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As was discovered some time ago by Giddings and Strominger (GS), an axion can support a wormhole
geometry in the presence of a massless dilaton, as long as the dilaton coupling remains below a critical
value. We find that when the dilaton becomes massive, the set of solutions is vastly increased: not only do
solutions exist above the critical value of the coupling, but new branches of solutions with several minima
in the geometry also appear. All of these generalized GS-like solutions possess the property that, when
analytically continued, they lead to a contracting baby universe. We show that in addition there exist
families of solutions which, upon analytic continuation, lead to expanding baby universes. A curious
property of axion-dilaton wormhole families is that their Euclidean action often decreases when the
solutions acquire additional oscillations in the fields. When we replace the dilaton by an ordinary scalar
field with a double well potential, we find analogous wormhole families leading to expanding baby
universes. This time the Euclidean action has the expected behavior of increasing with the number of
oscillations in the fields, although it also contains a puzzling aspect in that some solutions possess a
negative action.

DOI: 10.1103/PhysRevD.108.066012

I. INTRODUCTION

The questions of the possibility and consequences of
topology change have haunted quantum gravity research
for several decades now. The simple fact that in a theory of
quantum gravity the spacetime manifold should be able
to fluctuate suggests that the overall topology of the
manifold might also vary and that, on the smallest scales,
one might have to think of spacetime as having a foamlike
structure [1,2]. With the discovery of explicit wormhole
solutions sourced by axions [3], a number of questions
became more concrete. For instance, if baby universes can
be created locally, then they can carry information away,
leading to apparent nonunitary behavior [4–7]. Also, if
wormholes can connect distant spatial regions, then their
presence will influence the value of coupling constants,
effectively leading to random values of said “constants.”
Closer inspection of this question led Coleman to the
picture of α–vacua, describing superselection sectors of

quantum gravity within which quantum coherence would
be individually retained [8].
More recently, these questions have received renewed

interest, as it was realized that puzzling features remained:
for instance, it is a general expectation that quantum gravity
should admit no free parameters [9], and this expectation is
in obvious conflict with the above-mentioned α–parameters.
Also, in the context of the AdS=CFT correspondence, if
there are multiple disconnected boundary regions, then one
would expect the CFT partition function to factorise corre-
spondingly. However, if wormholes can connect the asymp-
totic regions, then they lead to interactions mediated via the
bulk—again we encounter a paradox [10–12]. Possible
resolutions have been suggested: on the one hand, worm-
holes might admit negative modes and thus not contribute to
the gravitational path integral [13] (though for purely axionic
wormholes, the recent work [14] casts doubt on this
possibility by showing that these particular wormholes do
not admit negative modes). On the other hand, it has been
suggested that in the gravitational path integral there might
be a huge degeneracy arising from the interplay of states of
various topologies [15], perhaps effective enough to reduce
the baby universe Hilbert space to a single dimension and
obviate the need for α–parameters [16].
These puzzles remain unresolved to date, and motivate us

to further study the existence and properties of wormholes
(see also [17–23] for related recent works, and [24,25]
for useful reviews). A full wormhole solution can be thought
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of [3,17,18] as a (gravitational) instanton-anti-instanton pair
connecting two asymptotic regions, whereas a semiworm-
hole is interpreted as a gravitational instanton mediating a
topology change Σ1 → Σ2 ⊕ Σ3, e.g. R3 → R3 ⊕ S3, and
leading to the creation of a baby universe, see Fig. 1. It
was noted in [26] that Gidding-Strominger (GS) worm-
holes [such as those depicted in Fig. 2(a)] lead to
contracting baby universes after analytic continuation
to Minkowski time. In contrast, wormholes leading to
expanding baby universes should have a wineglass shaped
neck, as that depicted in Fig. 2(b). Such wormholes were
first found in [26] in a theory of axion-scalar gravity with
an asymmetric double well scalar potential, and further
elaborated on in [27].
In the present paper we describe many new families of

wormhole solutions, both in axion-dilaton gravity with
a massive dilaton (greatly extending the results of [22])
and in axion-scalar theory with a symmetric double well
potential. We classify the solutions with regard to the
distinction mentioned above, namely whether after analytic
continuation they lead to contracting baby universes, or to
expanding baby universes. Much less is known about the
latter class, but even for the former we uncover a surpris-
ingly intricate structure, for a preview see Fig. 9. In all
cases we calculate the Euclidean action and find some

unexpected features, which we will describe in detail
below. Upon variation of the parameters of the theory
and/or the axion charge, the wormhole solutions can
develop oscillations both in the scalar/dilaton field and
in the scale factor of the universe, see Fig. 2(c). The
physical significance of these oscillations remains to be
clarified, in particular as it is related to some of the
surprising features of the Euclidean action that we find.
At critical values of the parameters, entire new families of
solutions emerge in bifurcating patterns, a property which
for instance implies that these new branches of solutions are
not continuously connected to the massless limit of the
axion-dilaton theory and thus explains why these wormhole
solutions have gone unnoticed so far. Overall, our main
realization is that significantly more wormhole solutions
exist than hitherto suspected. It is our hope that a better
understanding of these concrete wormhole solutions will
help in elucidating the conceptual puzzles described above.

II. AXION-DILATON AND AXION-SCALAR
GRAVITATIONAL THEORIES

A. Action, field equations, and ansatz

Our starting point is the Euclidean action for gravity
coupled to an axion and a dilaton/scalar ϕ, which reads [22]:

SE ¼
Z

d4x
ffiffiffi
g

p �
−

1

2κ
Rþ 1

2
∇μϕ∇μϕþ VðϕÞ

þ 1

12f2
e−βϕ

ffiffi
κ

p
HμνρHμνρ

�
; ð1Þ

where κ ≡M−2
Pl ¼ 8πG, the dilatonic coupling constant is

denoted β and the potential VðϕÞ, Hμνρ being the 3-form
field strength of an axion field with coupling f. When β ≠ 0,
we refer to ϕ as a dilaton, while for β ¼ 0 we simply call it a
scalar. Note that we do not add a Gibbons-Hawking-York
boundary term to the action, as we will discuss in more detail
below. The corresponding equations of motions are

FIG. 1. Common interpretations of Euclidean wormholes. On
the left, a full wormhole connecting two asymptotic regions. On
the right, a semi-wormhole, leading to the creation of a baby
universe (Σ3).

FIG. 2. Visualization of Euclidean wormholes. Wormholes of GS type lead to contracting baby universes upon analytic continuation,
while wineglass shaped wormholes lead to expanding baby universes. The right panel shows the oscillating solution with 2 extra minima
of the scale factor included in Fig. 27. See Appendix A for further details on embedding diagrams of the sort shown here.
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8>>><
>>>:

Rμν ¼ κ∂μϕ∂νϕþ κVgμν þ κ
2f2 e

−βϕ
ffiffi
κ

p
HμρσH

ρσ
ν − κ

6f2 e
−βϕ

ffiffi
κ

p
HγρσHγρσgμν;

1ffiffi
g

p ∂μð ffiffiffi
g

p
gμν∂νϕÞ ¼ ∂V

∂ϕ −
β
ffiffi
κ

p
12f2 e

−βϕ
ffiffi
κ

p
HγρσHγρσ;

∂μð ffiffiffi
g

p
e−βϕ

ffiffi
κ

p
HμρσÞ ¼ 0:

ð2Þ

We will focus on the following spherically symmetric and homogeneous ansatz

8>><
>>:

ds2 ¼ h2ðτÞdτ2 þ aðτÞ2dΩ2
3;

ϕ ¼ ϕðτÞ;
H0ij ¼ 0; Hijk ¼ qεijk;

ð3Þ

which leads to the reduced action

SredE ¼ 2π2
Z

dτ

�
−
3aȧ2

κh
þ a3ϕ̇2

2h
−
3ah
κ

þ ha3V þ N2h
a3

e−βϕ
ffiffi
κ

p �þ 2π2
Z

dτ
d
dτ

�
3a2ȧ
κh

�
; ð4Þ

where

N2 ≡ q2

2f2
; ð5Þ

and the overdot denotes a derivative with respect to the
(Euclidean) time coordinate τ. Note that the axion charge
q is quantized in string theory (when seen as a source for
branes, this follows from the associated Dirac quantization
condition [28]), and hence q and consequently also N
should be thought of as being proportional to integers.
The surface term arose from integration by parts, and is
important in order to obtain the correct value of the action.
Varying the reduced action (4) with respect to a, h, and ϕ
yields the following equations of motion [strictly equivalent
to (2) in the spherically symmetric ansatz (3)]:8>>>>><
>>>>>:

2aä
h þ ȧ2

h −h− 2aȧ ḣ
h2 þ κa2

�
ϕ̇2

2hþhVðϕÞ
�
− κN2h

a4 e−βϕ
ffiffi
κ

p ¼ 0;

ȧ2

h2 − 1¼ κa2
3

�
ϕ̇2

2h2 −VðϕÞ
�
− κN2

3a4 e
−βϕ

ffiffi
κ

p
;

ϕ̈þ
�
3ȧ
a −

ḣ
h

�
ϕ̇¼ h2 dVdϕ−

βN2h2
ffiffi
κ

p
a6

e−βϕ
ffiffi
κ

p
:

ð6Þ

In the gauge h≡ 1, these equations simplify to8>>>>><
>>>>>:

2aäþ ȧ2−1þκa2
�
ϕ̇2

2
þVðϕÞ

�
− κN2

a4 e
−βϕ

ffiffi
κ

p ¼0;

ȧ2−1¼ κa2
3

�
ϕ̇2

2
−VðϕÞ

�
− κN2

3a4 e
−βϕ

ffiffi
κ

p
;

ϕ̈þ 3ȧ
a ϕ̇¼ dV

dϕ−
βN2

ffiffi
κ

p
a6 e−βϕ

ffiffi
κ

p
:

ð7Þ

Using the trace of the first equation in (2), the on-shell
action of the wormhole solution can be easily calculated

SE ¼
Z

d4x
ffiffiffi
g

p �
e−βϕ

ffiffi
κ

p

6f2
H2 − VðϕÞ

�
ð8Þ

¼ 2π2
Z

dτha3
�
2N2e−βϕ

ffiffi
κ

p

a6
− VðϕÞ

�
; ð9Þ

where in the second line we used the spherically symmetric
ansatz. Note that this expression for the on-shell action is
equivalent to the action (4) upon using the constraint (6)
and keeping the surface term. From this expression of the
action (9) we can conclude that for some potentials the
wormhole action can become negative.1 In Sec. IV we will
encounter numerical examples confirming this expectation.
The GS wormhole solution [3] has V ¼ 0 and in the

gauge a ¼ τ can be written as [17]

aðτÞ ¼ τ; hðτÞ ¼
�
1 −

a40
τ4

�−1=2
;

eβϕðτÞ
ffiffi
κ

p ¼ κN2

3a40
cos2

�
β

βc
arccos

�
a20
τ2

��
; ð10Þ

where βc denotes the critical value of the dilaton coupling
above which no solution exists, with

a40 ¼
κN2

3
cos2

�
π

2

β

βc

�
; 0 ≤ β < βc ¼

2
ffiffiffi
2

pffiffiffi
3

p : ð11Þ

The action of this wormhole can be easily calculated and
reads

1This fact that the wormhole action could be negative for some
potentials was already noticed in [29].
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SðβÞGS¼2π2
Z

∞

a0

dτ
2N2e−βϕ

ffiffi
κ

p

τ3
ffiffiffiffiffiffiffiffiffiffi
1−a4

0

τ4

q ¼4
ffiffiffi
2

p
π2N

β
ffiffiffi
κ

p sin

�
π

2

β

βc

�
: ð12Þ

In the limit β → 0, one gets a version of the GS solution
without dilaton, whose action is

Sð0ÞGS ¼
ffiffiffi
3

p
π3Nffiffiffi
κ

p : ð13Þ

More precisely what we are discussing here is the action of
a semiwormhole; to get an action for the whole wormhole
with two asymptotic regions we should just multiply this
result by a factor of two.2

B. Baby universe interpretation

Euclidean wormholes can be interpreted as tunneling
events leading to the creation of baby universes [3,8]. It was
noted in [26] that GS wormholes are leading to the
materialization of baby universes which are contracting
after analytic continuation to Minkowski time. Indeed, a
regular wormhole at τ ¼ 0 has finite size að0Þ ¼ a0 ≠ 0,
and zero derivative ȧð0Þ ¼ 0 such that for small τ we
can expand

aðτÞ ¼ a0 þ
1

2
a2τ2 þOðτ4Þ; ð14Þ

where the coefficient a2 ¼ äð0Þ. After analytic continu-
ation to Minkowski time t ¼ −iτ we get

aðtÞ ¼ a0 −
1

2
a2t2 þOðt4Þ: ð15Þ

Now it is clear that a2 > 0 and a2 < 0 correspond
respectively to contracting and expanding small universes.
The GS wormhole obviously has a2 ¼ äð0Þ > 0, since the
neck of the wormhole is a minimum of aðτÞ. Instead, a
wormhole leading to an expanding baby universe should
have a2 ¼ äð0Þ < 0, i.e., the “neck” of such a wormhole
should be a local maximum. By combining the first two
equations of (7), one can see that the axion charge is
required so that there can be a local minimum of the scale
factor somewhere in the geometry.

C. Initial conditions

The variational problem following from the reduced
action (4) is well defined only if the following boundary
terms vanish:

�
3a2

hκ
δȧ

�
τf

0

¼ 0 and

�
a3ϕ̇
h

δϕ

�τf
0

¼ 0: ð16Þ

This is realized at the wormhole neck τ ¼ 0 for the initial
conditions ȧð0Þ ¼ 0 and ϕ̇ð0Þ ¼ 0, and in the asymptotic
future for the conditions ȧðτfÞ ¼ 1 and ϕðτfÞ ¼ 0, which
imply that the asymptotic future is the flat Euclidean
spacetime. This explains why the Gibbons-Hawking-
York term must not be added to the action in this case,
as it would suppress the boundary term in (4) and
consequently would imply that the value of the scale factor
a must be fixed at the boundary instead of ȧ; yet fixing ȧ is
precisely what allows us to reach flat Euclidean spacetime
in the asymptotic future as well as impose the wormhole
constraint ȧð0Þ ¼ 0 at the origin.
On the classical solution, we must also specify the

initial values of the scale factor and scalar field. The value
of the scalar field ϕð0Þ ¼ ϕ0 is a free parameter, while the
throat size, að0Þ ¼ a0, is determined by the Friedmann
constraint at τ ¼ 0:

1 ¼ κ

3

�
a20Vðϕ0Þ þ

Q2

a40

�
; ð17Þ

⇔
κ

3
Vðϕ0Þx3 − x2 þ κQ2

3
¼ 0; x ¼ a20; ð18Þ

where we defined

Q2 ¼ N2e−βϕ0

ffiffi
κ

p
: ð19Þ

The discriminant of the cubic equation (18) is

Δ ¼ κQ2

3
ð4 − κ3Q2Vðϕ0Þ2Þ. When Δ > 0, there are three

real solutions for x, while when Δ < 0, there are one real
and two complex solutions for x. For Δ > 0 we may
equivalently require

2

Q
> κ3=2Vðϕ0Þ: ð20Þ

The three solutions can be constructed as follows. Let us
define an angle θ∈ ½0; π� such that

cos θ ¼ 1 −
1

2
κ3Q2V2ðϕ0Þ;

θ ¼ arccos

�
1 −

1

2
κ3Q2V2ðϕ0Þ

�
: ð21Þ

Then the solutions to Eq. (18) are given by

xj ¼
1

κVðϕ0Þ
�
1þ 2 cos

�
θ − 2π · j

3

��
for j ¼ 0; 1; 2:

ð22Þ

Whatever the value of θ∈ ð0; πÞ, if Vðϕ0Þ > 0 there are
always two of these solutions which are positive (j ¼ 0, 1)
and one which is negative (j ¼ 2). From the two positive2The addition of fermionic zero modes was studied in [30].
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solutions for x, we get four real solutions for a0, two
positive and two negative. The largest positive solution
for a0 satisfies

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

κVðϕ0Þ

s
< að1Þ0 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

κVðϕ0Þ

s
; ð23Þ

so combining the left inequality with (20), we find

ðað1Þ0 Þ2 > κ1=2Q. Therefore

äð0Þ ¼ −
1

að1Þ0

 
1 −

κQ2

ðað1Þ0 Þ4
!

< 0; ð24Þ

i.e. d2a
dt2 ð0Þ ¼ −äð0Þ > 0, in other words the solution with

largest a0 corresponds to a “wineglass” wormhole leading
to an expanding baby universe. This is the j ¼ 0 solution.
Assuming y ¼ κ3Q2Vðϕ0Þ2 ≪ 1, we find that θ ≃ π so that

að1Þ0 ≃
ffiffiffiffiffiffiffiffiffiffiffi

3
κVðϕ0Þ

q
, which implies that the throat size is given

by the Hubble scale. Meanwhile, the smaller (j ¼ 1) root
in (22) leads to wormholes of GS type, with the scale factor
being a local minimum at the origin.

For Δ < 0, the Eq. (18) only possesses one real root,
which reads:

x0 ¼
1

κVðϕ0Þ
�
1− 2cosh

�
1

3
cosh−1

�
κ3Q2Vðϕ0Þ2

2
− 1

���
:

ð25Þ
Because Δ < 0, the arc-hyperbolic cosine in this expres-
sion is real, so x0 is real and negative. The corresponding
solution for a0 is thus imaginary and can be discarded.
Therefore, Δ > 0 is a necessary (but not sufficient)

condition on the parameter space for obtaining a wormhole
solution.

III. AXION-DILATON WORMHOLES

After these preliminaries, we are ready to search for
wormhole solutions. We will start with the case of the
axion-dilaton-gravity system, where we assume the dilaton
to be massive, that is to say we choose the potential

VðϕÞ ¼ 1

2
m2ϕ2; ð26Þ

wherem is the dilaton mass. The equations of motion (7) in
the gauge h ¼ 1 now read

8>>>>><
>>>>>:

2aäþ ȧ2 − 1þ κa2
�
ϕ̇2

2
þ 1

2
m2ϕ2

�
− κN2

a4 e−βϕ
ffiffi
κ

p ¼ 0 ðacceleration equationÞ;

ȧ2 − 1 ¼ κa2
3

�
ϕ̇2

2
− 1

2
m2ϕ2

�
− κN2

3a4 e
−βϕ

ffiffi
κ

p ðFriedmann constraintÞ;

ϕ̈þ 3ȧ
a ϕ̇ ¼ m2ϕ − βN2

ffiffi
κ

p
a6 e−βϕ

ffiffi
κ

p ðdilaton equationÞ:

ð27Þ

The dilaton equation in (27) possesses a mechanical
analogy as the motion of a particle ϕðτÞ in an effective
potential WðϕÞ:

WðϕÞ ¼ −VðϕÞ − N2

a6
e−βϕ

ffiffi
κ

p
; ð28Þ

dWðϕÞ
dϕ

¼ −m2ϕþ βN2
ffiffiffi
κ

p
a6

e−βϕ
ffiffi
κ

p
: ð29Þ

We see that the fate of the particle released at some point
ϕð0Þ ¼ ϕ0 > 0with zero velocity ϕ̇ð0Þ ¼ 0 depends on the
sign of W;ϕ at this point. Depending on which term in the
potential WðϕÞ dominates at this point, the particle either
starts to move to the right (increasing ϕ) or to the left
(decreasing ϕ). Since we want to obtain an asymptotically
flat geometry, for τ → ∞ the dilaton field should eventually
settle at its vacuum value ϕ ¼ 0. The shape of the effective
potential crucially depends on the axion charge N, and
also on which root is chosen in (22)—see Fig. 3 for an
illustration. One feature that becomes immediately clear

upon inspection of the effective potential is that solutions in
which the dilaton monotonically rolls down its potential
can only exist in very limited parameter ranges, precisely in
the regions near the gap seen in the right-hand plot. This
property is useful in the numerical search for solutions, to
which we now turn.

A. Generalizations of Giddings-Strominger wormholes

We will first concentrate on generalizations of the GS
solution (by which we mean wormholes leading to the
nucleation of contracting baby universes), in the presence
of a massive dilaton. This type of solution was already
discussed in the recent work [22], though our search is
more comprehensive and we find numerous additional
solutions here. In [22], it was shown that solutions only
depend on the combination of parameters m2q=f and β, a
result which follows from the possible field rescalings
which we review in Appendix B. The authors of [22] fixed
q=f ¼ ffiffiffi

2
p

⇔ N ¼ 1 and varied m. Instead, in our numeri-
cal analysis we have fixedm ¼ 10−2 and variedN. The two
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procedures are exactly equivalent, note however that in [22]
they use a different, noncanonical definition of the dilaton
potential so that their mass is rescaled, mthere ¼ mhere=

ffiffiffi
2

p
,

compared to ours.
In looking for solutions, we search for domains of the

initial dilaton value ϕ0 in which we can identify an over-/
undershooting behavior of the solution. By this we mean
that we look for values of ϕ0 such that small changes cause
the asymptotic value of the dilaton to switch between
running off to plus or minus infinity. Then we can infer, by
continuity, that somewhere in between a solution must exist
in which the dilaton approaches ϕ ¼ 0 asymptotically. We
may hone in on the actual solution to the desired level
of accuracy (which is typically at the level of about 20
significant digits, sometimes more) with an optimization
algorithm. Here a Newtonian algorithm suffices. In finding
appropriate initial ranges of ϕ0, we take guidance from the
effective potential, as discussed above.
The first examples of solutions are shown in Fig. 4.

These solutions all have the same dilaton coupling β ¼ 1.2,
and the same axion charge N ¼ 30;000, so that m2N ¼ 3.

For all solutions, the origin að0Þ represents a local minimum
of the scale factor, which is why these wormholes would
nucleate contracting universes. In [22] only solutions analo-
gous to the first, monotonic solution with ϕ0 ≈ 0.71 were
found. Remarkably, with increasing ϕ0, we find additional
solutions in which the field evolutions become more
intricate, and oscillations develop. It is noteworthy that both
the dilaton and the scale factor develop these oscillations
(in contrast to the oscillating bounces of [31], in which only
the scalar field oscillates). In the figure we show four
examples, although we did not encounter any obstruction
when searching for solutions with ever larger ϕ0 and more
numerous oscillations—we suspect that there exists no upper
limit to the number of oscillations.
The Euclidean action of these solutions is shown in

Fig. 5, both as a function of the radial coordinate τ and in
terms of the final asymptotic values. One can see that the
action integral only receives significant contributions
as long as the dilaton is evolving noticeably. Once the
dilaton settles in its potential minimum and the geometry
approaches that of flat space, the action stabilises.

FIG. 3. Effective potentialWðϕÞ as a function of ϕ0 for axion charge N ¼ 20;000 (left) and N ¼ 30;000 (right). The other parameters
are the same for both plots:m ¼ 0.01 and β ¼ 1.2. The green line corresponds to the large root in (22), while the red line corresponds to
the smaller positive root. The plot on the right contains a gap, which is caused by there existing no real solutions to the cubic
equation (18) in that range.

FIG. 4. Wormhole solutions with a massive dilaton, with the scale factor shown on the left and the dilaton evolution on the right. All
solutions have κ ¼ 1, β ¼ 1.2, N ¼ 30;000, m ¼ 0.01. The individual solutions are characterized by the initial value of the dilaton,
given respectively by the values ϕ0 ¼ 0.7118165858, 5.5075291704, 8.1964321797, 8.3116654157 (we indicate a number of
significant digits such that the action can be determined to better than percent level accuracy). Solutions with larger ϕ0 display a more
intricate field evolution, containing oscillations of the fields.
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To obtain the asymptotic value, we have added an
analytically calculable remainder (as explained in
Appendix C), which ensures that the end result is trust-
worthy up to a known level of precision. The most obvious
feature is that the action is positive, in line with the
interpretation of these solutions as mediating the nucle-
ation of baby universe in a tunnelling-type event. The
second solution, containing an inflection point in the
scale factor, has a higher action. However, what is truly
surprising, is that for the solutions with additional fea-
tures, in particular the presence of one or two additional
minima in aðτÞ, the action decreases again. Assuming the
probability of nucleation per unit four-volume to be given
approximately by e−2SE=ℏ, one would conclude that sol-
utions with additional oscillations are more likely to occur
than those with fewer such features. This surprising
property requires further explanation. Notice however,
for now, that the simplest, monotonic solution appears
to be the most likely overall, though in the absence of
analytic expressions for these solutions we cannot be sure
what happens to the action in the limit of infinite numbers
of field oscillations. In particular, we cannot assess
whether in this limit the action would remain above that
of the lowest ϕ0 solution.

We can also look at solutions at a larger value of the
dilaton coupling—Fig. 6 shows an example with β ¼ 1.58
and with charge N ¼ 47;089 (the reason for choosing this
peculiar looking number will become clear below). At these
parameter values we find a total of five GS-type solutions,
containing a single minimum in the scale factor, that is to
say only the minimum at the origin. The figure then also
contains a solution with two minima, at an even larger
dilaton value ϕ0. The action of these solutions is shown in
Fig. 7. We notice the same feature as before, namely that
the action first increases with the complexity of the
solutions (and with increasing ϕ0) but then starts to
decrease again. This time the effect is even more pro-
nounced, and the solution with two minima of the scale
factor already has a Euclidean action that lies below that of
the lowest ϕ0 solution. We will discuss this puzzling feature
further in later parts of the paper.
The existence of these generalized GS-solutions depends

on the parameters m2N and β, as well as on the initial
dilaton values ϕ0, in a remarkably intricate way. We
illustrate this first with the simplified plot in Fig. 8, and
then with the more complete (but at first sight somewhat
bewildering) plot in Fig. 9. Let us describe the simplified
plot first, starting with the light brown curve corresponding

FIG. 5. The Euclidean action, as a function of τ (left plot) and a graph with the asymptotic values (right plot), for the solutions shown
in Fig. 4. Intriguingly, the action is not monotonic in ϕ0, but starts decreasing as more oscillations are added.

FIG. 6. Wormhole solutions with a massive dilaton, with the scale factor shown on the left and the dilaton evolution on the right. All
solutions have κ ¼ 1, β ¼ 1.58, N ¼ 47;089, m ¼ 0.01. The initial dilaton values are ϕ0 ¼ 0.9267658893, 2.9202136114,
3.0261054894, 8.1578681214, 8.4314038628, 8.9744628254. Solutions with larger ϕ0 again display oscillations of the fields.
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to β ¼ ffiffiffi
2

p
≈ 1.4142. The lowest curve on the plot shows

that wormhole solutions exist for all values ofm2N, i.e. also
in the limit of vanishing mass. This is expected, as this
value of β lies below the critical GS value βc ¼

ffiffiffiffiffiffiffiffi
8=3

p
≈

1.633. However, an additional branch of solutions exists,
starting around m2N ≈ 4 and ϕ0 ≈ 4. The starting value of

this new branch is not arbitrary: it corresponds to the onset
of the “gap” in the effective potentialWðϕÞ, as explained in
and above Fig. 3. Along this new branch lie the solutions
with inflection points and oscillations in the fields. In fact,
as one moves along the branch, the solutions become
progressively more complicated. The solid light brown
curve includes all solutions (with β ¼ ffiffiffi

2
p

) that have a
single minimum in the scale factor. The dashed extension
of the curve indicates that further solutions, with two and
more minima of the scale factor, exist as one moves in the
broad direction of larger ϕ0 values. In fact, as far as we can
tell by our numerical investigations, the curve keeps
moving up in a zigzag manner, without apparent limit.
This behavior is analogous for all values of β below a

certain βi, with 1.579 < βi < 1.58, at which value an
“inversion” of the branch structure takes place. Indeed,
the pink curve (β ¼ 1.58) that links to the vertical axis at
m ¼ 0 now moves up to larger ϕ0 values around m2N ≈ 2,
and the new branch of solutions appears below, at smaller
ϕ0. Now it is the original branch that continues upwards in
a zigzag manner, indicated by the dashed extension of the
solid line, leading to ever more involved field evolutions.
By contrast, the new branch that appears around m2N ≈ 2
has a bifurcating pattern. Following it along the larger ϕ0

FIG. 7. The Euclidean action, as a function of τ (left plot) and a graph with the asymptotic values (right plot), for the solutions shown
in Fig. 6. Again, the action is not monotonic in ϕ0, but starts decreasing as more oscillations are added.

FIG. 8. Branch structure of the generalized GS-type solutions
with at most one extra minimum of the scale factor, for four
representative values of the dilaton coupling. A full description is
provided in the main text.

FIG. 9. A more complete version of the plot shown in Fig. 8, containing curves at additional values of the dilaton coupling β. The
inversion of the branch structure above βi (i.e., for the curves with β ≥ 1.58) is clearly visible. See the main text for a detailed analysis.
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values, it has an end point at m2N ≈ 4.8 and ϕ0 ≈ 3,
corresponding to the (dis)appearance of the gap in the
effective potential WðϕÞ. Following this curve in the other
direction, one finds solutions with ever larger m2N, again
presumably without limiting m2N value. The solutions
shown in Fig. 6 present a vertical slice through these
curves, and from Fig. 8 one can see that choosing m2N to
lie a little below 4.8 allows one to pick up the maximal
variety of solutions.
If we increase the dilaton coupling β further, then on the

vertical axis, at zero dilaton mass, the required ϕ0 values
keep increasing and tend to infinity as the critical value
βc ¼

ffiffiffiffiffiffiffiffi
8=3

p
≈ 1.633 is reached. This is the limit found by

Giddings and Strominger for the massless case. Beyond
this value, the line that connects to the vertical axis thus
disappears. Consider for instance the light green curve at
β ¼ 1.64 in Fig. 8. At this value, only the new bifurcating
branch of the type described above exists. For this value
of β, it appears around m2N ≈ 3.2, and this implies that
GS-type wormhole solutions only exist for masses/charges
above this value.
We can now take a look at the more complete plot shown

in Fig. 9. One can make out very well the similarities
between all curves with β < βi, and the inverted structure at
larger coupling. For completeness, one should picture the
upper branches (for β < βi) as continuing in the described
zigzag pattern to larger ϕ0 values. The dashed line in the
figure corresponds to the combination of m2N and ϕ0

values at which the gap in the effective potential appears,
i.e., the dashed line is the locus of end points of the new
branches. The fact that an inversion of the branch structure
occurs as β is increased is made plausible by the fact that
the curve that connects to zero mass must disappear entirely
once β surpasses βc. However, this argument is not
sufficient to determine the precise value βi of the dilaton
coupling at which the inversion occurs. This is an open
problem, the resolution of which will likely require at least
a partially analytic understanding of these numerically
found solutions.
Connected to the above point is the realization that

GS-type wormholes in fact exist at β > βc, but only with a
sufficiently large mass and charge. This fact was already
discovered in [22]. Figure 10 makes this notion more
precise, by plotting the required minimum values ofm2N as
a function of β. The discontinuous jump at βc is precisely
due to the appearance of new branches disconnected from
the vertical m2N ¼ 0 axis. The obvious implication of this
plot is that the required m2N value becomes ever larger as
the dilaton coupling is increased, with the approximate
linear relation

ðm2NÞmin ≈ 10.8β − 14.6; ð30Þ

valid for β ≥ βc.

B. Wormholes leading to expanding baby universes

The same axion-dilaton-gravity theory with massive
dilaton admits another type of wormhole solution, in which
the origin að0Þ corresponds to a local maximum of the scale
factor. As described in Sec. II B, if we interpret such
solutions as mediating the nucleation of baby universes,
then this feature leads to baby universes that are expanding
(in Lorentzian time), a feature that may allow them to
become large and be long lived. We will loosely refer to
such solutions as expanding wormholes. The methods used
to find such expanding wormholes are the same as those
described in the previous section, except that in fixing
initial conditions, we must always choose the largest root of
the cubic equation (18), as explained in Sec. II C.
A first example of such a wormhole is shown in Fig. 11.

One can only make out the local maximum of the scale
factor at the origin by zooming in, see the inset in the left
panel in the figure. For this solution, the dilaton rolls down
monotonically in its potential, asymptotically settling at its
minimum. The Euclidean action is positive, in line with
the interpretation of this solution as mediating a tunnel-
ing event.
With the same parameters, there exist additional solu-

tions at larger initial dilaton values, see Fig. 12. These
solutions are reminiscent of the solutions with oscillations
in the fields, discovered also for GS-type wormholes in the
previous section. A distinction here is that in these more
involved solutions the dilaton first runs up its potential,
before turning around and (perhaps after several additional
oscillations) eventually settling in its potential minimum.
Associated with these oscillations of the dilaton is an
additional “breathing” behavior of the scale factor, which

FIG. 10. Minimal mass/charge m2N as a function of β for
generalized GS-type solutions.
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may expand and shrink alternately before eventually
tending to flat space at large radii.
The action for these expanding wormholes is shown in

Fig. 13, on the left as a function of radius and on the right in
terms of the asymptotic values. This time, in contrast with
Fig. 5, the action immediately starts decreasing as the
solutions progressively develop additional inflection points
and oscillations. This unusual feature complicates the
interpretation of these solutions, as it naively suggests that

expanding wormholes with more oscillations are more
likely than those with fewer features. We will comment
further on this peculiarity in the discussion section. Similar
features occur at other values of the dilaton coupling, see
Figs. 14 and 15 for additional examples.
We can now try to gain a more global understanding

of the existence of expanding wormhole solutions. The
existence of solutions as a function of m2N and ϕ0, for
various values of the coupling β, is shown in Fig. 16.

FIG. 11. An example of a wormhole leading to an expanding universe upon analytic continuation. For this solution, the dilaton rolls
down the potential monotonically. Shown are the scale factor (left), dilaton (middle) and Euclidean action (right). The red line represents
the value of the final Euclidean action when taking the analytic remainder into account (see Appendix C). The parameter values are
m ¼ 0.01, β ¼ 1.2, N ¼ 30;000 and the initial dilaton value is ϕ0 ¼ 4.6297956230.

FIG. 12. Expanding wormhole solutions with a massive dilaton, with the scale factor shown on the left and the dilaton evolution on the
right. All solutions have κ ¼ 1, β ¼ 1.2, N ¼ 30; 000, m ¼ 0.01. The individual solutions are characterized by the initial value of the
dilaton, given respectively by the values ϕ0 ¼ 4.6297956230, 6.2498081147, 6.5411315634, 6.9914512133. Solutions with larger ϕ0

display a more intricate field evolution, containing oscillations of the fields.

FIG. 13. The Euclidean action, as a function of τ (left plot) and a graph with the asymptotic values (right plot), for the solutions shown
in Fig. 12. Surprisingly, the action decreases as the field evolutions become more involved.
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The first impression that one obtains is that, unlike for
generalized GS-type wormholes, the behavior is qualita-
tively similar for different β values. In this case, no
solutions exist at zero mass, hence we do not expect
(and do not see) branches connecting to the vertical axis.
However, at sufficiently large m2N branches of solutions
develop, starting at values at which a gap in the effective
potential WðϕÞ appears, in analogy with the GS-type
solutions and as discussed in connection with Fig. 3.

These branches then continue in a rough zigzag fashion
toward larger ϕ0 values. As they do so, the solutions
become progressively more intricate, developing inflection
points and then additional oscillations. The dashed lines
indicate parameter regions where an additional minimum in
the scale factor exists, and one should picture the branches
as continuing upwards indefinitely, with the solutions
containing ever greater numbers of oscillations.
Two examples of series of solutions, which show how

additional features form, are provided in Figs. 17 and 18. In
the first case, we see how the dilaton starts changing its
initial direction of evolution. In the second case, we see
how an additional minimum in the scale factor develops.
In both series, it is again made manifest that additional
features lower the action.
One feature which we have not mentioned yet is that for

large enough dilaton coupling (approximately β > 1.3) a
second branch of solutions forms, see the examples with
β ¼ 1.4, 1.5 in Fig. 16. These additional branches are again
bifurcating, ending on both sides at the locations where the
effective potential stops developing a gap. The expanding
wormhole solutions belonging to these branches are how-
ever very similar to those in the first branch. In fact, we
already saw examples of solutions belonging to a second
branch in Figs. 14 and 15—these were the solutions with
ϕ0 ≈ 2.89, 2.97. These figures indicate that the various

FIG. 14. Expanding wormholes with dilaton coupling β ¼ 1.4 and m2N ¼ 3.525. The initial dilaton values are ϕ0 ¼ 2.7593083935,
2.8947797102, 2.9770027664, 4.8514743456, 4.9204400124.

FIG. 15. The Euclidean action of the solutions shown in Fig. 14. Once again, the solutions with additional oscillations have lower
Euclidean action.

FIG. 16. Summary plot of the existence of expanding worm-
holes, as a function of the mass/charge combination m2N and the
initial dilaton values ϕ0, for various values of the dilaton coupling
β. A detailed description is provided in the main text.
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solutions evolve continuously with the initial value ϕ0,
and that no significant physical distinction between the
branches is noticeable. We should also highlight that there
appears to exist no upper bound on the dilaton coupling β.
Although solutions do become harder to find numerically at
large β, we see no evidence for any obstruction at large β—
for illustration, we provide an example of an expanding
wormhole with β ¼ 2 in Fig. 19. The existence of solutions
at large dilaton coupling may be of interest in string theory
models, where it is rather natural to obtain dilaton cou-
plings of order unity.
Figure 20 explores a further physical aspect of the

solutions, namely their action-to-charge ratio. As the figure

indicates, this is found to be a monotonically increasing
function of the charge N (with fixed mass m), which points
to the fact that the expanding wormhole solutions might
be nonperturbatively unstable, as it would be preferable
for a fixed charge wormhole to break up into two smaller
wormholes with combined charge equal to the original
one [22], as long as appropriate solutions with smallerm2N
actually exist (Fig. 16 indicates that if they exist, they must
contain a large number of oscillations). We should note
however that determining the rate of this process would
require knowledge of interpolating solutions linking the
initial and final configurations. We leave this topic for
future research.

FIG. 17. Transition from a solution with a monotonically evolving dilaton to a solution with an oscillating dilaton, with parameter
values β ¼ 1.2 and N ¼ 30;000 to 27,000, the smaller values of N corresponding to the more finely dashed curves.

FIG. 18. Transition from a solution with a single minimum of the scale factor to one with two minima. The parameter values are
m ¼ 0.01, β ¼ 1.2 and N ¼ 31;000, ϕ0 ¼ 6.6921845703; N ¼ 30;000, ϕ0 ¼ 6.5411318359; N ¼ 29;000, ϕ0 ¼ 6.3756220703;
N ¼ 28;000, ϕ0 ¼ 6.1942070312; N ¼ 27;000, ϕ0 ¼ 5.9951564438 (smaller values of N correspond to more finely dashed curves).

FIG. 19. An example of a wormhole with large dilaton coupling, in this case β ¼ 2. Shown are again the scale factor (left),
dilaton (middle), and Euclidean action (right). The parameter values are m ¼ 0.01, β ¼ 2, N ¼ 73; 940 and the initial dilaton
value is ϕ0 ¼ 2.0522333714.
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Finally, we may compare GS-type and expanding worm-
holes, at fixed parameter values. This is done in Fig. 21. As
one can see in this picture, the different types of solutions
exist at nearby initial values of the dilaton, and in fact even
the values of the Euclidean action are intertwined. Overall,
the simplest solution, i.e., the GS-type solution with
monotonically evolving dilaton, appears to have the lowest
action. However, as we cannot extrapolate our results to
large numbers of oscillations in the fields, it remains an
open question whether this solution is truly the most
dominant one. At larger values of the dilaton coupling,

we already know that the simplest solution is not the one
with the lowest action, cf., Fig. 7. This is an interesting
puzzle requiring future work, and we will provide some
comments related to this question in the discussion section.

IV. AXION-SCALAR WORMHOLES LEADING
TO EXPANDING BABY UNIVERSES

In the previous section, we saw that the dilaton coupling
had a significant effect on the existence and properties of
wormhole solutions. One might wonder if solutions also
exist without the special dilatonic coupling, i.e., in the
presence of an ordinary scalar field. Thus we will set β ¼ 0,
but we will keep the letter ϕ to designate the scalar. The
equations of motion (7) then read

8>>><
>>>:

2aäþ ȧ2 − 1þ κa2
�
ϕ̇2

2
þ VðϕÞ

�
− κN2

a4 ¼ 0 ðacceleration equationÞ;

ȧ2 − 1 ¼ κa2
3

�
ϕ̇2

2
− VðϕÞ

�
− κN2

3a4 ðFriedmann constraintÞ;
ϕ̈þ 3ȧ

a ϕ̇ ¼ dV
dϕ ðscalar equationÞ:

ð31Þ

FIG. 20. The action-to-charge ratio for expanding wormholes
with β ¼ 1.2. The dashed line represents solutions that contain a
second minimum in the scale factor, cf., also the β ¼ 1.2 locus in
Fig. 16. In all cases, the action-to-charge ratio increases with
increasing charge.

FIG. 22. Symmetric double well potential for the parameter
values λ ¼ 0.01 and v ¼ 0.4.

FIG. 21. This figure compares GS-type and expanding wormholes, at the same parameter values m2N ¼ 3 and dilaton coupling
β ¼ 1.2. The GS-type solutions are depicted by the black (ϕ0 ≈ 0.7) and gray (ϕ0 ≈ 5.5) lines. These solutions were already presented in
Fig. 4. The blue (ϕ0 ≈ 4.6) and red (ϕ0 ≈ 6.2) curves correspond to expanding wormholes, and were shown in Fig. 12. Interestingly, the
actions are seen to be quite close to each other, with the gray solution lying in between the two expanding wormhole solutions. It appears
that overall the black GS-type solution is dominant, but a verification of this assertion would require an understanding of the infinite
oscillation limit of expanding wormholes.
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We will choose the scalar field potential to be of double
well form

VðϕÞ ¼ 1

4
λðϕ2 − v2Þ2; ð32Þ

where λ is a dimensionless scalar field self-coupling and v
is the vacuum expectation value, see Fig. 22. The self-
coupling λ may be scaled to any convenient value using the
rescalings detailed in Appendix B.3

The scalar field equation in (31) possesses a simple
mechanical analogy as the motion of a “particle” in
an inverted potential −V, under the velocity dependent
friction force,

Ffriction ¼
3ȧ
a
ϕ̇: ð33Þ

We see that the friction coefficient could be positive or
negative depending on the sign of ȧ. Since we are looking
for asymptotically flat solutions, the scalar field should
approach one of the vacua as τ → ∞. Without loss of
generality we choose this to be the left vacuum, ϕ ¼ −v.
A particle released with zero velocity will get a chance to
reach this vacuum only if it starts at some ϕ0 ∈ ½0; v�. Put
differently, the potential barrier is required in order to make

the scalar field roll in the appropriate direction after starting
with zero velocity. Moreover, the potential minimum is
required in order to stabilise the field asymptotically and
to approach flat spacetime. For this purpose a single
minimum would be enough, but for simplicity (scarcity
of free parameters) we choose a symmetric potential here.
Typically if ϕ0 is very close to v we get “overshooting,”
since for small τ the scale factor derivative ȧ < 0 and we
have antifriction. Generally with the simple integration of
Eq. (31) we can conclude that the work of the friction force
has to be compensated by the potential energy [27,34],

3

Z
∞

0

dτ
3ȧ
a
ϕ̇2 ¼ −Vðϕ0Þ: ð34Þ

The conditionΔ > 0 implies for our symmetric double well
potential that:

4 − κ3N2
λ2

16
ðϕ2

0 − v2Þ4 > 0

⇔ ðϕ2
0 − v2Þ4 < 64

κ3N2λ2

⇔ v2 − ϕ2
0 <

2
ffiffiffi
2

p

κ3=4
ffiffiffiffiffiffi
Nλ

p : ð35Þ

For ϕ0 ∈ ½0; v�, this means that we are restricted to a range
of values:

FIG. 23. An example of an expanding wormhole supported by a large axionic charge, and a scalar field in a double well potential. The
parameters used are λ ¼ 0.01, N ¼ 100000, v ¼ 0.4. The initial scalar field value is ϕ0 ¼ 0.27112946714882599307. The orange lines
provide the GS wormhole values as reference.

FIG. 24. An example of an expanding wormhole supported by a small axionic charge. The parameters used are λ ¼ 0.01, N ¼ 1000,
v ¼ 0.4. The initial scalar field values is ϕ0 ¼ 0.26235021388116072967.

3Euclidean solutions in the presence of a double well potential
were also studied in, e.g., [32,33].
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 −

2
ffiffiffi
2

p

κ3=4
ffiffiffiffiffiffi
Nλ

p
s

< ϕ0 < v: ð36Þ

For each set of parameters ðv; NÞ, a wormhole solution is
found by fine-tuning the value of ϕ0 between undershoot-
ing and over-shooting values. This implies that, if for the
minimal value allowed by the condition (36),

ϕmin
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8=ðκ3=2NλÞ

qr
; ð37Þ

we have over-shooting, then there will not exist any
wormhole solutions. Conversely, if ϕ0 ¼ ϕmin

0 leads to
undershooting, then there will necessarily exist a wormhole
solution. Therefore, for each value of v, the above criterion
defines an upper bound on the value of N for which a
wormhole solution exists.
Note also that in the symmetric potential Eq. (32) no

GS-type wormholes exist with nontrivial scalar field. This
conclusion can be easily reached by noting that GS-type
wormholes have positive ȧ, and consequently provide
friction in the scalar field equation. So, in order for the

solution to end up on one of the hills (vacua) for τ → ∞ one
should start rolling down from higher hill, in order to
overcome friction, but in a symmetric potential there is no
higher hill. We conclude that the only known GS worm-
holes in this potential arise with a trivial scalar field
configuration ϕ ¼ �v.
For the reasons just given we will rather look for

wormholes that have a local maximum at the throat, that
is to say wormholes that lead to expanding baby universes
after analytic continuation to Lorentzian time. The first
examples are shown in Figs. 23 and 24, for a large and a
small axionic charge respectively. Compared to the dila-
tonic case, we see that the local maximum at the origin is
much more pronounced, and even more so for the small
charge solution. The minimum value of the scale factor is
found to coincide rather precisely with the GS value (by
which we mean the throat size of a GS wormhole, with the
scalar residing at a potential minimum), indicated by the
orange lines in the figures. In fact, as the charge grows,
the initial throat size is reduced, and one may infer that the
solutions with larger charge approach GS-type solutions
more and more. This is confirmed by a study of the initial
throat size as a function of the charge, shown for various
potential widths in Fig. 25.
The Euclidean action for these solutions is shown in

the right panels of Figs. 23 and 24, as a function of the
radial coordinate. One thing we may notice is that it starts
off by obtaining negative contributions near the throat.
Further away from the throat, as the scalar potential
becomes less important (since the scalar approaches the
vacuum), the action receives positive contributions.
Which contributions dominate depends rather crucially
on the axionic charge: the large charge solution ends up
having a positive action (in this case larger than the GS
value), while the small charge wormhole has a negative
Euclidean action. As we will discuss further below, this
suggests that only large charge wormholes might be of
physical relevance.
Figure 26 shows the action-to-charge ratio for two

different potential widths. Just as for the dilatonic case,
this ratio is a monotonically increasing function of the

FIG. 26. Plots of the action-to-charge ratio for v ¼ 0.4 (left) and v ¼ 0.6 (right) with λ ¼ 0.01.

FIG. 25. Wormhole throat size a0 vs N for the parameter
values λ ¼ 0.01 and v ¼ 0.4, 0.5, 0.6, 0.7, 0.8 (going down in
the plot). At large N all curves tend to the GS value, shown here
by the blue curve.
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charge, indicating that such wormholes could break up
nonperturbatively into smaller components.
In this theory there also exist solutions with additional

oscillations in the fields, a property first observed in [35],
see the example in Fig. 27. As one can see there, each
oscillation simply adds to the previous solution. That is to
say, the solutions with additional oscillations do not display
completely different field evolutions, but rather seem to be
extensions of solutions with fewer oscillations. As one can
also clearly see in the right panel, each oscillation adds a
positive contribution to the action, rendering it larger and
larger. This implies that oscillating solutions are associated
with a lower probability, which is physically reasonable
(and differs from the dilatonic case).
In this theory it turns out that the existence of solutions

as a function of the axionic charge N is simpler than in
the dilatonic case, see Fig. 28. The initial ϕ0 values lie on
monotonic curves. However, the Euclidean action has more
notable features, see the right panel in the figure. What
jumps out most clearly is that the Euclidean action varies
essentially linearly with the charge N, though it is not
proportional to it. Also, the action is larger than the GS
value at sufficiently large N, but decreases significantly at
smallN and even reaches negative values, as noticed before
in the example of Fig. 24.

The overall structure of the solutions is summarized from
a different point of view in Fig. 29, as a function of the
charge and the potential width. Solutions exist below the
blue line, have action smaller than GS below the green line,
and negative action below the red line. Thus, although
solutions exist over vast regions of parameter space, it is
only in the narrow band between the red and blue lines that

FIG. 27. Comparison of solutions with one, two and three minima for the same theory parameters N ¼ 25; 000, λ ¼ 0.01 and
v ¼ 0.5. The Euclidean action grows with each additional oscillation. The solutions here are specified by initial scalar field
values that lie very close to each other, respectively at ϕ0 ¼ 0.297695980172969317414540, 0.297530409785421517546558,
0.297530409646648251937091 (these solutions must be optimized to high accuracy in order to determine the action reliably).

FIG. 28. Summary plots for v ¼ 1.0 (black), v ¼ 0.9 (purple), v ¼ 0.8 (turquoise), v ¼ 0.7 (green), v ¼ 0.6 (pink), and v ¼ 0.5 (blue).
Here λ ¼ 0.01. The right plot shows the most striking result, namely that the action varies linearly with the charge N. For small enough
charge, the action becomes negative. The dashed black line is the Giddings-Strominger value of the action.

FIG. 29. Existence of expanding wormhole solutions in a
double well potential with width v, and for axionic charge N.
Results for v∈ ½0.2; 1.5� have been incorporated. Here λ ¼ 0.01.
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we expect to find physically relevant solutions. Especially
in the even narrower band between the red and green lines,
we may even expect these solutions to play an important
role, as they have higher probabilities associated to them
than the corresponding GS wormholes.

V. CONCLUSIONS

We have investigated axion-gravity systems coupled
either to a massive dilaton or to a scalar field in a double
well potential. In these models we found a whole zoo of
wormhole solutions, both generalizations of Giddings-
Strominger solutions and what we termed expanding
wormholes. The former are characterized by the throat
of the wormhole being a local minimum of the geometry,
while the latter have a local maximum at the throat and a
minimum (or even several minima) further along the
geometry. The expanding wormholes thus have a wineglass
shape, which implies that after analytic continuation
to Lorentzian time, they lead to expanding (rather than
contracting) baby universes.
In the scalar field case, we found that the presence of a

potential barrier was essential in obtaining wormhole
solutions. It is interesting that the existence of a potential
barrier was also essential in the recent study, by two of us,
of scalar lumps with horizons [36,37], which are solutions
that are relevant to gravitational tunneling phenomena, in
particular black hole seeded vacuum decay [38,39]. It
would be important to see if suitable potential barriers
can be obtained in string theoretic models. And, as for the
scalar lumps, it would be worthwhile extending the worm-
hole solutions presented here to different asymptotics, in
particular to quasi–de Sitter asymptotics.
The physical meaning of these classical wormhole

solutions lies in the role they play in quantum gravity,
namely as saddle points of functional integrals. It is clear
that in order for a classical solution to be valid, its
associated saddle point must have a large action,
SE ≫ ℏ. In the scalar field case, we found solutions with
large action, but we also saw that the action can become
small and even turn negative. Here, we may speculate that
once the Euclidean action turns negative, the solution may
no longer represent a relevant saddle point. This issue will
however depend on the contours of integration of the
gravitational path integral [40]. It is a general property that
a saddle point can only approximate a path integral if its
weighting is smaller than the weighting of the geometries
that are included in the definition of the integral. Hence,
if the gravitational path integral is defined as summing
over Lorentzian (pseudo-Riemannian) manifolds, which
all have zero Euclidean action, then wormholes with
negative Euclidean action (and thus larger weighting than
Lorentzian geometries) will simply play no role [41,42].
However, we should point out that the definition of
gravitational path integrals is still very much under debate
(for recent discussions see [43–45]).

Experience with metastable vacuum decay shows that
there are three types of Euclidean solutions with finite
action: instantons [46], bounces [47] and oscillating boun-
ces [31]. Instantons interpolate between vacua in a sym-
metric double well potential, have at most zero modes and
describe the mixing of these vacua. Proper bounces in an
asymmetric double well have a single negative mode in
their spectrum of linear perturbations [48,49], and they
describe metastable vacuum decay [50]. Oscillating boun-
ces interpolate between vacua several times, have multiple
negative modes [51,52] and their role in vacuum decay
remains somewhat obscure. The important question is to
which class Euclidean wormholes belong and how we
should interpret them. There are several claims in the
literature: it was shown in [53] (see also [54,55]) that the
GS wormhole has a single negative mode in the lowest
(homogeneous) sector. This statement was disproved
in [18], where it was shown that with the proper choice
of variables there are no homogeneous negative modes
about GS wormholes. Later it was claimed that axionic
Euclidean wormholes have multiple negative modes with
higher angular harmonics [13]. And recently this claim was
disputed [14] and it was demonstrated that GS wormholes
do not have negative modes at all. We should point out that
all of these studies concerned GS wormholes, and that the
stability analyses so far included only the axion-gravity
system and its fluctuations, without extra fields.
To make progress, it will be important to incorporate the

additional scalar or dilaton field. Our findings suggest that
the stability analysis will be more involved in those cases.
In particular, in the massive dilaton theory we found several
different classes of solutions: there are the wormholes
continuously connected to GS wormholes for small m2N
and solutions with a “mass gap” which exist only above
some minimal m2N value (and which also exist at large
dilaton couplings β > βc). The latter arise at a bifurcation
point. We also found expanding wormhole solutions, which
are disconnected from GS wormholes, and also feature
bifurcation points. Typically at such bifurcating points the
stability properties of solutions change—one branch usu-
ally picks up an additional negative mode [56]. Let us recall
here that negative modes signal that the solution under
consideration is not a true minimum of the action, and that
the action can be lowered (and the solution made more
relevant) by deforming it in the direction indicated by the
negative mode. The puzzling aspect in our case is that we
find that typically solutions that have a more complicated
field evolution actually have a smaller Euclidean action.
The other way around would have appeared more plausible,
with negative modes being associated with the extra
features. Here, at least naively, it appears that there should
be extra negative modes associated with the simpler field
evolutions which, if true, would mark a surprising contrast
with the purely axionic case. Clearly, an explicit linear
stability analysis will be necessary to clarify this question.
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This will hopefully also elucidate the meaning of the multi-
oscillation wormholes we have found.What might be helpful
in addition would be to connect the stability analysis with
catastrophe theory, which is a natural mathematical frame-
work for describing such bifurcating behavior.
We leave these intriguing questions for future

investigation.
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APPENDIX A: EMBEDDING DIAGRAMS

In order to visualise wormholes it is convenient to use
embedding diagrams [57]. Choosing the h ¼ 1 gauge in
our ansatz (3), and fixing two angular variables on a unit
sphere dΩ properly, we obtain a two dimensional space
described by the wormhole metric:

ds2 ¼ dτ2 þ aðτÞ2dχ2; ðA1Þ

where χ ∈ ½0; 2π� is the angular variable remaining. We
want to embed this two dimensional surface in a three
dimensional flat Euclidean space with cylindrical coordi-
nates fZ; R; χg:

ds2 ¼ dZ2 þ dR2 þ R2dχ2; ðA2Þ

If the embedded surface is described parametrically by
fRðτÞ; ZðτÞg, then the metric (A2) takes the form:

ds2 ¼ ðŻ2 þ Ṙ2ÞdR2 þ R2ðτÞdχ2: ðA3Þ

Comparing (A3) with the wormhole metric (A1), we
conclude that

Ż2 þ Ṙ2 ¼ 1; RðτÞ ¼ aðτÞ: ðA4Þ

Thus we can express Z as

ZðτÞ ¼
Z

τ

0

dτ̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ȧ2ðτ̃Þ

q
: ðA5Þ

Then a revolution plot faðτÞ; ZðτÞg gives the wormhole
visualization as shown in Fig. 2.

APPENDIX B: SCALING OF PARAMETERS

Let us count how many free parameters we have.

(1) Massive dilaton: we may specify the wormhole
charge to coupling ratio q=f (or N), the dilaton
mass m and the dilatonic coupling constant β.

(2) Scalar field with double well potential: the action is
specified by the wormhole charge to coupling
ratio q=f (or N) and the two potential parameters
λ and v.

Under the following rescaling of the fields

ϕ →
ϕffiffiffi
κ

p ; a →
a
μ
; h →

h
μ

ðB1Þ

and of the coupling constants to dimensionless variables

q→
q

μ2
ffiffiffi
κ

p ; m→μm; v→
vffiffiffi
κ

p ; λ→μ2κλ; ðB2Þ

the dependance on μ and κ is removed from the equations of
motion and the action scales as

S →
1

κμ2
S ¼ 1

μ2=M2
Pl

S; ðB3Þ

where μ is an arbitrary mass scale. In practice, while
searching for solutions this scaling freedom allows us to fix
one parameter (e.g., m or N in the first theory and λ or N in
the second theory) and vary the rest.

APPENDIX C: NUMERICAL ESTIMATION OF
WORMHOLE ACTION

For numerical calculations we can divide the wormhole
action into two pieces

SE ¼ 2π2
Z

τ�

0

dτ

�
2N2e−βϕ

ffiffi
κ

p

a3
− a3V

�

þ 2π2
Z

∞

τ�
dτ

�
2N2e−βϕ

ffiffi
κ

p

a3
− a3V

�
≡ SnumE þ ScorrE ; ðC1Þ

where the first part is calculated numerically from τ ¼ 0
to some big τ ¼ τ� and the second part can be analyti-
cally estimated as follows. Since we are interested in
asymptotically flat solutions, aðτÞ → τ as τ → ∞, the
scalar field should go asymptotically to its “vacuum”
value: ϕ ¼ −v in the scalar field case and ϕ ¼ 0 in the
dilaton case. In this setup the leading behavior of the
solution of the scalar equation Eq. (7) can be obtained
analytically and has the form:

ϕðτÞ ¼ βN2
ffiffiffi
κ

p
M2τ6

þ C1

e−Mτ

τ3=2
þ C2

eþMτ

τ3=2
þ � � � ; ðC2Þ
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where the dots denote corrections of higher order in 1=τ,
while M is

ffiffiffiffiffi
2λ

p
v in the case of the scalar field and is m in

the case of the massive dilaton. It is clear that for a
regular solution the last, exponentially growing term
should be absent. This can be achieved by adjusting
the initial value of the scalar field, while C2 ∝ ðϕ̄0 − ϕ0Þ,
where ϕ̄0 is the initial value of the scalar field of the

actual regular solution. Using this fact we can estimate
ScorrE as

ScorrE ¼ 2π2N2

τ2�
þ � � � ; ðC3Þ

where the dots now denote corrections that are exponen-
tially small and proportional to β=τ8�.
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