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We obtain the holographic entanglement negativity for bipartite mixed states at a finite temperature in
baths described by conformal field theories dual to configurations involving two communicating black
holes in a braneworld geometry. In this context, we analyze the mixed state entanglement structure
characterized by the information transfer between the black holes. The model corresponds to a
configuration of two dimensional eternal Jackiw-Teitelboim (JT) black holes in a braneworld geometry
involving two Planck branes coupled through shared bath systems described by CFT2s. Our results
reproduce analogue of the Page curves for the entanglement negativity obtained earlier in the context of
random matrix theory and from geometric evaporation in JT black hole configurations.
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I. INTRODUCTION

Over the last few decades, the black hole information
loss paradox [1,2] has been one of the most engaging and
fascinating issues in the quest for a quantum theory of
gravity. The central element of this puzzle involves the
monotonic increase in the entanglement entropy of the
Hawking radiation from an evaporating black hole resulting
in the fine grained entropy to dominate the coarse grained
entropy at late times which leads to a violation of unitarity.
It could be shown that the unitarity of the black hole
evaporation process required the corresponding entangle-
ment entropy of the Hawking radiation to follow a Page
curve [3]. Very recently this issue has been addressed
through the fascinating development of the island proposal
which has led to the exciting possibility of a resolution of
this long standing paradox [4–11]. The island or the
quantum extremal surface (QES) formula for entanglement
entropy was motivated from the quantum corrected Ryu-
Takayanagi (RT) proposal [12–15] and this may be
obtained by extremizing the generalized fine-grained
entanglement entropy of the Hawking radiation. In this
context it could be shown that at late times the entangle-
ment entropy of a bath subsystem in the radiation flux of
the black hole receives contributions from a region in the

black hole geometry termed the entanglement island.1

Specifically the bath subsystem and the island regions
were shown to be a part of the same entanglement wedge in
higher dimension as described in [7]. The corresponding
island formula for the generalized fine-grained entropy of a
subsystem R in the radiation bath is given as,

S½R� ¼min

�
extIsðRÞ

�
Area½∂IsðRÞ�

4GN
þSeff ½R ∪ IsðRÞ�

��
;

ð1:1Þ

where IsðRÞ is the island region in the black hole geometry
corresponding to the subsystem R in the radiation bath.2

From the perspective described above, an extremely
interesting and elegant model has been proposed in [121]
similar to the one described in [8]. However the authors of
[121] considered two copies of finite sized reservoirs
described by CFT2s each with two quantum dots located
at their boundaries at a finite temperature. The holographic
dual of these quantum dots are described by Planck branes
in the bulk AdS3 space time which supports AdS2 geom-
etries with Jackiw-Teitelboim (JT) gravity [122,123].
Hence the two Planck branes may involve eternal JT black
holes which communicate with each other through the
common radiation reservoirs. Note that from the perspec-
tive of each brane, the bath together with the other Planck
brane appears as a gravitating configuration [121]. For this
configuration, the authors of [121] have computed the
generalized entanglement entropy for a finite subsystem in
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1Recently, there has been a rich development in these direc-
tions which can be found in [16–119] and the references therein.

2Higher dimensional generalization of the island construction
for the entanglement entropy has been studied in some recent
papers [16,32,38,39,120].
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the radiation reservoirs which once again characterizes the
communication between the two eternal JT black holes on
the Planck branes.
In a separate context, it is well known in quantum

information theory that the entanglement entropy is an
appropriate measure for the characterization of pure state
entanglement, however for mixed states it receives con-
tributions from irrelevant classical and quantum correla-
tions. A consistent and computable measure for the
characterization of mixed state entanglement which serves
as an upper bound to the distillable entanglement is
described by the entanglement negativity introduced in
[124,125]. In [126–128] the authors established a replica
technique to compute the entanglement negativity for
bipartite pure and mixed states in CFT2. The first holo-
graphic computation for the entanglement negativity for the
pure vacuum state in CFTs was described in [129].
Subsequently general holographic proposals3 for the entan-
glement negativity of bipartite pure and mixed states in
CFT2s involving specific algebraic sums of the lengths of
geodesics homologous to various combinations of subsys-
tems were introduced in [132–134].4 It is interesting to note
that the authors of [145] had proposed an alternative
prescription for the holographic entanglement negativity
of bipartite mixed states in CFTs in terms of the back-
reacted minimal entanglement wedge cross section
(EWCS) in the context of the AdS=CFT scenario, further
refined in [146]. For spherically entangling surfaces of the
subsystems considered in the dual CFTs, the backreaction
parameter was described by an overall numerical factor
which is dependent on the dimension of the CFTs. A proof
for this duality between the holographic entanglement
negativity and the bulk EWCS was further established in
[147] involving the idea of reflected entropy described
in [148].
A generalization of these proposals for the entanglement

negativity in CFT2s coupled to semiclassical gravity was
advanced in [131] with a possible derivation using the
replica wormhole contributions to the gravitational path
integral involving replica symmetry breaking saddles as
discussed in [130]. In the present article, we focus on the
computation of the holographic entanglement negativity for
various bipartite mixed states in a braneworld model [121]
mentioned earlier. We consider different scenarios involv-
ing the subsystem sizes and the time for two adjacent and
disjoint subsystems located in the bath regions at a finite
temperature. Furthermore, we discuss the behaviors of the
entanglement negativity profiles obtained in these scenarios
in terms of the Hawking radiation. We observe interesting
similarities between our results with those described in
[149,150].

In the appendix A, we explore a similar model of
communicating black holes described extensively in
[151] where the authors have considered a BCFT2 on a
manifold with two boundaries in the context of the
AdS3=BCFT2 scenario. The holographic dual of this
configuration is described by a wedge enclosed within
the two KR branes in the bulk AdS3 braneworld geometry.
The KR branes involve CFT2 matter fields with a constant
Lagrangian which is connected to the CFT2 on the
asymptotic boundary of the dual AdS3 geometry through
transparent boundary conditions [7,9]. At a finite temper-
ature, black holes may be induced on these two KR branes
from the higher dimensional eternal AdS3 BTZ black hole.
In this model, we compute the holographic entanglement
negativity and obtain the corresponding Page curves for
various bipartite mixed states of two adjacent and disjoint
subsystems in the bath BCFT2s at a finite temperature.
This article is organized as follows. In Sec. II, we review

the relevant works discussed in the braneworld model [121]
and holographic entanglement negativity described in
[133,134]. Next in Sec. III, we apply the results for the
generalized entanglement entropy discussed in Sec. II for
different cases of adjacent and disjoint subsystems and
obtain the corresponding holographic entanglement neg-
ativity. In appendix A, we first compute the entanglement
entropy for a generic subsystem in the context of another
model of braneworld geometry [151]. Subsequently, we
apply these results to further compute the holographic
entanglement negativity for various bipartite mixed states
using the holographic proposals described in Sec. II. In
appendix B, we list the results for the holographic entan-
glement negativity for all the different scenarios discussed
in Sec. III. Finally in the Sec. IV, we summarize and discuss
our results and future open issues.

II. REVIEW OF EARLIER RESULTS

A. Braneworld model

In this subsection we will be reviewing an intriguing
model of finite sized nongravitating reservoirs, coupled
with two quantum dots at its two boundaries [121]. The
holographic dual of these quantum dots are Plank branes
described by AdS2 geometries. The maximal extension of
the Penrose diagram in this context consists of two eternal
JT black holes in the AdS2 space time located on the Planck
branes. In this case the usual reflecting boundaries are
coupled to two nongravitating reservoirs through trans-
parent boundary conditions [9,11] such that the two black
holes are connected to each other through the shared
reservoirs. This construction involves identical matter
CFT2s on both the reservoirs and the gravity regions.
Interestingly, a single brane together with a reservoir
appears to be a gravitating one from the perspective of
each brane. In this framework, the authors of [121] have
considered the two black holes at different temperatures

3Motivated by the developments in [130], a heuristic proof of
these proposals has been presented in [131].

4For further developments see also [135–144].
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and obtained the generalized entanglement entropy of a
finite region in the two reservoirs by utilizing Eq. (1.1). The
first term corresponds to the value of the dilaton field in
the JT gravity with a constant ϕ0 added to it whereas the
second term follows from the usual computation of the
entanglement entropy [12] of a segment R ∪ IsðRÞ.
The generalized entanglement entropy of the finite region
in the reservoirs characterizes the communication between
the two JT black holes on the Planck branes. In what
follows we review the computation of the generalized
entanglement entropy for a subsystem in the radiation
reservoirs while considering the JT black holes on the
Planck branes at a same temperature.

1. Entanglement entropy in the two black
hole configuration

In this subsection, we consider two eternal JT black
holes at the same temperature and describe the explicit
computation for the generalized entanglement entropy for a
subsystem A consisting of the union of two identical line
segments in the two copies of the reservoirs (Fig. 1).
For this configuration, the metrics referring to the

exterior regions of the two eternal JT black holes may
be written as

ds21 ¼
4π2

β2
−dt2 þ dξ2

sinh2 2πξ
β

; ξ∈ ð−∞;−ϵ�; ð2:1Þ

ds22 ¼
4π2

β2
−dt2 þ dξ2

sinh2 2π
β ðξ − LÞ ; ξ∈ ½Lþ ϵ;þ∞Þ; ð2:2Þ

where L is the length of each radiation reservoir with a
metric defined by

ds2R ¼ −dt2 þ dξ2

ϵ2
; ξ∈ ½−ϵ; Lþ ϵ� ð2:3Þ

where the reservoir is glued continuously to the surfaces
ξ ¼ −ϵ and Lþ ϵ. The dilaton profiles for the two eternal
JT black holes on the Planck branes are then given as
follows

ϕaðξÞ ¼
2πϕr

β
coth

2πξ

β
; ð2:4Þ

ϕbðξÞ ¼
2πϕr

β
coth

2π

β
ðξ − LÞ: ð2:5Þ

We now compute the generalized entanglement entropy
for the subsystem described by the union of two identical
segments A ¼ ½p1; p2� ∪ ½p3; p4� in the radiation regions of
the two TFD copies (Fig. 1). The end points of the two
corresponding segments in the (ξ, t) coordinates are
specified as follows [121]

p1 ¼
�
v;−tþ i

β

2

�
; p2 ¼

�
u;−tþ i

β

2

�
;

p3 ¼ ðu; tÞ; p4 ¼ ðv; tÞ: ð2:6Þ

In this case there are seven possible contributions to the
corresponding entanglement entropy due to the different
structures of the RT surfaces supported by the subsystems
mentioned above. In what follows, we describe these
distinct contributions in detail.
(a) We first discuss the configuration which is completely

connected and does not include any island region in
the gravity sector. The endpoints of the two segments
of the subsystem A are connected to each other
p1 ↔ p4 and p2 ↔ p3 by two geodesics in the
3-dimensional bulk as depicted in Fig. 3(a). We term
these geodesics as bulk-type RT surfaces. The ex-
pression for the corresponding generalized entangle-
ment entropy may be obtained utilizing Eq. (1.1) as
follows

FIG. 1. (a) The maximal extension of the Penrose diagram for two AdS2 eternal black holes. A subsystem given by the union of two
segments is considered in the radiation reservoirs (shaded regions) with end points p1, p2, p3, p4. Note that the left and the right most
black lines are identified in this diagram. (b) A constant time slice of the AdS2 eternal black holes where the Planck branes are denoted
by the wiggly lines and the black hole intereiors are shown by the dotted lines. (Figures modified from [121,154]).
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Sbulk
A ¼ 2

c
3
log

�
β

π
cosh

2πt
β

�
: ð2:7Þ

(b) The second configuration also corresponds to a fully
connected one which includes island regions from
both the JT black holes. We may obtain the general-
ized entanglement entropy for the subsystem A fol-
lowing a procedure analogous to the single black hole
case as discussed in [121]. However for this configu-
ration, the computation involves an extremization of
Eq. (1.1) over two island regions located on the a and
the b-black holes. The subsystem A in this context
admits RT surfaces which start from ∂A and intersect
the exterior regions of both the black holes. We call
these RT surfaces ab-type which are depicted in
Fig. 3(b). The corresponding generalized entangle-
ment entropy for the subsystem A may then be
expressed as

Sab
A ¼ 4ϕ0 þ

4πϕr

β
coth

�
2π

β
uþ log

24πϕ

cβ

�

þ c
3
log

�
β

π

cosh ð4πβ uþ log 24πϕ
cβ Þ − 1

sinh ð2πβ uþ log 24πϕ
cβ Þ

�

þ 4πϕr

β
coth

�
2π

β
ðL − vÞ þ log

24πϕ

cβ

�

þ c
3
log

�
β

π

cosh ð4πβ ðL − vÞ þ log 24πϕ
cβ Þ − 1

sinh ð2πβ ðL − vÞ þ log 24πϕ
cβ Þ

�
:

ð2:8Þ

(c) We now discuss a disconnected configuration
which does not include any island region as shown
in Fig. 3(c). Here the entanglement entropy for the
subsystem A may be obtained from the geodesics
which are homologous to each of the segments in the
two TFD copies separately. We term these geodesics
as dome-type RT surfaces. The corresponding gener-
alized entanglement entropy for this configuration is
given by the following expression

Sdome
A ¼ 2

c
3
log

�
β

π
sinh

π

β
ju − vj

�
: ð2:9Þ

(d) This configuration includes an island region in the a-
black hole corresponding to two geodesics which start
from the end points p2, p3 of each of the segments and
intersect the two exterior regions of the a-black hole.
However, the other end points of the subsystem
A are connected to each other p4 ↔ p1 by another
geodesic. In this connected configuration, we term the
corresponding geodesics as a-bulk type RT surfaces
which are depicted in Fig. 3(d). The expression
for the generalized entanglement entropy for the

subsystem A may be computed using Eq. (1.1) as
follows

Sa-bulk
A ¼ 4ϕ0 þ

4πϕr

β
coth

�
2π

β
uþ log

24πϕ

cβ

�

þ c
3
log

�
β

π

cosh ð4πβ uþ log 24πϕ
cβ Þ − 1

sinh ð2πβ uþ log 24πϕ
cβ Þ

�

þ c
3
log

�
β

π
cosh

2πt
β

�
: ð2:10Þ

(e) Similar to the previous case, we now discuss another
connected configuration which admits an island region
in the b-black hole geometry only. The geodesics in
this case start from the end points p1, p4 of the two
segments and intersect the two exterior regions of the
b-black hole. However another geodesic connects the
other end points p2, p3 of the subsystem A. In contrast
to the previous case, these geodesics are termed as b-
bulk type RT surfaces [Fig. 3(e)]. The corresponding
generalized entanglement entropy for the subsystem A
in this case may be obtained utilizing Eq. (1.1) as
follows

Sb-bulk
A ¼ 4ϕ0 þ

4πϕr

β
coth

�
2π

β
ðL − vÞ þ log

24πϕ

cβ

�

þ c
3
log

�
β

π

cosh ð4πβ ðL − vÞ þ log 24πϕ
cβ Þ − 1

sinh ð2πβ ðL − vÞ þ log 24πϕ
cβ Þ

�

þ c
3
log

�
β

π
cosh

2πt
β

�
: ð2:11Þ

(f) Another disconnected configuration includes two
island regions in the gravity sector where the corre-
sponding geodesics, which are termed as aa-type RT
surfaces, start from ∂A and intersect the two exterior
regions of the a-black hole [Fig. 3(f)]. The generalized
entanglement entropy for this disconnected configu-
ration is computed by extremizing Eq. (1.1) over the
two island regions and is given as

Saa
A ¼ 4ϕ0 þ

4πϕr

β
coth

�
2π

β
uþ log

24πϕ

cβ

�

þ c
3
log

�
β

π

cosh ð4πβ uþ log 24πϕ
cβ − 1Þ

sinh ð2πβ uþ log 24πϕ
cβ Þ

�

þ 4πϕr

β
coth

�
2π

β
vþ log

24πϕ

cβ

�

þ c
3
log

�
β

π

cosh ð4πβ vþ log 24πϕ
cβ − 1Þ

sinh ð2πβ vþ log 24πϕ
cβ Þ

�
: ð2:12Þ

(g) Finally we consider the last configuration which is
similar to the preceding one but with the island regions
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in the b-black hole geometry as shown in Fig. 3(g). In
this disconnected configuration, the RT surfaces sup-
ported by the subsystem A are termed bb-type. Once
again, the corresponding generalized entanglement
entropy may be obtained utilizing Eq. (1.1) as follows

Sbb
A ¼ 4ϕ0 þ

4πϕr

β
coth

�
2π

β
ðL − vÞ þ log

24πϕ

cβ

�

þ c
3
log

�
β

π

cosh ð4πβ ðL − vÞ þ log 24πϕ
cβ Þ − 1

sinh ð2πβ ðL − vÞ þ log 24πϕ
cβ Þ

�

þ 4πϕr

β
coth

�
2π

β
ðL − uÞ þ log

24πϕ

cβ

�

þ c
3
log

�
β

π

cosh ð4πβ ðL − uÞ þ log 24πϕ
cβ Þ − 1

sinh ð2πβ ðL − vÞ þ log 24πϕ
cβ Þ

�
:

ð2:13Þ
The generalized entanglement entropy for the subsystem

A in the radiation reservoirs may now be determined from
the minimum of all the above possible contributions as
follows

SA ¼ min ðSbulk
A ;Sab

A ;Sdome
A ;Sa-bulk

A ;Sb-bulk
A ;Saa

A ;Sbb
A Þ:
ð2:14Þ

In what follows we plot the generalized entanglement
entropies for the subsystem A with respect to the time and
its size for all the above possible configurations obtained
from the respective structures of the corresponding RT
surfaces (Fig. 2).

B. Holographic entanglement negativity

In this subsection, we first provide the definition of
the entanglement negativity in the context of quantum
information theory [124]. For this case, we consider a

tripartite system in a pure state consisting of the subsystems
A1, A2 and B where A ¼ A1 ∪ A2 and B ¼ Ac represents
rest of the system. Consequently, the reduced density
matrix for the bipartite mixed state configuration described
by the subsystem A may be obtained by tracing over
the subsystem B as ρA ¼ TrBρ. Thus the entanglement
negativity of the corresponding bipartite mixed state is
defined as

E ¼ ln TrjρT2

A j; ð2:15Þ

where the trace norm TrjρT2

A j is described as sum of the
absolute eigenvalues of ρT2

A . In Eq. (2.15), the partial
transpose of the reduced density matrix ρA is defined as

heð1Þi eð2Þj jρT2

A jeð1Þk eð2Þl i ¼ heð1Þi eð2Þl jρAjeð1Þk eð2Þj i: ð2:16Þ

Here jeð1Þi i and jeð1Þj i are expressed as the basis vectors of
the Hilbert spaces H1 and H2 respectively.
For the case of CFT2s, the authors of [126–128]

described a suitable replica technique to compute the
entanglement negativity for bipartite states which involves
the quantity TrðρT2

A Þn for the replica index n being restricted
to the even sequences ne. Finally in the replica limit
ne → 1, we may obtain the expression of the entanglement
negativity as follow

E ¼ lim
ne→1

ln TrðρT2

A Þne ; ð2:17Þ

where the quantity TrðρT2

A Þne can also be expressed as the
twist field correlator for the appropriate bipartite states.
We now briefly recapitulate the holographic entangle-

ment negativity proposals described in [132–134] for
bipartite mixed states in CFT2s in the AdS3=CFT2 scenario.
The holographic proposal for the entanglement negativity

FIG. 2. In the above figures, we have chosen β ¼ 1, c ¼ 500, ϕ0 ¼ 30c
6
, ϕr ¼ 30

π , L ¼ 16π
β , ϵ ¼ :001.
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involved an algebraic sum of bulk geodesic lengths
homologous to the subsystems for the mixed state con-
figurations in question. For example in the case of two
adjacent subsystems A and B the corresponding holo-
graphic entanglement negativity (HEN) is given as [133]

EðA∶BÞ ¼ 3

16πGð3Þ
N

ðLA þ LB − LA∪BÞ; ð2:18Þ

where LX is the bulk static minimal surface homologous to
the subsystem X. The above equation may be expressed in
terms of the entanglement entropies of the subsystems
utilizing the RT formula [12,13] as follows,

EðA∶BÞ ¼ 3

4
½SðAÞ þ SðBÞ − SðA ∪ BÞ�; ð2:19Þ

where SðXÞ is the corresponding EE for the subsystemX. In
this connection the holographic Rényi entropy for the same
in the dual CFTd is defined by [152]

SðnÞðXÞ ¼ AðnÞ
X

4Gðdþ1Þ
N

: ð2:20Þ

In the above equation, AðnÞ
X is related to the area of a back-

reacting cosmic brane homologous to the subsystemX in the
bulk dual AdSdþ1 [152]. In two dimensions, Rényi entropy

FIG. 3. The schematic depicts the possible contributions to the entanglement entropy arising from different RT surfaces (green curves)
supported by the subsystem A in the radiation reservoirs. The subsystem A is shown as a union of two segments (blue lines) in the two
radiation reservoirs (shaded gray regions) and island regions are indicated by the red segments. (Figure modified from [121]).
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of order half reads as

Sð1=2ÞðXÞ ¼ Lð1=2Þ
X

4Gð3Þ
N

; ð2:21Þ

where Lð1=2Þ
X corresponds to the length of a back-reacting

cosmic brane in AdS3 geometry. For the case of spherically
entangling surfaces, the effect of the backreac-
tion in AdS3=CFT2 scenario may be characterized as
[129,145,147,153]

Lð1=2Þ
X ¼ 3

2
LX: ð2:22Þ

Subsequently, we may reframe the HEN proposal in
Eq. (2.19) as a specific algebraic sum of Rényi entropies
of order half [131] for the corresponding subsystems
utilizing the Eqs. (2.21), (2.22)

EðA∶BÞ ¼ 1

2
½Sð1=2ÞðAÞ þ Sð1=2ÞðBÞ − Sð1=2ÞðA ∪ BÞ�:

ð2:23Þ

Following the same approach the above HEN proposal
may be extended to the disjoint subsystems as [131,134]

EðA∶BÞ ¼ 3

4
½SðA ∪ CÞ þ SðB ∪ CÞ − SðCÞ

− SðA ∪ B ∪ CÞ�

¼ 1

2
½Sð1=2ÞðA ∪ CÞ þ Sð1=2ÞðB ∪ CÞ

− Sð1=2ÞðCÞ − Sð1=2ÞðA ∪ B ∪ CÞ�: ð2:24Þ

where the subsystem C is sandwiched between the sub-
systems A and B. In the following sections, we will use
these proposals to compute the holographic entanglement
negativity for various bipartite mixed state configurations.

III. ENTANGLEMENT NEGATIVITY
IN BRANEWORLD MODEL

In this section, we consider the braneworld model
of two finite sized nongravitating reservoirs where each
of the reservoirs are coupled to two quantum dots at its
boundaries [121]. These quantum dots constitute two
copies of thermofield double states which are interacting
through the common reservoirs. The holographic dual of
these quantum dots are Planck branes described by AdS2
geometries. The maximal extension of the Penrose diagram
describes two eternal JT black holes5 located on the Planck
branes which are coupled to each other through the two

copies of the shared reservoirs as depicted in Fig. 1.
This configuration also involves identical matter CFT2s
with transparent boundary conditions in both the black hole
and the reservoir regions [7,9]. For the above configuration,
we investigate the entanglement entropy and the entangle-
ment negativity of various bipartite mixed states in the
radiation reservoirs which characterize information transfer
between the two eternal JT black holes on the Planck
branes.

A. Holographic entanglement negativity and Page curve

In the following subsections, we compute the holographic
entanglement negativity for various bipartite mixed states in
the nongravitating radiation reservoirs in the context of the
braneworld model utilizing the equations described in the
Eqs. (2.14), (2.19), and (2.24). Furthermore we analyze
the behavior of the entanglement negativity profiles with
respect to the subsystem sizes and the time.
Note that in these subsections the behavior of the various

entanglement negativity profiles may be interpreted in terms
of the entanglement negativity islands for the subsystems
under consideration as described in [131,149]. The
corresponding entanglement negativity including the
island contribution for the mixed state configuration of
two generic adjacent subsystems A and B is obtained as
follows6

EgenðA∶BÞ ¼ Að1=2ÞðQ00 ¼ ∂IεðAÞ ∩ ∂IεðBÞÞ
4GN

þ EeffðA ∪ IεðAÞ∶B ∪ IεðBÞÞ
EðA∶BÞ ¼ minðextQ00 fEgenðA∶BÞgÞ; ð3:1Þ

where, Q00 is the quantum extremal surface (QES) which is
given by the intersection of the individual negativity islands
IεðAÞ and IεðBÞ for the subsystems A and B as described
in Fig. 4,

Q00 ¼ ∂IεðAÞ ∩ ∂IεðBÞ: ð3:2Þ

The second term Eeff in the above Eq. (3.1) corresponds to
the effective entanglement negativity between the quantum
matter fields located in the regionsA ∪ IεðAÞ andB ∪ IεðBÞ.
The entanglement negativity islands IεðAÞ and IεðBÞ obey
the condition IεðAÞ ∪ IεðBÞ ¼ IsðA ∪ BÞ, where IsðA ∪ BÞ
is the entanglement entropy island for the subsystem A ∪ B.
In general, the islands for the entanglement negativity IεðAÞ
and IεðBÞ do not correspond to the entanglement entropy
islands IsðAÞ and IsðBÞ for the subsystems A and B
respectively.

5In this article, we label the two eternal JT black holes together
with the two Planck branes as a and b.

6In the present model, we do not utilize Eq. (3.1) to compute
the entanglement negativity between the subsystem A and B.
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1. Adjacent subsystems

We start with two adjacent subsystems A and B of finite
lengths l1 and l2 respectively in the radiation reservoirs
and compute the holographic entanglement negativity
between them using the Eqs. (2.14) and (2.19). In
particular, we investigate the qualitative nature of the
entanglement negativity profiles for three distinct scenarios

involving the subsystem sizes and the time. In this context
we utilize the structures of the various RT surfaces
supported by the subsystems in question described earlier
in the diagrams Fig. 3.
(i) Full system (A ∪ B) fixed, common point varied
We first consider the case where the common point

between the adjacent subsystems A and B is varied at a
constant time slice while keeping the subsystem A ∪ B
fixed which covers the entire reservoirs. In this scenario, we
compute the holographic entanglement negativity between
the subsystems A and B utilizing the Eqs. (2.14) and (2.19).
We observe that our results in this context reproduces the
analogue of the Page curve for the entanglement negativity
as depicted in Fig. 5(a).
In this scenario, the entanglement negativity profile

consists of five phases due to the various structures of
the RT surfaces supported by the subsystems under
consideration. The expressions for the corresponding
entanglement negativity in these phases are listed
in the appendix B. In what follows, we discuss these
distinct phases of the entanglement negativity profile in
details.

FIG. 5. Here β ¼ 1, c ¼ 500, ϕ0 ¼ 30c
6
, ϕr ¼ 30

π , L ¼ 16π
β , ϵ ¼ :001.

FIG. 4. Schematic describes the appearance of the entangle-
ment negativity island on the Planck brane for the case of two
adjacent subsystems.
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Phase 1: In the first phase, the dominating contribution
to the entanglement entropy for the subsystem A arises
from dome-type RT surfaces, whereas the subsystems B
and A ∪ B support ab-type RT surfaces each as depicted in
Fig. 6. Interestingly, here the size of the subsystem A is very
small compared to the size of B such that this phase does
not admit any island region corresponding to the subsystem
A. However, this phase involves entanglement entropy
islands corresponding to the subsystem B and A ∪ B which
are located on both the Planck branes. In this case the
entanglement negativity between the subsystems A and B is
governed by the degrees of freedom of the subsystem A.
Note that as we shift the common point, the number of
Hawking modes captured by the subsystem A and its CFT2-
degrees of freedom increase accordingly. Hence we observe

a linearly rising behavior in the corresponding entangle-
ment negativity profile with the increasing size of the
subsystem A as exhibited in Fig. 5(a).
Phase 2: Next we proceed to the second phase where the

subsystems A and A ∪ B still support dome and ab-type RT
surfaces respectively, whereas the subsystem B now admits
b-bulk type RT surfaces as shown in Fig. 6. Consequently,
this phase includes an entanglement negativity island IεðAÞ
corresponding to the subsystem A which is located on the
a-brane. This negativity island contains the entire interior
region of the a-black hole. Note that in this phase, the
entanglement negativity between the subsystems A and B is
governed by the degrees of freedom present in the region
A ∪ IεðAÞ. This is determined by the number of interior
Hawking modes captured by the negativity island IεðAÞ

FIG. 6. Schematic depicts all the phases of the entanglement negativity for two adjacent subsystems where the common point between
them is varied. The RT surfaces supported by the adjacent subsystems are denoted by the green geodesics. Note that these geodesics
corresponding to the subsystems indicate the locations of the island regions on the Planck branes.
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whose corresponding pairs are located in ðA ∪ IεðAÞÞc and
by the CFT2-degrees of freedom present in A ∪ IεðAÞ. In
this case, as we increase the size of the subsystem A, the
number of interior Hawking modes of A ∪ IεðAÞ decreases
due to a purification by their corresponding pairs from the
exterior region which are now transferred to the region
A ∪ IεðAÞ. However, the number of Hawking modes
coming from the b-black hole simultaneously increases
in the region A ∪ IεðAÞ with its increasing size which tends
to cancel the preceding decreasing effect. Consequently, the
degrees of freedom of the region A ∪ IεðAÞ are now
determined only by the CFT2-degrees of freedom which
increases linearly with the shift of the common point
between the adjacent subsystems. As a result, we observe
a linearly rising behavior in the corresponding entangle-
ment negativity profile with a growth rate smaller than the
previous phase.
Phase 3: In the third phase (Fig. 6), the RT surfaces

supported by the subsystems A, B and A ∪ B are a-bulk,
b-bulk, and ab-type respectively. Here the size of the
subsystem A is comparable to the size of B such that they
are maximally entangled. This is a characteristic of tripar-
tite entanglement where the tripartition is defined by the
subsystems A, B and ðA ∪ BÞc. Hence in this phase, the
degrees of freedom present in the subsystems A and B are
entangled with the degrees of freedom of the subsystem
ðA ∪ BÞc as the common point is shifted. Therefore this
corresponds to a constant behavior of the entanglement
negativity profile as depicted in Fig. 5(a).
Phase 4 andPhase 5:Asdepicted in Fig. 6, theRT surfaces

for the subsystems A and B in these two phases are inter-
changed with each other as compared to the first two phases.
Hence, the corresponding entanglement negativity profile
may be interpreted in a similar fashion as for the first two
phases with the roles of the subsystems A and B exchanged.
We may further extend our analysis of the tripartite

entanglement by considering different times and various
sizes of the subsystem ðA ∪ BÞc. At a fixed time, we
observe that the height of the plateau region of the
corresponding entanglement negativity profile decreases
with the increase in the size of the subsystem ðA ∪ BÞc as
exhibited in Fig. 5(c). This behavior is consistent since the
available degrees of freedom in the subsystems A and B
entangled between themselves, decreases with the increas-
ing size of ðA ∪ BÞc. On the other hand, for a fixed size of
the subsystem ðA ∪ BÞc the height of the plateau region
rises with increasing time. Once again this is consistent
since the number of Hawking modes in all the subsystems
rise with increasing time which corresponds to a larger
entanglement between the subsystems.
In addition, with smaller size of the subsystem ðA ∪ BÞc,

the height of the plateau region changes rapidly with a
small change in time. However, for larger size of ðA ∪ BÞc,
we need to increase the time sufficiently such that it
changes the height of the plateau region. This character

of the entanglement negativity profile is again consistent
since the subsystem ðA ∪ BÞc can accommodate a fewer
number of Hawking modes when its size is very small
whereas a large number of Hawking modes can be
accumulated in the subsystems A and B due to their larger
sizes. Consequently, as time increases, most of the newly
created Hawking modes are collected by the subsystems A
and B and thus increase the height of the Plateau region
rapidly. However, for a larger size of the subsystem
ðA ∪ BÞc, the accommodation for the Hawking modes is
larger such that it may now capture more newly created
Hawking modes with increasing time and as a result the
height of the plateau region changes very slowly as time
increases [Fig. 5(c)].
(ii) Subsystem A fixed, B varied
In this scenario, we consider the length l1 of the

subsystem A to be fixed at a constant time slice and
investigate the behavior of the holographic entanglement
negativity while increasing the length l2 of the subsystem
B. The corresponding entanglement negativity profile is
depicted in Fig. 5(b) which consists of four distinct phases
due to the various structures of the RT surfaces supported
by the subsystems in question. The expressions for the
holographic entanglement negativity between A and B in
these phases, obtained through the Eqs. (2.14) and (2.19),
are listed in the appendix B. In what follows we now
analyze these phases in detail.
Phase 1: We begin with the first phase where the RT

surfaces for the subsystems A, B and A ∪ B are dome-type
each (Fig. 7).Here the size of the subsystemsA andB arevery
small and hence A ∪ B is far smaller than its complement
ðA ∪ BÞc which implies a vanishingly small entanglement
negativity between the adjacent subsystems in question.
Phase 2: In the second phase, the subsystems A and B

still support dome-type RT surfaces whereas the subsystem
A ∪ B admits a-bulk type RT surfaces. Consequently, this
phase includes entanglement negativity islands IεðAÞ and
IεðBÞ on the a-brane corresponding to the subsystems A
and B respectively. The exterior regions of the a-black hole
constitutes the island IεðAÞ on the a-brane, whereas IεðBÞ
involves the entire interior region of the a-black hole. In
this context, the ratio of l1 to l2 decreases with increasing
length l2 of the subsystem B and consequently the ratio of
the size of IεðAÞ to the size of IεðBÞ decreases accordingly.
Note that in this phase the entanglement negativity between
the subsystems A and B is governed by the degrees of
freedom of B ∪ IεðBÞ. Now as we increase l2, the number
of interior Hawking modes captured by the negativity
island IεðBÞ decreases due to a purification by their exterior
partners which are located in the region ðB ∪ IεðBÞÞc. This
purification arises since the exterior partners are transferred
to the region B ∪ IεðBÞ as the length l2 of the subsystem B
increases. However, an equal number of Hawking modes
from the b-black hole are transferred to the regionB ∪ IεðBÞ
simultaneously. Consequently, the degrees of freedom in the
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region B ∪ IεðBÞ are determined only by the CFT2-degrees
of freedom which increase with the increasing size of the
subsystem B. Accordingly, the corresponding entanglement
negativity profile rises linearly as depicted in Fig. 5(b).
Phase 3: In this phase, the dominant contributions to the

entanglement entropies of the subsystems A and B still arise
from dome-type RT surfaces, whereas the subsystem A ∪ B
now supports ab-type RT surfaces. Hence this phase admits
an entanglement negativity island IεðBÞ located on both the
branes corresponding to the subsystem B as shown in Fig. 7.
This negativity island IεðBÞ contains the entire interior
regions of both the black holes. Furthermore this phase also
includes an entanglement negativity island IεðAÞ correspond-
ing to the subsystem A (Fig. 7), which involves only the
exterior regions of the a-black hole. In this scenario, the
entanglement negativity between the subsystems A and B is
governed by the degrees of freedom of the region A ∪ IεðAÞ.
Interestingly,with increasing length l2 of the subsystemB, the
island region IεðAÞ increases in size. Consequently, the
number ofHawkingmodes and the CFT2-degrees of freedom
present in A ∪ IεðAÞ increase with the increasing length l2 of
the subsystem B. Hence we observe the corresponding
entanglement negativity profile to rise linearly with a growth
rate higher than the previous phase.
Phase 4: Finally in the last phase, the RT surfaces for the

subsystems B and A ∪ B are identified as ab-type each,
however the subsystem A still supports dome-type RT
surfaces as depicted in Fig. 7. Hence, this phase includes

entanglement entropy islands for the subsystems B and
A ∪ B, located on both of the Planck branes. Conse-
quently, we have an entanglement negativity island IεðAÞ
corresponding to the subsystem A, which involves the
exterior regions of the a-black hole. Once again the entan-
glement negativity in this phase is governed by the degrees of
freedom of the region A ∪ IεðAÞ. As we increase the length
l2, the size of the negativity island IεðAÞ remains fixedwhich
indicates that the number of the degrees of freedom in the
region A ∪ IεðAÞ is constant. Consequently, the correspond-
ing entanglement negativity between the subsystemsA andB
exhibits a constant behavior as shown in Fig. 5(b).
(iii) Subsystems A and B fixed, time varied
We conclude our analysis with the case where the

lengths l1 and l2 of the two adjacent subsystems A and
B respectively are fixed and the time t is varied. In this
context, we consider two sub cases with equal and unequal
lengths of the subsystems A and B and obtain the corres-
ponding holographic entanglement negativity between
them utilizing the Eqs. (2.14) and (2.19). Since the
subsystem sizes are fixed in this scenario, the CFT2-degrees
of freedom for the subsystems are also fixed and hence
irrelevant for the description of the various phases of the
entanglement negativity profiles. The only effect on the
profiles arise from the Hawking modes arriving from both
the black holes to the subsystems and this is utilized to
analyze the corresponding entanglement negativity profiles
depicted in Fig. 8.

FIG. 7. The diagram shows the possible phases of the entanglement negativity profile for the case of two adjacent subsystems where
the size of the subsystem B is varied.
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(a) For l1 ¼ l2
For the case of two equal lengths subsystemsA andB, we

observe that the Page curve for the entanglement negativity
consists of two phases as depicted in Fig. 8. The expressions
for the holographic entanglement negativity in the corre-
sponding phases are listed in the appendix B. In what
follows, we comprehensively analyze these phases.
Phase 1: This phase contains two intermediate sub-

phases due to the various structures of the RT surfaces
supported by the subsystems in question. At early times,

the subsystems A, B, and A ∪ B support bulk-type RT
surfaces each (Fig. 9). This sub phase does not include any
island regions corresponding to the subsystems mentioned
above. The number of Hawking modes from both the black
holes accumulating in the two subsystems increases lin-
early with increasing time. Hence, the corresponding
entanglement negativity profile rises linearly as time
increases. We proceed to the second sub phase where
the dominant contributions to the entanglement entropies of
the subsystems A, B, and A ∪ B arise from a − bulk,
b − bulk, and ab-type RT surfaces respectively. Hence this
sub phase includes entanglement negativity islands IεðAÞ
and IεðBÞ corresponding to the subsystems A and B
respectively as shown in Fig. 9. Here the island IεðAÞ
contains the entire interior region of the a-black hole
whereas the other island IεðBÞ includes the entire interior
region of the b-black hole. In this case, the entanglement
negativity between the subsystems is governed by the
degrees of freedom in the region A ∪ IεðAÞ or B ∪ IεðBÞ.
Note that the degrees of freedom in the region A ∪ IεðAÞ are
determined by the interior Hawking modes captured by the
negativity island IεðAÞwhose exterior partners are located in
ðA ∪ IεðAÞÞc and by the Hawking modes arriving from the
b-black hole. These degrees of freedom increase with time
which confirms the linear rise of the corresponding Page
curve as depicted in Fig. 8. The description for the second sub
phase from the perspective of the degrees of freedom of the
region B ∪ IεðBÞ is analogous to the arguments mentioned

FIG. 9. Schematic depicts all the possible phases of the entanglement negativity between two adjacent subsystems with equal sizes as
time increases.

FIG. 8. Page curves for entanglement negativity with respect to
time t. Here β ¼ 1, c ¼ 500, ϕ0 ¼ 30c

6
, ϕr ¼ 30

π , L ¼ 16π
β ,

ϵ ¼ :001, A ¼ ½:01L; :5L�, and B ¼ ½:5L; :99L� (for l1 ¼ l2), A ¼
½:01L; :35L� and B ¼ ½:35L; :99L� (for l1 ≠ l2).
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above which again justifies the linear rising behavior of the
corresponding Page curve.
Phase 2: In the second phase, the subsystems A and B

support dome-type RT surfaces eachwhereas the subsystem
A ∪ B still admits ab-type RT surfaces (Fig. 9). This phase
includes an entanglement entropy island for the subsystem
A ∪ B and hence we have entanglement negativity islands
IεðAÞ and IεðBÞ corresponding to the subsystems A and B
respectively. Here each of the negativity islands IεðAÞ and
IεðBÞ contains the entire interior regions of both the black
holes. Hence this phase corresponds to an overlap between
the negativity island regions IεðAÞ and IεðBÞ as shown in
Fig. 9. This is an extremely interesting and novel scenario
which has not been reported in earlier literatures on the
island constructions.7 Once again in this phase, the entangl-
ement negativity between the subsystems is governed
by the degrees of freedom of the region A ∪ IεðAÞ or
B ∪ IεðBÞ. Note that the degrees of freedom of the region
A ∪ IεðAÞ are determined by the interior Hawking modes
captured by the negativity island IεðAÞ whose exterior
partners are located in ðA ∪ IεðAÞÞc. At late times, the

number of ingoing and outgoing Hawking modes in the
region A ∪ IεðAÞ become equal such that its degrees of
freedom remains constant throughout this phase.
Consequently, the Page curve for the entanglement neg-
ativity exhibits a constant behavior as depicted in Fig. 8.
Once again, the description for this phase from the per-
spective of the degrees of freedom of the regionB ∪ IεðBÞ is
analogous to the arguments mentioned above which again
justifies the constant behavior of the corresponding Page
curve. Note that in this phase, other candidates for the
entanglement negativity islands corresponding to the sub-
systems A and B may be considered analogous to those
observed in the phase-1(b). However, with those negativity
islands, the corresponding entanglement negativity profile
continues to rise linearly and thus do not provide a consistent
interpretation for the phase-2.
(b) For l1 ≠ l2
Nextwe consider two unequal lengths of the subsystemsA

and B and observe that the corresponding Page curve for the
entanglement negativity consists of three consecutive phases.
Again we refer to the appendix B for the entanglement
negativity expressions obtained in these distinct phases. In
the following, we now explore these phases in detail.
Phase 1: In this phase (Fig. 10), the various structures of

the RT surfaces supported by the subsystems and the
corresponding interpretation in terms of the Hawking radi-
ation are identical to the first phase of the previous sub case.
Phase 2: We proceed to the second phase where the

dominant contributions to the entanglement entropy of the

FIG. 10. Different phases of the entanglement negativity between two adjacent subsystems with unequal sizes as time increases.

7Although the island regions are overlapping, it does not
correspond to common degrees of freedom of the regions A ∪
IεðAÞ and B ∪ IεðBÞ thus implying the consistency of the
monogamy property of quantum entanglement. This can be
understood since the exterior partners of the interior Hawking
modes of both the regions A ∪ IεðAÞ and B ∪ IεðBÞ are distinct
and located in the regions ðA ∪ IεðAÞÞc and ðB ∪ IεðBÞÞc
respectively.
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subsystems A, B and A ∪ B arise from dome, b-bulk and
ab-type RT surfaces respectively. Hence, this phase
includes an entanglement negativity island IεðBÞ corre-
sponding to the subsystem B as depicted in Fig. 10. Here
the negativity island IεðBÞ contains the entire interior
region of both the black holes. Note that the entanglement
negativity between the subsystems A and B in this phase is
governed by the degrees of freedom of the region
B ∪ IεðBÞ. These degrees of freedom are determined by
the interior Hawking modes captured by the island IεðBÞ
whose exterior partners are located in ðB ∪ IεðBÞÞc. Now
the number of outgoing Hawking modes is larger than the
number of ingoing Hawking modes in the region
B ∪ IεðBÞ. Hence the degrees of freedom of the region B ∪
IεðBÞ increase with time at a smaller rate than the previous
phase which corresponds to the increasing behavior of the
Page curve as depicted in Fig. 8.
Phase 3: Finally in the last phase, the RT surfaces

supported by the subsystem B are ab-type whereas the
subsystems A and A ∪ B still admit dome and ab-type RT
surfaces respectively (Fig. 10). Once again this phase
includes an entanglement negativity island IεðBÞ for the
subsystem B with a description similar to the previous
phase. In this scenario, the entanglement negativity
between the subsystems is again governed by the degrees
of freedom of the region B ∪ IεðBÞ which are determined
similarly as in the previous phase. At late times, the number
of ingoing and outgoing Hawking modes in the region B ∪
IεðBÞ are equal such that its degrees of freedom remain
constant throughout this phase. Consequently, the Page
curve for the entanglement negativity exhibits a constant
behavior as depicted in Fig. 8.

2. Disjoint subsystems

Next we consider a mixed state configuration of two
disjoint subsystems A and B with finite lengths l1 and l2
respectively where a subsystem C with length lc is
sandwiched between them. In this context, we utilize the
Eqs. (2.14) and (2.24) to obtain the holographic entangle-
ment negativity between the subsystems A and B for three
distinct scenarios involving the subsystem sizes and the
time. Furthermore, we describe the qualitative nature of the
corresponding entanglement negativity profiles in these
scenarios.
(i) Subsystem A fixed, C varied
We begin with the case where the length l1 of the

subsystem A is fixed at a constant time slice and compute
the holographic entanglement negativity between the sub-
systems A and B with an increasing length lc of the
subsystem C. We observe four consecutive phases of the
entanglement negativity profile as depicted in Fig. 11(a)
due to the various structures of the RT surfaces supported
by the subsystems in question (Fig. 12). Utilizing the
Eqs. (2.14) and (2.24), we obtain the expressions for the
corresponding entanglement negativity in these phases

which are listed in the appendix B. In what follows, we
describe these phases of the entanglement negativity profile
in detail.
Phase 1: In the first phase, the RT surfaces for the

subsystems A ∪ C and C are dome-type each whereas the
subsystems B ∪ C and A ∪ B ∪ C support ab-type RT
surfaces. Here the size of the subsystem A ∪ C is very small
compared to the size of B such that this phase does not
correspond to any island region for the subsystem A ∪ C. In
this phase, the entanglement negativity between the sub-
systems A and B is governed by the degrees of freedom of
the subsystem A. Note that the corresponding degrees of
freedom of the subsystem A remain constant since the
number of Hawking modes arriving from both the black
holes together with the CFT degrees of freedom do not
change with the increasing length lc. Consequently the
entanglement negativity profile in this phase remains
constant as depicted in Fig. 11(a).
Phase 2: Next we proceed to second phase where the

subsystems A ∪ C and C admit a-bulk and dome-type RT
surfaces respectivelywhereas the subsystemsB ∪ C andA ∪
B ∪ C still support ab-type RT surfaces. Consequently, this
phase involves an entanglement negativity island IεðBÞ on
the b-brane corresponding to the subsystem B. This island
IεðBÞ involves the entire interior region of the b-black hole.
The entanglement negativity between the subsystems A and
B in this phase is governed by the degrees of freedom of the
regionB ∪ IεðBÞ. Aswe increase lc, the number of Hawking
modes arriving from the a-black hole leave the region
B ∪ IεðBÞ. However an equal number of interior Hawking
modes captured by the negativity island IεðBÞ whose
partners are located in ðB ∪ IεðBÞÞc increase simultaneously.
Consequently, the degrees of freedom of the region
B ∪ IεðBÞ is determined only by the CFT2-degrees of
freedom which decrease with the increasing length lc as
the size of the subsystem B decreases. Accordingly, the
corresponding entanglement negativity profile decreases
linearly as depicted in Fig. 11(a).
Phase 3: In this phase the dominant contributions to the

entanglement entropies of the subsystems A ∪ C, B ∪ C
and A ∪ B ∪ C arise from ab-type RT surfaces each
whereas the subsystem C still supports dome-type RT
surfaces. This phase includes an entanglement negativity
island IεðBÞ for the subsystem B located on the exterior
region of the b-black hole. Once again the entanglement
negativity between the subsystems in this phase is governed
by the degrees of freedom of the region B ∪ IεðBÞ. Hence
the number of Hawking modes arriving from both the black
holes and the CFT2-degrees of freedom present in the
region B ∪ IεðBÞ decrease with increasing length lc of the
subsystem C as the size of the subsystem B decreases.
Consequently, we observe a linear decreasing profile of the
corresponding entanglement negativity with a rate higher
than the previous phase as depicted in Fig. 11a.
Phase 4: In the last phase, the RT surfaces for the

subsystems A ∪ C, B ∪ C, A ∪ B ∪ C, and C are identified
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as ab-type each. Consequently, the corresponding entan-
glement wedges of the subsystems A and B are discon-
nected from each other in this phase which indicates a zero
entanglement negativity between them. On a separate note,
here the subsystems A and B are very small and located far
away from each other such that they do not develop any
entanglement between themselves.
We now discuss an interesting issue by comparing the

above results with those discussed in Sec. III A 1 where the
entanglement negativity between two adjacent subsystems A
andCwas analyzed. This comparison is depicted inFig. 11(c).
We find that the entanglement negativity between the

subsystems A and C follows identical behavior as dis-
cussed in Sec. III A 1. Note that the negativity between the
subsystems A and B ∪ C is constant throughout our
analysis since we have fixed their sizes l1, lc þ l2 respec-
tively and the time t. Now, with the increasing length lc, the
size of the subsystem B decreases accordingly. Hence
the degrees of freedom of B are eventually transferred to the
subsystem C as lc increases. As a result the entanglement

negativity between the subsystems A and B decreases while
the entanglement negativity between the subsystems A and
C is increasing as depicted in Fig. 11(c).
(ii) Subsystems A and C fixed, B varied
In this scenario, the lengths l1 and lc of the subsystems A

and C are fixed at a constant time slice. We then compute
the holographic entanglement negativity between the
two disjoint subsystems A and B with an increase in the
length l2 of the subsystem B utilizing the Eqs. (2.14) and
(2.24). In this case, we observe four consecutive phases
of the entanglement negativity profile as exhibited in
Fig. 11(b). Once again the expressions for the correspond-
ing entanglement negativity in these distinct phases are
listed in the appendix B. It is interesting to note that in this
scenario, the profile of the entanglement negativity follows
the behavior similar to the adjacent case discussed in the
Sec. III A 1 where we fixed the size of the subsystem A and
varied the size of B. Consequently in the present case, the
corresponding phases may be explained analogously in
terms of the Hawking radiations.

FIG. 11. Here β ¼ 1, c ¼ 500, t ¼ 20, ϕ0 ¼ 30c
6
, ϕr ¼ 30

π , L ¼ 16π
β , ϵ ¼ :001, A ¼ ½:01L; :15L�.
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FIG. 12. The possible phases of the entanglement negativity between two disjoint subsystems A and B while increasing the size of the
subsystem C sandwiched between them.

FIG. 13. The diagram shows the possible phases of the entanglement negativity between two disjoint subsystems with equal sizes as
time increases.
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(iii) Subsystems A, B, and C fixed, time varied
We conclude our analysis with the following case where

the sizes of all the subsystems are fixed. For this scenario
we compute the holographic entanglement negativity
between the disjoint subsystems A and B with increasing
time utilizing the Eqs. (2.14) and (2.24). In particular, we
obtain two Page curves for the corresponding entanglement
negativity for two sub cases with equal and unequal lengths
of the subsystems A and B as depicted in Fig. 15. In these
scenarios, the CFT2-degrees of freedom are irrelevant for
the description of the entanglement negativity profiles since
all the subsystem sizes are fixed. Hence the only effect on
these profiles arise from the Hawking modes arriving from
both the black holes.
(a) For l1 ¼ l2

For the case of two equal lengths subsystems, the Page
curve for the entanglement negativity between the subsystems
A and B consists of three consecutive phases and the expres-
sions for the same in these phases are listed in the appendix B.
In the following, we analyze these phases in detail.
Phase 1: In the first phase (Fig. 13), the dominant

contributions to the entanglement entropies of all the
subsystems arise from bulk-type RT surfaces each.
Hence the entanglement wedges of the subsystems A
and B are disconnected in this phase. Consequently the
entanglement negativity between the subsystems in this
case is zero as depicted in Fig. 15. On a separate note, at
initial times the number of Hawking modes present in
the subsystems A and B are very small such that they do not
lead to a significant entanglement between the subsystems.

FIG. 14. Page curves for entanglement negativity with respect to time t. Here β ¼ 1, c ¼ 500, ϕ0 ¼ 30c
6
, ϕr ¼ 30

π , L ¼ 16π
β , ϵ ¼ :001,

A ¼ ½:01L; :45L�, and B ¼ ½:55L; :99L� (for l1 ¼ l2), A ¼ ½:01L; :35L� and B ¼ ½:4L; :99L� (for l1 ≠ l2).
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Phase 2: This phase consists of two sub phases due to
the various structures of the RT surfaces supported by the
subsystems as depicted in Fig. 13. In the first sub phase, the
RT surfaces for the subsystems A ∪ C, B ∪ C and A ∪ B ∪
C are still identified as bulk-type whereas the subsystem C
now supports dome-type RT surfaces. In the second sub
phase the dominant contributions to the entanglement
entropies of the subsystems A ∪ C, B ∪ C, A ∪ B ∪ C
and C arise from a-bulk, b-bulk, ab and dome-type RT
surfaces respectively. The increasing behavior of the
corresponding entanglement negativity profile in these
two sub phases follows the interpretations which are
analogous to the first phase of the adjacent case described
in Sec. III A 1.
Phase 3: In the last phase, the Page curve for the

entanglement negativity between the two disjoint subsystems
A and B depicts a constant behavior as exhibited
in Fig. 15. Here the RT surfaces supported by the sub-
systemsA ∪ C,B ∪ C, andC are dome type eachwhereas the
subsystem A ∪ B ∪ C admits ab type RT surfaces (Fig. 13).
Once again, we refer to the second phase of the adjacent case
described in Sec. III A 1 to explain the constant behavior of
the corresponding entanglement negativity profile.
(b) For l1 ≠ l2
For the case of two unequal lengths subsystems A and B,

we observe that the Page curve for the entanglement nega-
tivity between them consists of four different phases as
depicted in Fig. 15. Once again the corresponding entangle-
ment negativity expressions are listed in the appendix B. In
what follows, we describe these phases in detail.
Phase 1 and Phase 2: In these phases (Fig. 14), the RT

surfaces supported by the subsystems and the description
for the corresponding entanglement negativity profile are
identical to the first two phases of the previous subcase.
Phase 3: In the third phase, the dominant contributions to

the entanglement entropies of the subsystems A ∪ C and C
arise from dome-type RT surfaces each whereas the sub-
systemsB ∪ C and A ∪ B ∪ C admit b-bulk and ab type RT

surfaces respectively as shown in Fig. 14. This phase
includes entanglement negativity island IεðAÞ corresponding
to the subsystem A located in the exterior regions of the
a-black hole. However, the entanglement negativity island
IεðBÞ corresponding to the subsystem B involve the entire
interior regions of both the black holes. The explanation for
the increasing behavior of the corresponding entanglement
negativity profile in this phase is similar to the second phase
of the adjacent case discussed in Sec. III A 1.
Phase 4: Finally in the last phase (Fig. 14), the

entanglement negativity between the subsystems A and
B exhibits a constant behavior which again may be
explained similarly to that of the third phase of the adjacent
case as discussed in Sec. III A 1.

IV. SUMMARY AND DISCUSSION

To summarize, we have investigated the holographic
entanglement negativity for various finite temperature
bipartite mixed states in a braneworld model of two
communicating black holes. This construction involves
two finite sized nongravitating reservoirs coupled to two
quantum dots at their boundaries at a finite temperature.
These quantum dots constituted two copies of thermofield
double states which interacted through the common reser-
voirs. The holographic dual of these quantum dots were
described by JT gravity on two Plank branes with AdS2
geometries. Interestingly, each nongravitating reservoir
together with a Planck brane appeared to be gravitating
from the perspective of the other brane. These Planck
branes involved two eternal JT black holes which were in
communication through the shared reservoirs. In this
configuration, the black hole and the reservoir regions
supported identical matter CFT2s with transparent boun-
dary conditions. In this context, we obtained the holo-
graphic entanglement negativity for various bipartite mixed
states of two adjacent and disjoint subsystems in the
reservoirs for the above configuration. In this connection,
we have analyzed the profiles of the generalized entangle-
ment negativity for different scenarios involving the sub-
system sizes and the time. The behavior of the corres-
ponding entanglement negativity profiles observed for the
above scenarios were similar to that described in [149]
where the authors considered evaporating black holes in JT
gravity through a geometrized island construction.
In appendix A, another model was described by a brane

world geometry involving a bulk eternal AdS3 BTZ black
hole truncated by two Karch-Randall (KR) branes with two
dimensional black holes induced from the higher dimen-
sion. These induced black holes were in communication
through shared baths described by thermal BCFT2s on a
strip with different boundary conditions at either end
constituting a thermofield double state [151]. We have
computed the entanglement entropy for a subsystem with
both of its endpoints located in the bulk of the BCFT2s for
the above configuration. Furthermore we also computed the

FIG. 15. The possible phases of the entanglement negativity
between two disjoint subsystems with unequal sizes as time
increases.
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holographic entanglement negativity for two adjacent and
disjoint subsystems in the bath BCFT2s using the holo-
graphic proposals described in [133] for different scenarios
involving the subsystem sizes and the time. For these cases,
we observed the behavior of the entanglement negativity
profiles similar to those described in [149].
Wewould like to emphasize that the presence of two black

holes in these braneworld models lead to the appearance of
extra phases in the Page curves for both the entanglement
entropy and the entanglement negativity compared to con-
figurations which support a single black hole. Note that the
braneworld models considered by us are structurally distinct
although both supported black holes communicating through
shared radiation reservoirs. We considered a braneworld
model [121] incorporating JT black holes on the Planck
branes which were dual to quantum dots on either ends of
finite sized CFT2 radiation reservoirs. In this context it was
possible to express an explicit island formula for the entan-
glement measures. However, in appendix A, we considered
another braneworld model [151] involving two dimensional
black holes on the KR branes induced from a higher dimen-
sional BTZ black hole where an explicit island prescription
for the entanglementmeasures cannot be utilized although the
final results for the Page curves are consistent with the
expected island scenario. Note that the overall behavior of
the entanglement profiles were similar in these braneworld
geometries. However, there were some interesting distinc-
tions such as for the variation of the subsystem size in one of
the cases, the corresponding Page curve for the entanglement
negativity involved a plateau region for the braneworldmodel
[121] due to the position independence of the entanglement
entropy in contrast to the other model [151]. Additionally an
interesting feature of tripartite entanglement was also
observed for subsystems with comparable sizes for the case
of Planck braneworld geometries [121].
There are several interesting future directions to explore

in connection with our results. A significant open issue
involves the generalization of these braneworld con-
struction to higher dimensions. Such an analysis although
non trivial may reveal deeper insights into the structure
of the mixed state entanglement in such communicating
black hole/bath systems. Our analysis should also extend to
models with defect CFTs on the EOW branes. Furthermore
certain overlapping configurations observed for the entan-
glement negativity islands in some phases indicate some
subtle characteristics of the structure of mixed state
entanglement which needs more careful investigation using
various toy models of black hole evaporation. We hope to
return to these exciting issues in the near future.
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APPENDIX A: ENTANGLEMENT MEASURES
IN BRANEWORLD MODEL-II

In this section we first compute the entanglement entropy
for a generic subsystem in the BCFT2s [151]. Note that here
we consider both the end points of the subsystem to be
situated deep into the annular region of the BCFT2s.

8

Subsequently, we analyze the holographic entanglement
negativity for various bipartite mixed states in the BCFT2s
at a finite temperature. The dual bulk space time for this
construction is very complicated but in the high temper-
ature limit this reduces to an eternal AdS3 BTZ black hole
[155,156] as demonstrated in [151]. The bulk configuration
involves two dimensional black holes on both the KR
branes induced from the higher dimensional BTZ black
hole [151] but with different temperatures due to the
distinct boundary conditions at the two boundaries of
the two dual BCFT2s. Interestingly, these entanglement
measures characterize the communication between the two
induced black holes on the KR branes [151].

1. Entanglement entropy and Page curve

We begin with the computations of the different con-
tributions to the entanglement entropy for a generic sub-
system at a finite temperature as mentioned above. In this
connection, we first describe the field theory analysis for
the entanglement entropy in the dual BCFT2s

9 following
the method discussed in [151]. Furthermore we substantiate
these field theory results from holographic computations of
the entanglement entropy in the dual bulk geometry
utilizing wedge holography.

a. Field theory computations

In this subsection, we consider a subsystem A ¼ AL ∪
AR in the BCFTL and BCFTR with its end points located
in the bulk of the annular region as shown in Fig. 16.
These two BCFT2s at a finite temperature constitute a
thermofield double state as discussed in [151]. The twist
operators Φ̄nðwL1

; w̄L1
Þ, ΦnðwL2

; w̄L2
Þ, ΦnðwR1

; w̄R1
Þ, and

Φ̄nðwR2
;w̄R2

Þ in this context are situated at the end points of
the subsystem A. Note that, the motivation behind the choice
of a generic subsystem mentioned above is to explore all the
possible channels for a four point twist field correlator in the
entanglement entropy expression discussed in Eq. (A2) in
contrast to the article [151]. In the subsequent appendix, this
would significantly lead to a rich phase structure for the
holographic entanglement negativity of bipartite mixed
states described by two adjacent and disjoint subsystems

8This is in contrast to the article [151] where the authors have
examined the entanglement entropy for a subsystem with one
endpoint located on the boundary.

9These two BCFT2s are termed as the BCFTL and the BCFTR
referring to Fig. 16.
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with all the endpoints located into the bulk of the
bath BCFT2s.
The above configuration of a generic subsystem in the

bath BCFT2s is considered in the complex w-plane where
the boundary conditions on the two boundaries are denoted
as a and b with a separation L between the inner (rI) and
the outer radii (rO) as depicted in Fig. 16. At this moment, it
would be beneficial to have a conformal map from annulus

to a strip such that the techniques described in [151] can be
utilized to obtain the entanglement entropy. However, there
can never be any such transformation since the annulus
generally has nonzero modular parameter which should be
preserved under such conformal mapping [151,157].
Interestingly, if we consider the high temperature limit,
the above mentioned mapping can still be accomplished.
This corresponds to the limit of fixed L ¼ rO − rI and
considering the inner radius of the annulus close to zero
(rI=L → 0). The high temperature limit can also be achieved
by considering the limit rO → ∞ and consequently
rI=L → 0.10 The entanglement entropy of the subsystem
A ¼ AL ∪ AR can now be computed using a mapping of the
w-plane to the UHP following the transformation

w ¼ rI

�
1

z − i
2

− i

�
; ðA1Þ

with rI being the inner radius of the annulus. Note that the
corresponding transformation maps the inner and the outer
radii to the real axis and to a point z ¼ i

2
respectively on

the UHP. This reduces the computation of the four point
twist correlator on the annulus to that on the UHP. Note
that herewe restrict to a subset of the available channels with
the assumption that the pair of intervals in the TFD copy
alwaysmappedonto eachother by a rotation of the annulus.11

Consequently, utilizing the transformation in Eq. (A1), we
obtain the contributions to the entanglement entropy from the
four point function as follows

SA ¼ lim
n→1

1

1 − n
logðhΦnðzR1

; z̄R1
ÞΦ̄nðzR2

; z̄R2
ÞΦnðzL2

; z̄L2
ÞΦ̄nðzL1

; z̄L1
ÞibUHP;aÞ; ðA2Þ

where the lower and the upper indices a, b represent the boundary conditions corresponding to the two boundaries of the
BCFT2s. It is possible to identify seven distinct contributions to the corresponding entanglement entropy from the connected
and disconnected channels for the four point function.
(a) We first discuss one of the connected channels which may be obtained by considering the OPEs of the twist operators

located on the BCFTL and BCFTR. Therefore, the entanglement entropy in this channel is expressed as

SbulkA ¼ lim
n→1

1

1 − n
logðhΦnðzR1

; z̄R1
ÞΦ̄nðzR2

; z̄R2
ÞΦnðzL2

; z̄L2
ÞΦ̄nðzL1

; z̄L1
ÞibUHP;aÞ

¼ lim
n→1

1

1 − n
logðhΦ̄nðzL1

; z̄L1
ÞΦnðzR1

; z̄R1
ÞiUHPhΦ̄nðzR2

; z̄R2
ÞΦnðzL2

; z̄L2
ÞiUHPÞ

¼ c
3
ln

�
2r1
ϵ

cosh
2πt
β

�
þ c
3
ln

�
2r2
ϵ

cosh
2πt
β

�
; ðA3Þ

FIG. 16. This schematic depicts a generic subsystem
(A ¼ AL ∪ AR) with both the endpoints in the bulk of BCFTL
and BCFTR at a constant time slice. (Figure modified
from [151]).

10Specifically, this limit (rO → ∞) would be more favorable than considering the inner radius close to zero since in Eq. (A1), wðrI; zÞ
does not exist as rI → 0. Note that since we are considering the high temperature limit (β → 0), our results for the entanglement entropy
and the entanglement negativity in the subsequent sections is correct only up to corrections x=β where x denotes at least some of the
spatial scales. Higher order corrections to our results will correspond to the cases of finite temperature scenarios for which the bulk dual
will be very complicated as mentioned in [151].

11We would like to thank the referee for this crucial comment.
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where r1 and r2 define the endpoints of the subsystem on the w-plane. In the second line, we have utilized a large c
factorization of the four point function into two 2-point functions on the UHP as discussed in the articles [158–160].
The UHP twist correlators in the second line of the above expression is then computed in the whole complex plane.12

Subsequently, in the last line is obtained through the transformations wL ¼ r expðiθÞ; wR ¼ r expðiπ − iθÞ followed by
an analytic continuation of the Euclidean time t ¼ iθβ

2π on the w-plane [151]. We utilize this same process in all the
following cases.

(b) Next we compute the contribution to the entanglement entropy from a disconnected channel which may be obtained
through the BOEs of all the twist operators in Eq. (A2) with respect to one of the two boundaries on the UHP,13

SbbA ¼ lim
n→1

1

1 − n
logðhΦ̄nðzL1

; z̄L1
ÞΦnðzR1

; z̄R1
ÞΦ̄nðzR2

; z̄R2
ÞΦnðzL2

; z̄L2
ÞibUHPÞ

¼ c
3
ln

�
r21 − r2I
rIϵ

�
þ c
3
ln

�
r22 − r2I
rIϵ

�
þ 4 lnðgbÞ: ðA4Þ

In the above equation, the superscript refers to the BOEs of the twist operators corresponding to the boundary b and
lnðgbÞ corresponds to the boundary degrees of freedom called the boundary entropy (Sbdy) which strictly depends on
the boundary condition b.14

(c) A similar computation of the entanglement entropy may be performed by considering the BOEs of all the twist
operators with respect to the other boundary located at the operator insertion point z ¼ i

2
on the UHP. Hence the

corresponding entanglement entropy in this disconnected channel may be obtained on the w-plane as,

SaaA ¼ lim
n→1

1

1 − n
logðhΦnðzR1

; z̄R1
ÞΦ̄nðzL1

; z̄L1
ÞΦnðzR2

; z̄R2
ÞΦ̄nðzL2

; z̄L2
ÞΦaðza; z̄aÞiUHPÞ

¼ c
3
ln

�
r2O − r21
rOϵ

�
þ c
3
ln

�
r2O − r22
rOϵ

�
þ 4 lnðgaÞ: ðA6Þ

(d) Now we discuss the case where both the OPE and the BOE of the twist operators may be considered simultaneously.
The entanglement entropy in this connected channel may be written as

Sb-bulkA ¼ lim
n→1

1

1 − n
logðhΦ̄nðzL1

; z̄L1
ÞΦnðzR1

; z̄R1
ÞibUHPhΦ̄nðzR2

; z̄R2
ÞΦnðzL2

; z̄L2
ÞiUHPÞ

¼ c
3
ln

�
2r2
ϵ

cosh
2πt
β

�
þ c
3
ln

�
r21 − r2I
rIϵ

�
þ 2 lnðgbÞ; ðA7Þ

where we have performed BOEs for the twist operators ΦnðzR1
; z̄R1

Þ; Φ̄nðzL1
; z̄L1

Þ and considered the OPE of the rest
Φ̄nðzR2

; z̄R2
Þ;ΦnðzL2

; z̄L2
Þ on the UHP. Once again, in the last line we have utilized the transformations wL ¼

r expðiθÞ; wR ¼ r expðiπ − iθÞ followed by an analytic continuation of the Euclidean time t ¼ iθβ
2π on the w-plane.

(e) Conversely we may employ the OPE of the twist operatorsΦnðzR1
; z̄R1

Þ; Φ̄nðzL1
; z̄L1

Þ and BOEs to the remaining twist
operators, resulting into an another possibility of the entanglement entropy in the connected channel as follows

12Similarly, in rest of the cases, we compute the UHP twist correlators in the full complex plane.
13In this case, we consider that both the endpoints of the subsystem are much closer to the boundary rather than being closer to each

other. However, when the endpoints comes close to each other compared to the boundary, dome type contribution to the entanglement
entropy dominates [described in configuration (g)] which we do not consider here. Similar arguments can be implemented in the other
scenarios.

14As described in [151], the doubling trick corresponds to non vanishing of the one point function in Eq. (2.9) of [151] on the UHP
with conformal weights h ¼ h̄ and it is constrained to have a similar form as a chiral two point function on the full complex plane
[151,161]. The coefficient described in Eq. (2.10) of [151] of this two point function implies the dependence on the boundary condition.
Finally, one may compute the entanglement entropy for the subsystem A of length LA as

SA ¼ c
6
ln
2LA

ϵ
þ lnðgbÞ; ðA5Þ

where ϵ is a UV cutoff in the BCFT2. In the above equation, the first term is the kinematic term which can be produced utilizing the
standard doubling trick.
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Sa-bulkA ¼ lim
n→1

1

1 − n
logðhΦ̄nðzL1

; z̄L1
ÞΦnðzR1

; z̄R1
ÞiUHP

× hΦ̄nðzR2
; z̄R2

ÞΦnðzL2
; z̄L2

ÞΦaðza; z̄aÞiUHPÞ

¼ c
3
ln

�
2r1
ϵ

cosh
2πt
β

�
þ c
3
ln

�
r2O − r22
rIϵ

�
þ 2 lnðgaÞ: ðA8Þ

Note that, we have performed the corresponding BOEs
in the above equation with respect to the boundary a.

(f) Another case may also be analyzed by considering
the BOEs of the twist operators involving both the
boundaries on the UHP simultaneously. Hence, the
entanglement entropy corresponding to this connected
channel may be reduced to

SabA ¼ lim
n→1

1

1 − n
logðhΦ̄nðzL1

; z̄L1
ÞΦnðzR1

; z̄R1
ÞibUHP:

× hΦ̄nðzR2
; z̄R2

ÞΦnðzL2
; z̄L2

ÞΦaðza; z̄aÞiUHPÞ

¼ c
3
ln

�
r21 − r2I
rIϵ

�
þ c
3
ln

�
r2O − r22
rIϵ

�
þ 2 lnðgaÞ þ 2 lnðgbÞ: ðA9Þ

(g) We now discuss a special case of the disconnected
channels where the contribution to the entanglement
entropy may be computed from the OPE of the twist
operators Φ̄nðwL1

; w̄L1
Þ, ΦnðwL2

; w̄L2
Þ in the BCFTL

and similarly for Φ̄nðwR1
; w̄R1

Þ, ΦnðwR2
; w̄R2

Þ in the
BCFTR.

15 The expression for the entanglement en-
tropy in this channel is then given as

Sdome
A ¼ lim

n→1

1

1 − n
logðhΦ̄nðzL1

; z̄L1
ÞΦnðzL2

; z̄L2
ÞiUHP

× hΦnðzR1
; z̄R1

ÞΦ̄nðzR2
; z̄R2

ÞiUHPÞ

¼ c
3
ln

�
β

πϵ
sinh

πðr2 − r1Þ
β

�
: ðA10Þ

Finally, the entanglement entropy of a generic subsystem
A may be obtained by considering the minimum of the
above contributions.

SA ¼min ðSbulkA ;SbbA ;SaaA ;Sb-bulkA ;Sa-bulkA ;SabA ;Sdome
A Þ: ðA11Þ

In the following subsection, we will compute the corre-
sponding entanglement entropy from the dual bulk geom-
etry through wedge holography which will substantiate the
above field theory results.

b. Holographic computations

We now compute the holographic entanglement entropy
for a generic subsystem A at a finite temperature using the

areas of the RT surfaces described in [151] for the bulk dual
geometry involving an eternal AdS3 BTZ black holewith two
dimensional KR branes [151]. Once more it is possible to
identify seven contributions to the entanglement entropy of
the subsystem A arising from distinct bulk RT surfaces. In
what follows we describe the areas of these various RT
surfaces for the subsystem A as mentioned above. In this
contextwehave considered both the asymptotic regions of the
bulk BTZ geometry for computing the areas of the corre-
sponding RT surfaces in contrast to [151] where only a single
asymptotic region was considered and finally the authors
doubled the results to obtain the areas of the RT surfaces.
(a) We start with the RT surfaces for the subsystem A

which consists of two HM surfaces connecting its end
points in the two asymptotic boundaries as illustrated
in the Fig. 17(a). We call this RT surface as bulk-type
with an area contribution as follows

Abulk ¼ 2 ln

�
2r1
ϵ

cosh
2πt
β

�
þ 2 ln

�
2r2
ϵ

cosh
2πt
β

�
:

ðA12Þ

(b) Next we consider the bb-type RT surfaces where both
the geodesics start from ∂A and end on the b-brane as
shown in the Fig. 17(b). The corresponding area
contribution may be obtained as

Abb ¼ 2 ln

�
r21 − r2I
rIϵ

�
þ 2 ln

�
r22 − r2I
rIϵ

�
þ 4

6

c
lnðgbÞ:

ðA13Þ
(c) Similar to above case, if both the geodesics start from

∂A and end on the a-brane, they are termed as the aa-
type RT surfaces as described in Fig. 17(c). The area
for these RT surfaces is given by

Aaa ¼ 2 ln

�
r2O − r21
rOϵ

�
þ 2 ln

�
r2O − r22
rOϵ

�
þ 4

6

c
lnðgaÞ:

ðA14Þ
(d) Next we describe the contribution to the EE of the

subsystem A from b-bulk type RT surfaces [Fig. 17(d)]
where both the geodesics start from ∂A, however
two of them end on the b-brane while the other
geodesic stretches between the two asymptotic boun-
daries as a HM surface. The area for this contribution
is expressed as

Ab-bulk ¼ 2 ln

�
2r2
ϵ

cosh
2πt
β

�
þ 2 ln

�
r21 − r2I
rIϵ

�

þ 2
6

c
lnðgbÞ: ðA15Þ

(e) These RT surfaces are similar to the previous one but
with the geodesics now ending on the a-brane instead

15The authors of [151] did not encounter this type of contribution
to the entanglement entropy due to the choice of the subsystem.
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FIG. 17. Diagram depicts all the possible RT surfaces corresponding to the subsystem A. Here the two asymptotic boundaries and the
horizons of the bulk eternal BTZ black hole are denoted by the black solid lines and the gray shaded region respectively whereas the two
KR branes are shown by the blue lines labeled as a and b corresponding to the different boundary conditions of the dual BCFT2s.
(Figure modified from [151,154,162]).
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of the b-brane [Fig. 17(e)]. We term these RT surfaces
as a-bulk type with an area

Aa-bulk ¼ 2 ln

�
2r1
ϵ

cosh
2πt
β

�
þ 2 ln

�
r2O − r22
rIϵ

�

þ 2
6

c
lnðgaÞ: ðA16Þ

(f) We now consider the ab-type RT surfaces where the
geodesics start from ∂A and end on the two KR branes
as depicted in the Fig. 17(f) with an area contribution
as follows

Aab ¼ 2 ln

�
r21 − r2I
rIϵ

�
þ 2 ln

�
r2O − r22
rIϵ

�
þ 2

6

c
lnðgaÞ

þ 2
6

c
lnðgbÞ: ðA17Þ

(g) Finally, we have the dome-type RT surfaces described
by the geodesics homologous to the subsystem A on
both the asymptotic boundaries [Fig. 17(g)]. At finite
temperature this configuration describes an area con-
tribution to the EE given by

Adome ¼ 4 ln

�
β

πϵ
sinh

πðr2 − r1Þ
β

�
: ðA18Þ

Now we may compute the holographic entangle-
ment entropy for the subsystem A in the dual BCFT2s
by utilizing the wedge holography relation discussed in
Eq. (4.4) of [151] and Eqs. (A12)–(A18)16

SA

¼min

�
Abulk

4Gð3Þ
N

;
Abb

4Gð3Þ
N

;
Aaa

4Gð3Þ
N

;
Ab-bulk

4Gð3Þ
N

;
Aa-bulk

4Gð3Þ
N

;
Aab

4Gð3Þ
N

;
Adome

4Gð3Þ
N

�

¼min ðSbulkA ;SbbA ;SaaA ;Sb-bulkA ;Sa-bulkA ;SabA ;Sdome
A Þ: ðA19Þ

In Fig. 18, we plot the entanglement entropies corre-
sponding to the RT surfaces detailed above with respect to
the size of the subsystem A and time t.

2. Holographic entanglement negativity
and Page curve

In this subsection we compute the holographic entangle-
ment negativity for various bipartite mixed states in the
context of the braneworld model-II from the proposals
described in Eqs. (2.19) and (2.24) and the expression for
the holographic entanglement entropy in Eq. (A19).
Subsequently we study the characteristics of the holo-
graphic entanglement negativity obtained for different
scenarios involving the subsystem sizes and the time for
this configuration. Some of these profiles describe the
corresponding Page curves for the holographic entangle-
ment negativity. It is important to note here that the first
Page curve was obtained in the context of a bipartite
quantum system in [163] using the Harr random average of
the entanglement entropy for one of the subsystem as a
function of the size of its Hilbert space. This Page curve
was later interpreted in the context of black hole systems as
the evolution of the EE for the Hawking radiation with
respect to the time [3,164]. Recently, the Page curves for
the entanglement negativity of bipartite mixed states were
obtained through the random matrix techniques in [150].
Interestingly the corresponding Page curves for the entan-
glement negativity obtained through our holographic con-
structions for the configuration of two communicating
black holes [151] considered here are similar in nature.

FIG. 18. In the above figures, we have chosen β ¼ :1, c ¼ 500, ϵ ¼ :001, rI ¼ 1, rO ¼ 2, Sbdyb ¼ 875, Sbdya ¼ 850.

16In the entropy expressions, we have identified the boundary
entropies as Sbdya ¼ lnðgaÞ and Sbdyb ¼ lnðgbÞ.
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a. Adjacent subsystems

In this subsection, we compute the holographic entan-
glement negativity for two generic adjacent subsystems A
and B in the dual BCFT2s by utilizing the Eqs. (A19) and
(2.19). In particular, we investigate the qualitative nature of
the entanglement negativity and discuss its profiles for
three distinct scenarios involving the subsystem sizes and
the time in the first model. In this context, we use the
diagrams similar to those depicted in Fig. 17 to study the

various RT surfaces for the two adjacent subsystems under
consideration.
(i) Full system (A ∪ B) fixed, common point varied
In the first case, we obtain the profile for the entangle-

ment negativity between two adjacent subsystems A ¼
½rI þ ϵ; r� and B ¼ ½r; rO − ϵ� at a constant time slice while
varying the common point r as shown in Fig. 19(a). We
compute the holographic entanglement negativity between
A and B using the Eqs. (A19) and (2.19) as follows

EðA∶BÞ ¼

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

c
4
log

�
β2ðr−rIÞðrþrIÞsinh2ðπðr−rI−ϵÞβ Þ

π2ϵ3ð2rIþϵÞ

�
; Phase-1

c
4
log

�
2β2rrI coshð2πtβ Þsinh2ð

πðr−rI−ϵÞ
β Þ

π2ϵ3ð2rIþϵÞ

�
− 2Sbdyb; Phase-2

c
4
log

h
4r2cosh2ð2πtβ Þ

ϵ2

i
; Phase-3

c
4
log

h
ðrO−rÞ2ðrþrOÞ2

r2Oϵ
2

i
þ 4Sbdya; Phase-4

c
4
log

�
β2ðrO−rÞðrþrOÞsinh2ðπðr−rOþϵÞ

β Þ
π2ϵ3ð2rO−ϵÞ

�
; Phase-5

ðA20Þ

where the boundary entropies corresponding to the two KR
branes are denoted as Sbdya and Sbdyb. It is interesting to
note that the behavior of the Page curve for the entangle-
ment negativity in this context is analogous to the one
obtained in [149,150].
In the present scenario, we identify all the possible

contributions to the entanglement entropies of the sub-
systems A and B by using Eq. (A19) to elucidate the phase
transitions observed in Fig. 19(a). In this context it is
possible to identify five distinct phases for the holographic

entanglement negativity between the two adjacent subsys-
tems which is described as follows.
(ii) Subsystem A fixed, B varied
Next we analyze the behavior of the entanglement

negativity between the two adjacent subsystems at a
constant time slice where we consider the subsystem
A ¼ ½rI þ ϵ; r1� with a fixed size and vary the size of
the subsystem B ¼ ½r1 þ ϵ; r� by shifting the point r.
This is obtained by using the Eqs. (A19) and (2.19) as
follows

FIG. 19. Here rI ¼ 1, rO ¼ 2, ϵ ¼ :001, β ¼ :1, c ¼ 500, t ¼ :15, Sbdyb ¼ 875, and Sbdya ¼ 850.
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EðA∶BÞ ¼

8>>>>>>>><
>>>>>>>>:

c
2
log

�
β sinhðπðr1−rÞβ Þ sinhðπð−r1þrIþϵÞ

β Þcschðπðr−rI−ϵÞβ Þ
πϵ

�
; Phase-1

c
4
log

�
β4rIsechð2πtβ Þsinh2ð

πðr−r1Þ
β Þsinh2ðπð−r1þrIþϵÞ

β Þ
2π4rϵ3ð2rIþϵÞ

�
þ 2Sbdyb; Phase-2

c
4
log

�
β2ðr2

1
−r2I Þsinh2ð

πð−r1þrIþϵÞ
β Þ

π2ϵ3ð2rIþϵÞ

�
; Phase-3

ðA21Þ

which corresponds to three possible phases for the
entanglement negativity between A and B as depicted in
Fig. 19(b). In what follows we analyze these phases in
detail.
(iii) Subsystems A and B fixed, time varied
Finally we investigate the holographic entanglement

negativity between the adjacent subsystems A and B with
fixed lengths l1 and l2 respectively while varying the time.
In particular, we will study two subcases of equal and
unequal lengths of the two subsystems in question and
obtain the corresponding entanglement negativities as
depicted in the Fig. 20.
(a) For l1 ¼ l2
For the case of two equal length subsystems A and B,

we observe two phases in the entanglement negativity
profile as depicted in Fig. 20. The expressions for these

may be obtained by utilizing the Eqs. (A19) and (2.19) as
follows

EðA∶BÞ ¼

8><
>:

c
4
log

h
4r2

1
cosh2ð2πtβ Þ
ϵ2

i
; Phase-1

c
4
log

hðr2O−r21Þ2
r2Oϵ

2

i
þ 4Sbdya: Phase-2

ðA22Þ

(b) For l1 ≠ l2
Here we consider two unequal lengths of the subsystems

A and B and compute the holographic entanglement
negativity between them utilizing the Eqs. (A19) and
(2.19). We observe three consecutive phases in the entan-
glement negativity profile as depicted in Fig. 20. The
expressions for the corresponding entanglement negativity
in these phases are given as follows

EðA∶BÞ ¼

8>>>>>>>><
>>>>>>>>:

c
4
log

h
4r2

1
cosh2ð2πtβ Þ
ϵ2

i
; Phase-1

c
4
log

�
2β2r1rI coshð2πtβ Þsinh2ð

πð−r1þrIþϵÞ
β Þ

π2ϵ3ð2rIþϵÞ

�
− 2Sbdyb; Phase-2

c
4
log

�
β2ðr2

1
−r2I Þsinh2ð

πð−r1þrIþϵÞ
β Þ

π2ϵ3ð2rIþϵÞ

�
: Phase-3

ðA23Þ

e. Disjoint subsystems

Nowwe consider two generic disjoint subsystemsA andB
with a subsystem C enclosed between them in the dual
BCFT2s and compute the holographic entanglement nega-
tivity between A and B using the Eqs. (A19) and (2.24). In
particular, we will investigate the qualitative feature of the
entanglement negativity profile for three different scenarios of
the disjoint subsystems involving the subsystem sizes and the
time in the context of the braneworldmodel-II.Once againwe
utilize diagrams similar to those depicted in Fig. 17 to study
the various RT surfaces for the subsystems in question.
(i) Subsystem A fixed, C varied
In the first case, we fix the size of the subsystem A ¼

½rI þ ϵ; r1� at a constant time slice and vary the size of
C ¼ ½r1; r� by shifting the point r from r1 þ ϵ to rO − ϵ to
examine the holographic entanglement negativity between
the subsystems A and B. To this end, we may compute the
entanglement negativity by utilizing the Eqs. (A19) and
(2.24) as follows

FIG. 20. Page curves for the entanglement negativity between
two adjacent subsystems A and B as a function of time. Here
rI ¼ 1, rO ¼ 2, ϵ ¼ :001, β ¼ :1, c ¼ 500, Sbdyb ¼ 875, Sbdya ¼
850 and A ¼ ½rI þ ϵ; r1�, B ¼ ½r1; rO − ϵ� with r1 ¼ 1.5 (for
l1 ¼ l2) and A ¼ ½rI þ ϵ; r1�, B ¼ ½r1; rO − ϵ� with r1 ¼ 1.3
(for l1 ≠ l2).
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EðA∶BÞ ¼

8>>>>>><
>>>>>>:

c
4
log

�
ð−r2Iþr2

1
Þsinh2ðπðr−rI−ϵÞβ Þ

ϵð2rIþϵÞsinh2ðπðr−r1Þβ Þ

�
; Phase-1

c
4
log

�
2π2rð−r2Iþr2

1
Þ coshð2πtβ Þ

β2rIϵsinh2ðπðr−r1Þβ Þ

�
þ 2Sbdyb; Phase-2

0: Phase-3

ðA24Þ
Here we observe three phases from the corresponding
entanglement negativity profile as depicted in Fig. 21(a)
which we now analyze in details.

(ii) Subsystems A and C fixed, B varied
In this case, we consider the subsystem sizes of A ¼

½rI þ ϵ; r1� and C ¼ ½r1; r2� to be fixed and vary the size
of B ¼ ½r2 þ ϵ; r� by shifting the point r. The entanglement
negativity between the two disjoint subsystems A and B
corresponds to three consecutive phases as shown in
Fig. 21(b). In this context, the size of C is considered to
be very small such that the dominant contribution to its
entanglement entropy arises from dome-type RT surfaces
throughout this case. Finally, the expressions for the entan-
glement negativity in this scenario may be given as

EðA∶BÞ ¼

8>>>>>>>><
>>>>>>>>:

c
2
log

�
sinhðπð−r1þrÞ

β Þ sinhðπð−r2þrIþϵÞ
β Þ

sinhðπðr1−r2Þβ Þ sinhðπðr−rI−ϵÞβ Þ

�
; Phase-1

c
4
log

�
β2rIsechð2πtβ Þsinh2ð

πð−r1þrÞ
β Þsinh2ðπð−r2þrIþϵÞ

β Þ
2π2ϵrð2rIþϵÞsinh2ðπðr1−r2Þβ Þ

�
− 2Sbdyb; Phase-2

c
4
log

�
ðr2

1
−r2I Þsinh2ð

πð−r2þrIþϵÞ
β Þ

ϵð2rIþϵÞsinh2ðπðr1−r2Þβ Þ

�
: Phase-3

ðA25Þ

Note that in the present scenario, we increase only the
size of the subsystem B at a constant time slice while
fixing the size of A and C. This is similar to the adjacent
case discussed in subsection A 2 a where we have fixed
the size of the subsystem A and increased the size of B.
Hence all the above phases may be described in terms of the
Hawking modes using the explanations analogous to the
adjacent case.
(iii) Subsystems A, B, and C fixed, time varied
We end our analysis with the final case where we

investigate the nature of the entanglement negativity
between the two disjoint subsystems A and B with
lengths l1 and l2 respectively while varying the time.
Here we consider the size of the subsystem C to be very
small such that the dominant contribution to the entan-
glement entropy arises from dome-type RT surfaces. Note
that, the entanglement wedges of the subsystems A and B

FIG. 21. Here, rI ¼ 1, rO ¼ 2, ϵ ¼ :001, β ¼ :1, c ¼ 500, t ¼ :15, Sbdyb ¼ 875, Sbdya ¼ 850.

FIG. 22. The Page curves for the entanglement negativity for
two disjoint subsystems as a function of time. In this case we have
chosen rI ¼ 1, rO ¼ 2, ϵ ¼ :001, β ¼ :1, c ¼ 500, Sbdyb ¼ 875,
Sbdya ¼ 850 and A ¼ ½rI þ ϵ; r1�, B ¼ ½r2; rO − ϵ� with
r1 ¼ 1.45, r2 ¼ 1.55 (for l1 ¼ l2) and A ¼ ½rI þ ϵ; r1�, B ¼
½r2; rO − ϵ� with r1 ¼ 1.15, r2 ¼ 1.25 (for l1 ≠ l2).
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are connected in this scenario which corresponds to a
nonzero entanglement negativity between them. In what
follows, we explore two subcases of equal and unequal
lengths of the subsystems A and B while varying
the time.
(a) For l1 ¼ l2

For the case of two equal length subsystems A and B, we
examine thequalitative profile of the entanglement negativity
between themwhich corresponds to three different phases as
depicted in Fig. 22. In this context, we may compute the
entanglement negativity by utilizing Eqs. (A19) and (2.24)
as follows

EðA∶BÞ ¼

8>>>>>>>><
>>>>>>>>:

c
4
log

�
4π2r1r2cosh2ð2πtβ Þ
β2sinh2ðπðr1−r2Þβ Þ

�
; Phase-1

c
4
log

�
2π2r2ðr21−r2I Þ coshð2πtβ Þ
β2rIsinh2ðπðr1−r2Þβ Þ

�
þ 2Sbdyb; Phase-2

c
4
log

�
π2ðr2

1
−r2I Þðr2O−r22Þ

β2rIrOsinh2ðπðr1−r2Þβ Þ

�
þ 2Sbdyb þ 2Sbdya: Phase-3

ðA26Þ

(b) For l1 ≠ l2
Finally we consider two disjoint subsystems A and B with unequal lengths while increasing the time and compute the

entanglement negativity between them utilizing Eqs. (A19) and (2.24). In this context, we obtain four consecutive phases of
the corresponding entanglement negativity profile which may be expressed as follows

EðA∶BÞ ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

c
4
log

�
4π2r1r2cosh2ð2πtβ Þ
β2sinh2ðπðr1−r2Þβ Þ

�
; Phase-1

c
4
log

�
rOðrO−ϵÞð−r2Iþr2

1
Þsinh2ðπð−r2þrIþϵÞ

β Þ
rIϵðrIþϵÞð2rO−ϵÞsinh2ðπðr1−r2Þβ Þ

�
− 2Sbdya þ 2Sbdyb; Phase-2

c
4
log

�
2rOðrO−ϵÞð−r2Iþr2

1
Þsinh2ðπð−r2þrIþϵÞ

β Þ coshð2πtβ Þ
rIϵ2ð2rIþϵÞð2rO−ϵÞsinh2ðπðr1−r2Þβ Þ

�
− 2Sbdya; Phase-3

c
4
log

�
ðr2

1
−r2I Þsinh2ð

πð−r2þrIþϵÞ
β Þ

ϵð2rIþϵÞsinh2ðπðr1−r2Þβ Þ

�
: Phase-4

ðA27Þ

APPENDIX B: EXPRESSIONS FOR
HOLOGRAPHIC ENTANGLEMENT NEGATIVITY

FOR BRANEWORLD MODEL

In this appendix, we show the expressions for the
holographic entanglement negativity between two adjacent
and disjoint subsystems obtained through the Eqs. (2.14),
(2.19) and (2.24) in the braneworld model.

1. Adjacent subsystems

Here we list the expressions of the holographic entan-
glement negativity between two adjacent subsystems

utilizing the Eqs. (2.14) and (2.19) in three distinct
scenarios involving the subsystem sizes and the time as
discussed in Sec. III A 1.
(i) Full system (A ∪ B) fixed, common point varied
In the first scenario, the size of the subsystem A ∪ B is

fixed which covers the whole radiation reservoirs and the
common point between them is varied at a constant time
slice. The corresponding expressions for the entanglement
negativity between A and B in the different phases is given
as follows
Phase 1

EðA∶BÞ ¼ c
2
log

�
β

π
sinh

π

β
ja − rj

�
þ 3πϕr

β
coth

�
2π

β
rþ log

24πϕr

cβ

�
þ c
4
log

�
β

π

cosh ð4πβ rþ log 24πϕr
cβ Þ − 1

sinh ð2πβ rþ log 24πϕr
cβ Þ

�

−
3πϕr

β
coth

�
2π

β
aþ log

24πϕr

cβ

�
−
c
4
log

�
β

π

cosh ð4πβ aþ log 24πϕr
cβ Þ − 1

sinh ð2πβ aþ log 24πϕr
cβ Þ

�
; ðB1Þ
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Phase 2

EðA∶BÞ ¼ c
2
log

�
β

π
sinh

π

β
ja − rj

�
−
3

2
ϕ0 −

3πϕr

β
coth

�
2π

β
aþ log

24πϕr

cβ

�

−
c
4
log

"
β

π

cosh
�
4π
β aþ log 24πϕr

cβ

	
− 1

sinh
�
2π
β aþ log 24πϕr

cβ

	
#
þ c
4
log

�
β

π
cosh

2π

β
t

�
; ðB2Þ

Phase 3

EðA∶BÞ ¼ c
2
log

�
β

π
cosh

2π

β
t

�
; ðB3Þ

Phase 4

EðA∶BÞ ¼ c
2
log

�
β

π
sinh

π

β
jr − bj

�
−
3

2
ϕ0 −

3πϕr

β
coth

�
2π

β
ðL − bÞ þ log

24πϕr

cβ

�

−
c
4
log

"
β

π

cosh
�
4π
β ðL − bÞ þ log 24πϕr

cβ

	
− 1

sinh
�
2π
β ðL − bÞ þ log 24πϕr

cβ

	
#
þ c
4
log

�
β

π
cosh

2π

β
t

�
; ðB4Þ

Phase 5

EðA∶BÞ ¼ c
2
log

�
β

π
sinh

π

β
jr − bj

�
þ c
4
log

"
β

π

cosh ð4πβ ðL − rÞ þ log 24πϕr
cβ Þ − 1

sinh ð2πβ ðL − rÞ þ log 24πϕr
cβ Þ

#

−
c
4
log

"
β

π

cosh
�
4π
β ðL − bÞ þ log 24πϕr

cβ

	
− 1

sinh
�
2π
β ðL − bÞ þ log 24πϕr

cβ

	
#
: ðB5Þ

(ii) Subsystem A fixed, B varied
In the second scenario, the size of the subsystem A is fixed at a constant time slice while the size of the subsystem B is

varied. In what follows, the corresponding expressions for the entanglement negativity between the subsystems A and B in
the different phases are given by
Phase 1

EðA∶BÞ ¼ c
2
log

�
β

π
sinh

π

β
ja − rj

�
þ c
2
log

�
β

π
sinh

π

β
jr − bj

�
−
c
2
log

�
β

π
sinh

π

β
ja − bj

�
; ðB6Þ

Phase 2

EðA∶BÞ ¼ c
2
log

�
β

π
sinh

π

β
ja − rj

�
þ c
2
log

�
β

π
sinh

π

β
jr − bj

�
−
c
4
log

�
β

π
cosh

2π

β
t

�
−
3

2
ϕ0

−
3πϕr

β
coth

�
2π

β
aþ log

24πϕr

cβ

�
−
c
4
log

"
β

π

cosh
�
4π
β aþ log 24πϕr

cβ

	
− 1

sinh
�
2π
β aþ log 24πϕr

cβ

	
#
; ðB7Þ

Phase 3

EðA∶BÞ ¼ c
2
log

�
β

π
sinh

π

β
ja − rj

�
þ c
2
log

�
β

π
sinh

π

β
jr − bj

�
− 3ϕ0

−
3πϕr

β
coth

�
2π

β
aþ log

24πϕr

cβ

�
−
c
4
log

"
β

π

cosh ð4πβ aþ log 24πϕr
cβ Þ − 1

sinh ð2πβ aþ log 24πϕr
cβ Þ

#

−
3πϕr

β
coth

�
2π

β
ðL − bÞ þ log

24πϕr

cβ

�
−
c
4
log

"
β

π

cosh
�
4π
β ðL − bÞ þ log 24πϕr

cβ

	
− 1

sinh
�
2π
β ðL − bÞ þ log 24πϕr

cβ

	
#
; ðB8Þ
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Phase 4

EðA∶BÞ ¼ 3πϕr

β
coth

�
2π

β
rþ log

24πϕr

cβ

�
þ c
4
log

"
β

π

cosh ð4πβ rþ log 24πϕr
cβ Þ − 1

sinh ð2πβ rþ log 24πϕr
cβ Þ

#

−
3πϕr

β
coth

�
2π

β
aþ log

24πϕr

cβ

�
−
c
4
log

"
β

π

cosh
�
4π
β aþ log 24πϕr

cβ

	
− 1

sinh
�
2π
β aþ log 24πϕr

cβ

	
#
þ c
2
log

�
β

π
sinh

π

β
ja − rj

�
: ðB9Þ

(iii) Subsystems A, B, and C fixed, time varied
The third scenario involves two sub cases of equal and unequal lengths of the subsystems A and B with increasing time

where the lengths l1 and l2 of the two adjacent subsystems are fixed. The expression for the corresponding entanglement
negativity between the subsystems A and B for these two sub cases in different phases are given as
(a) For l1 ¼ l2
Phase 1

EðA∶BÞ ¼ c
2
log

�
β

π
cosh

2π

β
t

�
; ðB10Þ

Phase 2

EðA∶BÞ ¼ −3ϕ0 −
3πϕr

β
coth

�
2π

β
aþ log

24πϕr

cβ

�
−
c
4
log

"
β

π

cosh
�
4π
β aþ log 24πϕr

cβ

	
− 1

sinh
�
2π
β aþ log 24πϕr

cβ

	
#

−
3πϕr

β
coth

�
2π

β
ðL − bÞ þ log

24πϕr

cβ

�
−
c
4
log

"
β

π

cosh
�
4π
β ðL − bÞ þ log 24πϕr

cβ

	
− 1

sinh
�
2π
β ðL − bÞ þ log 24πϕr

cβ

	
#

þ c
2
log

�
β

π
sinh

π

β
ja − rj

�
þ c
2
log

�
β

π
sinh

π

β
jr − bj

�
: ðB11Þ

(b) For l1 ≠ l2
Phase 1

EðA∶BÞ ¼ c
2
log

�
β

π
cosh

2π

β
t

�
; ðB12Þ

Phase 2

EðA∶BÞ ¼ c
4
log

�
β

π
cosh

2π

β
t

�
þ c
2
log

�
β

π
sinh

π

β
jr − bj

�
−
3

2
ϕ0 −

3πϕr

β
coth

�
2π

β
ðL − bÞ þ log

24πϕr

cβ

�
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2. Disjoint subsystems

We now list the expressions of the holographic entan-
glement negativity between the two disjoint subsystems A
and B in three different scenarios involving subsystem sizes
and the time by utilizing the Eqs. (2.14) and (2.24) as
described in Sec. III A 2.
(i) Subsystem A fixed, C varied

In the first scenario, the size of the subsystem A is fixed
at a constant time slice while the size of the subsystem C is
varied. The expressions of the holographic entanglement
negativity between the subsystems A and B in the different
phases are given as follows
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(ii) Subsystems A and C fixed, B varied
In the second scenario, the size of the subsystems A and C are fixed at a constant time slice while the size of the

subsystems B is being varied. The expressions of the entanglement negativity between the subsystems A and B in the
different phases are indicated as
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(iii) Subsystems A, B and C fixed, time varied
In the third scenario, the lengths l1, l2, and lc of the subsystems A, B, and C are fixed respectively with increasing time.

Here we consider two sub cases of equal and unequal lengths of the subsystems A and B. The expressions of the
corresponding entanglement negativity between the subsystems A and B in distinct phases are given as
(a) For l1 ¼ l2
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(b) For l1 ≠ l2
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