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We study the topology of the thermodynamic space of four dimensional dyonic anti–de Sitter (AdS)
black hole in three different ensembles: canonical, mixed, and grand canonical ensemble. While canonical
ensemble refers to the ensemble with fixed electric and magnetic charges, mixed ensemble is an ensemble
where we fix magnetic charge and electric potential. In the grand canonical ensemble, potentials
corresponding to both electric and magnetic charges are kept fixed. In each of these ensembles, we
first compute the topological charges associated with critical points. We find that while in both canonical
and mixed ensembles, there exists one conventional critical point with topological charge −1, in the grand
canonical ensemble, we find no critical point. Then, we consider the dyonic AdS black hole as topological
defects in thermodynamic space and study its local and global topology by computing the winding numbers
at the defects. We observe that while the topologies of the black hole in canonical and mixed ensembles are
identical with total topological charge equaling 1, in the grand canonical ensemble, depending on the values
of potentials, the total topological charge is either equal to 0 or 1. In canonical and mixed ensembles, either
one generation and one annihilation points or no generation/annihilation points are found. In the grand
canonical ensemble, depending on the values of potentials, we find either one generation point or no
generation/annihilation point. Thus, we infer that the topological class of 4D dyonic AdS black hole is
ensemble dependent.

DOI: 10.1103/PhysRevD.108.066016

I. INTRODUCTION

Thermodynamic phase behavior of black holes has been
studied extensively since the early days of black hole
thermodynamics [1–14]. In recent years, a lot of focus has
been attributed to the study of criticality in AdS black holes
in extended thermodynamic space [15–26], where the
cosmological constant Λ is considered as thermodynamic
pressure P [27–30].

P ¼ −
Λ

8πG
; ð1Þ

where,G is Newton’s gravitational constant. Accordingly, a
thermodynamic volume V is defined conjugate to thermo-
dynamic pressure P and the first law of black hole
thermodynamics takes the revised form:

dM ¼ TdSþ VdPþ
X
i

Yidxi; ð2Þ

where, T is the temperature, S is the entropy, and Yidxi is
the ith chemical potential term.
A recent addition to the study of criticality in black holes

is the idea of thermodynamic topology. Initiated in [31], in
this novel approach, Duan’s topological current ϕ-mapping
theory [32] is invoked in the thermodynamic space of a
black hole to study its criticality. Consequently, the critical
points in the thermodynamic space are characterized with
distinct topological charges and based on those charges, are
classified into conventional and novel critical points. The
key steps involved are summarized below:
The temperature, T, of a black hole is expressed as a

function of pressure P, entropy S and other thermodynamic
parameters.

T ¼ TðS; P; xiÞ; ð3Þ

where xi denotes other thermodynamic parameters. The
critical points can be calculated by the conditions
ð∂STÞP;xi ¼ 0 and ð∂S;STÞP;xi ¼ 0. One can eliminate a
thermodynamic parameter from T using these conditions
and construct a Duan’s potential Φ with a factor 1= sin θ
[31]. Hence, by eliminating P using ð∂STÞP;xi ¼ 0, the
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scalar thermodynamic function or the Duan’s potential Φ is
obtained as

Φ ¼ 1

sin θ
TðS; xiÞ: ð4Þ

Here, θ is an additional parameter and the inverse of sin
of this parameter eases the calculation in the following
ways: first, it sets a boundary for the vector field ϕ which is
between θ ¼ 0 and θ ¼ π. Second, the zero point of ϕ
is always located at θ ¼ π=2. A two dimensional vector
ϕ ¼ ðϕθ;ϕθÞ is defined following the framework of Duan’s
ϕ-mapping theory [32,33] as

ϕS ¼ ð∂SΦÞθ;xi ; ϕθ ¼ ð∂θΦÞS;xi : ð5Þ

The presence of θ in the vector field ϕ ensures that the
zero point of the vector field ϕ is always at θ ¼ π=2.
The critical points can be calculated using this criteria.
Also the topological current, jμ, is conserved, i.e.,
ϕaðxiÞ ¼ 0. This construction ensures the existence of
topological charge which for a given parameter region Σ
is equal to

Q ¼
Z
Σ
j0d2x ¼

XN
i¼1

βini ¼
XN
i¼1

wi: ð6Þ

Here, wi, j0, and βi are the winding number of ith zero
points of ϕ, the density of the topological current and
the Hopf index respectively. Critical points with topolo-
gical charges −1 and þ1 are referred as conventional
critical point and novel critical point respectively. The total
topological charge of a black hole is computed as the sum
of individual charges associated with each critical point.
The formalism can be followed with different thermody-
namic parameters other than S. For example, the formalism
is same for horizon radius rþ as S can be reduced to rþ.
Following the work in [31], analysis of thermody-
namic topology has been extended to a number of black
holes [34–40].
An alternative way to apply topology in black hole

thermodynamics has also been proposed in [41]. In this
method, black hole solutions are regarded as defects in
thermodynamic parameter spaces. These defects are
then studied in terms of their winding numbers. The sign
of the winding number of a defect has been linked to the
thermodynamic stability of the corresponding black hole
solution. The sum of the winding numbers is, now, termed
as topological number based on which different black hole
solutions are categorized. The analysis begins with the
introduction of a generalized free energy F defined as
follows:

F ¼ E −
S
τ
; ð7Þ

where E and S are the energy, entropy. τ is a quantity which
has the dimension of time. A vector field ϕ is defined from
F in the following way:

ϕ ¼
�
∂F
∂rþ

;− cotΘ cscΘ
�
. ð8Þ

The zero point of the vector ϕ is at Θ ¼ π=2. The unit
vector is defined as

na ¼ ϕa

jjϕjj ða¼ 1;2Þ and ϕ1 ¼ ϕrþ ; ϕ2 ¼ ϕΘ: ð9Þ

Corresponding to a given value of τ, the zero points of n1

are computed. The winding numbers of each of these zero
points are calculated. The topological number of a black
hole is obtained by summing over the individual winding
numbers of all the black hole branches. Following [41],
study of black holes as topological defects has been
extended to a number of black holes in [42–52].
Motivated by all the above mentioned works, in this

paper, we extend the study of thermodynamic topology to
4d dyonic AdS black hole in different ensembles. Our
primary focus is to understand the ensemble dependent
nature of thermodynamic topology. For this, we carry out
our analysis in three different ensembles: (1) canonical
ensemble where both the electric and the magnetic charges
are kept fixed, (2) mixed ensemble where electric potential
and magnetic charge are kept fixed, and (3) grand canonical
ensemble where both electric and magnetic potentials are
kept fixed. To begin with, in each of these ensembles, we
figure out the critical points and compute their topological
charges. Based on the sign of those charges, we classify
them as conventional and novel critical points. Then we
consider the black hole as a topological defect in each of
these ensembles and find out its topological number,
generation and annihilation points in the thermodynamic
space.
This paper is organized as follows. In Sec. II, we begin

with 4d dyonic AdS black hole in canonical ensemble and
study its thermodynamic topology. This is followed by
similar studies in mixed ensemble in Sec. III and grand
canonical ensemble in Sec. IV. We conclude with our
findings in Sec. V.

II. 4D DYONIC AdS BLACK HOLE
IN CANONICAL ENSEMBLE

The four dimensional, asymptotically anti-de Sitter,
dyonic black holes solution has its origin in maximal
gauged supergravity. Such a black hole carries both electric
and magnetic charges. The dyonic black hole solution can
be obtained by the reduction of five dimensional Kaluza-
Klein theory and it has some very interesting properties
[53–58]. A simpler solution of dyonic AdS black hole can
be obtained by varying the Reissner-Nordström action with
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a cosmological constant [59]. The four dimensional,
asymptotically anti–de Sitter, dyonic black hole metric is
given by:

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dθ2 þ r2sin2θdϕ2; ð10Þ

where,

fðrÞ ¼ q2e þ q2m
r2

þ r2

l2
−
2M
r

þ 1; ð11Þ

Here, qe, qm,M, and l are electric charge, magnetic charge,
mass of the black hole and the AdS radius respectively.
Thermodynamic pressure, P, is related to the AdS radius as

P ¼ 3

8πl2
: ð12Þ

The mass, M and the entropy, S of the black hole are given
by (in the following expressions, rþ denotes the horizon
radius)

M ¼ l2q2e þ l2q2m þ l2r2þ þ r4þ
2l2rþ

¼ 3q2e þ 3q2m þ 8πPr4þ þ 3r2þ
6rþ

ð13Þ

S ¼ πr2þ. ð14Þ

A. Topology of 4d dyonic AdS black hole
thermodynamics in canonical ensemble

To study the topology of dyonic AdS black hole
thermodynamics, we write the temperature as a function
of pressure, horizon radius, electric, and magnetic charges.

T ¼ ∂rþM

∂rþS
¼ 8πPr4þ þ r2þ − q2e − q2m

4πr3þ
: ð15Þ

Use of the condition
�
∂rþT
∂rþS

�
qe;qm;P

¼ 0 leads us to an

expression for pressure, P.

P ¼ r2þ − 3ðq2e þ q2mÞ
8πr4þ

; ð16Þ

Plugging P in (15), we get rid of the pressure term and the
temperature, T takes the following form:

Tðqe; qm; rþÞ ¼
r2þ − 2ðq2e þ q2mÞ

2πr3þ
: ð17Þ

A thermodynamic function Φ is defined as,

Φ ¼ 1

sin θ
Tðqe; qm; rþÞ

¼ csc θfr2þ − 2ðq2e þ q2mÞg
2πr3þ

; ð18Þ

The vector components of the vector field ϕ ¼ ðϕrþ ;ϕθÞ
are

ϕrþ ¼
�
∂Φ
∂rþ

�
qe;qm;θ

¼ −
csc θfr2þ − 6ðq2e þ q2mÞg

2πr4þ
; ð19Þ

and

ϕθ ¼
�
∂Φ
∂θ

�
qe;qm;rþ

¼ −
cot θ csc θfr2þ − 2ðq2e þ q2mÞg

2πr3þ

ð20Þ

The normalized vector components are

ϕrþ

kϕk

¼ 6ðq2e þ q2mÞ− r2þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þcot2ðθÞðr2þ − 2ðq2e þ q2mÞÞ2 þ ðr2þ − 6ðq2e þ q2mÞÞ2

p ;

ð21Þ

and

ϕθ

kϕk

¼−
rþ cotθfr2þ− 2ðq2eþq2mÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þcot2θfr2þ− 2ðq2eþq2mÞg2þfr2þ− 6ðq2eþq2mÞg2
p

ð22Þ

The normalized vector n ¼
�
ϕrþ
kϕk ;

ϕθ

kϕk
�
has been plotted in

Fig. 1. This figure shows the vector plot of n in a rþ vs θ
plane for dyonic AdS black hole. For this plot, we
have fixed qe ¼ qm ¼ 1. The black dot represents the
critical point (CP1). To calculate the critical point we set
θ ¼ π=2 in (21) and equate this to zero. The critical point is
located at ðrþ; θÞ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðq2e þ q2mÞ

p
; π=2Þ or at ðrþ; θÞ ¼

ð2 ffiffiffi
3

p
; π=2Þ for qe ¼ qm ¼ 1.

For the calculation of the topological charge of the
critical point, a contour C parametrized by ϑ∈ ð0; 2πÞ is
defined [31] as follows:

�
rþ ¼ a cos ϑþ r0;

θ ¼ b sin ϑþ π
2
:

ð23Þ

We construct two contours C1 and C2 where the first
contour encloses the critical point CP1 and the second
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contour is outside the critical point. For these contours we
choose ða; b; r0Þ ¼ ð0.6; 0.2; 2 ffiffiffi

3
p Þ and (0.6, 0.4, 5).

The deflection of the vector field n along the contour
C is,

ΩðϑÞ ¼
Z

ϑ

0

ϵabna∂ϑnbdϑ: ð24Þ

The topological charge is, then, equal to, Q ¼ 1
2πΩð2πÞ.

For the critical point CP1 enclosed by the contour C1, the
topological charge has been found to be, QCP1

¼ −1. This
is a conventional critical point. Since the contour C2 does
not enclose any critical point, it corresponds to zero
topological charge. Thus, the total topological charge is,
Q ¼ −1. The behavior of Ω is shown in Fig. 2. The red

curve corresponds C1 and the blue curve corresponds to C2.
The function ΩðϑÞ for C1 decreases non-linearly and
reaches −2π at ϑ ¼ 2π. On the other hand, ΩðϑÞ reaches
zero at ϑ ¼ 2π for C2.
4d dyonic AdS black hole in canonical ensemble has the

following equation of state:

T ¼ 8πPr4þ þ r2þ − q2e − q2m
4πr3þ

; ð25Þ

The corresponding critical points are given by,

Tc ¼
1

3
ffiffiffi
6

p
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2e þ q2m

p ; Pc ¼
1

96πq2e þ 96πq2m

and rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðq2e þ q2mÞ

q
. ð26Þ

It can be clearly seen that the critical radius in (26)
exactly matches the critical point obtained from thermo-
dynamic topology, ðrþ; θÞ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðq2e þ q2mÞ

p
; π=2Þ. As

mentioned above this is a conventional critical point with
topological charge −1. To see the nature of the critical point
we plot the phase structure (isobaric curves) around it in
Fig. 3. The location of the critical point in the isobaric curve
is shown as a black dot. The red curve is the isobaric curve
for P ¼ Pc. The green curves above and below the red
curve are respectively for P > Pc and P < Pc. The blue
dashed curvet describes the extremal points and is plotted
using (17). From Fig. 3, it is observed that for P < Pc, the
small and large black hole phases are separated by the
unstable region (the negative slope region of the isobaric
curves or the region enclosed by the two extremal points
corresponding to each isobaric curve). Different phases of
the dyonic AdS black hole in canonical ensemble disappear
at the critical point. Hence, the critical point CP1 can be
thought of as a phase annihilation point.

FIG. 2. Ω vs ϑ plot for the contour C1 and C2.

0 2 4 6 8 10 12
0.00

0.01

0.02

0.03

0.04

0.05

FIG. 3. Isobaric curves (red and green) of dyonic AdS black
hole in canonical ensemble. Black dot represents the
critical point.

2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

CP1

C1

C2

FIG. 1. Plot of the normalized vector field n in rþ vs θ plane for
dyonic AdS black hole in canonical ensemble. The black dot
represents the critical point.
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B. Dyonic AdS black hole solution as topological
thermodynamic defects in canonical ensemble

Now, we proceed to study the dyonic AdS black hole
solution in canonical ensemble as topological thermody-
namic defects. Using the mass and entropy of the black hole
from (13) and (14) in (7), the generalized free energy is
found to be,

F ¼ 3q2e þ 3q2m þ 8πPr4þ þ 3r2þ
6rþ

−
πr2þ
τ

: ð27Þ

The vector field components of the vector given by (8) are

ϕrþ ¼ 1

2
−
q2e þ q2m
2r2þ

þ 4πPr2þ −
2πrþ
τ

; ð28Þ

and

ϕΘ ¼ − cotΘ cscΘ: ð29Þ
The corresponding unit vectors are

n1 ¼ 4πr3þð2Prþτ − 1Þ − τðq2e þ q2m − r2þÞ
r2þτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fτðq2eþq2m−r2þÞþ4πr3þð1−2PrþτÞg2

r4þτ
2 þ 4cot2Θcsc2Θ

r ;

ð30Þ

FIG. 4. Unit vector n ¼ ðn1; n2Þ shown in Θ vs rþ=r0 plane for Pr20 ¼ 0.0002 (below critical pressure Pc). The black dots represent
the zero points. (a) Unit vector n inΘ vs rþ=r0 plane for τ=r0 × ¼ 30. (b) Unit vector n inΘ vs rþ=r0 plane for τ=r0 × ¼ 50. The zero
points are ZP2, ZP3, and ZP4 from left to right. (c) Unit vector Unit vector n in Θ vs rþ=r0 plane for τ=r0 × ¼ 100.
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and

n2 ¼ −
cotΘ cscΘffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fτðq2eþq2m−r2þÞþ4πr3þð1−2PrþτÞg2
4r4þτ

2 þ cot2Θcsc2Θ
r : ð31Þ

These unit vectors are plotted and used to locate the zero
points by setting Θ ¼ π=2 in n1 [see (30)] and equating it
to zero. For example, setting qe=r0 ¼ 1, qm=r0 ¼ 1,
Pr20 ¼ 0.0002, and τ=r0 ¼ 30, we can find one zero point
(ZP1) located at ðrþ=r0;ΘÞ ¼ ð80.8742; π=2Þ. Here, r0 is
an arbitrary length scale which is determined by the size of
a cavity that surrounds the black hole. The value of pressure
is taken below the critical pressure Pc. The representation
of the unit vectors along with the zero point is shown in
Fig. 4(a). The winding number or the topological charge

corresponding to this zero point is computed following the
prescription stated in the previous section and found to be
w ¼ þ1. Similarly, keeping the same charge and pressure
configuration, corresponding to τ=r0 ¼ 50, we find three
zero points ZP2, ZP3, and ZP4 with winding numbers þ1,
−1, and þ1 respectively. These are shown in Fig. 4(b). For
τ=r0 ¼ 100, a solitary zero point ZP5 with winding number
þ1 is observed [Fig. 4(c)].
An analytic expression for τ corresponding to zero points

can be obtained by setting ϕrþ ¼ 0.

τ ¼ 4πr3þ
8πPr4þ þ r2þ − q2e − q2m

: ð32Þ

A plot of rþ vs τ obtained above is shown in Fig. 5. The
points on this curve are the zero points of ϕrþ . Here, we
have fixed qe=r0 ¼ 1, qm=r0 ¼ 1, and Pr20 ¼ 0.0002
(below the critical pressure Pc).
In Fig. 5, three different black hole branches are clearly

visible. The branch τ < τb corresponds to the large black
hole region. The winding number for any zero point on this
branch is found to be w ¼ þ1. Similarly, winding number
w ¼ þ1 is also observed for any zero point on the branch
τ > τa which corresponds to the small black hole region. The
branch τa < τ < τb represents the intermediate black hole
region and winding number for any zero point on this branch
is equal to w ¼ −1. The topological number is, hence,
W ¼ þ1 − 1þ 1 ¼ þ1. We explicitly computed the spe-
cific heats at the three branches and found that the branches
with winding number þ1 have positive specific heat
(thermodynamically stable) and the branch with winding
number −1 has negative specific heat (thermodynamically
unstable).

40 60 80 100 120
0

10

20

30

40

50

60
LBH

IBH

SBH

a r0 b r0

FIG. 5. The zero points of ϕrþ in τ=r0 vs rþ=r0 plane for dyonic
AdS black hole in canonical ensemble for pressure less than the
critical pressure Pc.

FIG. 6. Plot of unit vector n ¼ ðn1; n2Þ and zero point of ϕrþ for pressure Pr20 ¼ 0.01 (above the critical pressure Pc). (a) Unit vector
n ¼ ðn1; n2Þ shown in Θ vs rþ=r0 plane for Pr20 ¼ 0.01. The black dot represents zero point. (b) The zero points of ϕrþ in τ=r0 vs rþ=r0
plane for dyonic AdS black hole in mixed ensemble for pressure greater than the critical pressure Pc.
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Finally, we find the generation/annihilation points by
using the condition ∂rþF ¼ ∂rþ;rþF ¼ 0. For qe=r0 ¼ 1,
qm=r0 ¼ 1, Pr20 ¼ 0.0002, we get the generation and
annihilation points at τ=r0 ¼ τa=r0 ¼ 44.1585 and τ=r0 ¼
τb=r0 ¼ 89.0811 respectively which are shown as black
dots in Fig. 5.
For a value of pressure, Pr20 ¼ 0.01, which is above the

critical pressure Pc, and qe=r0 ¼ qm=r0 ¼ 1, the plot of rþ
vs τ is shown in Fig. 6(b). In this case, the plot exhibits only
one branch corresponding to stable black hole region with
positive specific heat. The winding numbers of zero points
on this branch is computed to be w ¼ þ1. The topological
number is, hence, W ¼ þ1. Notably, we do not find any
generation/annihilation point in this case. The zero point
for τ=r0 ¼ 30, qm=r0 ¼ qe=r0 ¼ 1; Pr20 ¼ 0.01 is shown in
Fig. 6(a). What we have seen is that the topological number
of 4d dyonic AdS black hole in canonical ensemble is not
altered by a variation in pressure.
We repeated our analysis by changing the values of qe

and qm. We found that the topological number was
always equal to ðW ¼ þ1Þ for all the charge configura-
tions. As an example, the rþ vs τ curve for qe=r0 ¼ 0.1,
qm=r0 ¼ 0.1, and Pr20 ¼ 0.04 is shown in Fig. 7. The
topological number of 4d dyonic AdS black hole in
canonical ensemble is not influenced by a variation in
charge configuration.

III. DYONIC AdS BLACK HOLE
IN MIXED ENSEMBLE

In mixed ensemble, the electric potential ϕe and the
magnetic charge qm are kept constant. The electric potential
ϕe is defined as

ϕe ¼
qe
rþ

; ð33Þ

The mass and temperature, are, then modified as

M ¼ 3r2þϕ2
e þ 3q2m þ 8πPr4þ þ 3r2þ

6rþ
; ð34Þ

and

T ¼ 8πPr4þ þ r2þ − r2þϕ2
e − q2m

4πr3þ
: ð35Þ

A. Topology of dyonic AdS black hole
in mixed ensemble

In this section, we study the thermodynamic topology of
4d dyonic AdS black hole in mixed ensemble. We begin by
eliminating pressure from (35) which is then simplified to

Tðϕe; qm; rþÞ ¼ −
r2þðϕ2

e − 1Þ þ 2q2m
2πr3þ

; ð36Þ

and the thermodynamic function Φ becomes

Φ ¼ 1

sin θ
Tðϕe; qm; rþÞ ¼ −

csc θfr2þðϕ2
e − 1Þ þ 2q2mg
2πr3þ

ð37Þ

The vector components of ϕ ¼ ðϕrþ ;ϕθÞ are given by,

ϕrþ ¼ csc θfr2þðϕ2
e − 1Þ þ 6q2mg
2πr4þ

; ð38Þ

and

ϕθ ¼ cot θ csc θfr2þðϕ2
e − 1Þ þ 2q2mg

2πr3þ
ð39Þ

The vector ϕ is normalized and the components are

ϕrþ

kϕk

¼ r2þðϕ2
e−1Þþ6q2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þcot2θfr2þðϕ2
e−1Þþ2q2mg2þfr2þðϕ2

e−1Þþ6q2mg2
p ;

ð40Þ

and

ϕθ

kϕk

¼ rþ cotθðr2þðϕ2
e−1Þþ2q2mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þcot2θfr2þðϕ2
e−1Þþ2q2mg2þfr2þðϕ2

e−1Þþ6q2mg2
p :

ð41Þ

Now, we plot the normalized vector n ¼
�
ϕrþ
kϕk ;

ϕθ

kϕk
�
in rþ vs

θ plane by fixing qm ¼ 1 and ϕe ¼ 1=2 (see Fig. 8). Here,

0 2 4 6 8 10
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1

2

3

4
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SBH

a 0r 0rb

FIG. 7. The zero points of ϕrþ in τ=r0 vs rþ=r0 plane for dyonic
AdS black hole in canonical ensemble for qe=r0 ¼ 0.1,
qm=r0 ¼ 0.1, and Pr20 ¼ 0.04.
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we find a single critical point CP2 at ðrþ; θÞ ¼
ð ffiffiffi

6
p

qm=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϕ2

e

p
; π=2Þ represented by the black dot.

We draw two contours C3 and C4 for ða; b; r0Þ ¼
ð1.4; 0.4; 2 ffiffiffi

2
p Þ and (1.2, 0.5, 5.8). The contour C3 encloses

the critical point CP2 whereas C4 does not enclose any
critical point. The topological charge corresponding to the
contour C3 is −1 which implies that it is a conventional
critical point. The contour C4 does not enclose any critical
point and hence the topological charge is 0. The total
topological charge is −1. The deflection along the contour
C3 and C4 is shown in Fig. 9. The equation of state for the
black hole in mixed ensemble is given by,

T ¼ 8πPr4þ þ r2þ − r2þϕ2
e − q2m

4πr3þ
: ð42Þ

The critical values are

Tc ¼
ð1 − ϕ2

eÞ3=2
3

ffiffiffi
6

p
πqm

; Pc ¼
ðϕ2

e − 1Þ2
96πq2m

and

rc ¼
ffiffiffi
6

p
qmffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ϕ2
e

p : ð43Þ

In this ensemble also, we see that the critical radius given in
(43) is exactly the same as the conventional critical point
which is ðrþ; θÞ ¼ ð ffiffiffi

6
p

qm=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϕ2

e

p
; π=2Þ. We plot the T

vs rþ isobaric curve around the critical point in Fig. 10.
This figure shows that the critical point (black dot) is on the
isobaric curve for P ¼ Pc (red curve). The blue curve gives
the extremal points of the isobaric curves and is plotted
using (36). Similar to the canonical ensemble case, the
number of phases clearly decreases with the increase of
pressure P and disappears at the critical point CP3. This
implies that the critical point CP3 is a phase annihila-
tion point.

B. Dyonic AdS black hole solution as topological
thermodynamic defects in mixed ensemble

We now study the dyonic AdS black hole in mixed
ensemble as a topological defect. As usual, we start with the
generalized free energy potential

F ¼ E −
S
τ
− qeϕe: ð44Þ

In this ensemble

E ¼ 3r2þϕ2
e þ 3q2m þ 8πPr4þ þ 3r2þ

6rþ
;

S ¼ πr2þ and qe ¼ rþϕe ð45ÞFIG. 9. Ω vs ϑ plot for the contour C3 and C4.

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

C3
4C

CP2

FIG. 8. Plot of the normalized vector field n in rþ vs θ plane for
dyonic AdS black hole in mixed ensemble. The black dot
represents the critical point.
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FIG. 10. Isobaric curves (red and green) of dyonic AdS black
hole in mixed ensemble. Red curve is the isobaric curve for
P ¼ Pc. The isobaric curves above and below the red curve is for
P > Pc and P < Pc respectively. Black dot represents the
critical point.

NABA JYOTI GOGOI and PRABWAL PHUKON PHYS. REV. D 108, 066016 (2023)

066016-8



Hence, (44) gives

F ¼ 3r2þϕ2
e þ 3q2m þ 8πPr4þ þ 3r2þ

6rþ
− rþϕ2

e −
πr2þ
τ

: ð46Þ

From (8), the vector components can easily be worked out
resulting

ϕrþ ¼ 6rþϕ2
e þ 32πPr3þ þ 6rþ

6rþ

−
3r2þϕ2

e þ 3q2mþ 8πPr4þ þ 3r2þ
6r2þ

−ϕ2
e −

2πrþ
τ

; ð47Þ

and

ϕΘ ¼ − cotΘ cscΘ: ð48Þ

We plot the normalized vector and figure out the zero
points. The corresponding winding numbers are also
calculated. For different values of τ=r0 the zero points
are shown in Fig. 11. Here, we have set ϕe ¼ 1=2,
qm=r0 ¼ 1, Pr20 ¼ 0.001 (pressure value below the critical
pressure Pc). While for τ=r0 ¼ 35, we find one zero point
ZP6 with winding number þ1, for τ=r0 ¼ 45, we locate
three zero points ZP7, ZP8, and ZP9 with winding numbers

FIG. 11. Unit vector n ¼ ðn1; n2Þ shown in Θ vs rþ=r0 plane for Pr20 ¼ 0.001 (pressure point below the critical pressure Pc). The
black dots represent the zero points.
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þ1;−1, and þ1 respectively. For τ=r0 ¼ 55, we again
encounter one zero point ZP10 with winding number þ1.
The zero points of the component ϕrþ ¼ 0 are given by

the equation

τ ¼ 4πr3þ
8πPr4þ þ r2þ − r2þϕ2

e − q2m
: ð49Þ

For ϕe ¼ 1=2, qm=r0 ¼ 1, Pr20 ¼ 0.001 the resulting rþ vs
τ graph is plotted in Fig. 12. Similar to the canonical
ensemble case, below critical pressure, we have three
branches of the τ curve in the regions for τ < τb,
τa < τ < τb, and τ > τa. The first and third branch are

the large black hole and small black hole region and the
zero points on these two branches have w ¼ þ1 and
positive specific heat. The other branch represents inter-
mediate black hole region and the zero points in this region
have w ¼ −1 and negative specific heat. Thus, the topo-
logical number is W ¼ þ1 − 1þ 1 ¼ þ1. The generation
and annihilation points for ϕe ¼ 1=2, qm=r0 ¼ 1, Pr20 ¼
0.001 is found at τ=r0 ¼ τa=r0 ¼ 41.5688 and τ=r0 ¼
τb=r0 ¼ 46.9484 respectively.
Above critical pressure Pc, the same plot is shown in

Fig. 13(b). Here, we chose Pr20 ¼ 0.02, qm ¼ 1, and
ϕe ¼ 1=2. In this case, the unstable region disappears
and the τðrþÞ curve corresponds to stable black hole
region. The winding number for each point on the curve
is w ¼ þ1 and the topological number is hence W ¼ þ1.
The unit vector and the zero point for τ=r0 ¼ 35,
Pr20 ¼ 0.02, qm=r0 ¼ 1, and ϕe ¼ 1=2 is shown in
Fig. 13(a).
We repeated the exercise altering the values of ϕe and

qm=r0 and observed that the topological number for all the
combinations was identical and equal toW ¼ þ1. The zero
points of ϕrþ is shown in Fig. 14 for ϕe ¼ 0.1,
qm=r0 ¼ 0.1, and Pr20 ¼ 0.04.
To understand the impact of the parameter ϕe on the

thermodynamic topology of the dyonic AdS black hole in
the mixed canonical ensemble, we extend our analysis to
ϕe > 1 case. In this case, the τ curve has only one black
hole branch with winding number þ1 as shown in Fig. 15.
This result is different from the ϕe < 1 case where we have
found three branches of the τ curve (see Fig. 12). For any
zero point on the τ curve for ϕe > 1 case [Figs. 15(a) and
15(b)], the winding number is w ¼ þ1 which implies that

35 40 45 50 55
0

2

4

6

8

10

12

LBH

IBH

SBH

a r0 b r0

FIG. 12. The zero points of ϕrþ in τ=r0 vs rþ=r0 plane for
dyonic AdS black hole in mixed ensemble below the critical
pressure Pc.

FIG. 13. Plot of unit vector n ¼ ðn1; n2Þ and zero point of ϕrþ for pressure Pr20 ¼ 0.02 (above the critical pressure Pc). (a) Unit vector
n ¼ ðn1; n2Þ shown in Θ vs rþ=r0 plane for Pr20 ¼ 0.02. The black dot represents zero point. (b) The zero points of ϕrþ in τ=r0 vs rþ=r0
plane for dyonic AdS black hole in mixed ensemble for pressure greater than the critical pressure Pc.
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the topological number is also W ¼ þ1. This result is
similar to that of ϕe < 1 case. Therefore, we conclude that
though the critical point as well as the number of black hole
branches depends on ϕe, they belong to the same topo-
logical class.

IV. DYONIC AdS BLACK HOLE IN GRAND
CANONICAL ENSEMBLE

In the grand canonical ensemble, both the electric
potential ϕe and the magnetic potential ϕm are kept fixed.

ϕe ¼
qe
rþ

; and ϕm ¼ qm
rþ

: ð50Þ

The relevant thermodynamic parameters of dyonic AdS
black hole in grand canonical ensemble are given by,

M ¼ 1

6
rþf3ðϕ2

e þ ϕ2
m þ 1Þ þ 8πPr2þg; ð51Þ

S ¼ πr2þ; ð52Þ

and

T ¼ 8πPr2þ þ 1 − ϕ2
e − ϕ2

m

4πrþ
: ð53Þ

A. Topology of dyonic AdS black hole
in grand canonical ensemble

Now, we proceed to study the topology of dyonic
AdS black hole thermodynamics in grand canonical
ensemble. First, we eliminate pressure from (53) using�
∂rþT
∂rþS

�
ϕe;ϕm;P

¼ 0.

T ¼ 1 − ϕe
2 − ϕm

2

2πrþ
: ð54Þ

The thermodynamics function Φ ¼ T= sin θ is, therefore,

Φ ¼ csc θð−ϕe
2 − ϕm

2 þ 1Þ
2πrþ

: ð55Þ

The components of vector field ϕ ¼ ðϕrþ ;ϕθÞ are

ϕrþ ¼ csc θðϕe
2 þ ϕm

2 − 1Þ
2πr2þ

; ð56Þ

and

FIG. 15. Plot of unit vector n ¼ ðn1; n2Þ and zero point of ϕrþ for ϕe ¼ 1.5, qm=r0 ¼ 1, and Pr20 ¼ 0.001. (a) Unit vector n ¼ ðn1; n2Þ
shown in Θ vs rþ=r0 plane for ϕe > 1. The black dot represents zero point. (b) The zero points of ϕrþ in τ=r0 vs rþ=r0 plane for ϕe > 1.
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FIG. 14. The zero points of ϕrþ in τ=r0 vs rþ=r0 plane for
dyonic AdS black hole in mixed ensemble for ϕe ¼ 0.1,
qm=r0 ¼ 0.1, and Pr20 ¼ 0.04.
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ϕθ ¼ cot θ csc θðϕe
2 þ ϕm

2 − 1Þ
2πrþ

: ð57Þ

The normalized vector components are

ϕrþ

kϕk ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þcot2ðθÞ þ 1

p ; ð58Þ

and

ϕθ

kϕk ¼ rþ cotðθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þcot2ðθÞ þ 1

p : ð59Þ

On following the procedure discussed earlier, we find
that this system does not have any critical points [see
Fig. 16(a)]. Also, since the contour does not enclose any
critical point therefore, the ΩðϑÞ function reaches 0 at ϑ ¼
2π [see Fig. 16(b)].

B. Dyonic AdS black hole solution as topological
thermodynamic defects in grand canonical ensemble

Now we identify dyonic AdS black hole as a topological
defect in the thermodynamic, and we can use the following
general free energy potential:

F ¼ E −
S
τ
− qeϕe − qmϕm: ð60Þ

Following (8), we calculate the vector components
Accordingly, we find the unit vectors

ϕrþ ¼ 1

6
ð3ϕ2

e þ 3ϕ2
m þ 8πPr2þ þ 3Þ − ϕ2

e − ϕ2
m

þ 8

3
πPr2þ −

2πrþ
τ

; ð61Þ

and

ϕΘ ¼ − cotΘ cscΘ: ð62Þ

FIG. 16. Plot of vector n in rþ vs θ plane and the plot of deflection angle ΩðϑÞ along C5. (a) Plot of the normalized vector field n in rþ
vs θ plane for dyonic AdS black hole in grand canonical ensemble. There is no critical point. (b) Ω vs ϑ plot for the contour C5.

FIG. 17. Unit vector n ¼ ðn1; n2Þ shown in Θ vs rþ=r0 plane
for τ=r0 ¼ 110, ϕe ¼ 0.1, ϕm ¼ 0.1, and Pr20 ¼ 0.0001. The
black dots represent the zero points.
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For τ=r0 ¼ 110, ϕe ¼ 0.1, ϕm ¼ 0.1, and Pr20 ¼ 0.0001,
we find two zero points ZP11 and ZP12 with winding
numbers −1 and þ1 respectively. These are shown in
Fig. 17. Hence, the topological number of dyonic AdS
black hole in grand canonical ensemble is 0.
The expression for τ representing zero points is given by

τ ¼ 4πrþ
8πPr2þ þ 1 − ϕ2

e − ϕ2
m

ð63Þ

For ϕe ¼ 0.1, ϕm ¼ 0.1 and Pr20 ¼ 0.0001, rþ=r0 vs τ=r0
plot is shown in Fig. 18.
In this case, unlike what we saw in canonical and mixed

ensembles, the plot exhibits two black hole branches in
the regions τ < τa and τ > τa. The former branch repre-
sents unstable black hole region whereas the later branch
represents stable black hole region. Any zero point in the
unstable and stable region has winding numbers w ¼ −1

and w ¼ þ1 respectively. The topological number is hence
W ¼ 0 which is different from what we had in canonical
and mixed ensembles. The creation point is located
at τ=r0 ¼ τa=r0 ¼ 126.604.
Interestingly, for ϕ2

e þ ϕ2
m > 1, we get only one black

hole branch with winding number þ1 (see Fig. 19). The
topological number, therefore, isþ1. In this case, we do not
see any generation or annihilation point.
Thus, in the grand canonical ensemble, for 4d dyonic

AdS black hole, we have two topological numbers. When
ϕ2
e þ ϕ2

m < 1, the topological number is 0 in contrast to
what we had in canonical and mixed ensembles. When
ϕ2
e þ ϕ2

m > 1, the topological number is 1, same as the ones
in canonical and mixed ensembles.

V. CONCLUSION

In this work, we studied the thermodynamic topology
of 4d dyonic AdS black hole in canonical, mixed and
grand canonical ensembles. Canonical, mixed, and grand
canonical ensembles were formed by fixing electric and
magnetic charges, magnetic charge, and electric potential
and potentials corresponding to both electric and mag-
netic charges respectively. In all the three ensembles, we
evaluated the topological charges of the critical points in
their thermodynamic spaces. We observed the presence of
a solitary conventional critical point with topological
charge −1 in both canonical and mixed ensembles.
Contrastingly, in the grand canonical ensemble, no
critical point was found. Next, we recognized the dyonic
AdS black hole as topological defects in thermodynamic
space and analyzed its local and global topology by
calculating the winding numbers at the defects. We found
that, in both canonical and mixed ensembles, the total
topological charge was equal to 1, which was not altered
by changes in thermodynamic parameters. In both these
ensembles, either one generation and one annihilation
points (below critical pressure) or no generation/annihi-
lation points (above critical pressure) were seen. In the
grand canonical ensemble, depending on the values of
potentials, the total topological charge was found to be
either equal to 0 (when ϕ2

e þ ϕ2
m < 1) or 1 (when

ϕ2
e þ ϕ2

m > 1). In this ensemble, we found either one
generation point (when ϕ2

e þ ϕ2
m < 1) or no generation/

annihilation point (when ϕ2
e þ ϕ2

m > 1).
From our analysis, we conclude that 4d dyonic AdS

black hole in canonical and mixed ensembles can be placed
in the same thermodynamic topological class. However, the
thermodynamic topology of 4d dyonic AdS black hole in
grand canonical ensemble is different from those in the
other two ensembles. Or in other words, the topological
class of 4d dyonic AdS black hole is ensemble dependent.
It will be interesting to extend the study of ensemble
dependent thermodynamic topology to other black holes
with rich phase structures. We plan to do so in our future
works.
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FIG. 18. The zero points of ϕrþ in τ=r0 vs rþ=r0 plane for
dyonic AdS black hole in grand canonical ensemble.
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FIG. 19. The zero points of ϕrþ in τ=r0 vs rþ=r0 plane
for dyonic AdS black hole in grand canonical ensemble for
ϕ2
e þ ϕ2

m > 1 case. Here, we choose ϕe ¼ 1, ϕm ¼ 1,
and Pr20 ¼ 0.001.
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