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Recently, Chandrasekaran, Penington, and Witten (CPW) have shown that the generalized entropy of the
Schwarzschild black hole at the bifurcation surface equals the entropy of an extended von Neumann
algebra of quantum observables in the black hole exterior, in semiclassical Einstein gravity. They also
derive a version of the generalized second law. We generalize these results to a static black hole in an
arbitrary diffeomorphism invariant theory of gravity. Thus, a version of the generalized second law for an
arbitrary diffeomorphism invariant theory of gravity follows.
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I. INTRODUCTION

Generalized entropy in Einstein gravity was introduced
by Bekenstein in order that the second law of thermo-
dynamics be valid near black holes [1,2]. He suggested the
generalized second law (GSL) holds, namely that the
generalized entropy increases under future evolution along
the black hole horizon. The generalized entropy for a
quantum black hole coupled to matter, in the semiclassical
G → 0 limit was defined to be

Sgen ¼
�

A
4ℏG

�
þ SQFT; ð1:1Þ

where A is the black hole horizon area and SQFT is the
entanglement entropy of the quantum fields in the black
hole exterior. As has been pointed out, both the terms in
(1.1) are individually ultraviolet (UV) divergent (the first
term due to loop effects which renormalize G and the
second term, entanglement entropy, which is UV diver-
gent), but the sum is UV finite [3–10]. The GSL for
Einstein gravity was proved by Wall [11]. In an arbitrary
diffeomorphism invariant theory of gravity, we can analo-
gously define the generalized entropy for a black hole with
quantum fields to be the sum of its horizon entropy S in that
theory and the entanglement entropy of quantum fields in
the black hole exterior,

Sgen ¼ Sþ SQFT: ð1:2Þ

A candidate for the horizon entropy for a stationary black
hole is Wald entropy [12,13]. The Wald entropy is
ambiguous for a nonstationary black hole—these ambigu-
ities were first discussed in [14]. A linearized GSL
(ignoring gravitons) was proved for Lovelock gravity
in [15].
In an interesting recent development, the generalized

entropy in Einstein gravity appeared as the entropy of a von
Neumann algebra of observables in the black hole exterior
where the black hole is the Schwarzschild solution in Einstein
gravity [16]. Leutheusser and Liu [17] (see also [18]) studied
the holographic boundary operator algebra of theCFT dual to
gravity in the asymptotically anti-de Sitter (AdS) black hole
spacetime. They found a emergent type III1 von Neumann
algebra for single trace operators in the large N limit of the
boundary CFT (see also [19]). Later, Witten [20] showed that
by enlarging the set of operators to include the boundary
Hamiltonian and enlarging the Hilbert space to include a
degree of freedomcorresponding to a boundary time shift, the
algebra becomes a type II∞ von Neumann algebra. In [21],
Chandrasekaran, Longo, Penington, and Witten discuss
how this construction can be generalized to asymptotically
flat black holes. Starting with quantum fields in the exterior
of a Schwarzschild black hole, by including the ADM
Hamiltonian in the set of operators and the time shift degree
of freedom in the Hilbert space, the algebra of these operators
in the bulk spacetime is type II∞. A type II von Neumann
algebra (unlike a type III algebra) has a notion of a
(renormalized) trace, density matrix and corresponding von
Neumann entropy associated with the density matrix (for a
review of von Neumann algebras and their classification,
see [22]). In [16], Chandrasekaran, Penington, and Witten
(CPW) showed that the entropy of semiclassical states in the
boundary algebra is equal to the generalized entropy of the
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black hole at the bifurcation surface. This has a bulk
interpretation—in semiclassical gravity in the G → 0 limit,
the generalized entropy is the entropy of the algebra of
operators in the black hole exterior. Finally, CPW use the
monotonicity of the entropy of the algebra under trace
preserving inclusions to prove a version of the generalized
second law (GSL) showing monotonicity of generalized
entropy between early and late times.
In this paper, we study the generalization of these results

to an arbitrary diffeomorphism invariant theory of gravity
by also including gravitons. We first write the black hole
entropy in such a theory at an arbitrary horizon cut, which
is the Wald entropy [12,13] with an extra term representing
an ambiguity in the Wald entropy for a nonstationary black
hole [14]. We work in semiclassical gravity. We consider a
static (therefore stationary) black hole that is slightly
perturbed due to infalling quantum matter and gravitons.
In the limit when the cut v → ∞, the perturbed black hole
approaches a stationary black hole (v is the affine parameter
along the null generator of the horizon). We compute the
entropy at v → ∞ minus the entropy at the bifurcation
surface up to quadratic order in the perturbation, and we
take into account the contribution due to gravitons to the
stress-energy tensor. It is possible to fix the ambiguity in the
Wald entropy in such a way that this difference of entropies
takes a simplified form proportional to the vv component of
the stress-energy tensor. Generalizing the computations of
CPW [16], we find the difference of generalized entropies
at v → ∞ and at the bifurcation surface to be proportional
to the relative entropy, which is non-negative. By comput-
ing the entropy of the extended von Neumann algebra of
the black hole exterior [20], we show that the entropy of the
algebra is the generalized entropy at the bifurcation surface
just as in [16] for Einstein gravity. All the above con-
structions can be done for asymptotically flat static black
holes [21]. Finally, we discuss the monotonicity result of
CPW [16] who show that monotonicity of relative entropy
under trace preserving inclusions can be used to argue that
the generalized entropy at late times is more than that at
early times. For this, we need asymptotically AdS black
holes with a holographic dual, but modulo this change, the
monotonicity result of CPW goes through for the gener-
alized entropy of a black hole in an arbitrary diffeo-
morphism invariant theory of gravity.
In Sec. II, we discuss the difference of entropies at

v → ∞ and at the bifurcation surface for a slightly
perturbed black hole. We use boost arguments which we
summarize in Sec. II A to simplify this difference of
entropies. By expanding the Raychaudhuri equation order
by order in the perturbation parameter, we compute the
change in entropies to quadratic order in Sec. II D both
without graviton contributions to the stress-energy tensor,
and with the graviton contribution included. In Sec. III, we
discuss the entropy of the algebra of operators in the black
hole exterior. We first summarize salient results from earlier

papers of Witten [20], Chandrasekaran, Longo, Penington
and Witten [21] and CPW [16] who discussed how the
entropy of the algebra was related to the generalized
entropy in Einstein gravity. We then generalize these results
to an arbitrary diffeomorphism invariant theory of gravity.
We conclude in Sec. IV with a discussion.

II. ENTROPY CHANGE IN HIGHER
CURVATURE THEORY

In what follows and the rest of the paper, we work in
units where G ¼ 1. Consider an entropy function for a
black hole horizon in an arbitrary diffeomorphism invariant
theory of gravity with matter,

S ¼ 1

4

Z
ρ

ffiffiffi
h

p
dD−2x ð2:1Þ

where ρ ¼ 1þ ρw þ Ω, whereh is the inducedmetric on the
D − 2 dimensional transverse cut on the horizon and 1þ ρw
is theWald local entropy density [12,13]. As is well known,
the Wald entropy is unambiguously defined for a stationary
black hole, but suffers from ambiguitieswhen evaluated on a
non-stationary black hole. These ambiguities were pointed
out by Jacobson, Kang and Myers (JKM) [14] and by
Iyer andWald [13].Ω is a correction toWald entropy density
representing this JKM ambiguity, such that it vanishes for a
stationary solution. We are interested in a black hole
spacetime with a regular bifurcation surface B, which is
slightly perturbed from stationarity by throwing some
quantum matter. Let v be an affine parameter along the
null generator of the future horizon, such that v ¼ 0 is the
bifurcation surface as shown in Fig. 1. Then, the entropy at
an arbitrary horizon cut (given by v ¼ constant) is

S½v� ¼ 1

4

Z
v
ρ

ffiffiffi
h

p
dD−2x ð2:2Þ

where the subscript v in the integral indicates that the
integral is over the transverse space at fixed v on the horizon.
We can compute the change in the entropy along the horizon,

FIG. 1. Accretion of matter across the horizon in an asymp-
totically flat black hole.
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dS
dv

¼ 1

4

Z
v

ffiffiffi
h

p
dD−2x

�
dρ
dv

þ θρ

�
ð2:3Þ

where expansion θ≡ 1ffiffi
h

p d
ffiffi
h

p
dv . To compute change in the

entropy from v ¼ 0 to v → ∞, we can integrate both the
sides with respect to v. This yields

ΔS ¼ 1

4

Z
∞

0

dv
Z
v

ffiffiffi
h

p
dD−2x

�
dρ
dv

þ θρ

�
: ð2:4Þ

Here, ΔS ¼ Sð∞Þ − Sð0Þ. Using integration by parts,

ΔS ¼ 1

4

Z
v

�
v

ffiffiffi
h

p �
dρ
dv

þ θρ

��				
v→∞

v¼0

dD−2x

−
1

4

Z
∞

0

dv
Z ffiffiffi

h
p

dD−2xv

×

�
d2ρ
dv2

þ dθ
dv

ρþ 2
dρ
dv

θ þ θ2ρ

�
: ð2:5Þ

Wewill assume that
ffiffiffi
h

p ðdρdv þ θρÞ goes to zero faster than 1
v,

therefore the first term in the above equation is identically
zero and we are left with

ΔS ¼ −
1

4

Z
∞

0

dv
Z ffiffiffi

h
p

dD−2xv

×

�
d2ρ
dv2

þ dθ
dv

ρþ 2
dρ
dv

θ þ θ2ρ

�
: ð2:6Þ

To compute ΔS order by order, we will now consider the
metric perturbation sourced by a stress-energy tensor of
order ϵ, i.e., hTvvi ∼OðϵÞ. We will also assume that the
perturbation is about a stationary black hole background and
at late times, the black hole will again settle down into a
stationary state. The perturbation expansion we are inter-
ested in is

gμν ¼ gð0Þμν þ ϵ
1
2g

ð1
2
Þ

μν þ ϵgð1Þμν þOðϵ32Þ; ð2:7Þ

where the zeroth order term corresponds to the stationary
black hole solution with regular bifurcation surface, the

ffiffiffi
ϵ

p
term is due to quantized graviton fluctuations, and the ϵ term
is due to the gravitational field ofmatter or gravitons.We can
think of ϵ as ℏ. We want to emphasize that Ω vanishes at
order

ffiffiffi
ϵ

p
at the bifurcation surface [23], a fact which will be

useful later in the calculations.

A. Boost argument

We now use boost arguments first used in [24] and later
in [25,26]. The metric near any null hypersurface and
therefore near the event horizon can be given in Gaussian
null coordinates as

ds2 ¼ 2dvdu − u2Xðu; v; xkÞdv2
þ 2uωiðu; v; xkÞdvdxi þ hijðu; v; xkÞdxidxj ð2:8Þ

where v is an affine parameter along the null generator of
the horizon, xi corresponds to coordinates on the D − 2
transverse surface (cut) and u is chosen in a way that
∂v:∂u ¼ 1 and ∂u:∂i ¼ 0. In this coordinate system, u ¼ 0 is
the future horizon and u ¼ 0, v ¼ 0 corresponds to the
bifurcation surface B. These coordinates may not cover the
entire spacetime, but the near-horizon region of any
dynamical black hole spacetime can always be written in
this form. Now, the black hole spacetime we consider in
this paper is a static (therefore stationary) black hole
spacetime which is a solution in a diffeomorphism invariant
theory of gravity. Then, the black hole event horizon is a
Killing horizon [12]. First consider the case where this
horizon is a Killing horizon with respect to the boost field
ξ ¼ v∂v − u∂u (see [25]). This is true for any stationary
black hole spacetime which, near the horizon, looks like a
Rindler spacetime, hence the terminology “boost field.”
The near-horizon metric of this stationary black hole
will then be boost invariant, i.e., the Lie derivative of
the metric Lξgμν ¼ 0. Then, the near-horizon metric (2.8) is
of the form

ds2st¼2dvdu−u2Xðuv;xkÞdv2þhijðuv;xkÞdxidxj ð2:9Þ

Here, ωi ¼ 0 since the spacetime is static. This is the most
general form of a static spacetime with a Killing horizon
near the horizon. It can easily be seen from (2.8) that
along the horizon, any nonzero tensor A, which is con-
structed out of metric components can always be written as
A ¼ ∂

n
v∂

m
u B, where m, n are integers and B is constructed

out of metric components X, ωi, hij and their derivatives
with respect to ∇i. Then, we can associate a boost weight
with these tensors as boost weight ¼ #v index − #u index.
Furthermore, we can write the schematic form for the vv
component of any 2-tensor Avv constructed from metric
components as

Avv ¼ X̃∂2vY þ C∂vA∂vB: ð2:10Þ

Here, X̃, Y, C, A, B have boost weight zero and are
constructed out of metric components. Now for the sta-
tionary black hole spacetime, the above equation reduces
down to

Avvjst ¼ u2X̃∂2uvY þ u2C∂uvA∂uvB: ð2:11Þ

This is because the stationary black hole has a Killing
symmetry which reduces on the horizon to a scaling
symmetry under u → pu and v → v=p. Thus, the metric
components in the stationary case only depend on uv at the
horizon. This implies that the vv component of any
2-tensor Avv constructed from metric components in a
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stationary black hole spacetime vanishes at the future
horizon, i.e., at u ¼ 0.

Avvju¼0
st ¼ 0: ð2:12Þ

Now, the vv component of the equation of motion for any
higher curvature theory takes the following form,

Rvv þHvv ¼ 8πTvv ð2:13Þ

where Hvv corresponds to a higher curvature contribution
to the equation of motion. Using (2.11) for the stationary
black hole Rvv ¼ 0 and Hvv ¼ 0, this implies that

Tvvju¼0 ¼ 0 ð2:14Þ

for any classical matter stress-energy tensor. Furthermore,
whenever a v derivative acts on the stationary background
metric component, it gives a factor of u as well, since the
metric component depends on v only through uv. Hence
such a term will vanish at the future horizon u ¼ 0.
Therefore, from (2.10), the vv component of any 2- tensor
Avv linear in the metric perturbation at the future horizon
u ¼ 0 can always be written in the following form,

Avvju¼0 ¼ ∂
2
vζ; ð2:15Þ

where ζ has boost weight zero and is constructed from
the background metric and the linear perturbation over
stationarity.

B. Semiclassical gravity equations

Following Chandrasekaran, Penington, and Witten [16]
and Wall [11], we will work in semiclassical gravity where
the expectation value of the matter stress energy tensor is a
source term in the gravity equations. Now let us look at the
semiclassical equations of motion. The vv component is

Rvv þHvv ¼ 8πhTvvi ð2:16Þ

Writing this order by order in ϵ, we get:

ϵ0∶ Rvv þHvv ¼ 0 ð2:17Þ

ϵ
1
2∶ R

ð1
2
Þ

vv þH
ð1
2
Þ

vv ¼ 0 ð2:18Þ

ϵ1∶ Rð1Þ
vv þHð1Þ

vv ¼ 8πhTQ
vvi: ð2:19Þ

where TQ
vv ¼ TM

vv þ tvv, hTM
vvi ∼OðϵÞ is a matter stress

energy tensor and htvvi ∼OðϵÞ, the pseudo-stress-energy

tensor of the graviton. Further, R
ð1
2
Þ

vv , H
ð1
2
Þ

vv are linear in g
ð1
2
Þ

μν

perturbation, and Rð1Þ
vv , H

ð1Þ
vv are linear in gð1Þμν perturbation.

C. Raychaudhuri equation order by order

As is well known, the Raychaudhuri equation (2.18)
plays a key role in the proof of the second law and we will
use it later in our computation. The Raychaudhuri equation
is given by,

dθ
dv

¼ −
�

θ2

D − 2
þ σαβσαβ þ Rvv

�
ð2:20Þ

Now, if we write it order by order in ϵ, we get,

ϵ0∶
dθð0Þ

dv
¼ 0 ð2:21Þ

ϵ
1
2∶

dθð12Þ

dv
¼ −Rð1

2
Þ

vv ð2:22Þ

ϵ1∶
dθð1Þ

dv
¼ −

�
θð12Þθð12Þ

D − 2
þ σαβð1

2
Þσ

ð1
2
Þ

αβ þ Rð1Þ
vv þ R

ð1
2
;1
2
Þ

vv

�
ð2:23Þ

Further using (2.19), (2.23) can be written as

dθð1Þ

dv
¼ −

�
θð12Þθð12Þ

D − 2
þ σαβð1

2
Þσ

ð1
2
Þ

αβ þ 8πhTQ
vvi −Hð1Þ

vv þ R
ð1
2
;1
2
Þ

vv

�
:

ð2:24Þ

Furthermore, if we compute R
ð1
2
;1
2
Þ

vv in TT (transverse trace-
less) gauge at the horizon,1 we will get,

R
ð1
2
;1
2
Þ

vv ¼
TT

−
1

4

dgijð1
2
Þ

dv

dg
ð1
2
Þ

ij

dv
þ 1

2

d
dv

�
gijð1

2
Þ
dg

ð1
2
Þ

ij

dv

�
: ð2:25Þ

Now using the fact that 1
2

dg
ð1
2
Þ

ij

dv ¼ σ
ð1
2
Þ

ij þ 1
D−2 g

ð0Þ
ij θ

ð1
2
Þ [11]

(i, j are transverse coordinate indices), we can write
Eq. (2.25) as

R
ð1
2
;1
2
Þ

vv ¼
TT

−
�
θð12Þθð12Þ

D − 2
þ σαβð1

2
Þσ

ð1
2
Þ

αβ

�
þ 1

4

d2

dv2
ðgijð1

2
Þg

ð1
2
Þ

ij Þ ð2:26Þ

which yields

dθð1Þ

dv
¼ −

�
8πhTQ

vvi −Hð1Þ
vv þ 1

4

d2

dv2
ðgijð1

2
Þg

ð1
2
Þ

ij Þ
�
: ð2:27Þ

(2.21) follows from the fact that the background solution is
stationary. The other equations are obtained by expanding
the Raychaudhuri equation order by order.

1The perturbative expansion of the Ricci tensor to quadratic
order can be found in [27].
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D. Entropy change due to accretion of quantum
matter across the horizon

In this subsection, we will compute the order-by-order
change in the entropy due to the accretion of quantum
matter and gravitons across the horizon. We will assume
that the background black hole solution is stationary, as
well as the final state of the black hole at late times. Also,
we assume the perturbation will fall off fast enough, so that
all boundary terms at late times vanish.2 To compute the
entropy change order by order, first we will write the
perturbative expansion of entropy density as

ρ ¼ ρð0Þ þ ϵ
1
2ρð12Þ þ ϵρð1Þ þOðϵ32Þ ð2:28Þ

Now, we have all the tools to compute the change in
entropy. First we will do the change in entropy computation
in the absence of the graviton. Then we will do the
computation in which we will include gravitons.

1. Entropy change without graviton contribution

When there is no graviton, all the terms with g
ð1
2
Þ

μν

perturbation will go away in all of the above equations.
Also, the stress-energy tensor will have only the matter
contribution, i.e., hTQ

vvi ¼ hTM
vvi, which we will take to be

OðϵÞ. The background solution is a stationary black hole,
with a Killing horizon and regular bifurcation sphere. For
the stationary black hole, the expansion coefficient of the
horizon is zero and the entropy density will be independent
of the chosen horizon cut. Therefore

ϵ0∶ ΔSð0Þ ¼ 0 ð2:29Þ

Now, we will compute the change in the entropy due to
accretion of matter by the stationary black hole, which
takes it away from stationarity. As we have already
mentioned, the black hole will settle down into a new
stationary state at late times. Now using (2.6) and (2.27)
with the fact that there is no ρð12Þ and Θ1

2 we will get

ϵ∶ΔδSð1Þ ¼−
1

4

Z
∞

0

dv
Z

dD−2x
ffiffiffi
h

p
v

�
d2ρð1Þ

dv2
þdθð1Þ

dv
ρð0Þ

�
:

ð2:30Þ

Here, δ is the perturbation away from stationarity. Since

ρð0Þ ¼ 1þ ρð0Þw ,

dθð1Þ

dv
ρð0Þ ¼dθð1Þ

dv
þdθð1Þ

dv
ρð0Þw ¼−8πhTQ

vviþHð1Þ
vv −Rð1Þ

vv ρ
ð0Þ
w :

ð2:31Þ

Equation (2.31) is obtained using (2.23), (2.27) and the fact
that there is no gð12Þ perturbation, which will make
dθð1Þ
dv ¼ −Rð1Þ

vv . Further, we used the equation of motion to

rewrite Rð1Þ
vv in terms of the stress energy tensor. Putting the

Eq. (2.31) in the Eq. (2.30), we get

ϵ∶ ΔδSð1Þ ¼ −
1

4

Z
∞

0

dv
Z

dD−2x
ffiffiffi
h

p
v

×

��
d2ρð1Þ

dv2
− Rð1Þ

vv ρ
ð0Þ
w þHð1Þ

vv

�
− 8πhTQ

vvi
�
:

ð2:32Þ

We note that ðd2ρð1Þdv2 − Rð1Þ
vv ρ

ð0Þ
w þHð1Þ

vv Þ is constructed out of
background metric components and the perturbation and is
linear in the perturbation.3 Therefore, using boost argu-

ments we can write ðd2ρð1Þdv2 − Rð1Þ
vv ρ

ð0Þ
w þHð1Þ

vv Þ ¼ ∂
2
vζð1Þ,

which will yield

ΔδSð1Þ ¼ −
1

4

Z
∞

0

dv
Z

dD−2x
ffiffiffi
h

p
vf∂2vζð1Þ − 8πhTQ

vvig:

ð2:33Þ

We can simplify the above term using integration by parts,

ΔδSð1Þ ¼ 2π

Z
∞

0

dv
Z

dD−2x
ffiffiffi
h

p
vhTQ

vvi

þ 1

4

Z
dD−2x

ffiffiffi
h

p Z
∞

0

dv∂vζð1Þ

−
1

4

Z
dD−2x

ffiffiffi
h

p
ðv∂vζð1ÞÞjv→∞

v¼0 : ð2:34Þ

Now we assume fall-off conditions at late times i.e., all
perturbations and their derivatives should fall fast enough
such that this boundary term goes to zero at late times. The
contribution from the last term in (2.34) also vanishes at
v ¼ 0. Let us recall that we are in the gauge (2.8) in which
the horizon is always at u ¼ 0. Then we will get

ΔδSð1Þ ¼ 2π

Z
∞

0

dv
Z

dD−2x
ffiffiffi
h

p
vhTQ

vvi

−
1

4

Z
dD−2x

ffiffiffi
h

p
ζð1Þjv¼0: ð2:35Þ

We can get rid of the second term by assuming that we can
fix the JKM ambiguity in such a way that

2This implies that at late times all the perturbations would have
either crossed the horizon or gone to asymptotic infinity. For AdS
black hole spacetime with reflecting boundary conditions, all
perturbations will cross the horizon. Also, we dynamically
impose the gauge (2.8) at all times.

3We can replace the ordinary derivatives with respect to v in
the first term with covariant derivatives in the gauge we are in.
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d2ρð1Þ

dv2
− Rð1Þ

vv ρ
ð0Þ
w þHð1Þ

vv ¼ ∂
2
vζð1Þ ¼ 0 ð2:36Þ

everywhere on the horizon. This will get rid of the term
which is giving rise to the second term in (2.35). This is
because then ζð1ÞðvÞ ¼ avþ b, where a and b are only
functions of transverse coordinate. ζð1Þ is constructed out of
the background metric and the linear perturbation in the
gauge (2.8). We have to further impose the fall-off con-
ditions on the perturbation, i.e., the perturbation and its
derivatives with respect to v must go to zero at late times.
Thus ζð1ÞðvÞ ¼ 0. There is no contradiction with the fact
that Ω vanishes at the bifurcation surface in linear order. It
is shown in [28] that the second term in (2.35) is zero for
FðRÞ gravity and arbitrary order Lovelock gravity. It is also
argued there that this will be true for an arbitrary diffeo-
morphic theory at linear order. Therefore, assuming this,

ΔδSð1Þ ¼ 2π

Z
∞

0

dv
Z

dD−2x
ffiffiffi
h

p
vhTQ

vvi ð2:37Þ

The above derivation is of course true even when the
accreting matter is classical. For classical matter, imposing
the null energy condition i.e., TQ

vv ≥ 0 will give the
second law.

2. Entropy change with the graviton contribution
included

In this section, we include the graviton contribution, and
therefore we will work with the full perturbation expansion.
We will again do an order by order expansion. Using (2.6)
and the fact that background solution is stationary,

ϵ0∶ ΔSð0Þ ¼ 0 ð2:38Þ

Now, let us compute change in entropy at ϵ
1
2 order. Writing

(2.6) at ϵ
1
2 will give

ϵ
1
2∶ΔδSð12Þ ¼−

1

4

Z
∞

0

dv
Z

dD−2x
ffiffiffi
h

p
v

�
d2ρð12Þ

dv2
þdθð12Þ

dv
ρð0Þ

�
:

ð2:39Þ

Here, δ corresponds to entropy change due to a perturbation
that takes the solution away from stationarity. Using (2.22),
we can write (2.39) as

ΔδSð12Þ ¼ −
1

4

Z
∞

0

dv
Z

dD−2x
ffiffiffi
h

p
v

�
d2ρð12Þ

dv2
− R

ð1
2
Þ

vvρð0Þ
�

ð2:40Þ

Furthermore using the boost argument in (2.15), we can
write R

ð1
2
Þ

vv ¼ ∂
2
vζð1

2
Þ, where ζð1

2
Þ is constructed out of the

background metric and linear perturbation in g
ð1
2
Þ

μν where we

work in the gauge (2.8). Further, ρð0Þ is independent of v.
Therefore, the Eq. (2.40) becomes

ΔδSð12Þ ¼ −
1

4

Z
∞

0

dv
Z

dD−2x
ffiffiffi
h

p
v
d2

dv2

n
ρð12Þ − ρð0Þζð1

2
Þ
o
:

ð2:41Þ

Using integration by parts,

ΔδSð12Þ ¼ −
1

4

Z
dD−2x

ffiffiffi
h

p
v
d
dv

n
ρð12Þ − ρð0Þζð1

2
Þ
o
jv→∞
v¼0

þ 1

4

Z
∞

0

dv
Z

dD−2x
ffiffiffi
h

p d
dv

n
ρð12Þ − ρð0Þζð1

2
Þ
o
:

ð2:42Þ

Using the fall-off condition on the perturbation at late
times, the first term vanishes. Therefore, we get

ΔδSð12Þ ¼1

4

Z
∞

0

dv
Z

dD−2x
ffiffiffi
h

p d
dv

n
ρð12Þ−ρð0Þζð1

2
Þ
o
: ð2:43Þ

Integrating and using fall-off condition gives

ΔδSð12Þ ¼ −
1

4

Z
dD−2x

ffiffiffi
h

p n
ρð12Þ − ρð0Þζð1

2
Þ
o
jv¼0: ð2:44Þ

Using the fact that θ ¼ d
dv logð

ffiffiffi
h

p Þ and (2.22), we can write
δ logð ffiffiffi

h
p Þ ¼ −ζð1

2
Þ. Therefore, we can write (2.44) as

ΔδSð12Þ ¼ −
1

4

Z
B
dD−2x

ffiffiffi
h

p n
ρð12Þ þ δ logð

ffiffiffi
h

p
Þρð0Þ

o
: ð2:45Þ

Using (2.1), it is straightforward to verify that

ΔδSð12Þ ¼ −δSð12ÞjB ð2:46Þ

B is the bifurcation surface. Now, we use Theorem 6.1 in
Iyer and Wald (IW) [13], i.e ðδS ¼ δE − ΩHδJ ÞjB,
where E is the canonical energy and J is the
canonical angular momentum of the black hole in the
covariant phase space formalism.4 This was proved by
IW at the bifurcation surface for any non-stationary
perturbation satisfying the linearized equation of motion.5

Now in our case, there is no stress-energy tensor at ϵð12Þ
order. This implies

ΔδSð12Þ ¼ −δSð12ÞjB ¼ 0 ð2:47Þ

4Since we have a static black hole, angular velocity at the
horizon is zero.

5IW’s first law at the bifurcation surface B is unaffected by the
JKM ambiguity.
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Hence, δSð12Þð0Þ ¼ δSð12Þð∞Þ ¼ 0. Therefore, from (2.47), if
δSð12Þ is nonzero at any cut, then for some range of v entropy
will definitely decrease. This violates the second law. The
only way for the second law to be true is to assume that
δSð12Þ will vanish at arbitrary cut. It was shown explicitly by
the authors in [23,28] that

Rvv ≡ d2ρ
dv2

− Rvvρ
ð0Þ
w þHvv ð2:48Þ

vanishes for FðRÞ theory and Lovelock theory of arbitrary
order, at the linear order in perturbation theory about the
stationary black hole (perturbation can be nonstationary).
Using (2.18), it can can be checked that the term in curly

brackets in (2.39) is the same as R
ð1
2
Þ

vv . The authors in
[23,28] also argued that this relation may be true for an
arbitrary theory of gravity with an appropriate definition of
local entropy density. Vanishing of δSð12Þ in general will
yield,

d2ρð12Þ

dv2
¼ −ρð0Þ∂vθð1

2
Þ ð2:49Þ

which after integration and using the boundary condition
that the perturbation vanishes at late times will
give ρð12Þ ¼ ρð0Þζð1

2
Þ.

Now, let us compute the ϵ order change in entropy,
writing (2.6) to the ϵ order. We get

ΔδSð1Þ ¼ −
1

4

Z
∞

0

dv
Z

v

�
d2ρð1Þ

dv2
þ ρð0Þ

dθð1Þ

dv
þ dθð12Þ

dv
ρð12Þ

þ 2θð12Þ
dρð12Þ

dv
þ ρð0Þθð12Þθð12Þ

� ffiffiffi
h

p
dD−2x: ð2:50Þ

Using (2.19), (2.23), and (2.48), the first two terms in the
above expression can be written as

d2ρð1Þ

dv2
þρð0Þ

dθð1Þ

dv
¼−8πhTQ

vviþRð1Þ
vv −

1

4

d2

dv2
ðgijð1

2
Þg

ð1
2
Þ

ij ρ
ð0ÞÞ:
ð2:51Þ

Using (2.48), (2.15) and the fact that Hð1Þ
vv and Rð1Þ

vv are
constructed out of background metric components and the

perturbation and are linear in gð1Þμν perturbation in the gauge

(2.8), Rð1Þ
vv can be written as Rð1Þ

vv ¼ ∂
2
vζð1Þ. This yields

d2ρð1Þ

dv2
þ ρð0Þ

dθð1Þ

dv
¼ −8πhTQ

vvi þ ∂
2
vζ

0
ð1Þ: ð2:52Þ

where, ζ0ð1Þ ¼ ζð1Þ − 1
4
ðgijð1

2
Þg

ð1
2
Þ

ij ρ
ð0ÞÞ. Putting the above equa-

tion in (2.50) we get,

−
1

4

Z
∞

0

dv
Z

v
ffiffiffi
h

p
dD−2x

�
d2ρð1Þ

dv2
þ ρð0Þ

dθð1Þ

dv

�

¼ 2π

Z
∞

0

dv
Z

v
ffiffiffi
h

p
dD−2xhTQ

vvi

−
1

4

Z ffiffiffi
h

p
ζ0ð1Þd

D−2xjv¼0: ð2:53Þ

We get the above equation using integration by parts in the
∂
2
vζ

0
ð1Þ integral and the fact that the term at v → ∞ will

vanish due to the fall-off condition. Let us consider the rest
of the terms in (2.50), we will call it Að1

2
; 1
2
Þ,

A

�
1

2
;
1

2

�
¼ −

1

4

Z
∞

0

dv
Z

v

�
dθð12Þ

dv
ρð12Þ

þ 2θð12Þ
dρð12Þ

dv
þ ρð0Þθð12Þθð12Þ

� ffiffiffi
h

p
dD−2x: ð2:54Þ

After integrating (2.49) once, we get dρð
1
2
Þ

dv ¼ −ρð0Þθð1
2
Þ.

Putting this in (2.54) will yield

A

�
1

2
;
1

2

�
¼−

1

4

Z
∞

0

dv
Z

v

�
dθð12Þ

dv
ρð12Þ þθð12Þ

dρð12Þ

dv

� ffiffiffi
h

p
dD−2x

ð2:55Þ

which can be further simplified using integration by parts
and using fall-off conditions as v → ∞,

A

�
1

2
;
1

2

�
¼ 1

4

Z
∞

0

dv
Z

θð12Þρð12Þ
ffiffiffi
h

p
dD−2x: ð2:56Þ

Using dρð
1
2
Þ

dv ¼ −ρð0Þθð1
2
Þ in (2.56), we get

A

�
1

2
;
1

2

�
¼ −

1

8

Z
∞

0

dv
Z

d
dv

�ðρð12ÞÞ2
ρð0Þ

� ffiffiffi
h

p
dD−2x: ð2:57Þ

After integrating and using fall-off at late times, we will get

A

�
1

2
;
1

2

�
¼ 1

8

Z �ðρð12ÞÞ2
ρð0Þ

� ffiffiffi
h

p
jv¼0d

D−2x ð2:58Þ

This quantity is thus manifestly positive. From (2.53) and
(2.58), we get

ΔδSð1Þ ¼ 2π

Z
∞

0

dv
Z

v
ffiffiffi
h

p
dD−2xhTQ

vvi

−
1

4

Z ffiffiffi
h

p
ζ0ð1Þd

D−2xjv¼0 þ A
�
1

2
;
1

2

�
: ð2:59Þ

We know that the Wald entropy has JKM ambiguities when
the metric is not stationary. That was a motivation for
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putting Ω as the correction to the Wald entropy in the
definition of local entropy density. We now fix Ω such that
the last two terms in (2.59) vanish. These terms are anyway
zero for a stationary black hole, as can be seen from the

expression for Að1
2
; 1
2
Þ in (2.58) and Rð1Þ

vv is zero for a
stationary black hole from results in the subsection on the
boost argument.6 So Ω will be nonzero only when the
metric is not stationary. For the cases when it is possible to
set these two terms to zero by a choice of Ω, we will get

ΔδSð1Þ ¼ 2π

Z
∞

0

dv
Z

v
ffiffiffi
h

p
dD−2xhTQ

vvi ð2:60Þ

Some of the ambiguities in Wald’s entropy were fixed for
some class of theories at linear order in perturbation theory
[24]. Moreover, this entropy was shown to be equal to
holographic entanglement entropy computed by Dong [29].
It is also pointed out in [24] that considering the second law
at linear order does not fix the ambiguities at higher order.
Therefore these results are not in contradiction with our
computation. One can also get rid of the second and third
term in (2.59), by restricting the perturbation to a special
class of perturbations which vanishes at v ¼ 0. One
physical case in which such perturbation can be realized
is when matter falls after v ¼ 0.

III. THE ENTROPY OF ALGEBRA AND
GENERALIZED ENTROPY IN HIGHER

CURVATURE THEORY

In this section, we utilize the algebraic approach to
quantum field theory, specifically the constructions of
Chandrasekaran, Longo, Penington, and Witten (CLPW)
in [21], and Chandrasekaran, Penington, andWitten (CPW)
in [16], to study black holes in higher curvature theories.
We have employed their construction to prove a version of
the GSL (generalized second law) for an arbitrary diffeo-
morphism invariant theory of gravity, with certain appro-
priate assumptions. The setup that we are interested in
involves both the asymptotically flat and asymptotically
AdS stationary black hole solutions in an arbitrary diffeo-
morphism invariant theory. Throughout this section we
follow the notation of CPW. In this section, we will first
review the work of CPW and then generalize it to our case.

A. Brief review of the recent papers

The series of recent papers by CLPW, Witten and CPW
[16,20,21] have helped to understand the generalized
entropy introduced by Bekenstein [1] better. They have
addressed the question of why the generalized entropy is
well-defined, whereas the gravity contribution and the

quantum field contribution in the generalized entropy are
not well-defined separately. CPW showed for an eternal
black hole that is either asymptotically flat and asymptoti-
cally AdS, that there is an entropy associated with the von
Neumann algebra of quantum fields (including the grav-
iton) in the black hole left or right exterior, together with
either the left or right ADM/boundary Hamiltonian.
Further, they showed that this algebra entropy is the
generalized entropy at the bifurcation surface of the black
hole. They have also discussed the monotonicity of the
generalized entropy of asymptotically AdS black holes by
using techniques from von Neumann algebras.
We first provide a brief review of the salient features of

these constructions and then generalize them to our case of
black holes in arbitrary diffeomorphism invariant theories
of gravity.
Let M be the asymptotically flat, maximally extended

Schwarzschild black hole in Einstein’s theory or the
maximally extended AdS-Schwarzschild black hole. We
consider quantum fields in this spacetime, including
gravitons. The left and right exterior regions of M will
be denoted by l and r respectively, while L and R will be
used to denote left and right spatial infinity. Let H0 be the
Hilbert space of this theory that we get by quantizing the
fields and the local algebra of observables of the left and
right exterior region beAl;0 andAr;0 respectively as shown
in Fig. 2. It is well known that algebras Al;0 and Ar;0 are
type III1 factors (their centers are trivial) [22,30,31].7

Moreover, Al;0 and Ar;0 are each other’s commutants
(i.e., all the operators of Al;0 commute with all the
operators in Ar;0).
The spacetime is stationary and equipped with a time

translation Killing field V. V is future directed in the right
exterior region and past-directed in the left exterior region.
Due to background diffeomorphism invariance, one can
define a conserved quantity ĥ associated with the time
translation vector field V. Let S be the bulk Cauchy surface
going from the spatial infinity of the right exterior region to
the spatial infinity of the left exterior region, through the
bifurcation surface as shown in Fig. 2. Then ĥ can be
defined as

ĥ ¼
Z
S
dΣμVνTμν: ð3:1Þ

Here, Tμν is the stress-energy tensor of the bulk fields.8

In Tomita-Takesaki theory of the quantum fields in the
black hole exterior, βĥ is the modular Hamiltonian asso-
ciated with the Hartle-Hawking state jΨHHi of the black

6For a stationary black hole, v derivatives of ρ are zero and Rvv
and Hvv are zero for a stationary metric as discussed using boost
arguments.

7The algebra of operators in quantum field theory in a causal
wedge is always a von Neumann algebra of type III [17]. When
the center is trivial it is a type III1 algebra.

8Tμν includes the contribution from the pseudo-stress tensor
of gravitons.
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hole and β is the Hawking temperature9 [32,33]. It is well
known that ĥ in Einstein’s gravity is the difference between
the right ADM Hamiltonian HR and the left ADM
Hamiltonian HL i.e., ĥ ¼ HR −HL.
CLPW and CPW now extend the type III1 algebra Al;0

and Ar;0 by including one more operator hL with Al;0 and
hR similarly for the right algebra. This extended (crossed
product) algebra acts on an extended Hilbert space
H ¼ H0 ⊗ L2ðRÞ where the extra degree of freedom that
has been introduced is the time-shift (the sum of the times
in the left and the right exteriors). The extended crossed
product right algebra is denoted Ar ¼ Ar;0⋊Rh and sim-
ilarly for the left algebra. Here,

hL ¼ HL −M0 hR ¼ HR −M0 ð3:2Þ
M0 is the ADM mass of some reference black hole. CPW
work in a microcanonical ensemble, i.e., an energy eigen-
state centered around some energy M0 (mass of the
reference black hole).10 The algebra of observables for
the right exterior region is studied in a semiclassical limit,
i.e., G → 0. In this limit, the ADM masses HR and HR
diverge because the black hole mass M0 (Schwarzschild
radius divided by 2G) diverges. So, CPW work with the
nondivergent subtracted Hamiltonians hL and hR.
We can also write ĥ ¼ hr − hl where

hr ¼
Z
S1

dΣμVνTμν ð3:3Þ

hl ¼ −
Z
S2

dΣμVνTμν ð3:4Þ

where S1 and S2 are the right exterior and the left exterior
part of the Cauchy surface S as shown in Fig. 3. As pointed

out by CPLW, hr and hl have divergent fluctuations. Thus,
such a splitting is not true, strictly speaking [20], but in the
extended algebra of Witten, the modular operator has a
factorization into a product of operators in the left and right
algebra.

ĥ ¼ hr − hl ¼ hR − hL ð3:5Þ

Further,

hR ¼ ĥþ hL ≡ hψ
β

þ x ð3:6Þ

where hΨ ¼ Hmod is the modular Hamiltonian for the
Hartle-Hawking state jΨi ¼ jΨHHi. Ar ¼ Ar;0⋊Rh is the
crossed product algebra of the algebra Ar;0 by the modular
group for the cyclic separating vector jΨi. As discussed
in [20], the algebra Ar is then a von Neumann algebra of
type II∞. As explained in [20], unlike a type III algebra, a
type II algebra has a notion of trace, density matrix, and
entropy.
An operator in Ar which we will denote as â has the

form â ¼ aeðishψ=βÞ ⊗ eðisxÞ, where a∈Ar;0. The states on
which this operator acts has the form jΨ̂i ¼ jΨi ⊗
gðxÞ∈H where jΨi∈H0 and gðxÞ∈L2ðRÞ. The most
generic operator in Ar can be written as

â ¼
Z

∞

−∞
aðsÞeisðxþĥÞds ð3:7Þ

where aðsÞ∈Ar;0. Similarly, we can write the most general
state as

jΨ̂i ¼
Z

dxfðxÞjΨijxi ð3:8Þ

As we have already mentioned, a type II algebra has a trace,
which is a positive linear functional on operators in the
algebra satisfying tr½â b̂� ¼ tr½b̂ â�. The trace of an operator
â∈Ar can be denoted as [16],

FIG. 2. Maximally extended stationary black hole with Cauchy
surface S. The bulk algebra of the left and the right exterior region
is Al;0 and Ar;0 respectively.

FIG. 3. This figure depicts the split of Cauchy surface S into
union of the red Cauchy surface S1 in the right exterior and the
green Cauchy surface S2 in the left exterior.

9The modular operator is defined as Δ ¼ exp ð−HmodÞ
and for jΨHHi, Hmod ¼ βĥ.

10CPWexplicitly do the microcanonical ensemble construction
in the boundary CFT using a thermofield double state.
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tr½â� ¼
Z

∞

−∞
dxeβxhΨ̂jâjΨ̂i ð3:9Þ

where the expectation value hΨ̂jâjΨ̂i is in general some
nontrivial function of x. This trace is not the same as a
standard trace on Hilbert space H but one can think of it
more as a renormalized trace. Also, tr is defined up to a
scaling, which follows from the fact that the algebra Ar
has a one-parameter family of outer automorphisms
x → xþ c, which just rescales tr by ec. This rescaling
has the physical interpretation of shifting the renormal-
ization constant M0 to M0 − c. Now, using the trace,
we can define the density matrix for the algebra Ar.
For any given state jΦ̂i∈H, the density matrix ρΦ̂ ∈Ar is
defined by

tr½ρΦ̂â� ¼ hΦ̂jâjΦ̂i ∀ ∈Ar ð3:10Þ

Moreover, ρΦ̂ exists and is unique, which follows from the
fact that the trace is nondegenerate. If we are able to define
a density matrix, then we can also define the entropy of the
algebra, by

SðΦ̂ÞAr
¼ −tr½ρΦ̂ log ρΦ̂� ¼ −hΦ̂j log ρΦ̂jΦ̂i: ð3:11Þ

As emphasized by CPW, SðΦ̂Þ should not be thought of as
the entanglement entropy of Ar but is a renormalized
entropy. Also, because of the ambiguity in the definition
of trace (trace is defined up to a scaling), it is only entropy
differences that are unambiguous, not the entropy itself.
CPW now work with a semiclassical state, i.e., the
state with fluctuation in timeshift p, Δp ∼OðεÞ, where
ε is some parameter much smaller than unity. Then,
with x ¼ hL, Δx ∼Oð1εÞ. CPW consider the AdS-
Schwarzschild black hole and write down the semiclass-
ical state in the boundary CFT. However, it could have
equally been defined in the bulk and we will assume that
the formulas below correspond to the equivalent bulk
statement. The general form of such a state is,

jΦ̂i¼
Z

∞

∞
ε
1
2gðεxÞjΦijxi where jΦi∈H; gðxÞ∈L2ðRÞ

ð3:12Þ

It is shown by CPW that the density matrix ρΦ̂ for the state
jΦ̂i is approximately11 given by

ρΦ̂ ≈ εḡðεhRÞe−βxΔΦjΨgðεhRÞ ð3:13Þ

where ΔΦjΨ ¼ e−hΨjΦ is a relative modular operator and
hΨjΦ is the relative modular Hamiltonian.12 The relative
modular Hamiltonian hΦjΨ is defined such that hΨjΨ ¼ hΨ.
As we have already mentioned, the type II algebra
modular operator factorizes, i.e., ΔΦ̂jΨ̂ ¼ ρΨ̂ρ

0−1
Φ̂ (where

prime denotes the element of the commutant of the algebra
Ar) [21]. Putting (3.13) in (3.11) yields

SðΦ̂ÞAr
¼ hΦ̂jβhRjΦ̂i − hΦ̂jhΨjΦjΦ̂i
− hΦ̂j log ðεjgðεhRÞj2ÞjΦ̂i þOðεÞ ð3:14Þ

By definition, the second term in the above equation is the
relative entropy,

SrelðΦjjΨÞ ¼ −hΦ̂jhΨjΦjΦ̂i ð3:15Þ

B. Generalization to higher curvature gravity

We now generalize the construction of the previous
subsection to an arbitrary diffeomorphism invariant theory
of gravity. We note that some of the constructions in the
previous sub-section such as the semiclassical state were
done by CPW for the AdS-Schwarzschild black hole in the
boundary CFT. But we can analogously define such a
semiclassical state in the bulk using the same construction.
In fact, only in the sections on monotonicity of generalized
entropy in CPW, are results in the boundary theory
crucially used. Therefore, except while discussing monot-
onicity of the generalized entropy, we can confine our
analysis to the bulk, and we can even work with an
asymptotically flat black hole, as discussed by CPLW.
So, in our case, M is the (3þ 1) dimensional, asymptoti-
cally flat, maximally extended static (therefore stationary)
black hole solution in an arbitrary diffeomorphism
invariant theory of gravity. Therefore, its horizon is a
Killing horizon. Now, the expectation value of the energy-
momentum tensor of the quantum fields hΦjTμνjΦi is
covariantly conserved as a consequence of invariance of
the action under background diffeomorphisms [see appen-
dix]. Equation (3.1) will thus define a conserved quantity
even in the arbitrary theory of gravity if Vμ is a Killing
vector. Let us define the 1-form J ¼ TμνVνdxμ where V is
the timelike Killing vector of M. Then, divergence of Jμ is
zero, i.e., Jμ is covariantly conserved. This implies
d � J ¼ 0, where � is the Hodge dual. This further implies
�J ¼ dQ for some 2 form Q [34]. Also, notice that the
integral of �J over the 3 dimensional Cauchy surface is ĥ.
Since �J ¼ dQ, this reduces to an integral over the
codimension 2 surface which is the boundary of the
Cauchy slice. Therefore we can write ĥ ¼ HR −HL where
HR and HL are codimension 2 integrals at right and left

11The expression is only valid up to corrections suppressed by
OðεÞ terms.

12Ψ is the Hartle Hawking state and Φ is any arbitrary state of
quantum fields in the black hole spacetime.
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spatial infinity respectively. We note that the canonical
energy E in the covariant phase space formalism is given
by (3.1) apart from a surface term ambiguity (see appendix
of IW [13]).

E ¼
Z
Σ
J þ Surface term ¼

Z
Σ
dΣμTμνVν þ Surface term

ð3:16Þ
So we can think of HR and HL as being the right and left
canonical energy, respectively, apart from ambiguities in
the canonical energy.13 We will call them right and left
Hamiltonian.Although the results of IWare only for classical
gravity and matter, and we are interested in quantum fields,
the IWequations can be understood as expectation values in
semiclassical gravity as discussed in appendix. Now, ĥ is the
modular Hamiltonian corresponding to the Hartle-Hawking
state as before. This follows from the analysis of Sewell [33]
for any metric of the following form:

ds2 ¼ Aðt2 − w2; yÞð−dt2 þ dw2Þ þ Bðt2 − w2; yÞdσ2ðyÞ:
ð3:17Þ

The Schwarzschild spacetime in Kruskal coordinates is of
this form. We will assume that our static black hole solution
also has this form (i.e., we assume the existence of Kruskal-
like coordinates).
Now we can proceed by defining hL and hR as defined in

(3.2). Following the argument in the previous section that
including gravity changes the algebra to type II, we can
split ĥ as done in (3.3) and (3.4). Further, we can
straightforwardly obtain the equation in (3.5) and (3.6).
The only difference is now hR in (3.6) is the renormalized
Hamiltonian in the higher curvature theory which generates
the time translation on the boundary of the right exterior
region. Afterward, the construction of the crossed-product
algebra (extended algebra) and other constructions like
defining the trace and entropy will analogously go through
as done in the previous section. We will work with a
semiclassical state as defined in (3.12). Therefore we can
define the entropy of the algebra in the right exterior region
by the same formula (3.14), i.e.,

SðΦ̂ÞAr
¼ hΦ̂jβhRjΦ̂i − hΦ̂jhΨjΦjΦ̂i
− hΦ̂j log ðεjgðεhRÞj2ÞjΦ̂i þOðεÞ ð3:18Þ

where SrelðΦjjΨÞ ¼ −hΦ̂jhΨjΦjΦ̂i is relative entropy as
defined earlier. So the form of the Eq. (3.14) remains

intact—the only change is that hR is the renormalized
canonical energy in higher curvature theory and hΦjΨ is the
relative modular Hamiltonian in that particular theory.
In our case of interest, the black hole settles down to a

stationary state at very late times. This is plausible since at
late times all the flux of matter would either have crossed
the horizon or would have escaped through future null
infinity. So, at late times we will not be able to distinguish
between jΨi and jΦi. We get

Sbulkð∞ÞΦ ¼ Sbulkð∞ÞΨ ¼ SbulkðbÞΨ ð3:19Þ

Now let us analyze hr, using (3.3) and the fact that the
deformation of Cauchy surfaces S does not affect the
conserved quantity ĥ. We deform S1 such that
S01 ¼ Hþ ∪ Iþ, where Hþ is the future horizon and Iþ

is future null infinity.14 Therefore

βhH
þ

r ¼βðhr−hI
þ

r Þ¼
Z

∞

0

dv
Z
Hþ

dD−2x
ffiffiffi
h

p
vTvv ð3:20Þ

where βhI
þ

r is the time translation generator at future null
infinity and βhH

þ
r is the boost generator on the horizon. The

second equality in the above equation can be obtained
using (3.3) and the fact that hI

þ
r is just the integral of the

stress tensor supported at future null infinity. Let us define a
one-sided modular operator (boost operator) at arbitrary cut
v ¼ v� (which is theD − 2 dimensional transverse surface)
at the horizon. It is well known that the density matrix
ðρrÞHH of the Hartle-Hawking state in the region r is
thermal with respect to [11,32]

Krðv�Þ¼
Z

∞

v�
dv

Z
Hþ

dD−2x
ffiffiffi
h

p
ðv−v�ÞTvvþKIþ

r ð3:21Þ

where, KIþ
r ¼ βhI

þ
r is the modular energy at Iþ, which

accounts for energy which goes to Iþ without crossing the
horizon. Also notice that KIþ

r is independent of v�. When
v� ¼ 0, then the first term in the above equation will
become βhH

þ
r as defined in (3.20), and therefore

KrðbÞ ¼ βhr ¼ βhH
þ

r þ βhI
þ

r ð3:22Þ

where b is the bifurcation surface v� ¼ 0. We can also
define

Krð∞Þ ¼ lim
v�→∞

Krðv�Þ ð3:23Þ

Using the result from the previous section and Eq. (3.20),
we get

13As discussed in the Appendix of IW [13], the ambiguity in the
canonical energy is the sum of two surface terms, one of which
vanishes for common matter theories in a background spacetime.
There is an ambiguity due to the second surface term which is a
function of the backgroundmetric, Killing vector, matter fields and
their derivatives. In what follows, we ignore this ambiguity.

14In the case of an asymptotically AdS black hole, the
deformed Cauchy surface is just Hþ.
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hΦjβhHþ
r jΦi ¼ ΔδS ð3:24Þ

If a density matrix were to exist for the algebra Ar;0, then
using the definition of modular Hamiltonian for state jΨi
and the fact that ΔΨ ¼ ρΨρ

0−1
Ψ , we will be able to write

log ρΨ ¼ −KrðbÞ þ C ð3:25Þ

where C is some constant. The density matrix of the Hartle-
Hawking state in region r can be written as
ΨðHþ ∪ IþÞ ¼ ðρrÞHH ⊗ σ, which corresponds to the
ground state15 ρHH at Hþ, product taken with some
arbitrary density matrix defining a faithful state at Iþ
[11]. Therefore,

hΨj log ρΨjΨi ¼ −hΨjKIþ
r jΨi þ C ð3:26Þ

Here we use the fact that hΨjhHþ
r jΨi ¼ 0 since it is

the Hartle-Hawking state. Further, since SbulkðbÞΨ ¼
−hΨj log ρΨjΨi, we get SbulkðbÞΨ ¼ hΨjKIþ

r jΨi − C.
As mentioned before, it is not strictly true of the

algebra Ar;0 that the modular operator factorizes, but by
extending the algebra to Ar, it is true that the modular
operator factorizes as Δ̂Ψ ¼ ρΨ̂ρ

0−1
Ψ̂

(in the notation of [20]).
We will ignore this detail just for illustrative purposes
following [16].

Sgenð∞Þ−SgenðbÞ¼Sð∞Þ−SðbÞþSbulkðbÞΨ−SbulkðbÞΦ:
ð3:27Þ

It can be written in terms of the one-sided modular operator,

Sgenð∞Þ − SgenðbÞ ¼ −hΦjðKrð∞Þ − KrðbÞÞjΦi
þ SbulkðbÞΨ − SbulkðbÞΦ: ð3:28Þ

Putting SbulkðbÞΨ and hΦjKrðbÞjΦi using the Eq. (3.25),
we get

Sgenð∞Þ − SgenðbÞ ¼ −hΦj log ρΨjΦi þ C − hΦjKrð∞ÞjΦi
þ hΨjKIþ

r jΨi − C − SbulkðbÞΦ
ð3:29Þ

Now, we use the fact that at late times, every state is
indistinguishable from jΨi and Krð∞Þ ¼ KIþ

r . Further,
KIþ

r is independent of the cut. The expectation valueKIþ
r in

state jΦi will be equal to its expectation value in state jΨi.
Therefore, we get

Sgenð∞Þ − SgenðbÞ ¼ −hΦj log ρΨjΦi − SbulkðbÞΦ ð3:30Þ

therefore we got,

Sgenð∞Þ − SgenðbÞ ¼ SrelðΦjjΨÞ ð3:31Þ

As we see, the difference of generalized entropies in (3.31)
is manifestly finite and non-negative. For Einstein gravity,
the above expression has been already obtained by
Wall in [11]. The result (3.31) is in an arbitrary theory
of gravity—the difference between generalized entropy at
late times and generalized entropy at the bifurcation
surface is relative entropy of the state of the black hole
with respect to the Hartle Hawking state. We now need to
show, as in [16], that the generalized entropy at the
bifurcation surface is the entropy of the algebra. We thus
need to show

Sgenð∞Þ ¼ hΦ̂jβhRjΦ̂i − hΦ̂j log ðεjgðεhRÞj2ÞjΦ̂i þ Const

ð3:32Þ

Since both terms in the above equation are only functions
of hR, and since we have interpreted hR as the renormalized
canonical energy, the above terms are some distributions of
energy in the semiclassical state jΦ̂i. Also, these terms are
independent of the state jΦi. To see that, choose aðsÞ such
that

aðsÞ ¼
Z

e−ih
0
Rsfðh0RÞdh0R ð3:33Þ

where fðhRÞ is some chosen function. Putting the
Eq. (3.33) in the equation (3.7) and using the fact that
hR ¼ ĥΨ þ x, will yield â ¼ fðhRÞ. Now let us compute
the expectation value hΦ̂jβâjΦ̂i for (3.33) with the semi-
classical state jΦ̂i defined in (3.12). Using the results (3.25)
and (3.26) in CPW [16],

hΦ̂jâjΦ̂i ¼
Z

∞

−∞
dx

Z
∞

−∞
dsjεgðεxÞj2eisxhΨjΔΦjΨaðsÞjΨi

ð3:34Þ

Now put (3.33) in (3.34). Using the fact that hR ¼ ĥΨ þ x
and ĥΨjΨi ¼ 0, we get

hΦ̂jfðhRÞjΦ̂i ¼
Z

∞

−∞
dx

Z
∞

−∞
ds

Z
∞

−∞
dyjεgðϵxÞj2

× eisðx−yÞfðyÞhΨjΔΦjΨjΨi ð3:35Þ

By definition, hΨjΔΦjΨjΨi ¼ 1. Therefore the above equa-
tion is independent of jΦi, it will only depend on fðhRÞ
and gðεxÞ. Therefore, both the terms on the right-hand side
of (3.32) will give the same result either when we compute
them in the state jΦi or in the Hartle-Hawking state jΨi at
late times. Since both terms can be determined from the

15Hartle-Hawking state is a ground state with respect to the
time v.
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late-time behavior of the black holes, the relation (3.32) is
plausible. This is because at late times, all the fields
have either fallen across the horizon or to infinity.
Using Eq. (3.2), we can write hΨ̂jβhRjΨ̂i ¼ βðΔEÞ,

where ΔE is the energy difference between the black hole
we are studying and the reference black hole. Since both the
black holes are taken in an equilibrium state, we can apply
the first law of black hole mechanics for two equilibrium
configurations in phase space which yields

hΨ̂jβhRjΨ̂i ¼ ΔS ð3:36Þ

where ΔS is the difference of entropy of the equilibrium
black hole state we get at late times to the reference black
hole. Therefore, the first term in (3.32) describes the change
in Sgenð∞Þ due to a change in black hole entropy. At very
late times, all the matter would have either crossed the
horizon or would have escaped to null infinity. The second
term should be thought of as the contribution of entropy of
fluctuations in black hole entropy [16]. Finally, we add and
subtract the entanglement entropy of the quantum fields in
the Hartle-Hawking state and lump one of the pieces in the
constant in (3.32) using (3.26). This is because at late times,
all the fields have either fallen across the horizon or to
infinity.
Combining everything, we get

SðΦ̂ÞAr
¼ SgenðbÞ þ Const: ð3:37Þ

The equation (3.37) tells us that SgenðbÞ for black holes at
the bifurcation surface in the arbitrary theory of gravity can
be thought of as the entropy of the algebra Ar modulo a
constant. Notice, we have shown that the generalized
entropy at the bifurcation surface is equal to the entropy
of the algebra up to a constant, but we are not making any
statement about entropy at an arbitrary cut of the horizon.
In algebraic QFT, relative entropy is positive. This implies
Sgenð∞Þ − SgenðbÞ ≥ 0. Can we go beyond this result and
prove that the generalized entropy is monotonic? The
entropy of the algebra is monotonic under trace-preserving
inclusions [35]. To obtain a GSL (monotonicity of the
generalized entropy), CPW consider an AdS Schwarzschild
black hole with a holographic dual CFT. Then, they have
the following clever argument: In the dual CFT, they
consider operator algebras at two different times (early
and late times), AR;0 and BR;0 respectively, separated by a
timescale much larger than the thermal timescale β. The
correlation functions of operators at these different times
factorize into a product of correlators of early and late
times. Thus, the algebra generated by both early and late
time operators is CR;0 ¼ AR;0 ⊗ BR;0. The Hilbert space
factorizes similarly. These algebras are extended similar to
what was done before, to obtain a type II algebra which has
an associated entropy. Now, consider three different sit-
uations: first, the quantum fields at both early and late times

are in an arbitrary state, a second situation where the fields
at early times have fallen into the horizon, so that the state
of these fields is the vacuum times any state of the late time
fields, and finally, a situation where both sets of fields have
fallen into the horizon and the state of the fields in the
exterior is the vacuum. CPW argue that the generalized
entropies at these three horizon cuts is the generalized
entropy for the extended algebra CR for these three different
states at a hypothetical bifurcation surface in the limit of
large time gap. From the property of the monotonicity of
the entropy of the algebra under trace preserving inclu-
sions, it follows that the generalized entropy is increasing in
going from the first to the third situation above. This
argument is then a version of the GSL. We can use these
results to prove this version of the GSL in an arbitrary
diffeomorphism invariant theory of gravity if we start with
an asymptotically AdS black hole which has a holographic
dual. We can repeat all the steps in this section for such a
black hole. The only thing we need is for the first law as in
the paper of Iyer and Wald [13] to be true in this situation.
Although the statement of the first law is only for
asymptotically flat black holes, the same will be true for
an asymptotically AdS black hole provided the integrals
involved in the presymplectic form and the canonical
energy are finite after assuming appropriate fall-offs for
the fields. In this case, the computation of CPW generalizes
to these black holes in a higher curvature theory of gravity
and a version of increase of generalized entropy (compar-
ing the entropy at early and late times) is true. The
ambiguity in the Wald entropy which we fixed in the
bifurcation surface in a previous section was by terms
quadratic in the half-order perturbation. This is not affected
by the different states of the quantum fields in the argument
of CPW, so their argument goes over to our case. Can we

show a stronger monotonicity result dSgendv ≥ 0? This is what
Wall [11] has done for Einstein gravity, using an expression
for the entropy at any cut of the horizon. Due to JKM
ambiguities in the Wald entropy, this expression will
probably need one to specify the particular theory of
gravity.

IV. DISCUSSION

In the context of Einstein gravity, it was shown by
CPW [16] that for the system of quantum fields in a
perturbed Schwarzschild black hole spacetime in the
G → 0 limit with infalling quantum matter across the
horizon, the generalized entropy at the bifurcation surface
was equal to the entropy of the von Neumann algebra of
operators in the black hole exterior. This was achieved by
enlarging the operator algebra by including the ADM
Hamiltonian, and by enlarging the Hilbert space. This
had the effect of changing the algebra of operators to a type
II∞ von Neumann algebra, to which we can associate a
notion of trace and entropy. Furthermore, CPW showed that
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the difference of the generalized entropy of an arbitrary cut
of the horizon, in the limit when the cut v → ∞ and the
generalized entropy at the bifurcation surface was equal to
the relative entropy, and therefore nonnegative. For this,
CPW worked in semiclassical gravity and up to quadratic
order in perturbations. They then obtained a monotonicity
result (GSL) for the generalized entropy from the monot-
onicity of relative entropy under trace preserving inclu-
sions. In this paper, we consider quantum fields in a slightly
perturbed static black hole in an arbitrary diffeomorphism
invariant theory of gravity in the G → 0 limit. In this setup,
generalized entropy is the sum of Wald entropy and
entanglement entropy of quantum fields in the black hole
exterior. We consider the difference in Wald entropy at
infinity and at the bifurcation surface up to quadratic order
in the perturbations and obtain (2.59). Wald entropy has
ambiguities on nonstationary geometries. We fix the
ambiguity in order to get (2.60) which matches the result
for Einstein gravity in the paper of CPW and we obtain a
simplified result for the difference of entropies which
enables us to employ the CPW construction. We then
consider the difference in generalized entropies and show
that this difference equals the relative entropy of the state of
the quantum fields and the Hartle-Hawking state—it is thus
non-negative. We next consider the von Neumann algebra
of the quantum fields in the black hole exterior, extended to
include the Hamiltonian, and an enlarged Hilbert space as
in CPW. Evaluated on the semiclassical states defined by
CPW, we show that the entropy of the von Neumann
algebra equals the generalized entropy of the bifurcation
surface. Finally, we see that the derivation of the increase of
generalized entropy by CPW in Einstein gravity goes
through for black holes in an arbitrary gravity theory,
provided the black hole is asymptotically AdS, which has a
holographic dual.
Going forward, it would be interesting to not merely

restrict to semiclassical states and see what the entropy of
the algebra corresponding to more general states is.
Recently, there has also been an interesting proposal to
study the algebra of operators in general subregions in
Einstein gravity with matter in the G → 0 limit, and it has
been shown that the entropy of this algebra equals the
generalized entropy of this subregion up to a constant [36]
(see also the latest papers [37,38]). It would be interesting
to see how these results generalize to an arbitrary diffeo-
morphism invariant theory of gravity.
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APPENDIX

1. Quantum canonical energy in covariant
phase space formalism

Consider quantum fields in the stationary black hole
background, where the quantum fields include gravitons.
Using diffeomorphism invariance of the Lagrangian (which
is an n-form) with respect to the background metric, we can
write

δL
δϕ

Lξϕ ¼ −dJ̃ −
δL
δgab

Lξgab: ðA1Þ

ϕ here corresponds to all quantum fields and gab is the
background metric. ξ is a vector field generating the
diffeomorphism and Lξ denotes the Lie derivative with
respect to ξ. Here, J̃ is the Noether current (n − 1) form in
the covariant phase space formalism given by Eq. (49) in
IW [13]. This is defined in terms of the symplectic potential
form Θðδϕ;ϕÞ as

J̃ ¼ Θðϕ;LξϕÞ − ξ · L: ðA2Þ

As we have a Lagrangian for quantum fields to begin
with, we look at the expectation value of the relation
(A1) in an arbitrary state. Since the terms in the
equations are products of operators at the same point,
the expectation values need to be regularized using some
procedure. Using a prescription involving point-splitting
and background subtraction, we regularize these expect-
ation values.
We want to compute the expectation value of (A1) in

some state jΦi. Consider the point-split expression

lim
y→x

hΦj δL
δϕ

ðxÞLξϕðyÞjΦi

¼ lim
y→x

hΦj
�
−dJ̃ðx; yÞ − δL

δgab
ðxÞLξgabðyÞ

�
jΦi ðA3Þ

From the Schwinger-Dyson equation for expectation value
in an arbitrary state, we can compute the left hand side, and
in the limit of coincident points, it is just a state independent
divergent term. Therefore if we consider the difference of
the quantity ð−dJ̃ðx; yÞ − δL

δg ðxÞLξgðyÞÞ in any two states
jΦi and jΨi, then the state independent divergent term will
cancel out. Now we can take the coincidence limit y → x.

hΦj
�
−dJ̃ðxÞ − δL

δgab
ðxÞLξgabðxÞ

�
jΦi

− hΨj
�
−dJ̃ðxÞ − δL

δgab
ðxÞLξgabðxÞ

�
jΨi ¼ 0 ðA4Þ
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Now, (A4) can be written as

dhΦjðJ̃ þ k:ϵÞjΦi − dhΨjðJ̃ þ k:ϵÞjΨi
¼ ∇μðhΦjTμνjΦiÞξν −∇μðhΨjTμνjΨiÞξν: ðA5Þ

Here, we use the fact that δL
δgμν

¼ Tμνϵ, where ϵ is the volume

form and kμ ¼ Tμνξν. Notice that the left-hand side in the
above equation is a total derivative for any ξwhile the right-
hand side is not. The only way that can happen is if
∇μðhΦjTμνjΦiÞξν ¼ ∇μðhΨjTμνjΨiÞξν. Since this has to be
true for any two states and any vector field ξμ, it can only be
if ∇μðhΦjTμνjΦiÞ vanishes for any state jΦi up to a local
term independent of state. We may modify our prescription
and get rid of this extra state independent term by doing
background subtraction with respect to some standard state.
We do the background subtraction (A4) to make sense of

expectation values of Eq. (A1). Thus the expectation
value of the stress energy tensor in any state is conserved.
It has already been extensively discussed in Wald [39]
how to define the expectation value of the stress
energy tensor in such a way that it is conserved, so
alternatively, we could use that result. By the same argu-
ment, dhΦjðJ̃ þ k:ϵÞjΦi ¼ 0. The rest of the analysis of the
Appendix of IW [13] follows. Now we can choose ξμ to be
the Killing field of the static background spacetime.
Following IW [13], we will get

hEiΦ ¼
Z
Σ
dΣμhTμνiΦξν þ Surface term ðA6Þ

where E is the canonical energy in the covariant phase
space formalism and it is independent of the choice of
Cauchy slice.
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