML-based generative modeling,
which has made significant advances in recent years.
In high energy physics (HEP), the first class of gen-

erative models proposed for this purpose were generative
adversarial networks (GANs) [14]. GANs are trained by
iterating between a “generator network” that learns to
produce artificial samples and a “discriminator network,”
which attempts to distinguish the artificial samples from
true ones. GANs are able to generate high quality showers
orders of magnitude faster than GEANT4. The ATLAS
experiment has now employed calorimeter GANs in their
fast simulation framework [13]. GANs are also used for
fast simulation by the LHCb [35] experiment and are
being explored for emulating the high granularity, 7.5M
channel, pixel detector of Belle-II [27]. However, GAN
training does not reliably converge because the two
competing objectives create a saddle point in the loss
space rather than a minimum. Additionally, GANs are
known to suffer from “mode collapse,” in which the
generator network only learns to produce samples from a
subset of the full data space.
Variational autoencoders (VAEs) have also been pro-

posed for calorimeter simulation [17,21,22]. A VAE
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consists of an encoder, which maps the input data to a
smaller latent space, and a decoder, which maps the latent
space back to the original data. A VAE is distinguished
from a regular autoencoder by forcing the latent space to
follow a multivariate Gaussian distribution via an additional
term in the training loss. New samples can then be
generated by drawing random samples from a multivariate
Gaussian in the latent space and applying the decoder
model. However, VAEs on their own do not seem have
the expressive power of GANs and other state-of-the-art
models and generally achieve worse quality on complex
high-dimensional data such as calorimeter showers.
References [17,21] instead use a bounded information
bottleneck AE (BIB-AE), which is a novel combination
of the VAE and GAN architecture.
Normalizing flows (NFs) have also been proposed for

calorimeter simulations [19,26,31]. NFs are based on a
series of invertible transformations that convert the input
distributions to multivariate Gaussians. Once trained, new
samples can be generated by sampling the Gaussian space
and applying the inverse transformations to convert to the
data space. However, as the dimensionality of the data has
to be preserved in each stage of the flow, it can be difficult
to scale NFs to very high-dimensional data.
Recently, a new class of models has become dominant

in ML image generation tasks: denoising diffusion
models [36–38]. In this work, we explore the use of
denoising diffusion models to generate calorimeter show-
ers. Diffusion models are based on a “noising process” that
continuously perturbs an image until it is degraded to pure
noise. A “denoising model” is then trained to invert the
diffusion process. New samples can be generated by
constructing a sample in the noise space and repeatedly
“denoising” it back to the original space. The use of
diffusion models in image generation has proliferated
because of their straightforward training procedure, high
quality results, straightforward scaling to high-dimensional
data, and manageable computational requirements.
Diffusion models were first used for calorimeter simula-
tion in CaloScore [24,32] with promising results.
CaloScore is a score-based diffusion model, which is
similar but distinct from the denoising diffusion model
employed in this paper. Recent work has combined
diffusion with point clouds [30,39] and demonstrated
distillation of diffusion models to improve generation time
of jet particle clouds [29,40]. Several other works apply
diffusion to HEP in other contexts [41–43].
Our approach, dubbed CaloDiffusion, is a denois-

ing diffusion model for calorimeter simulation and employs
several novel optimizations to make use of the geometric
structure of the data. In contrast to other recent works
[30,39], which have advocated for point cloud representa-
tions of calorimeter showers, CaloDiffusion uses
voxelized imagelike representations of the calorimeter data.
The use of this voxelized representation retains the

geometric information of the data, allowing for several
optimizations that exploit the cylindrical structure and scale
well for high-dimensional datasets. We additionally intro-
duce a new geometry latent mapping (GLaM) component,
which is able to map irregular detector geometries into a
regular structure suitable for symmetry-preserving opera-
tions, such as convolutions.
We test our approach on the public datasets provided

as part of the fast calorimeter simulation challenge
(CaloChallenge) [44]. The challenge released three data-
sets of showers simulated with GEANT4 in calorimeters with
increasing granularity. We find that CaloDiffusion is
able to generate very quality showers that are difficult
to distinguish from GEANT4 for all datasets of the
CaloChallenge. Based on quantitative metrics, we demon-
strate significant gains over previous state-of-the-art meth-
ods, particularly for the high-dimensional datasets of the
CaloChallenge.

II. DIFFUSION MODELS

Diffusion models are defined in terms of a “noising
process,” which is a Markov chain that starts from data
points x0 [following a probability distribution qðx0Þ] and
iteratively adds Gaussian noise. The data points xt at time t
are generated from data points at the previous time step xt−1
by adding Gaussian noise ϵ. At the final time step T,
the probability distribution of data points qðxT jx0Þ can then
be computed based on the original x0 via a product
of Gaussian likelihoods. This is summarized in the follow-
ing equations:

xt ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − βt

p
xt−1 þ βtϵ; ð1Þ

qðxtjxt−1Þ ¼ N ðxtj
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − βt

p
xt−1; βtÞ; ð2Þ

qðxT jx0Þ ¼
YT
t¼1

qðxtjxt−1Þ; ð3Þ

where we denote Gaussian likelihoods as N ðxjμ; σ2Þ,
ϵ ∼ Nð0; IÞ, and βt is a “variance schedule” that controls
how much Gaussian noise is added at each time step.
For a sufficiently large T (the total number of diffusion

steps), the Gaussian noise will overwhelm the original data,
and xT will follow a multivariate Gaussian distribution.
Therefore, a new sample x0 could be generated by sampling
xT from a multivariate Gaussian and inverting the diffusion
process in order to produce x0 ∼ qðx0Þ. An exact inversion
of the diffusion process requires knowing the reverse
distribution pðxt−1jxtÞ, which encodes how likely a par-
ticular data point xt−1 is given the noisier version xt. Direct
calculation of pðxt−1jxtÞ could be done via Bayes’ rule
pðxt−1jxtÞ ¼ qðxtjxt−1Þqðxt−1Þ=qðxtÞ, but this is intractable
because evaluating qðxtÞ ¼

R
dx0qðx0Þ

Q
T
t¼1 qðxtjxt−1Þ
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requires an integral over the entire data distribution qðx0Þ.
We therefore approximate pðxt−1jxtÞ as

pðxt−1jxtÞ ¼ N ðxt−1jμθðxt; t; zÞ; βtIÞ; ð4Þ

where the estimated mean μθ is modeled by a neural
network with parameters θ, conditioned on t and additional
information z. There are multiple ways to parameterize
μθðxt; t; zÞ, and we employ two different approaches as
discussed in Sec. IV B.
Because sums of Gaussians also follow a Gaussian

distribution, xt can be directly sampled from x0 in a
single step,

qðxT jx0Þ ¼ N ðxtj
ffiffiffiffi
αt

p
x0; ð1 − αtÞIÞ ð5Þ

xt ¼
ffiffiffiffi
ᾱt

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ᾱt

p
ϵ; ð6Þ

where αt ≡ 1 − βt and ᾱt ¼
Q

t
τ¼1 ατ. The variance of the

noise for time step t is therefore 1 − ᾱt, which can be used
to define the noise schedule as an alternative to βt. This
property is convenient because efficiently computing xt
from x0 allows t to be randomly sampled during training.
Training a denoising diffusion model proceeds via the

following steps: sampling a batch of images x0 from the
training set; choosing random time steps t0; producing a set
of noised images x0t0 based on Eq. (6); and comparing the
model’s prediction for μθ to the true value to compute the
loss. Once the model has been trained, new samples can be
generated by first sampling xT ∼N ð0; IÞ, then repeatedly
evaluating pðxt−1jxtÞ from the trained model until x0 is
reached.
The denoising diffusion approach employed here

shares many features with score-based diffusion, or score-
matching models, such as CaloScore [24,32]. The score-
based approach defines a stochastic differential equation
(SDE) that continuously corrupts the data into a known
distribution. Rather than directly learning to invert the
denoising process, the neural network is trained to evaluate
the score of the data, ∇x logqðxÞ, which can then be used
to reverse the SDE in order to generate new samples.
There are different ways to parametrize the SDE, based
on the choices of the “diffusion” and “drift” functions.
However, the “variance preserving” formulation is deeply
tied to the denoising diffusion approach employed here:
the optimal score-matching network is identical to the
optimal denoising network (see Appendix B of Ref. [38]
for a short derivation). Both score-based and denoising-
based diffusion models are being actively explored in the
ML literature [38]. We focus on the denoising variant here
because of its conceptual simplicity.

III. DATASETS

To facilitate a comparison with other work, we test our
methods on the datasets of the CaloChallenge. The first
dataset from the CaloChallenge consists of voxelized
showers from single particles, γ or π�, interacting with
the ATLAS detector in the η range [0.2, 0.25] [45]. Fifteen
different incident particle energies, spanning the range
256 MeV up to 4 TeV in powers of 2, are included. Ten
thousand events per incident energy are provided, except
for the highest energies, which have fewer events
and therefore, higher statistical uncertainty. In total,
242000 (241600) events are provided for the photon (pion)
dataset. These datasets were used by ATLAS to train the
FastCaloGAN [16] model used in AltFast3 [13]. The
voxelized representations have five and seven layers with
368 and 533 voxels, respectively, for the γ and π� showers.
There are different numbers of angular and radial bins
within each layer to reflect the varying granularity of the
ATLAS calorimeter. For the photon (pion) datasets, layers 1
and 2 (1, 2, 12, and 13) have ten angular bins, and the rest
have only a single angular bin. Each layer has a unique
binning in the radial direction. For example, the first layer
of the pion dataset has eight variable-width bins covering a
radial distance up to 600 cm, while the last layer has ten
variable-width bins covering up to 2000 cm. Because of
the unique binning in each layer, only two bins from the
first layer exactly align with a bin from the last layer.
There are a total of 30 (23) unique radial bin edges for the
photon (pion) dataset.
Datasets 2 and 3 of the CaloChallenge each consist

of 200,000 showers from an electron incident on a
cylindrical sampling calorimeter with 45 layers, each
with an active (silicon) and passive (tungsten) compo-
nent. The electron energy spans the range of 1 GeV to
1 TeV with a log-uniform distribution. Each layer in
dataset 2 has 9 radial bins and 16 angular bins, leading to
a total of 45 × 16 × 9 ¼ 6480 voxels in each shower.
Dataset 3 features a much higher granularity; each layer
has 18 radial and 50 angular bins, leading to a total of
45 × 50 × 18 ¼ 40500 voxels in each shower.
Following the specifications of the CaloChallenge, we

split the available events evenly between training and
evaluation for all datasets. The resulting size of the training
sample, only Oð100 KÞ showers, is relatively limited,
especially for very high-dimensional data such as dataset
3. It is likely generating additional showers for training
would lead to improved performance. However, if this
limited sample is taken to represent only a small portion of
a real particle detector geometry, it may be a realistic
estimate of the practically achievable training sample size,
given restrictions on available computing resources.
For example, the approach employed by ATLAS for
FastCaloGAN involves training a separate model for
each of 100 different η regions of the detector and thus, can
only generate a limited number of events for each η region.
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IV. METHODS

A. Preprocessing

We apply several stages of preprocessing to the
showers before the diffusion process. First, the energy in
each voxel is divided by the incident particle energy,
yielding the normalized energy Ei in voxel i. As in previous
work [19,24], a “logit” transformation is then applied to the
voxel energies,

ui ¼ log

�
x

1 − x

�
; x ¼ δþ ð1 − 2 � δÞ � Ei; ð7Þ

where δ ¼ 10−6 avoids discontinuities at x ¼ 0 and x ¼ 1.
We then subtract the mean and divide by the standard
deviation of the transformed voxel energy distribution ui,

u0i ¼
ui − ū
σu

: ð8Þ

The distribution of preprocessed voxel energies u0 has zero
mean and unit variance, which is important to ensure the
signal-to-noise ratio during the diffusion process has the
appropriate magnitude.
The incident particle energy is used as a conditioning

input to the model. We first apply a logarithm to the energy
and then scale the resulting values to fall in the range 0 to 1.

B. Diffusion specifics

We train our model based on a diffusion process with
400 noising steps. We follow Ref. [46] and use a “cosine”
noise schedule, defined as

ᾱt ¼ cos

� t
T þ s

1þ s
·
π

2

�
; ð9Þ

with s ¼ 0.008. This noise schedule adds noise more
slowly during the intermediate steps of the diffusion
process than the simple linear schedule originally used
in Ref. [36]. This preserves information for longer during
the process, and we find it reduces the number of diffusion
steps needed to maintain high quality.
As mentioned in Sec. II, there are different choices for

the parametrization of the training objective of the model.
The most obvious approach is to predict the denoised image
x0 directly. Reference [36] suggests predicting the normal-
ized noise component, ϵ, and then computing μθ as

μθðxt; t; zÞ ¼
1ffiffiffiffi
αt

p
�
xt −

1 − αtffiffiffiffiffiffiffiffiffiffiffiffi
1 − αt

p ϵθðxt; tÞ
�
: ð10Þ

In this case, training proceeds by minimizing the loss,

L ¼ Et;ϵ½kϵθðxt; t; zÞ − ϵk2�: ð11Þ

The argument in favor of predicting the normalized noise
component as the training objective is that it allows the
model output to stay in a consistent range, so the model
learns to make subtle refinements when the noise levels
are small. However, when the noise levels are large, small
inaccuracies in the model prediction can lead to large
changes to the image in the sampling process. This can be
somewhat mitigated by skipping the first steps of the
diffusion process during generation in order to avoid this
divergent behavior. We find this parametrization works well
for datasets 1 and 2.
For dataset 3, we find the training objective suggested

by Ref. [38], where the model predicts a weighted average
of the noise component and the denoised image, yields
better results,

L¼ Et;ϵ

�
wðtÞ

����Fθðxt; t; zÞ−
1

coutðtÞ
ðx0 − cskipðtÞ · ðxtÞÞ

����
2
�
:

ð12Þ

The different weighting functions are chosen to be
proportional to the standard deviation of the total amount
of noise at each step t, σðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1 − ᾱt
p

. Specifically,
wðtÞ ¼ 1þ 1=σðtÞ2, cskipðtÞ¼1=ðσðtÞ2þ1Þ, and coutðtÞ ¼
1=ð1þ 1=σðtÞ2Þ. With this combination of terms, the
model trades off between predicting the noise component
when the noise is small and predicting the denoised image
when the noise is large. For t → 0, σðtÞ → 0 and cskip → 1,
so the training objective of the model is roughly propor-
tional to ϵ. But for t → T, σðtÞ → 1 and cskip → 1=2, and
the training objective is a weighted average of the denoised
image x0 and the noise component ϵ. This scheme makes
the model less sensitive to inaccurate predictions at high
noise levels during the sampling process. This effect is
more important for dataset 3 because of its higher sparsity,
which leads to a longer tail in the voxel energy distribution.
When using this training objective, skipping the first
iterations of the diffusion process when sampling is no
longer required.
We follow the stochastic sampling algorithm proposed in

Ref. [36], in which a small amount of additional noise is
added back to the sample after each denoising step,

xt−1 ¼
1ffiffiffiffi
αt

p
�
xt −

1 − αtffiffiffiffiffiffiffiffiffiffiffiffi
1 − αt

p ϵθðxt; tÞ
�
þ σtϵ

0; ð13Þ

for ϵ0 ∼N ð0; IÞ and σt ¼ βtð1 − ᾱt−1=1 − ᾱtÞ.
As long as the model is conditioned on the noise level,

the number of diffusion steps in the sampling need not be the
same as the number of steps in the training. Decreasing the
number of diffusion steps will linearly improve the computa-
tional time needed to generate samples but may produce
samples of lower quality. This provides significant flexibility
in trading between sample quality and computation time for
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a trained model. As the optimal balance between sample
quality and computation time will be application-specific, in
this work, we primarily focus on sample quality. For datasets
1-photon, 2, and 3 we choose 200 diffusion steps for
sampling because we find it does not significantly degrade
sample quality compared to 400 steps, but further reductions
do. For dataset-pions, we find that 200 diffusion steps
noticeably reduces the sample quality and therefore report
results using 400 steps. Additionally, for datasets 1 and 2, we
find that skipping the first two denoising steps (i.e., starting
from xT−2 rather than xT) avoids instabilities caused by
imperfect estimates of ϵ at the highest noise levels.
After generation, we apply a cutoff on the minimum

voxel energy to match the minimum value in the
CaloChallenge datasets. This corresponds to a value of
10 MeV for dataset 1, and 15 keV for datasets 2 and 3.
Voxels below this value are set to zero. We note that the
threshold for datasets 2 and 3 is likely unrealistically low
for a real detector operating in the energy range considered;
however, we use these values to maintain consistency with
the CaloChallenge.

C. Network architecture

The primary input to the network is the noisy represen-
tation of the shower. However, additional, conditional
information is provided as well. The conditional informa-
tion consists of the scaled logarithm of the incident energy
of the particle and the noise level of the current diffusion
step (

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − αt

p
). This conditional information is encoded

into a 128-dimensional vector via a two-layer fully con-
nected network.
The denoising model uses a U-net [47] architecture,

which is commonly employed in diffusion tasks. U-net
architectures resemble an encoder-decoder pattern, where
the input is gradually compressed to a smaller space, but

unlike an autoencoder, skip connections are used so that
there is no information bottleneck. Our U-net has an initial
convolution followed by a series of ResNet blocks [48].
Conditional convolutions are created by adding the condi-
tional information as an additional bias term after the first
convolutional layer of each ResNet block. For datasets 1
and 2 (3), we use three ResNet blocks for the encoder with
16=16=32 (32=32=32) filters. Convolutional layers with a
stride of 2 and appropriate padding are used to reduce the
data size by a factor of 2 in each dimension after each of the
first two ResNet blocks. Linear self-attention layers [49]
are applied after each ResNet block. The architecture is
then mirrored, with three more ResNet blocks with the
same filter sizes. Convolutional transpose layers are used to
upsample by a factor of 2 after each ResNet block to return
to the original data dimension. A schematic of the network
architecture is shown in Fig. 1.
In total, the models for datasets 1 and 2 (dataset 3)

consists of ∼520 K (∼1.2 M) parameters. The model
architectures were not extensively optimized, and it is
likely the performance could be further improved with a
dedicated optimization procedure.

V. GEOMETRIC INNOVATIONS

A. Optimizations for cylindrical geometry

Regular convolutions achieve their power by exploiting
the underlying symmetry of the data: translation invariance
along each of the coordinate dimensions. When a convolu-
tional layer is applied to an image, the filters perform
the same local operation across the whole input image.
This allows for expressive, parameter-efficient operations
on high-dimensional images. However, while calorimeter
showers represented in a voxelized cylindrical geometry
have a regular structure, they are not inherently translation
invariant. The distribution of energy deposited in each layer

Input

Conv (16/32)

ResNet Block (16/32) + 
Downsample

ResNet Block (16/32) + 
Downsample

ResNet Block (32) ResNet Block (32)

ResNet Block (16/32) +
Upsample

ResNet Block (16/32) +
Upsample

Conv (16/32)

Output

Conv (32/32)

Linear Attn.

Conv (32/32)

Skip
Connection

Skip
Connection

Skip
Connection

Denoising
Model

Conditional
Embedding

Conv
Group 
Norm

Conv
Group 
Norm

Repeat
Once

Linear Attn

ResNet Block

FIG. 1. Left: a schematic of the network architecture. The numbers in parentheses for each module indicate the number of filters used
in that module for the network for datasets 1 and 2 / dataset 3. Right: A detailed view of the operations in a ResNet block.
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encodes important information about the shower, which
would be spoiled by translating the shower in either
direction along the layer axis. Likewise, the distribution
of energy in the radial direction encodes important infor-
mation about the transverse spread of the shower and falls
rapidly as a function of the distance away from the shower
center. Additionally, in a realistic detector, sensors in
different layers may have different sizes or be made of
different materials. The one coordinate dimension that may
be translation invariant is the angular dimension. However,
this dimension has a periodic topology that will not be
respected by regular convolutions. We therefore design
several novel optimizations of the convolution operation
tailored to cylindrical data that improve the output fidelity.
In order to respect the periodicity of the angular

dimension in cylindrical calorimeters, our denoising net-
work uses cylindrical convolutions rather than standard
Cartesian ones. The angular dimension is represented in a
linear array, so neighboring values with coordinates near
the extrema of the angular range are far apart in the array
representation. Before each cylindrical convolution oper-
ation, a circular padding is added in the angular dimension,
such that both ends of the linear array are extended with the
values from the opposite end. This ensures that when a 3D
convolution is applied, the voxels close to the ends of the
linear array properly interact with their angular neighbors
on the opposite end. This padding is only applied to the
angular dimension; the radial and z dimensions remain
unchanged.
To allow our convolutional operations to violate trans-

lation invariance, we devise a novel scheme for location-
conditional convolutions. This is implemented by
augmenting the shower image with additional input chan-
nels that encode the position of each voxel. We construct
one “layer image” in which the value of each voxel
corresponds to the layer number of that voxel, normalized
to the range 0 to 1. We similarly construct a “radial image”
that encodes the radial distance of each voxel, also
normalized from 0 to 1. For dataset 1, we observe slight
nonuniformities in the energy distribution as a function of
the angular bin, and find slight performance gains from
including an “angular image” as well. These additional
images are concatenated to the per-voxel shower energy
as additional input channels. This allows the filters in the
convolutional operations to produce different results in
different parts of the geometry. The output of the denoising
network is still a single channel corresponding to the
energy in each voxel. As these images are the same for
every input, in principle, they do not supply any additional
information to the model. Therefore, one would expect that
they would be unnecessary for a sufficiently large and
expressive model. However, in practice, with the models
employed in this work, we have found this technique makes
it easier for the network to learn the nonuniformities of the
underlying data.

B. GLaM: Geometry latent mapping

Though datasets 2 and 3 feature significantly larger
numbers of voxels than dataset 1, their regular binning
allows convolutional operations to be readily applied. In
contrast, the irregular binning in dataset 1 poses a challenge
for fully utilizing the geometric structure of the data.
Overcoming this challenge is important for the application
of these techniques to real detectors, which often do not
have perfectly regular geometries. Previous approaches
have either used fully connected networks [16] or 1D
convolutions with a very large network size [24]. Point
clouds approaches have also gained some recent support as
a way around this problem [30,39].
We instead employ a new method called geometry latent

mapping or GLaM. GLaM learns a mapping from the data
geometry to a perfectly regular geometric structure that is
similar to the actual irregular geometry. This embeds the
data in a regular space so that computationally efficient
operations, such as cylindrical convolutions, can be used to
accomplish the primary task of the ML algorithm (here, the
denoising task of the diffusion model). The reverse trans-
formation to bring the results of the primary task back to the
original space is also learned by GLaM.
Separate mappings can be learned for different regions

of the detector geometry. (A practical example is discussed
below.) The embedding for a particular region is therefore
only based on local information from that region. This
ensures that the size of the embedding matrices remains
small and that the embedded space reflects the inherent
locality of the geometric structure. GLaM is philosophically
similar to the approach of latent diffusion [37], which
encodes data into a latent space learned by an autoencoder
using a perceptual loss [50] prior to the generative task.
However, with GLaM, the embedded space can be larger
than the input space, has a direct geometric interpretation,
and is learned simultaneously with the generative task.
A schematic of the GLaM approach is shown in Fig. 2.
We apply GLaM to dataset 1 to learn a mapping of the

input data to a regular cylindrical structure. During the
diffusion training, the noise is still added in the original,
irregular data structure, so that the embedding acts as just a
part of the denoising model.1 We choose the radial and
angular binning of this regular structure to be the superset
of all the bin boundaries of the individual layers. This
results in 10 angular bins and 30 radial bins for the photon
dataset and 10 angular bins and 23 radial bins for the pion
dataset. A separate mapping for each layer is then learned
from the original binning in that layer to this regular
structure. The mapping along the radial dimension for layer
l is accomplished via a single matrix Cl, of size cl × c0,

1Adding the noise to the regular geometry results in a weak
training signal for the embedding map and therefore, is more
applicable to a situation in which the embedding is fixed or has
been learned by some other means.

OZ AMRAM and KEVIN PEDRO PHYS. REV. D 108, 072014 (2023)

072014-6



where cl is the number of radial bins in the original
geometry and c0 is the number of bins in the regular
geometry. The mapping back to the original space is
likewise accomplished via a single matrix, Dl, of size
c0 × cl. The values of the Cl matrix are trainable param-
eters, but initialized to values reflecting the geometric
overlap of the original and regular binning scheme,

Cl
j;k ¼

8<
:

r2k−r
2
kþ1

r2j−r
2
jþ1

þ κj;k if rk ≥ rj and rkþ1 ≤ rjþ1

κj;k otherwise:
ð14Þ

Here, the values rj denote the bin boundaries in the original
geometry, rk denote the bin boundaries in the regular
geometry, and κ is a tensor of Gaussian noise with mean
zero and standard deviation 10−5.
Because Cl generally maps between spaces of different

dimensionality, the matrix is rectangular and does not have

an analytic inverse. Dl is instead initialized to the Moore-
Penrose pseudoinverse of Cl, so that initially ClDl ¼ I.
However, during training it is computationally difficult to
backpropagate through the Moore-Penrose pseudoinverse
function, so we instead allow the values of the inverse
mapping Dl

k;j to be independently trainable.
In dataset 1, layers either have a single angular bin or the

same ten angular bins. We therefore take these ten bins to
be the regular structure and evenly divide the energy of
layers with only a single angular bin among these ten bins.
We found that learning a mapping for the angular dimen-
sion, similar to the one used for the radial dimension,
provided no performance improvements beyond the simple
energy splitting.
This is quite a simple ansatz, with the embedding

being fully specified by 3180 (3404) parameters for the
photon (pion) dataset. We nevertheless find it works quite
well in combination with cylindrical convolutions. We find
that a single embedding matrix with a geometrically

FIG. 2. A diagram of the geometry latent mapping (GLaM) approach.

FIG. 3. A comparison of the average showers produced by GEANT4 (top) and CaloDiffusion (bottom) for the photon sample of
dataset 1.
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informed initialization yields significantly better results
than fully connected neural network layers initialized with
standard techniques.

VI. RESULTS

We compare the showers generated with
CaloDiffusion to those from GEANT4 for all datasets
from the CaloChallenge.
A comparison of the average showers produced by

GEANT4 and CaloDiffusion, with the GLaM embed-
ding approach, for the photon sample of dataset 1 is shown
in Fig. 3. A comparison of various energy distributions
for the photon and pion samples of dataset 1 used in the
evaluation of the CaloChallenge are shown in Figs. 4 and 5,

respectively. The spatial properties of the shower are
characterized by the Cartesian center energy of the shower,
defined as x ¼ hxiEiiP

Ei
for cell location xi and energy Ei; and

the shower width, defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2i EiiP

Ei
− x̄2

r
.

For datasets 2 and 3, we examine the distribution of
energy as a function of the layer of the calorimeter and as a
function of the radial coordinate of the voxel. We examine
the total energy of the shower, the distribution of voxel
energies, and the number of voxels with energy above
1 MeV. The spatial properties of the shower are repre-
sented by the width of the shower in radial and angular
dimensions (computed analogously to the Cartesian
version defined above) separately for each layer of the

FIG. 4. A comparison between GEANT4 and CaloDiffusion showers across a variety of observables for the photon sample of
dataset 1. The top row shows the distribution of energy in different layers of the calorimeter. The middle row shows the
distribution of the center and width of the energy spread in two reference layers. The bottom row shows the distribution of voxel
energies, the distribution of total shower energy divided by the incident energy, and a scatter plot of deposited energy versus
incident energy.
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calorimeter. The distributions for datasets 2 and 3 are
shown in Figs. 6–8.
We generally find that CaloDiffusion is successful

at modeling all the datasets considered. The spatial dis-
tributions of the showers—the shower center and widths for
dataset 1 and the layer/radial energy profile for datasets 2
and 3—are especially well reproduced. We observe only
very slight degradation in quality on dataset 3 compared to
dataset 2, even though it features roughly a factor of 7
higher granularity. This underscores the advantage of the
convolutional approach: because it is based on fully local
operations, it can readily scale to higher-dimensional data.
One of the most notable deficiencies is that

CaloDiffusion produces a tail of low energy voxels
for datasets 2 and 3, which is not seen in the GEANT4

distributions. The tail likely results from residual noise
from the diffusion process that has not been fully removed
by the model. The tail begins at approximately 10 keV and
thus, is not visible in dataset 1 because of the higher voxel
energy threshold (10 MeV). The tail would likely be fully
removed with a more realistic voxel minimum energy
threshold applied to datasets 2 and 3. If not, such a low
energy tail would still likely have minimal impact on the
downstream reconstruction of the shower.
Perhaps a more relevant deficiency of the model can be

seen in the distribution of the shower response, the total
shower energy divided by the incident particle energy. This
is seen to be particularly discrepant in the photon sample of
dataset 1, in which GEANT4 exhibits a much narrower peak
than CaloDiffusion, and mismodeling is visible in all

FIG. 5. A comparison between GEANT4 and CaloDiffusion showers across a variety of observables for the pion sample of
dataset 1. The top row shows the distribution of energy in different layers of the calorimeter. The middle row shows the
distribution of the center and width of the energy spread in two reference layers. The bottom row shows the distribution of voxel
energies, the distribution of total shower energy divided by the incident energy, and a scatter plot of deposited energy versus
incident energy.
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datasets. We have found distributions of such a “global”
property of the shower to be among the hardest for the
diffusion processes to capture, because most operations
are done entirely locally. For such observables, it is not
straightforward to add a dedicated loss term to the diffusion
training because they are only well defined at the end of the
diffusion process, but most of the training uses an inter-
mediate step.2

In the future, a maximum mean discrepancy loss
comparing the distributions from a large batch of events
could be tried. Another possibility would be to adopt a two-
stage generation approach, as is done in Refs. [26,30,31],
in which the total energy of the shower, or the per-layer
energy, is learned with a dedicated model and then used to
normalize the output of the diffusion model.
There is also visible mismodeling of a peak in the energy

distribution in layer 1 of the dataset 1 pion showers. This

peak comes from very low energy pions that deposit all of
their energy in layers 0 and 1 of the calorimeter, producing
very sparse showers. These showers are qualitatively
different from the rest and perhaps could benefit from
some dedicated training or optimization.

A. Quantitative metrics

We compute several metrics sensitive to differences
between the GEANT4 and CaloDiffusion samples for
quantitative assessment of our model’s performance.
One proposed metric [19,51] is based on training a

classifier to distinguish between the reference and synthetic
samples. An optimal classifier will learn a score proportional
to the likelihood ratio between the two samples. The closer
the two samples are, the closer the likelihoods will be, and
the classifier will struggle to distinguish between the two
samples. Performance can be quantified based on the area
under the curve (AUC) from the receiver-operating charac-
teristic (ROC) curve of this classifier evaluated on a
statistically independent dataset. An AUC of 1 would
indicate there is a significant deficiency in the synthetic
sample, such that the classifier is always able to distinguish

FIG. 6. A comparison between GEANT4 and CaloDiffusion showers on datasets 2 (top row) and 3 (bottom row). The average
shower energy is shown as a function of layer (left) and as a function of radial bin (center). The width of the shower in the radial direction
is also shown (right).

2We attempted to add a dedicated L2 loss term for the total
shower energy, based on estimating the final shower from the
intermediate noisy shower through a 1-step estimate of the
denoised shower, but it did not produce any improvements,
likely because of the amount of noise in this estimate.
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it from a reference sample. An AUC of 0.5 would indicate
the classifier cannot separate the two samples. Though
Refs. [51,52] showcased some limitations of the AUC in
capturing subtle mismodelings, so far no ML-based calo-
rimeter simulation has reported AUC scores very close to 0.5
on theCaloChallenge or similar datasets. Therefore, it is still
a worthwhile metric to compare models.
Following the setup of the CaloChallenge, we employ

two versions of this classifier test: one where the inputs to
the classifier are the full showers themselves, along with
the incident particle energy (low level), and one where the
inputs are high-level, physics-informed features of the
shower (high level). The high-level features are those used
in the CaloChallenge: the incident particle energy, the
energy in each layer, and the center of energy and width of
the shower in the η and ϕ directions. In both cases, the
classifier is a fully connected network with two hidden
layers, each with 2048 neurons. Dropout [53], with a rate of
20%, is used after each hidden layer.
In Table I, we compare the classifier AUC values for

CaloDiffusion to those reported by CaloFlow /
iCaloFlow [31,54] (called here simply CaloFlow),
and CaloScore v2, which are the only other models to
have published quantitative results on the CaloChallenge at

the time of writing.3 CaloFlow is actually a pair of
models: the originally trained “teacher” model and a
“student” model derived from the first model, optimized
for inference speed. CaloScore v2 is a score-based
diffusion model and also features distilled versions based
on progressive distillation. CaloScore v2 did not pro-
vide results for the pion version of dataset 1. As this version
of CaloDiffusion was optimized for sample quality
and has not used dedicated methods to improve sampling
time, we compare to the teacher model of CaloFlow and
the undistilled version of CaloScore v2,4 which have
better performance and a similar generation time to

FIG. 7. A comparison between GEANT4 and CaloDiffusion showers on datasets 2 (top row) and 3 (bottom row). The quantities
shown are the width of the shower in the angular direction (left), the distribution of total number of nonzero voxels (center), and the
energy per voxel (right).

3CaloFlow actually reported results for a preliminary version
of the pion sample of dataset 1 without a separate evaluation
sample. Therefore, those classifier AUC values were computed
from the same sample of showers as used in the training.
CaloDiffusion results are based on the final version of
the pion dataset, which includes separate training and evaluation
sets. When training and testing on the older sample, Calo-
Diffusion has slightly improved AUC values, but we report
here results on the final CaloChallenge version for posterity.

4For dataset 3, the CaloScore v2 authors do not provide
results on a model without distillation, so we compare to the
eight-step distilled version.
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CaloDiffusion. Future work will explore the develop-
ment of a new version of CaloDiffusion with opti-
mized generation speed, which would be more suitable for
comparison to the faster versions of each model.
We find that CaloDiffusion produces classifier

AUC values below 0.7 for all four datasets, indicating
that the classifier struggles to distinguish between

CaloDiffusion and GEANT4 showers. CaloDiffu-
sion achieves better AUC scores than CaloFlow and
CaloScore v2 for all cases except the photon showers of
dataset 1 when using high-level features. The performance
gains of CaloDiffusion are especially prominent for
the higher-dimensional datasets 2 and 3.
For CaloDiffusion, the classifiers trained on low-

level features and high-level features have quite similar
AUC values. This indicates that most of the discrimination
power between CaloDiffusion and GEANT4 showers
is captured by these high-level features. We generally find
that the low-level classifier overfits the training set
significantly, and therefore, an improved architecture
would perhaps perform better. However, we generally
take this overfitting to be a positive sign, because it
indicates that distinguishing between GEANT4 and
CaloDiffusion showers based on generalizable fea-
tures is not easy.
We additionally report the Fréchet particle distance

(FPD) and kernel particle distance (KPD) metrics, sug-
gested in Ref. [52] and implemented in the JETNET
library [55], interfaced to the CaloChallenge evaluation
code. We use the same high-level shower features as in the
classifier test but omit the incident particle energy. We find

FIG. 8. A comparison between GEANT4 and CaloDiffusion showers on datasets 2 (top row) and 3 (bottom row). Shown are the
distributions of the total shower energy (left) and the total shower energy divided by the incident particle energy (center), and a scatter
plot of the two quantities (right).

TABLE I. The AUC values for a classifier trained to distinguish
between GEANT4 and synthetic showers. The first value listed is
the AUC for the classifier trained on low-level features, and the
second is the AUC for the classifier trained on high-level features.
The CaloDiffusion values are the average of five indepen-
dent classifier trainings. In all cases, the variation in scores was
observed to be 0.01 or less. In each row, the bold value is the best
AUC value for each classifier type.

Classifier AUC (low/high)

Dataset CaloDiffusion CaloFlow CaloScore v2

1 (photons) 0.62=0.62 0.70=0.55 0.76=0.59
1 (pions) 0.65=0.65 0.78=0.70 � � � = � � �
2 (electrons) 0.56=0.56 0.80=0.80 0.60=0.62
3 (electrons) 0.56=0.57 0.91=0.95 0.67=0.85
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that the FPDmetric computed with these features is slightly
biased; the reported value does not agree with zero within
its uncertainty, even when comparing two samples of
GEANT4 showers. We therefore normalize our reported
values for FPD by subtracting the value computed compar-
ing two GEANT4 samples.5 We report these additional
metrics in Table II.
Further quantitative comparisons with other approaches

will be performed at the conclusion of the CaloChallenge.
However, initial results from the CaloChallenge [56] indi-
cated that a preliminary version of CaloDiffusion6 was
among the top submissions for every dataset.
Ablation studies quantifying the performance improve-

ments for various aspects of CaloDiffusion are dis-
cussed in the Appendix.

B. Timing

In Table III, we report the generation time of our model
using different batch sizes on both CPUs and GPUs.
Results are based on a 2.6 GHz Intel E5-2650v2 “Ivy
Bridge” 8-Core CPU and an NVIDIA V100 GPU. The
time required to generate a shower in GEANT4 depends
strongly on the incident energy of the particle. The
average over the incident energies used in datasets 2
and 3 is Oð100 sÞ [31].
Because of the iterative denoising process during gen-

eration, diffusion models are usually slower than other ML
approaches. If limited to a batch size of one and running on
a CPU, this version of CaloDiffusion may not satisfy
the computation time requirement for a fast simulation.
Without any additional training or algorithmic changes,
the CaloDiffusion generation time can be linearly
improved by reducing the number of diffusion steps used in
the sampling, with a cost to sample quality. We explore this
tradeoff in Sec. VI C.

C. Sampling steps and quality

In this work, our main goal was to demonstrate the
fidelity achievable with the CaloDiffusion approach,
rather than optimizing for generation speed. We therefore
chose the fewest diffusion steps that did not exhibit a
significant decrease in sample quality. However, significant
reductions in the number of sampling steps can still result
in high-quality samples. This tradeoff between number
of diffusion steps and sample quality was studied using
dataset 2. By changing the noise schedule, the model can be
sampled using different numbers diffusion steps without
retraining. Inference time scales linearly with the number of
diffusion steps regardless of batch size (using 200 steps
generates samples twice as fast as 400 steps).
We find that one of the distributions most sensitive to
the number of diffusion steps is the ratio of deposited to
incident energy. This seems to be one of the hardest
features for the diffusion model to capture, and it degrades
further with fewer steps. A plot of this feature with different
numbers of diffusion steps is shown in Fig. 9. In addition to
the metrics reported in Sec. VI A, we report the separation
power between GEANT4 and CaloDiffusion on this 1D
distribution. The separation power is a modified χ2 metric
proposed for calorimeter simulation in Ref. [18] and
implemented in the CaloChallenge framework. Results
are presented in Table IV.
Improving the generation time of diffusion models is an

active area of research in the machine learning community.
Improved sampling algorithms have been proposed and
shown to achieve higher sample quality for low numbers
of diffusion steps [38]. Alternatively, once trained, the
diffusion model can be “distilled” into a new model, which
requires an order of magnitude fewer diffusion steps
[57,58] with minimal loss in sample quality. This distil-
lation approach was recently employed for the generation

TABLE II. Additional metrics comparing the agreement be-
tween showers generated with GEANT4 and CaloDiffusion.
The number in parentheses is the uncertainty in the last
significant digit as evaluated with the JETNET library.

Dataset FPD KPD

1 (photons) 0.014(1) 0.004(1)
1 (pions) 0.029(1) 0.004(1)
2 (electrons) 0.043(2) 0.0001(2)
3 (electrons) 0.031(2) 0.0001(1)

TABLE III. The shower generation time for CaloDiffusion
on CPU and GPU for various batch sizes.

Time/Shower (s)

Dataset Batch size CPU GPU

1 (photons) 1 9.4 6.3
(368 voxels) 10 2.0 0.6

100 1.0 0.1

1 (pions) 1 9.8 6.4
(533 voxels) 10 2.0 0.6

100 1.0 0.1

2 (electrons) 1 14.8 6.2
(6.5 K voxels) 10 4.6 0.6

100 4.0 0.2

3 (electrons) 1 52.7 7.1
(40.5 K voxels) 10 44.1 2.6

100 � � � 2.0

5The FPD values computed comparing two GEANT4 samples
are 0.008, 0.0005, 0.008, and 0.011 for datasets 1 (photons), 1
(pions), 2 (electrons), and 3 (electrons), respectively.

6The preliminary version did not use the attention layers and
dimensionality reduction in z that are included in the U-net
architecture of the version in this paper.
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of particle jets using a point cloud representation in
Refs. [29,40] and for detector simulation in Ref. [32], still
with some loss of quality.
An alternative approach would be to simplify the

diffusion task of the network. The dimensionality of the
data can be reduced by first compressing to a smaller latent
space, running diffusion, and then decompressing back to
the original space [37]. Alternatively, rather than starting
the diffusion process from pure noise, it has been demon-
strated that diffusion between two images is possible [59].
One could therefore start the diffusion process from an
approximate calorimeter simulation, generated by current
non-ML fast simulation techniques. By providing input
similar to the final result, the diffusion process would likely
require fewer steps and some physical features may be
learned more easily. This would be a similar approach to

Ref. [60], in which CNNs were used to denoise a fast
simulation to achieve higher quality results. A conceptually
related approach using diffusion with a Schrödinger bridge
was recently demonstrated [61]. These techniques for
refinement of low-level hits in calorimeter showers can
complement regression-based refinement of high-level
observables [62] by making the latter easier to learn and
therefore even more precise.

VII. CONCLUSION

In this work, we introduced CaloDiffusion, a new
machine learning (ML) model that uses diffusion to
generate calorimeter showers. We employed several novel
optimizations that exploit the underlying geometry of the
calorimeter data. We have also introduced the geometry
latent mapping (GLaM), a new approach to handle irregular
geometrical structures in data. GLaM learns a lightweight
embedding to transform the irregular data geometry into
a regular shape, which can then be used in symmetry-
preserving operations, such as convolutions, and also learns
the reverse transformation. We have demonstrated that
CaloDiffusion, combined with GLaM, is able to
generate high quality showers on a variety of datasets,
some with high dimensionality. We have set new bench-
marks in quantitative performance metrics that demonstrate
it is difficult to distinguish between CaloDiffusion and
GEANT4 showers.
Our work significantly advances the state of the art in the

achievable physics performance from ML-based fast sim-
ulation techniques. This is an important step to establish
the viability of such techniques to resolve the simulation
component of the computing challenges in the High
Luminosity LHC era. While the unoptimized generation
time for diffusion models is slower than for some other ML
architectures, producing showers in batches on GPUs is
already noticeably faster than the GEANT4 -based full
detector simulation. Future work will explore and compare
a variety of approaches to improve the generation speed of
CaloDiffusion and will apply CaloDiffusionwith
GLaM to datasets with even more complicated geometries.
The code to reproduce the results in this paper, as well as

the trained models, can be found at [63].
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FIG. 9. Distribution of the ratio of incident particle energy and
total deposited energy of the shower comparing CaloDiffu-
sion samples generated with different numbers of sampling
steps to GEANT4.

TABLE IV. Quantitative metrics comparing the agreement
between showers generated with GEANT4 and CaloDiffusion
with different numbers of sampling steps for dataset 2 of the
CaloChallenge. The separation power is computed using the ratio
of deposited to incident energy. See text for details.

Number steps
Classifier

AUC (low/high) FPD
E Ratio

separation power

400 0.56=0.55 0.043(1) 0.011
200 0.61=0.56 0.046(1) 0.036
100 0.69=0.59 0.065(3) 0.079
50 0.83=0.67 0.110(4) 0.251

OZ AMRAM and KEVIN PEDRO PHYS. REV. D 108, 072014 (2023)

072014-14



Operations Program under the U.S. CMS HL-LHC R&D
Initiative.

APPENDIX: ABLATION STUDIES

We report here ablation studies for several of the
innovations and design choices used in this study.
We perform this ablation study on the pion sample of
dataset 1 because it is the most difficult sample for
CaloDiffusion to reproduce.
The ablations we consider are
(i) Not using the “layer” and “radial” images that allow

for location-conditional convolutions.
(ii) Using regular Cartesian convolutions instead of

cylindrical ones.
(iii) Using a fixed geometric embedding instead of the

learnable GLaM approach. The setup used to initial-
ize GLaM (Sec. V B), based on the area overlap of
cells, is employed for the fixed embedding.

We attempted an additional ablation that replaced GLaM
with several fully connected dense layers, using no geo-
metric information, but this model did not produce any
reasonable results at the denoising task.

For each choice under study, we retrained a different
version of CaloDiffusion and generate samples to
evaluate the impact. Results are reported in Table V.
For the definitions of the metrics reported, see Tables I
and II. We find that each ablation does lead to worse
performance than the baseline, but no single change
results in a substantial drop in performance.
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