
Curvature effects in the spectral dimension of spin foams

Alexander F. Jercher ,1,3,4,* Sebastian Steinhaus,1,† and Johannes Thürigen 2,‡

1Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena
Max-Wien-Platz 1, 07743 Jena, Germany, EU

2Mathematisches Institut der Westfälischen Wilhelms-Universität Münster
Einsteinstraße 62, 48149 Münster, Germany, EU

3Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München
Theresienstrasse 37, 80333 München, Germany, EU

4Munich Center for Quantum Science and Technology (MCQST)
Schellingstrasse 4, 80799 München, Germany, EU

(Received 7 June 2023; accepted 29 August 2023; published 14 September 2023)

It has been shown in [S. Steinhaus and J. Thürigen, Phys. Rev. D 98, 026013 (2018)] that a class of
restricted spin foam models can feature a reduced spectral dimension of space-time. However, it is still an
open question how curvature affects the flow of the spectral dimension. To answer this question, we consider
another class of restricted spin foam models, so-called spin foam frusta, which naturally exhibit oscillating
amplitudes induced by curvature, as well as an extension of the parameter space by a cosmological constant.
Numerically computing the spectral dimension of one-periodic frusta geometries using extrapolated
quantum amplitudes, we find that quantum effects lead to a small change of spectral dimension at small
scales and an agreement to semiclassical results at larger scales. Adding a cosmological constant Λ, we find
additive corrections to the nonoscillating result at the diffusion scale τ ∼ 1=

ffiffiffiffi
Λ

p
. Extending to two-periodic

configurations, we observe a reduced effective dimension, the form of which sensitively depends on the
values of the gravitational constant G and the cosmological constant Λ. We provide an intuition for our
results based on an analytical estimate of the spectral dimension. Furthermore, we present a simplified
integrable model with oscillating measure that qualitatively explains the features found numerically. We
argue that there exists a phase transition in the thermodynamic limit which crucially depends on the
parameters G and Λ. In principle, the dependence on G and Λ presents an exciting opportunity to infer
phenomenological insights about quantum geometry from measurement of the spectral dimension.

DOI: 10.1103/PhysRevD.108.066011

I. INTRODUCTION

Deriving observable consequences is crucial for under-
standing the structure of any quantum theory of gravity and
of quantum space-time itself, especially when formulated
using discrete structures, such as in the approaches of loop
quantum gravity [1,2], spin foams [3], tensorial group field
theories [4–6], causal dynamical triangulations [7,8], and
causal set theory [9,10]. The spectral dimension, derived
from the spectrum of the Laplacian on quantum space-time,
has proven to be an informative phenomenological quantity.
This observable provides a notion of an effective

dimension of emergent space-time on different scales.
On the one hand, it allows for a consistency check that the
space-times obtained from quantum gravity exhibit the
observed dimension ofD ¼ 4 at large length scales. This is

already highly nontrivial as various approaches only yield
fractal or two-dimensional geometries [11,12]. On the
other hand, new small-scale effects beyond classical
continuum gravity, sourced by the quantum nature of
space-time, can be examined. Most prominently, a dimen-
sional flow to values 0 < D < 4 at small scales is an effect
present in many quantum gravity approaches [13–28],
possibly leaving observable traces in gravitational wave
astronomy [29]. In any case, this phenomenon is interest-
ing as it allows us to compare conceptually different
approaches at small scales. Investigating the existence
and structure of such a dimensional flow in spin foam
quantum gravity [3], specifically using the restricted
setting of spin foam frusta models [30,31], is the main
objective of this article.
Spin foam models provide a path integral quantization

of discretized geometries where the microscopic gravita-
tional degrees of freedom are encoded in group represen-
tation labels and intertwiners. Although model defining
amplitudes are defined rigorously and consistently on the
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quantum level, challenges remain to turn spin foam quan-
tum gravity into a consistent computational formalism.
While there is a clear relation to semiclassical discrete
gravity on a local level [32–35], exploring the semiclassical
regime of extended discrete structures is a subject of active
research [36–42]. Moreover, a consistent quantum theory of
gravity needs to be independent of any discretization chosen
in the quantization procedure. Discretization independence
of spin foams can be attained either in the group field theory
formalism [4–6] or via a spin foam renormalization pro-
cedure [43–45]. Furthermore, in recent years, there has been
promising progress in numerical methods [46] that tackle
the challenge of performing calculations in spin foams from
different angles [35–39,41,42,47–51]. Defining and explic-
itly computing the spectral dimension in spin foam models
makes contact with these open questions and serves as a
coarse characterization of the quantum space-times obtained
therein.
A first attempt to determine the spectral dimension Ds of

spin foams in [13] has been in the setting of spin foam
cuboids [51–54], a restricted subclass of the Euclidean
Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL-FK)
model [55,56] defined within the Kaminski-Kisielowski-
Lewandowski extension to general two-complexes [57].
Therein, a restriction to N -periodic geometric configura-
tions proved crucial for numerically feasible calculations.
At finite N , the spectral dimension shows an intermediate
value which depends on the choice of a face amplitude
parameter α. In the limit N → ∞, the analytical results
of [13] suggest that there is a phase transition from Ds ¼ 0
to Ds ¼ 4 at the point α� where the amplitudes become
scale invariant.
Although an important step towards control of the

spectral dimension of spin foam quantum gravity, the results
on spin foam cuboids [13] come with two major limitations.
First, the spectral dimension is computed utilizing semi-
classical amplitudes which capture only the large scale
behavior correctly. Second, and most importantly, spin foam
cuboids are inherently flat, reflected in the fact that the
semiclassical action vanishes on critical points. As a
consequence, cuboid amplitudes exhibit a simple semi-
classical scaling behavior without curvature-induced oscil-
lations. Overcoming these limitations is the main purpose of
the present work.
Since the spectral dimension for the full EPRL-FK model

currently exceeds computational capacities, we choose the
so-called spin foam frusta model, introduced in [30] and
further examined in [31,51,58], to include curvature effects
and a nonvanishing cosmological constant. Though the
underlying combinatorial structure is a hypercubic lattice,
the intertwiners of the theory are restricted in such a way
that the four-dimensional building blocks semiclassically
describe four-frusta. These building blocks can be under-
stood as a four-dimensional generalization of regular
trapezoids, with three-cubes as base and top connected

by six boundary three-frusta. It has been shown in [30] that
semiclassical spin foam frusta exhibit curvature if the three-
cubes are of different size. Because of their strongly
restricted geometry, frusta exhibit a discrete analogue of
spatial homogeneity. Thus, frusta are promising candidates
for a cosmological subsector of spin foam models [30]. At
the same time, this homogeneity leads to simplifications of
the Laplace operator, providing a feasible setting for
numerical computations of the spectral dimension.
Extrapolating one-periodic frusta quantum amplitudes

and computing the spectral dimension therewith, we dis-
cover a nontrivial flow of the spectral dimension, exhibiting
an intermediate value which is controlled by the face
amplitude parameter α. Compared to a semiclassical
analysis, the quantum amplitudes lead to an additive
correction to the spectral dimension at small scales.
Adding a cosmological constant Λ and thus introducing
oscillations to the amplitudes, we find additive corrections
to the spectral dimension at diffusion scales τ ∼ 1=

ffiffiffiffi
Λ

p
.

Supported by analytical calculations, we can explain these
effects from quantum amplitudes and Λ-oscillations in
terms of an effective scaling behavior of the amplitudes.
For two-periodic frusta amplitudes we observe an intricate
dependence of the dimensional flow on Newton’s constant
G and Λ, showing the significant role of curvature. On
these grounds, we argue for a phase transition in the large-
N limit that crucially depends on the parameter values of
α, G, and Λ.
We begin this article by setting up the spin foam frusta

model, its semiclassical limit, and by defining the Laplace
operator on frusta geometries. Thereafter, we present the
concept ofN periodicity, which has been introduced already
in [13] and provide the formulas for computing the quantum
spectral dimension. In Sec. III, we provide a method to
extrapolate one-periodic quantum amplitudes. Using the
resulting extrapolated amplitudes, we compute the one-
periodic spectral dimension in Sec. IVA. Proceeding with
semiclassical amplitudes, we extend the analysis of the
spectral dimension to include a cosmological constant in
Sec. IV B and finally to two-periodic configurations in
Sec. IVC. Based on the analytical estimate of the spectral
dimension presented in Sec. IVD, we provide a broader
discussion of our results in Sec. Vand give and conclude our
work in Sec. VI with an outlook on possible future studies.

II. SPIN FOAM HYPERFRUSTA
AND THE SPECTRAL DIMENSION

In this section we provide a brief introduction to the
setting of the present work and, in particular, define the
spectral dimension as a spin foam observable. Giving first
the relevant formulas for classical hyperfrusta, we introduce
spin foam frusta as restrictions of the Euclidean EPRL-FK
model. Thereafter, we set up the classical spectral dimension
in a discrete setting and translate these ideas to spin foam
hyperfrusta.
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A. Spin foam frusta

In the present work, we employ the Euclidean EPRL-
FK model [55,56] with a Barbero-Immirzi parameter
γBI < 1. Originally defined on a two-complex Γ dual to
a triangulation, this model was later generalized to
arbitrary two-complexes [57,59], which includes, in par-
ticular, the hypercuboidal structure we intend to work
with. In the following, we introduce all the defining
ingredients of the EPRL-FK model.

1. Definition of spin foam frusta

Given a two-complex Γ with vertices v, edges e, and
faces f, we associate to it the following partition function:

Z ¼
X
jf;ιe

Y
f

Af

Y
e

Ae

Y
v

Av: ð2:1Þ

The variables jf denote irreducible SU(2) representations,
frequently referred to as spins, and are assigned to the faces
f of Γ. The ιe are SU(2) intertwiners, i.e., elements in the
invariant subspace of the tensor product of representations
meeting at the edge e. Af, Ae, and Av are the face, edge,
and vertex amplitudes, respectively, and we define them in
the following.
Characteristic for Euclidean gravity, the local gauge group

is SO(4), or its double cover Spinð4Þ ≅ SUð2Þ × SUð2Þ,
with SU(2) being a subgroup. A distinctive property of the
Euclidean EPRL-FK model is the simplicity constraint
which provides an embedding YγBI of SU(2) into Spinð4Þ
representations [55]. For γBI < 1, the explicit relation
between SU(2) spins j and Spinð4Þ labels ðjþ; j−Þ is
given by

j� ¼ j1� γBIj
2

j∈
N
2
; ð2:2Þ

with the condition that the j� are half-integers. For this map
to be nonempty, γBI is required to be rational. Given a certain
range of spins with Nspin configurations in total, only a
certain number NðγBIÞ is allowed.1 A plot for the ratio of
NðγBIÞ and Nspin is given in Fig. 1.
Different face amplitudes are proposed in the literature,2

the choice of which has direct consequences for the critical
behavior of the partition function [61], as well as the
spectral dimension [13]. We parametrize this ambiguity by
α∈R as

AðαÞ
f ¼ ðð2jþf þ 1Þð2j−f þ 1ÞÞα: ð2:3Þ

The edge amplitude of the model is introduced as a
normalization factor

Ae ¼
1

kYγBI ιek2
ð2:4Þ

and the vertex amplitude is defined as

Av ¼ Tr

�
⊗
e⊂v

YγBI ιe

�
; ð2:5Þ

where the trace is understood so that either ðYγBI ιeÞ or
ðYγBI ιeÞ† is contracted, depending on the edge e being
ingoing or outgoing from the vertex v, respectively.
With the general definition of the model being set up, we

now introduce two restrictions on the partition function,
being of combinatorial and geometrical kinds. First, we
assume that the two-complex Γ and thus also the
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FIG. 1. Ratio of the number N of allowed configurations and the
total number of spins Nspins for rational Barbero-Immirzi param-
eters γBI ¼ p

q with q∈ f1; 2;…; 50g and p∈ f1; 2;…; q − 1g.

1The ratio NðγBIÞ=Nspin for γBI ¼ p
q ∈Q is either 1=q or 1=2q

depending on whether q� p is even or odd which explains the
asymmetry in Fig. 1 (e.g., for q ¼ 5 we have ratio 1=5 for p ¼
1; 3 while 1=10 for p ¼ 2; 4). More precisely, let q∈N and
p∈ f1; 2;…; q − 1g but p⊥q (coprime, otherwise there are
smaller p0; q0 with γBI ¼ p

q ¼ p0
q0 to be considered). Then the

EPRL condition equation (2.2) yields q�p
2q n∈N. Write q�p

2q ¼ r
s

with r⊥s. Then the condition is fulfilled if ns ∈N, that is, for every
s’s spin. Thus, the ratio is N=Nspins ¼ s and there are two cases
for given q, either s ¼ q or s ¼ 2q. To see this, note first that
qþ p⊥2q iff 2q − ðqþ pÞ ¼ q − p⊥2q, thus the two cases
�γBI give the same s. Then, qþ p and 2q have a common divisor
iff qþ p is even in which case s ¼ q and this happens for every
second p for a given q.

2Following [60], the two most common choices for the face
amplitude in the Riemannian setting are either the dimension of
the Spinð4Þ representation or the dimension of the SU(2)
representation. Viewing the Euclidean EPRL-model as a con-
strained Spinð4Þ-BF theory, the dimension factor is a result of
expanding δ distributions on Spinð4Þ in terms of representations.
Choosing the SU(2) dimension instead can be motivated physi-
cally, as argued in [60]. The two choices correspond to α ¼ 1 and
α ¼ 1

2
, respectively. Clearly, the parametrization of Eq. (2.3)

constitutes a continuous interpolation between these two choices.
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discretization is hypercubic. As we will see later in Sec. II
B 1 and Sec. II B 2, respectively, the choice of a hypercubic
lattice is convenient for defining a discrete Laplace operator
as well as for considering periodic configurations. Notice,
that this choice of combinatorics does not imply a reduction
to hypercubic geometries.
On the geometrical side, we introduce the restriction to

regular four-frustum geometries [30]. The boundary of
such configurations consists of two cubes of a priori
different size and six equal three-frusta. It is therefore
reasonable to impose a three-frustum shape on the Livine-
Speziale coherent intertwiners [62], since these objects are
naturally peaked on the geometry of three-dimensional
polyhedra.3 An explicit expression for three-frustum inter-
twiners is given by

ιj1j2j3 ¼
Z
SUð2Þ

dgg⊳
�
jj1; ê3i⊗ jj2− ê3i⊗

3

l¼0
jj3; r̂li

�
; ð2:6Þ

where the case j1 ¼ j2 ¼ j3 reduces ιj1j2j3 to a cubical
intertwiner [63]. In Eq. (2.6), “⊳” denotes the action of an
SU(2)-group element on coherent states in representation
space, ê3 is the unit vector in R3 along the axis e3 and

r̂l ¼ e−i
π
4
lσ3e−i

ϕ
2
σ2⊳ê3 for l∈ f0; 1; 2; 3g. A depiction of a

regular three-frustum is given in Fig. 2.
A semiclassical three-frustum can be understood as the

generalization of a regular trapezoid to three dimensions,
characterized by three areas j1, j2, and j3 of the base and
top square and of the bounding trapezoids, respectively.
Another convenient parametrization is given by j1, j2 and
the slope angle ϕ. The relation between the spins and ϕ is
given by

cosðϕÞ ¼ j1 − j2
4j3

; ð2:7Þ

which follows from the closure condition. Clearly, for the
slope angle to be well defined, the condition −1 ≤ j1−j2

4j3
≤ 1

is required to hold.
Gluing two cubes and six three-frusta as indicated above,

one obtains a four-dimensional hyperfrustum. The two
three-cubes lie in separated spatial hypersurfaces at the base
and top, connected by the six three-frusta. A visualization
of the unwrapped boundary of a single four-frustum is
given in Fig. 3.
As a whole complex, the discretization can be understood

as a slicing, where the nth thick slice is bounded by two
spatial hypersurfaces cubulated by three-cubes with area jn
and jnþ1, respectively, and connected by three-frusta with
spatio-“temporal” areas given by kn. Because of the gluing
conditions, the spins jn; jnþ1 and kn are constant throughout
a whole slice. Therefore, spin foam configurations of
hyperfrusta are translation invariant in spatial directions.
This implies that the volume of cubes changes only between
different spatial hypersurfaces, i.e., in temporal direction.
This makes hyperfrustum spin foams well suited for the
description of discrete classical cosmology, where we refer
to [30] for further details.

2. Asymptotics of spin foam frusta

In general, the quantum amplitudes defined by Eqs. (2.5)
and (2.4) are highly involved functions of the representation
labels. To find a suitable approximation and to obtain an
analytical expression for later purposes, we present in the
following the results of an asymptotic analysis [32,33] of
the frustum quantum amplitudes [30]. The regime of large
representation labels is interpreted as the semiclassical
sector of the theory, thereby connecting it to classical
discrete gravity [64].

FIG. 2. A regular three-frustum with squares in the e3 plane.
The slope angle ϕ is defined between e3 and the rl.

FIG. 3. Boundary of a four-frustum given by two three-cubes
of, generically, different size and six equal three-frusta.

3Notice that the frustum symmetry reduction is a restriction on
the quantum level, as it is imposed on the coherent intertwiners.
Such a procedure is distinct from a classical symmetry reduction
followed by quantization. We remark further, that lifting this
restriction is unfortunately not straightforward. As elaborated in
Sec. VI, a triangulation offers a more manageable setting to study
models with less symmetries.
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Introducing a uniform rescaling of spins, ji → λji, and
sending λ → ∞, the quantum face amplitude in Eq. (2.3) is
approximated by

Af ¼ ½ð1 − γBI
2Þj2n�α: ð2:8Þ

To find the asymptotics of the vertex and the edge amplitude
Ai, we notice the factorization property Ai ¼ Aþ

i A
−
i with

A�
i being the SU(2) amplitudes evaluated on the spins j�.

This is a result of the YγBI map entering Eqs. (2.4) and (2.5)
which holds for γBI < 1. We rewrite an amplitude A�

i as an
integral of a complex exponential of an action which scales
linearly in λ. Then one can apply an extended stationary
phase approximation [32] in the limit λ → ∞which consists
of evaluating the integrand on the critical points of the
action, multiplied by the inverse square root of the Hessian
and some factors of π. Following this procedure for the SU
(2)-vertex amplitude, one finds [30]

ASUð2Þ
v ðjn;jnþ1;knÞ¼

1

221=2π7=2

 
e

i
GSRffiffiffiffiffiffiffi
−D

p þ e−
i
GSRffiffiffiffiffiffiffiffiffi
−D�p

!
; ð2:9Þ

where D is the determinant of the Hessian, defined as

D ≔ 16j3nj3nþ1k
15
n KðK − iK2 þ iQÞ3

× ð1þ K2 − 2QÞ3ðK þ iÞ6ðK − 3iÞ2
× ð1þ 3K2 − 2Q − 2iKðQ − 1ÞÞ3; ð2:10Þ

with

Q ≔ 2þ jn þ jnþ1

2kn
; θ ≔ arccos

1

tanϕ
;

K ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− cos 2ϕ

p
: ð2:11Þ

Furthermore, SR is the Regge action [65] of a single
hyperfrustum and given by

SR ¼ 6ðjn − jnþ1Þ
�
π

2
− θ

�
þ 12kn

�
π

2
− arccosðcos2ðθÞÞ

�
ð2:12Þ

and G is the gravitational constant, which has been added
by hand as in [31].4 Given Eq. (2.9), the semiclassical
Spinð4Þ-vertex amplitude is

Av¼
1

π7ð1−γBI
2Þ21=2

 
e

i
GSR

−D
þe−

i
GSR

−D� þ2
cosðγBIG SR−Λ

GV
ð4ÞÞffiffiffiffiffiffiffiffiffiffi

DD�p
!
;

ð2:13Þ

where we have introduced a cosmological constant Λ,
following the work of [66,67]. Therein, the quantum
amplitudes are deformed in a heuristic fashion by a real
parameter which, in a semiclassical limit, can be related to a
cosmological constant of either sign. It enters with the four-
volume Vð4Þ of a hyperfrustum, defined in Eq. (2.28) below,
which is strictly positive and thus does not correspond to a
signed volume.5

Repeating the analysis, the semiclassical SU(2)-edge
amplitude is given by

ASUð2Þ
e ðjn; jnþ1; knÞ

¼ 2
ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
knsin2ðϕÞ

2
ðjn þ jnþ1 þ 2knð1 − cos2ðϕÞÞÞ2

r
:

ð2:14Þ

Consequently, the semiclassical approximation to the
Spinð4Þ-edge amplitude, Eq. (2.4), is

Ae ¼ πð1 − γBI
2Þ3=2 knsin

2ðϕÞ
2

ðjn þ jnþ1

þ 2knð1 − cos2ðϕÞÞÞ2: ð2:15Þ

For general discretizations an edge is shared by two
vertices. Special to a hypercubic lattice, every face is
shared by four vertices. These two facts allow us to define
a dressed vertex amplitude

Âv ¼
Y
f⊃v

A1=4
f

Y
e⊃v

A1=2
e Av; ð2:16Þ

such that the amplitude of the whole complex can be
written as the product of dressed vertex amplitudes.
Even in the presence of oscillations, originating from a

nonvanishing cosmological constant or a nonvanishing
Regge curvature, the dressed vertex amplitudes behave
under uniform rescaling as

Âvðλjn; λjnþ1; λknÞ ∼ λ12α−9: ð2:17Þ

Comparing Âv to the dressed vertex amplitude of spin foam
cuboids [63], we see that the this scaling is the same.
However, Âv is not a homogeneous function in the spins,

4In units where ℏ ¼ c ¼ 1, the gravitational constant has the
dimension of area. Considering the jn as mere representation
labels, only Gjn has the interpretation of an area. For the majority
of the spin foam literature, the spins are implicitly understood to
have the dimension of area and therefore implicitly depend on
G [31].

5Notice, that this positive quantity is the same quantity that
enters the definition of the Laplace operator in Eq. (2.26). The
cosmological constant term enters with a cosine in the quantum
amplitudes since the critical points correspond to the two
orientations.
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due to the two types of oscillations in Eq. (2.16), which are
not present in the case of cuboids. As a consequence, we
cannot deduce that α ¼ 3

4
is a point of scale invariance of the

frusta model.

B. Spectral dimension of spin foam frusta

In this section, we introduce the notion of spectral
dimension, first classically on semiclassical frusta geom-
etries. After restricting to so-called N -periodic configura-
tions, we set up the spectral dimension of spin foam frusta
as a quantum expectation value.

1. Spectral dimension and semiclassical
geometry of hyperfrusta

The spectral dimension serves as an effective measure of
the dimension of a space. In the continuum, consider a
Riemannian manifold ðM; gÞ together with the heat kernel
Kðx; x0; τÞ which is a solution of the heat equation [14]

∂τKðx; x0; τÞ ¼ ΔKðx; x0; τÞ: ð2:18Þ

Here, x; x0 ∈M, and τ provides a measure of the size of the
probed region, often referred to as diffusion time. The
classical spectral dimension Dcl

s ðτÞ is then extracted from
the scaling of the return probability

PðτÞ ≔
Z
M

dx
ffiffiffi
g

p
Kðx; x; τÞ; ð2:19Þ

by the relation

Dcl
s ðτÞ ≔ −2

d logPðτÞ
d log τ

: ð2:20Þ

Clearly, the return probability implicitly depends on the
metric g and therefore is a functional of the geometry. Thus,
in a quantum gravity path integral picture with partition
function

Z ¼
Z

dgeiSEH½g�; ð2:21Þ

where SEH½g� is the Einstein-Hilbert action, the expectation
value of the return probability is

hPðτÞi ¼ 1

Z

Z
dgPðτÞeiSEH½g�: ð2:22Þ

Consequently, one defines the spectral dimension as

DsðτÞ ≔ −2
d loghPðτÞi

d log τ
: ð2:23Þ

Notice, that we do not compute hDcl
s ðτÞi but define the

quantum spectral dimension as the scaling of hPðτÞi.

To translate these continuum notions to the context of
spin foams, we introduce now a discrete formulation of the
Laplace operator, the return probability, and ultimately the
spectral dimension. Assuming that the space M is dis-
cretized on a hypercubic lattice, we denote vertices in the
dual graph Γ by n⃗∈Z4. Interpreting the return probability
in Eq. (2.19) as the trace over the heat kernel, the discrete
return probability is simply given by [68,69]

PðτÞ ¼
X
n⃗∈Γ

Kðn⃗; n⃗; τÞ: ð2:24Þ

Then, one can rewrite the return probability as [69]

PðτÞ ¼
X

λ∈ specðΔÞ
e−τλ; ð2:25Þ

where specðΔÞ is the spectrum of the discrete Laplacian.
Consequently, to obtain the spectral dimension, knowledge
of the full spectrum on the whole lattice is required.
Following [68], the notion of an exterior derivative and a

Laplace operator can be defined on general cellular com-
plexes, using methods of discrete exterior calculus [70]. To
that end, one introduces a scalar test field6 discretized on
the complex, which can be placed either on the vertices of
the discretization or on its dual vertices. The strategy we
follow here is to consider the scalar field ϕn⃗ on dual7

vertices of the complex Γ. From the continuum perspective,
this case can be obtained by integrating a smooth scalar field
over the region of a four-cell. Finally the discrete Laplacian
is defined by its action on the scalar test field ϕn⃗ [69]

−ðΔϕÞn⃗ ¼ −
X
m⃗∼n⃗

Δn⃗ m⃗ðϕn⃗ − ϕm⃗Þ

¼ 1

Vð4Þ
n⃗

X
m⃗∼n⃗

Vð3Þ
n⃗ m⃗

l�n⃗ m⃗
ðϕn⃗ − ϕm⃗Þ; ð2:26Þ

where the sum runs over all adjacent vertices m⃗, indicated
by “∼”. Δn⃗ m⃗ are the coefficients of the discrete Laplacian,
which can be split into a diagonal part and a part which is

proportional to the adjacency matrix of the complex Γ. Vð3Þ
n⃗ m⃗

and l�n⃗ m⃗ indicate the three-volume and the dual edge length,
of ðn⃗ m⃗Þ, respectively. The positive four-volume of the

frustum dual to n⃗∈Γ is denoted by Vð4Þ
n⃗ and is the same

6Importantly, test fields should not be confused with physical
fields, minimally coupled to spin foams [54]. In particular, a test
field does not have to satisfy spatial homogeneity even if the spin
foam is fixed to spatially homogeneous configurations. Also, N
periodicity, which we are going to introduce down below, does
not need to be fulfilled by ϕn⃗.

7Other choices work equally well. For example, in [54], a
scalar field is placed on the vertices of the discretization. Beyond
scalar fields, other tensor or p-form fields might yield different
results for “generalized” spectral dimensions, though [25].
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four-volume that accompanies the cosmological constant in
the vertex amplitude of Eq. (2.13). Going beyond the scope
of this work, we do not consider the possibility of working
with oriented spin foam amplitudes and with signed four-
volumes in the Laplace operator.
As discussed in detail in [69], the definition of volume

and dual edge length and thus that of a discrete Laplacian
is not unique in general. For constructing the dual two-
complex, we pursue the following strategy. In four-
dimensional Euclidean space, we orient a four-frustum
along the t axis such that the two cubes lie in a constant-t
hypersurface. Vertices of the dual lattice are then obtained
by forming the average of the corner points of the four-
frustum. Consequently, these points lie on the t axis on
half of the four-frustum height. Dual edges, “spacelike”
and “timelike,” are chosen to be orthogonal on the faces of
the four-frustum such that their lengths are minimal.8

Notice that these definitions do not correspond to a
barycentric construction. The distance between barycen-
tric vertices would yield the dual edge lengths we obtain
below, rescaled by a constant factor. For the return
probability, such a constant prefactor can be absorbed
into the scale τ and thus has no physical effect.
In the following, we define the geometric quantities that

enter Eq. (2.26), based on the construction of the dual
lattice discussed above. Thereby, we adopt the notation for
which, in the nth “slice,” the spins jn; jnþ1 refer to the area
of the lower and upper cube, respectively, and where kn
labels the spatiotemporal area of boundary three-frusta.
First, we notice that the four-dimensional dihedral angles

imply the following restriction on the possible spin values
for each slice [51]:

−
1ffiffiffi
2

p ≤
jn − jnþ1

4kn
≤

1ffiffiffi
2

p ; ð2:27Þ

posing a stronger condition than closure in Eq. (2.7).
Volume and height of a four-frustum in the nth slice are,
respectively, given by

Vð4Þ
n ¼ 1

2
knðjn þ jnþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðjn − jnþ1Þ2
8k2n

s
; ð2:28Þ

and

Hn ¼
2knffiffiffiffiffi

jn
p þ ffiffiffiffiffiffiffiffiffi

jnþ1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðjn − jnþ1Þ2
8k2n

s
: ð2:29Þ

Since the boundary of a four-frustum consists of two types
of building blocks, cubes, and three-frusta, we make a
distinction in the following. This can be interpreted as
separating the cases where n⃗ and m⃗ having spacelike or
timelike separation.9

Timelike dual edges.—Three-dimensional volumes between
the vertices m⃗ and n⃗, which connect the (n − 1)th and nth
slice, are simply given by the volume of cubes with area jn

Vð3Þ
m⃗ n⃗ ¼ j

3
2
n: ð2:30Þ

Following the construction of a dual lattice outlined above,
the length of dual edges is given as the half of the sum of
heights of “past” and “future” hyperfrusta

lm⃗ n⃗
⋆ ¼ 1

2
ðHn−1 þHnÞ

¼ kn−1ffiffiffiffiffiffiffiffiffi
jn−1

p þ ffiffiffiffiffi
jn

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðjn−1 − jnÞ2
8k2n−1

s

þ knffiffiffiffiffi
jn

p þ ffiffiffiffiffiffiffiffiffi
jnþ1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðjn − jnþ1Þ2
8k2n

s
: ð2:31Þ

A visualization of the dual edge and its length in a three-
dimensional analog is given in Fig. 4.
This defines all the ingredients of the Laplace operator

Δm⃗ n⃗ for neighboring vertices m⃗, n⃗ which have a timelike
separation, and we use the notation Δn−1n in the following.

Spacelike dual edges.—In spacelike direction, so within a
given slice n, four-frusta are connected with each other via
boundary three-frusta. The corresponding three-volumes
are given by

FIG. 4. Three-dimensional representation of a timelike dual
edge, drawn in red, connecting the midpoints of two timelike
separated frusta. From this representation, the duality of timelike
edges and cubes (here squares) is immediate.

8Defining the dual edges in this way is convenient because of
spatial homogeneity. In a more general setting, defining half dual
edges by connecting midpoints of the four-frusta with midpoints
of boundary hexahedra appears more natural.

9This designation needs to be used cautiously, since we work
in a Riemannian context where there are no notions of causality.
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Vð3Þ
m⃗ n⃗ ¼

2knðjn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jnjnþ1

p þ jnþ1Þ
3ð ffiffiffiffiffiffiffiffiffi

jnþ1

p þ ffiffiffiffiffi
jn

p Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðjnþ1 − jnÞ2
16k2n

s
:

ð2:32Þ

To obtain the length of spacelike dual edges, for which a
visualization is given in Fig. 5, it suffices to project the
geometry onto the plane spanned by the t axis and the dual
edge. In this picture, the dual edge connects two glued
trapezoids and is orthogonal with respect to the connecting
face. ForΘ the dihedral angle between the (nþ 1) cube and
the boundary three-frustum, defined as [30]

Θn ¼ arccos

�
1

tanðϕnÞ
�
; ð2:33Þ

the dual edge length is then given by

lm⃗ n⃗
⋆ ¼ 1

2
ð
ffiffiffiffiffi
jn

p
þ ffiffiffiffiffiffiffiffiffi

jnþ1

p Þ cos
�
π

2
− Θn

�
: ð2:34Þ

We denote the components of the Laplacian Δn⃗ m⃗ with
vertices n⃗ and m⃗ having a spacelike separation by Δnn.
Note that the definition of the discrete Laplacian requires

a semiclassical interpretation of the geometry, as interpreting
the spins jn, kn as areas is only valid in a semiclassical
regime. However, in the computation of the spectral dimen-
sion, we assume that the definition Δðjn; knÞ holds for
arbitrarily small spins, which can be seen as a continuation
of the semiclassical Laplacian and provides one possible
definition of Δ in the quantum regime. While there may be
many valid definitions of microscopic Laplacians, they must
converge to the semiclassical definition provided above.

2. N periodicity

Following the discussion in [13], evaluating the
spectral dimension even in the setting of restricted spin
foams is challenging because of two main reasons. First,
the computation of the Laplacian’s spectrum for many
classical configurations is very costly. Second, evaluating
the spin foam partition function scales exponentially with

the number of lattice sites. We elaborate on these numeri-
cal challenges in the following.
Let us consider the spectrum of the Laplacian for a given

spin configuration first. As Eq. (2.25) shows, the return
probability, and therefore the spectral dimension, requires
full knowledge of the spectrum of the discrete Laplacian.10

Given that the lattice contains L sites in each direction, this
amounts to setting up and diagonalizing an L4 × L4 matrix,
the complexity of which grows exponentially in L. At the
same time, L determines the scale τcomp at which boundary
effects become dominant. To avoid fixed data on the
boundary, we henceforth assume periodic boundary con-
ditions, equipping the lattice with a toroidal topology. The
resulting compactness leads to a falloff in spectral dimen-
sion for τ > τcomp [69]. Consequently, a large lattice size is
required to observe a nontrivial spectral dimension between
the smallest lattice scales τ ∼ jmin and τcomp, which is in
clear conflict with computational feasibility.
Apart from the computational effort to diagonalize

the discrete Laplacian for a given spin configuration, the
evaluation of the partition function becomes increasingly
difficult with larger lattice size. That is because the number
of spin configurations scales exponentially with the lattice
sites. Because of spatial homogeneity there are in total 2L
different spins, each of which takesN ¼ 2ðjmax − jminÞ þ 1
values. Here, jmin and jmax are the lower and upper cutoffs
of the spins, respectively, the meaning of which we discuss
in detail in Sec. IVA. Imposing the Riemannian EPRL
condition of Eq. (2.2) and the inequality of Eq. (2.27), N
allowed values for the spins ðjn; knÞ remain. The total
number of configurations on the whole lattice is then N2L.
Consequently, the Laplacian needs to be diagonalized for
each configuration to compute the return probability. This
part is most demanding in numerical resources. Once the
return probability for every spin configuration is obtained,
the expectation value can be computed rather efficiently. To
do so, one writes the amplitudes as a vector and the return
probabilities as a matrix, with one index representing the
configurations and the other one the diffusion time τ. The
expectation value of the return probability is then obtained
by a simple matrix-vector multiplication which is a highly
optimized numerical operation.
To solve both of the above problems simultaneously, we

adopt the assumption of N periodicity proposed in [13],
based on the results of [71]. The key idea is to assume that
the geometry of the spin foam is N periodic in every
direction, meaning that the geometric labels repeat after N
steps in every direction. As a consequence, one can perform
a Fourier transform of the discrete Laplacian in the Brillouin
zone which amounts to diagonalizing an N 4 ×N 4 matrix.

FIG. 5. Three-dimensional representation of a spacelike dual
edge, drawn in blue, connecting the midpoints of two spacelike
separated frusta. From this representation, the duality of spacelike
edges and three-frusta (here trapezoids) is immediate.

10Although simplifications for certain values of τ are
conceivable, the viability of these would depend on the geo-
metric configurations ðjn; knÞ, obscuring a straightforward
implementation.
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The spectrum of the Laplacian is then given in terms of four
momenta pμ, which are either discrete or continuous,
depending on whether the lattice is, respectively, finite or
infinite. The return probability in Eq. (2.25) is then obtained
as a sum and an integral, respectively, over the momenta.
Also at the level of the amplitudes, periodicity reduces the
computational complexity, as the number of independent
spin variables reduces to 2N .

3. Spectrum of the discrete Laplacian

The first step in deriving the spectrum of the discrete
Laplacian is to introduce the Fourier transform of the test
field and to notice that the homogeneity of the geometry
effectively reduces the Laplace coefficients Δn⃗ m⃗ to an L ×
L matrix. To make this explicit, let us first introduce some
notation: We indicate the “spatial” component of n⃗∈Z4

L
as n∈Z3

L. Taking N periodicity into account, we indicate
a slice as n0 þ zN where n0 ∈ZN and z∈ZL=N . Thus, the
variable z labels the N cell in which the slice is located
and n0 denotes the n0th slice within a given N cell.

Using this notation, the scalar test field is written as ϕðzÞ
n0;n

with ϕðzÞ
n0þN ;n ≡ ϕðzþ1Þ

n0;n .
To write Eq. (2.26) in Fourier space, we consider a

similar ansatz to the proposal of [71], given by

ϕðzÞ
n0;n ¼ cn0e

ip0zein·p; ð2:35Þ

where cn0 is anN -dimensional vector. A phase with spatial
momentum pi is picked whenever changing one lattice site
in spatial direction i. In contrast, a phase with temporal
momentum p0 is only picked up when changing to another
N cell. This pattern of picking up phases will be reflected
in Eqs. (2.37)–(2.39). For a finite lattice of size L4 with
periodic boundary conditions, the momenta pμ take values

pμ ¼
2π

L
kμ; kμ ∈ZL: ð2:36Þ

In the limit L → ∞, the momenta lie in the Brillouin
zone pμ ∈ ½−π; π�. Inserting the ansatz of Eq. (2.35) into

Eq. (2.26), we obtain for n ∉ f0;N − 1g

−ðΔcÞn ¼ −
�
Δnnþ1ðcn − cnþ1Þ þ Δnn−1ðcn − cn−1Þ

þ 2Δnncn
X3
i¼1

ð1 − cosðpiÞÞ
�
: ð2:37Þ

Δnnþ1 are the components of the Laplace operator on
dual edges connecting slices n and nþ 1, defined by
Eqs. (2.28), (2.30), and (2.31). Δnn are the components
of the Laplace operator within a slice, defined by
Eqs. (2.28), (2.32), and (2.34), associated to spacelike
separated vertices. Because of spatial homogeneity, Δnn is
independent of the spatial direction and therefore factorizes
from the spatial momenta. For the slices n ¼ 0;N − 1

connecting neighboring N cells, exponential factors of
e�ip0 are picked up

−ðΔcÞ0¼−½w0ðc0−c1ÞþwN−1ðc0−cN−1e−ip0ÞþW0c0�;
ð2:38Þ

−ðΔcÞN−1¼−½wN−1ðcN−1−c0eip0Þ
þwN−2ðcN−1−cN−2ÞþWN−1cN−1�; ð2:39Þ

where for brevity, we introduced the notation

wn ≔ Δnnþ1; Wn ≔ 2Δnn

X
i

ð1 − cosðpiÞÞ: ð2:40Þ

Exploiting N periodicity and spatial homogeneity, we
observe that the action of the Laplace operator reduces to a
vector equation inN dimensions. Altogether, Eqs. (2.37)–
(2.39) are captured by

−ðΔcÞm ¼ −
XN−1

n¼0

Mmncn; ð2:41Þ

with the matrix M being defined as

M ≔

0
BBBBB@

wN−1 þ w0 þW0 −w0 … −wN−1e−ip0

−w0 w0 þ w1 þW1

..

. . .
.

−wN−1eip0 … −wN−2 wN−2 þ wN−1 þWN−1

1
CCCCCA: ð2:42Þ

For a given spin configuration, the spectrum in momentum
space is then given by the eigenvalues of the matrix
Mðp0; p1; p2; p3Þ, which must be computed for every
combination of momenta.

4. Expectation value of the return probability

Following Eq. (2.25), the return probability of a given
spin configuration is obtained by either summing or inte-
grating over the spectrum of the Laplacian. Let ωiðfpμgÞ
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denote the N momentum-dependent eigenvalues of the
Laplace matrix in Eq. (2.42). Then, the N -periodic return
probability PN ðτÞ on a lattice of length L is given by

PN ðτÞ ¼
XN
i¼1

Y3
μ¼0

X
kμ ∈ZL

e−τωiðfpμgÞ; ð2:43Þ

where the integers kμ and the lattice momenta pμ are related
by Eq. (2.36). In the limit L → ∞, the summation is
replaced by an integration over the Brillouin zone, yielding

PN ðτÞ ¼
XN
i¼1

Y3
μ¼0

Z
π

−π
dpμe−τωiðfpμgÞ: ð2:44Þ

Notice, that the eigenvalues ωiðfpμgÞ depend on the
geometry of the entire lattice, turning the return probability
into a highly nonlocal quantity. These different eigenvalues
are usually called branches, e.g. the “acoustic” branch in
which ωi → 0 for all pμ → 0.
Already for the two-periodic case, the summation and

integration, respectively, in Eqs. (2.43) and (2.44) cannot
be performed individually, since the eigenvalues ωiðfpμgÞ
do not split into a sum of terms for each momentum
component pμ. This severely affects the computational
effort to compute the return probability at a given configu-
ration. Summation is implemented by L4 nested for-loops.
For the numerical integration on the other hand, one cannot
perform a product of one-dimensional integrals but needs to
consider instead a single four-dimensional integration. Using
the Cuba package,11 such higher-dimensional integrations
are possible but more costly and issues of convergence due
to an exponential decay are more likely to arise.
The expectation value of the return probability for a finite

N -periodic lattice in this setting is

hPN ðτÞi ¼ 1

Z

X
fji;kig

 YN
n¼1

Âðjn; jnþ1; knÞL3

!
L=N

× PN ðτ; fji; kigÞ; ð2:45Þ

where the spin labels are in the range jmin ≤ ji; ki ≤ jmax.
12

Note that a priori,A denotes the full quantum amplitude of
four-frusta. However, as we argue in Sec. IVA, the
asymptotics of the dressed vertex amplitude already cap-
tures the behavior of the spectral dimension sufficiently
for τ ≳ 102.
As argued in Sec. II B 2, the lattice size L is required to be

large in order to resolve a nontrivial spectral dimension

between the minimal scale τ ∼ jmin and the compactness
scale τcomp ∼ L. Consequently, the amplitudes enter
Eq. (2.45) with large powers, requiring the utilization of
arbitrary precision floating point numbers. Arithmetics with
this format are costly in memory and computation time. To
circumvent this issue, we truncate the total number of
amplitudes by assuming that the amplitudes of a single
N cell sufficiently capture the relevant information of the
whole spin foam.Within this approximation, the expectation
value of the return probability is finally given by

hPN ðτÞi ¼ 1

Z

X
fji;kig

YN
n¼1

Âðjn; jnþ1; knÞN 3

PN ðτ; fji; kigÞ:

ð2:46Þ

In Sec. V B we discuss the limit of N → ∞, corresponding
to an infinite lattice with infinitely many degrees of freedom.
To summarize, we compute the return probability for the

spin foam quantum space-time by summing up the return
probability for all possible spin foam frusta geometries,
weighted by the quantum or semiclassical spin foam
amplitudes Â for various diffusion times τ. From this
expectation value, we derive the spectral dimension Ds as

DN
S ≔ −2

∂ lnhPN ðτÞi
∂ ln τ

: ð2:47Þ

Notice, that we do not consider Ds as an observable itself.
Rather, the “quantum spectral dimension” characterizes the
scaling of a quantum expectation value, that is here the
heat trace.

III. ONE-PERIODIC QUANTUM AMPLITUDES
FROM EXTRAPOLATION

The quantum amplitudes of frusta spin foams, introduced
in Sec. II A 1, are the necessary ingredients to determine
expectation values. In essence, there are two ways to
compute these. First, the intertwiners in Eq. (2.6) can be
explicitly computed via SU(2) integrations. Then, as the
formulas in Eqs. (2.4) and (2.5) suggest, quantum ampli-
tudes are straightforwardly computed by contracting three-
frustum and three-cube intertwiners accordingly. Notice,
that due to the higher valence of the intertwiners, the
frustum computation is more costly than an analogous
computation on a triangulation. Another conceivable strat-
egy is to derive a spin network expression of the vertex
amplitude via SU(2)-recoupling theory, in the spirit of [34].
The result is then to be contracted with the overlap of
intertwiners in the spin network and coherent state bases.
Still in this case, the computation is more costly than in a
triangulated setting.
Choosing to follow the first strategy, we face the

following numerical challenge. Since the range of mag-
netic indices grows with the spin size, numerical

11See http://www.feynarts.de/cuba/ for the original version and
https://github.com/giordano/Cuba.jl for the https://arxiv.org/pdf/
JuliaJulia package.

12We discuss the cutoff dependence of our results in Sec. IV.
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contractions of intertwiners either demand increasing
memory when using the TensorOperations13 package, or
increasing time using nested for-loops. This sets numeri-
cal limits to the computation of the vertex amplitude
already at low spins j ∼ 4 [51], which is in conflict with
resolving a nontrivial flow of the spectral dimension
that requires jmax

jmin
≫ 1, as argued below in Sec. IVA.

Consequently, the number of configurations for which
the exact quantum amplitudes are available, is insufficient
to compute hPðτÞi.
While resorting to semiclassical amplitudes as done

in [13] is a sensible choice, the approximation deviates
significantly for small spins j ≲ 10 [51]. In order to find
amplitudes which are closer to the actual quantum ampli-
tudes for small spins, while still showing a convergence to
the semiclassical amplitudes in the limit of large spins, we
present in this section a method to extrapolate quantum
amplitudes in the simplest case of periodicity N ¼ 1 using
the FindFit-function inMathematica [72]. The restriction to
one-periodic spin foam frusta reduces the model to a
specific subclass of spin foam cuboids which satisfy
geometricity [13,51,63]. A particular feature of cuboidal
amplitudes is that they exhibit a pure scaling behavior
without any oscillations, therefore simplifying the analysis
drastically.
As mentioned above, the amplitudes of the Riemannian

EPRL model factorize into SU(2) amplitudes for γBI < 1.
Thus, we first present an extrapolation method for the
SU(2) vertex and edge amplitude in Sec. III A. Thereafter,
we combine these results of that to set up an extrapolation
of the dressed quantum vertex amplitude in Sec. III B,
which will be used later on to compute the spectral
dimension.

A. SU(2)-quantum amplitudes

One-periodic spin foam frusta are characterized by the
amplitudes of a single four-frustum, the initial and final
three-cubes of which carry the same spin j. The connecting
three-frusta are uniquely characterized by the area of the
trapezoidal faces, labeled by k. Hence, the pair ðj; kÞ fully
determines the geometry. In this case, the numerical
limitations allow a computation of the exact quantum
vertex and edge amplitudes for spins in the range 1

2
≤ j; k ≤

4 [51], thus yielding 64 data points.
Best suited for fitting, we compute the relative error

εiðj; kÞ ≔
jAsc

i −Aqu
i j

Asc
i

ð3:1Þ

with respect to the semiclassical amplitudes, which are
given in Eqs. (2.9) and (2.14). Here, i indicates the relative

error of vertex (i ¼ v) and edge (i ¼ e), respectively. Within
a homogeneous limit ðλj; λkÞ with λ → ∞, the relative error
εi converges to zero. Importantly, when keeping one
variable fixed and only scaling the other one, we expect
ε to converge to a small but nonzero value.14 Still, this
convergence will ensure that we obtain the convergence to
the semiclassical amplitude in a homogeneous limit, as we
demonstrate down below.
Now, for every j fixed, we find a fit of the relative error εi

in the k direction. The resulting fitting function is then used
to extrapolate εi up to a chosen value of k ¼ 5000 for every
j. With the results, we proceed similarly to extrapolate in
j-direction for fixed k. Ultimately, we obtain a 10000 ×
10000 matrix for the relative error εiðj; kÞ, from which the
amplitudes can be derived via Eq. (3.1). Since the fitting
procedure is only performed with one-dimensional func-
tions, where either k or j is assumed to be fixed, it is a
nontrivial consistency check to show the convergence of
the quantum to the semiclassical amplitude in a homo-
geneous limit ðλj; λkÞ with λ → ∞. In the following, we
show that this is indeed the case.

1. Extrapolated vertex amplitude

On the left panel of Fig. 6, we show that the relative
error εvðj; kÞ converges to zero in the limit where ðj; kÞ ¼
ðλ; λÞ are homogeneously scaled up. For values of λ ≥ 13,
the relative error is smaller than 1%, as indicated by the
black line in Fig. 6. Notice that we have plotted εv only up
to λ ¼ 35 since, from this value on, the difference between
both amplitudes is already so small that it cannot be
resolved with the usual double precision numbers. Notice
that the two outlying points are a consequence of the
fitting procedure and occur when there is a sign change in
the fitting parameters. A side-by-side comparison of
the extrapolated and semiclassical amplitude is presented
on the right panel of Fig. 6. Clearly, the semiclassical
amplitude is an overestimate of the extrapolated quantum
amplitude for small spins which is alignment with the
results of [13].
These results indicate that the extrapolated amplitude

shows the correct behavior for large spins. Also for small
spins, the extrapolated amplitude provides a better approxi-
mation of the actual quantum amplitude than the semi-
classical. To show this explicitly, we present in Fig. 7 a plot
of the relative error between the quantum amplitude and the
extrapolated, semiclassical amplitude, respectively. When
visible, the extrapolated amplitude is closer to the quantum
amplitude by several orders of magnitude, measured by the
relative error.

13See https://jutho.github.io/TensorOperations.jl/stable/ pack-
age for a documentation.

14Because of the restrictive nature of the frusta model in the
one-periodic case, coupling rules are always satisfied. Further-
more, the boundary states are a function of the spins and at a
critical point by construction.

CURVATURE EFFECTS IN THE SPECTRAL DIMENSION OF … PHYS. REV. D 108, 066011 (2023)

066011-11

https://jutho.github.io/TensorOperations.jl/stable/
https://jutho.github.io/TensorOperations.jl/stable/
https://jutho.github.io/TensorOperations.jl/stable/
https://jutho.github.io/TensorOperations.jl/stable/


2. Extrapolation edge amplitudes

The relative error εe between extrapolated quantum and
semiclassical SU(2)-edge amplitudes is depicted on the left
panel of Fig. 8. Similar to the vertex amplitude, we observe a

rather fast convergence with εe < 1% at spins λ > 13. The
plot is only drawn for λ < 254, since for larger spins, the
difference between extrapolated and semiclassical amplitude
cannot be resolved. On the right panel of Fig. 8, we see that
the semiclassical edge amplitude underestimates the extrapo-
lated amplitude for small spins. That is, because the edge
amplitudes in Eq. (2.4) are defined as the inverse of the
intertwiner norm.
Following this consistency check, we show in Fig. 9, that

the extrapolated edge amplitude serves as a better estimate
for the exact quantum amplitude at low spins. Indeed, the
relative error between extrapolated and quantum amplitudes
is below 1%, while it is of the order 1 for the semiclassical
amplitude.
To summarize, the extrapolation of quantum amplitudes

in the simplified case of one-periodic frusta spin foams
provides a good approximation to the exact quantum
amplitudes. For small spins in particular, the extrapolated
amplitudes do not deviate as much from the quantum
amplitudes in comparison to the semiclassical approxima-
tion. We emphasize that the whole procedure hinges on the
assumption of one-periodicity. For higher periodicities

FIG. 7. Relative error of the extrapolated and semiclassical
vertex amplitude with respect to the exact SU(2)-quantum vertex
amplitude.

FIG. 8. Left: Relative error εe between extrapolated and semiclassical SU(2)-edge amplitude. Right: A direct comparison of the
diagonal entries of the extrapolated, semi-classical and quantum SU(2)-edge amplitude.

FIG. 6. Left: Relative error εv between extrapolated and semiclassical SU(2)-vertex amplitude. Right: A direct comparison of the
diagonal entries of the extrapolated, semiclassical and quantum SU(2)-vertex amplitude. We remind the reader that there are only a few
quantum data points depicted since we are considering the diagonal case with j ¼ k. For the fitting procedure, 64 data points have
been utilized.
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N > 1, the vertex amplitudes oscillate. Since only few
data points of the quantum amplitudes are available, it is to
be expected that a simple fitting procedure cannot capture
the behavior of the amplitudes sufficiently. To do so, one
would probably have to assume the semiclassical oscil-
lation behavior which, for small spins, yields the wrong
phase [51]. Furthermore, this assumption might not be
valid for a nonhomogeneous scaling, where all but one
spin are kept fixed.

B. Dressed quantum vertex amplitude

In this section, we utilize the extrapolated SU(2) ampli-
tudes of the previous section to compute an approximation
of the quantum dressed vertex amplitude Â according to
Eq. (2.16). Depending on the Barbero-Immirzi parameter
γBI, the SU(2) spins j are mapped to different Spinð4Þ
representations ðjþ; j−Þ. Consequently, the components
Âðj; j; kÞ are composed out of different components of
SU(2) amplitudes Aiðj�; j�; k�Þ, where i indicates either
face, edge, or vertex. Here and in the following section, we
choose the least excluding value of γBI ¼ 1

3
(see Fig. 1 for

details) unless indicated otherwise. In this case j∈ 3
2
N is

mapped to ð2
3
j; 1

3
jÞ∈N × 1

2
N, satisfying the EPRL con-

dition in Eq. (2.2). We first analyze the convergence of the
resulting amplitude to the semiclassical approximation in
the limit λ → ∞. Thereafter, we show that the extrapolated
dressed vertex amplitude provides a better approximation
than the semiclassical amplitude, which is to be expected
from the results of Sec. III A. We conclude by presenting
the effective scaling of the extrapolated dressed vertex
amplitude, which is an important factor for the spectral
dimension [13].
While the semiclassical SU(2) amplitudes provide a good

approximation already at small spins of λ≳ 15, the semi-
classical Spinð4Þ amplitude is expected to have a slower
convergence because of two reasons. First, since various
powers of edge and vertex SU(2) amplitudes enter the

dressed amplitude, defined in Eq. (2.16), the relative errors
εe and εv add up. Second, the face amplitude, given in
Eq. (2.3), introduces a third deviation εfðαÞ, which depends
on the α parameter. By definition of the semiclassical and
quantum face amplitude, a larger α leads to a stronger
deviation. The plots of Fig. 10 support these arguments,
where we consider the relative error between extrapolated
and semiclassical amplitude for α∈ f0.5; 0.75; 1.0g. We
find a good agreement of the two amplitudes for ε < 1%,
which is the case for spins λ ∼ 1000.
To get a more detailed picture of its behavior and its

dependence on α, Fig. 11 shows the extrapolated dressed
amplitude in comparison to the semiclassical approxima-
tion for α∈ f0; 0.5; 0.75; 1.0g. Figure 11(a) depicts the
dressed amplitudes for a trivial face amplitude. Here, the
semiclassical amplitude is an overestimate for small spins.
Increasing α to 0.5, which is a value of interest in Sec. IV,
the extrapolated amplitude is in fact larger than the semi-
classical one, as Fig. 11(b) shows. A short numerical check
reveals that the transition from the amplitude being smaller
to being larger than the semiclassical approximation takes
place for α≲ 0.24. At the value α ¼ 0.75, the semiclassical
one-periodic amplitude becomes scale invariant. Following
Fig. 11(c), the extrapolated dressed amplitude reaches the
scale-invariant behavior asymptotically from above. Above
scale invariance, the dressed amplitude diverges in the limit
λ → ∞. Visualized in Fig. 11(d), the extrapolated ampli-
tude is larger than the semiclassical amplitude with a large
relative error at small spins.
Only few components of the dressed Spinð4Þ amplitude

can be computed, since the exact SU(2)-quantum vertex
amplitude is only available for spins j, k ≤ 3. Consequently,
we can compute 3 × 3 entries of the exact dressed ampli-
tude, listed in Fig. 12. There, the relative errors of
extrapolated and semiclassical dressed amplitudes with
respect to the exact quantum dressed amplitude are depicted
for α ¼ 0.5. As indicated, the extrapolated dressed ampli-
tude provides a better approximation to the quantum
amplitudes for all tuples ðj; kÞ.

FIG. 10. Relative error between extrapolated and semiclassical
dressed amplitude, depending on α∈ f0.5; 0.75; 1.0g.

FIG. 9. Relative relative error of extrapolated and semiclassical
edge amplitude with respect to the exact SU(2)-quantum edge
amplitude.
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As a last point, we compute the effective scaling γ of the
extrapolated dressed amplitude, defined as

γ ¼ −
λ

Â

∂Â
∂λ

: ð3:2Þ

Demonstrated for cuboids in [13], the scaling of the
amplitudes is a quintessential factor for the behavior of
the spectral dimension. As we show later on in Sec. IVA and
Sec. IVD, this holds also true for semiclassical as well as for
extrapolated frusta amplitudes. A change in scaling directly
translates to a change of the spectral dimension. Our results
for the effective scalings with α∈ f0; 0.25; 0.5; 0.75; 1g are
presented in Fig. 13. For comparison, the semiclassical
scaling exponents are depicted as black horizontal lines.
These are constant because semiclassical amplitudes exhibit
a simple polynomial decay. Since the extrapolated ampli-
tudes approach the semiclassical limit from above for
α > 0.24, the corresponding effective scaling is below the
constant semiclassical value. As expected from the previous
arguments given above, exactly the opposite behavior can be
observed for α ¼ 0.

IV. SPECTRAL DIMENSION FROM
SPIN FOAM FRUSTA

With the ingredients introduced in Sec. II and Sec. III, we
present in this section our numerical and analytical studies
of the quantum spectral dimension for spin foam frusta. In
Sec. IVA, we present numerical results using quantum and
semiclassical one-periodic amplitudes. Proceeding with
semiclassical amplitudes, we introduce a cosmological

FIG. 12. Relative error of extrapolated (blue) and semiclassical
dressed vertex amplitudes with respect to the exact quantum
dressed vertex amplitude. The values of ε are plotted against the
tuple of spins ðj; kÞ for which the exact quantum amplitude can
be computed.

FIG. 11. Comparison of extrapolated and semiclassical dressed vertex amplitudes for various values of α. (a) α ¼ 0, (b) α ¼ 0.5, (c)
α ¼ 0.75, and (d) α ¼ 1.
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constant in Sec. IV B and thereafter generalize to two-
periodic configurations in Sec. IV C. We close this section
with an analytical estimate of the spectral dimension in
Sec. IV D.

A. One-periodic spectral dimension

Assuming that the geometry of frusta is one-periodic, the
momentum space Laplace operator, defined in Eq. (2.42),
reduces to a single component matrix

M ¼ 2w0ð1 − cosðp0ÞÞ þW0ðp1; p2; p3Þ ¼
X3
μ¼0

ωðμÞðpμÞ;

ð4:1Þ

which decomposes into components ωðμÞðpμÞ. Consequ-
ently, the classical return probability on an infinite lattice,
given in Eq. (2.44), can be written as a product of integrals

P1ðτÞ ¼
Y3
μ¼0

Z
½−π;π�

dpμe−τω
ðμÞðpμÞ

¼
�Z

dp0e−τω
ð0Þðp0Þ

��Z
dp3e−τω

ð3Þðp3Þ
�

3

; ð4:2Þ

where in the last step, we exploited spatial homogeneity.
Factorization into one-dimensional integrals is advanta-
geous, as the convergence of numerical integration impairs
for increasing dimensionality.
Employing the extrapolated amplitudes of the previous

section, we compute the expectation value of the return
probability via Eq. (2.46). In the case of N ¼ 1, the
formula reduces to

hP1ðτÞi ¼
1

Z

Xjmax

j;k¼jmin

Âðj; j; kÞP1ðτ; j; kÞ: ð4:3Þ

The numerical results for the expectation value of the
return probability and the spectral dimension are presented
in Fig. 14 for different values of α. Probing space-time at
scales below the lowest lattice scale, τ ≪ jmin, Ds is zero.
Above the largest scale, i.e., τ ≫ jmax, every classical
configuration exhibits a spectral dimension of four and
hence the quantum spectral dimension is four as well.
Similar to the findings of [13], we observe a nontrivial
dimensional flow between 0 and 4 for α in a certain interval
½αmin; αmax�. We discuss in detail the various influence
factors of the spectral dimension in the following
paragraphs.

1. α parameter

The most salient factor driving the spectral dimension is
the value of α. As Fig. 14 shows, only a small range of
α∈ ½αmin; αmax� leads to an intermediate spectral dimension
Ds < D. For any α < αmin, the spectral dimension attains
the value D ¼ 4 without any nontrivial behavior before.
Similarly, α > αmax suppresses an intermediate dimension
Ds ≠ 0 and Ds takes a finite nonzero value only at scales

FIG. 14. Left: Expectation value of the one-periodic return probability. Right: Spectral dimension computed from the expectation
value of the return probability. Both sets of data are computed with cut-offs jmin ¼ 1

2
and jmax ¼ 7500.

FIG. 13. Effective scaling behavior γ of the extrapolated
dressed amplitude for α∈ f0; 0.25; 0.5; 0.75; 1g. Semiclassical
constant values are indicated by the black lines. Fluctuations in
the range 101 < λ < 102 are due to numerical imprecisions in the
fitting procedure, where the fitting parameters change sign.
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τ ≳ jmax. In Sec. IV D, we support the statements on the
role of α with analytical considerations and present an
estimate of the interval ½αmin; αmax�.

2. Cutoffs

An intermediate spectral dimension between 0 and 4 is
only resolved if the range of spins between jmin and jmax is
sufficiently large. To be more precise, it is the ratio jmax

jmin
that

is required to be sufficiently large. As numerical tests have
shown, the ratio of cutoffs is required to be at least of order
∼102 in order to resolve the first sign of a plateau. This
signature in Ds presents itself as two points of inflection
which are absent if less configurations are taken into
account.
Because of the inherent minimal length scale in the

theory, geometry cannot be probed below τ ∼ jmin such that
this regime, where the spectral dimension flows to zero for
τ → 0, is not of physical interest. Similarly, for scales
τ ≫ jmax, a dimension of four is inevitably reached, since
all superimposed spin geometries possess a spectral dimen-
sion of four. While the existence of a minimal spin is a
quintessential feature of most spin foam models, the upper
cut-off is introduced for numerical purposes.15 In order to
recover a physical interpretation of our results, we therefore
need to consider the limit jmax → ∞. As numerical tests
with different jmax as well as the results of [13] show, the
intermediate regime extends to infinity in the limit of
infinitely large upper cut-off.

3. Barbero-Immirzi parameter

In the case of one-periodic spin foam frusta, the Barbero-
Immirzi parameter γBI controls the spacing of allowed SU
(2)-spins according to the YγBI map defined in Eq. (2.2).
Thus, changing the value of γBI results in a rescaling of the
allowed spins, which in turn can be absorbed into the
diffusion scale τ. This holds for quantum as well as for
semiclassical amplitudes.16 In contrast, the value of γBI has
a nontrivial effect on amplitudes of N > 2. As the semi-
classical vertex amplitude in Eq. (2.13) suggests, γBI
controls the relative phase of the oscillations. Therefore,
it is, in general, to be expected that the spectral dimension is
nontrivially affected by the value of γBI.

4 Compactness effects

Considering a finite lattice of length L with periodic
boundary conditions rather than an infinite lattice, com-
pactness effects are introduced to the spectral dimension
which set in at scales τ > τcompðLÞ.17 Following [69], the
return probability of a classical configuration with spins j is
constant for τ > j and thus, the spectral dimension reaches
zero at τ ∼ j. For the quantum spectral dimension, this
implies that for L sufficiently large, i.e., such that
τcompðLÞ ≫ jmax, a dimensional flow between zero, a
possible intermediate value and four will be resolved. At
τ close to compactness, Ds will then flow to zero and
remain zero for all τ > τcomp. For jmin ≲ τcomp ≲ jmax and
an intermediate regime Dα

s that is existent, the spectral
dimension will flow to this intermediate value and then
back to zero after the compactness scale is reached. For
τcomp ≪ jmin, the spectral dimension is zero everywhere.

5 Semiclassical amplitudes

Employing the semiclassical amplitude for computing
the expectation value of the return probability and the
spectral dimension, we observe a behavior similar to that
obtained with extrapolated amplitudes. A direct compari-
son is presented in Fig. 15 for α ¼ 0.5. With semiclassical
amplitudes, the spectral dimension is constant in the
intermediate regime. In particular, in the limit jmax → ∞,
where the upper cutoff is removed, this plateau extends
to τ → ∞.
Considering the results of Sec. III B and the analytical

explanations of [13], the deviation between the two curves
is a consequence of the different scaling behaviors of the

FIG. 15. Spectral dimension computed with extrapolated (blue)
and semiclassical (red) amplitudes at α ¼ 0.5.

15Following [66,67,73], apart from what is considered in this
work, a cosmological constant can be added to spin foams by
replacing the group SU(2) by its quantum deformation SUð2Þq.
Consequently, an upper cutoff jmax is introduced, related to the
cosmological constant via jmax ∼ π

Λl2P
[64]. However, this value is

expected to be much larger than what can could numerically
implemented. For instance, a cosmological constant of order
∼10−122 would imply a maximal cutoff of order jmax ∼ 10122.

16For j∈N=2 that do not satisfy the EPRL condition, the
amplitudes are zero. We exploit this exclusion for the compu-
tation of the return probability in that we only compute it for the
allowed configurations, given a value of γBI. All other compo-
nents would be multiplied with zero in the expectation value.

17For a comparison to the continuum spectral dimension of a
torus, we refer to [26], where the compactness effects are clearly
visible.
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amplitudes for small spins. From Fig. 13, it follows that
larger effective inverse scaling γ of the amplitudes implies a
larger spectral dimension. Also, since the effective scaling
of the extrapolated amplitudes is nonconstant, there is a
nonconstant flow of the spectral dimension to the semi-
classical constant value at larger scales.18 As this flow is
visible at scales τ > 10, it is not a mere discreteness artifact
but a physical effect.
The different behavior of the spectral dimension due to

the different amplitudes appears in the regime 10−2 < τ <
102 and is of quantitative nature. Although providing an
increasingly bad approximation at low spins, this suggests
that the semiclassical amplitude is sufficient for extracting
the spectral dimension on large scales. In particular, there is
agreement with the quantum amplitude results for scales
τ > 102, even in the limit of infinite upper cutoff.
Therefore, we are going to employ semiclassical ampli-
tudes for the rest of this work.
Using the semiclassical amplitudes comes with the

following three advantages. First, having an analytical
expression for the amplitudes available allows for numeri-
cal integration, which is based on assuming the spins to be
continuous variables. In that way, the results we have
obtained so far can be compared to the findings of [13],
which are based on continuous integration. Second, the
semiclassical setting allows for a straightforward inclusion
of a cosmological constant via an ad hoc deformation of the
amplitudes [66,67]. Third, the extrapolation method for
quantum amplitudes, discussed in Sec. III, strongly relies
on the assumption of one-periodicity. Since we do not
expect this method to be straightforwardly applicable for
N > 1, quantum amplitudes beyond small spins are not in
reach for N > 1. Because of these technical limitations,
resorting to semiclassical amplitudes allows the study of
the spectral dimension at higher periodicities. In the
following, we take advantage of the possibilities that the
semiclassical amplitudes offer, and discuss these cases in
greater detail.

6 Discrete summation vs numerical integration

Up to this point, we computed the expectation value of
the return probability via a discrete sum over all spin
configurations in the range jmin ≤ j; k ≤ jmax. In the case
where jmax

jmin
≫ 1, the sum can be replaced by an integral,

which is the strategy employed in [13]. As a consequence,
the expectation value of the return probability is obtained as
an integral over the configurations with the amplitudes and
the return probability being continuous functions of the
spins. Note that, for this strategy, an analytical expression
of the amplitudes is required. Determining the correspond-
ing functions for quantum amplitudes is currently out of

reach. Therefore, one needs to resort to the semi-classical
approximation, where the spins are simply understood as
continuous variables.19 We have numerically checked that
both methods yield very similar results. For small and large
τ, we observe a convergence, while the spectral dimension
differs quantitatively in the regime where the intermediate
value Dα

S is reached. This is, because according to [69],
continuous configuration variables lead to a smoothening
of discreteness peaks.

B. Cosmological constant

A way to add a cosmological constant to the simplicial
EPRL-FK model was introduced in [66] and generalized to
arbitrary four-dimensional polyhedra in [67]. In essence,
the vertex amplitudes of the model are deformed while
keeping the boundary Hilbert space fixed. Relating the
deformation parameter with the cosmological constant, the
asymptotic vertex amplitude yields the Regge action with a
cosmological constant.20 Given that the Regge curvature,
defined in Eq. (2.12), vanishes for one-periodic configu-
rations, the introduction of a cosmological constant allows
us to consider oscillations even when N ¼ 1. In this
setting, the sign of the cosmological constant is irrelevant
for the amplitudes, as Eq. (4.4) below shows. Following
from the definition of the Spinð4Þ-vertex amplitude defined
in Eq. (2.13), these oscillations are of a particular type in
comparison to cases of vanishing Regge curvature. First, Λ
oscillations allow only for simple cosine type shape. In
contrast, the Regge term describes a superposition of
cosines with different phases controlled by the Barbero-
Immirzi parameter. Notice that this superposition is a
peculiar feature of the Riemannian EPRL model, which
is absent in the Lorentzian setting [33]. Second, since Λ
enters the action via a four-volume, these oscillations scale
quadratically in spins, whereas curvature terms scale
linearly. Despite its simple form, we consider the cosmo-
logical constant in order to get a first glimpse of the effects
of oscillations on the spectral dimension.
Explicitly, the oscillating term is given by

cos

�
Λ
G
jk

�
−
RefDg
jDj ; ð4:4Þ

where D is the determinant of the Hessian, defined in
Eq. (2.10). Consequently, for a given upper cutoff jmax, the
amplitudes and hence the return probability are not altered

18This effect is only partially resolved in Fig. 15, since effects
of the upper cutoff appear for large τ.

19Notice, that the EPRL condition of Eq. (2.2) cannot be
implemented, since it would yield a function of measure zero.

20Another mathematically more rigorous way of introducing a
cosmological constant to spin foams is to replace the group SU(2)
by its quantum deformation SUð2Þq [73–79]. The deformation
parameter q is related to Λ via q ¼ expð2πi=ðkþ 2ÞÞ with
k ¼ 1=ðℏG ffiffiffiffi

Λ
p Þ; see, e.g., [77]. For more methods on imple-

menting a cosmological constant in 4D spin foams see, e.g.,
[80,81].
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for Λ
G ≪ 1

j2max
since the argument of the cosine is small for all

possible values of spins. However, for Λ
G ≳ 1

j2max
the spectral

dimension is affected by the oscillations of the amplitudes,
as Fig. 16 shows.
The strongest deviation from the Λ ¼ 0 case is localized

at the scale at which the first oscillation takes place, marked
by a green vertical line. If this scale is in the intermediate

regime, the spectral dimension is larger than in the case of
vanishing Λ. To be more precise, it is the regime below the
first zero of the amplitudes, given by

λðΛÞ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G
Λ
arccos

�
RefDg
jDj

�s
ð4:5Þ

FIG. 17. Left: The first complete oscillation of the rescaled amplitudes for different values of Λ=G, given α ¼ 0.5. The dashed line

indicates zero, which is crossed for the first time at λ ¼ λðΛÞ0 . Right: Scaling γ of the amplitudes for λ < λðΛÞ0 with the same parameters as
on the left. Notice that both of the plots assume the spin variable λ to be continuous, ignoring the EPRL condition.

FIG. 16. Spectral dimension at α ¼ 0.5 with different values of the cosmological constant Λ − G. Notice that, in general, the values of
Λ are independent of jmax. (a)

Λ
G j

2
max ¼ 2π, (b) Λ

G j
2
max ¼ 2π102, (c) Λ

G j
2
max ¼ 2π104, and (d) Λ

G j
2
max ¼ 2π106.
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which we expect to be most influential. To visualize this,
Fig. 17 shows the first oscillation of the (rescaled) ampli-
tudes as well as the effective scaling γ of the amplitude for

all λ < λðΛÞ0 . Since the shift in Eq. (4.4) is constant, the
oscillations are not symmetric with respect to the λ axis.
Still, since jRefDg

jDj j < 1, the amplitudes attain negative
values when crossing zero, indicated by the dashed line.
The zeros as well as the extrema of the amplitudes lead to
an abrupt change in sign of the scaling γ. Consequently, for

λ > λðΛÞ0 , the scaling oscillates rapidly, which, however,
does not affect the spectral dimension. Similar to the
comparison of quantum and semi-classical amplitudes, a
value γ > 9 − 12α larger than the semiclassical scaling
implies a larger spectral dimension. This effect is, in

particular, resolved in the regime λ < λðΛÞ0 . Notice that
an increase of Ds is a feature present for all values of
Λ ≠ 0, since the amplitudes exhibit a scaling γ > 9 − 12α

for λ < λðΛÞ0 .

C. Two-periodic spectral dimension

The results of the previous section have shown that the
semiclassical amplitude serves as a sufficient approxima-
tion to extract the qualitative behavior of the spectral
dimension in the one-periodic case. It is therefore reason-
able to employ the semiclassical amplitudes to compute
the spectral dimension with higher periodicity, which are
N ¼ 2 here. We discuss possible quantum corrections to
our results at the end of this section.
Following Eq. (2.42), the Laplace operator at N ¼ 2

becomes a 2 × 2 matrix in momentum space

M ¼
 
w0 þ w1 þW0 −w0 − w1e−ip0

−w0 − w1eip0 w0 þ w1 þW1

!
; ð4:6Þ

where W0 and W1, defined in Eq. (2.40), depend on the
spatial momenta pi. The corresponding eigenvalues are
given by

ω�ðpμÞ ¼ w0 þw1 þ
W0 þW1

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
0 þw2

1 þ 2w0w1 cosðp0Þ þ
�
W0 −W1

2

�
2

s
:

ð4:7Þ

Compared to the one-periodic case in Eq. (4.2), this
expression is more involved due to the intermingling of
thep0 andpi terms. As a consequence, the return probability
from momentum integration,

P2ðτÞ ¼
X
ϵ¼�

Z Y3
μ¼0

dpμe−τωϵðfpνgÞ; ð4:8Þ

cannot be written as the product of one-dimensional
integrals. Instead, full four-dimensional integration is
required to compute P2, leading to larger numerical
computation times.
Under the assumption that the amplitudes of a single N

cell, here a two-cell consisting of 16 hyperfrusta, already
capture the relevant information, the full expression for the
expectation value of the return probability is given by

hP2ðτÞi ¼
1

Z

X
j1;j2;k1;k2

ðÂðj1; j2; k1ÞÞ8ðÂðj2; j1; k2ÞÞ8

× P2ðτ; j1; j2; k1; k2Þ: ð4:9Þ

Again, the range of all of the spins is given by jmin ≤ ji,
ki ≤ jmax. For the numerical results presented below, we
have chosen jmin ¼ 1

2
and jmax ¼ 201. Since in the two-

periodic case, the three-cubes are not restricted to equal
size, frustum geometries arise which lead to nonvanishing
Regge curvature. Consequently, the vertex amplitudes Â
exhibit oscillations even in the case of a vanishing
cosmological constant, Λ ¼ 0, which we assume from
now on if not stated otherwise. Given three fixed spins
ðj; j0; kÞ, a single dressed vertex amplitude scales as

Âðλj;λj0;λkÞ∼λ12α−9
�
cos

�
γBI
G

λSRðj;j0;kÞ
�

−cos

�
1

G
λSRðj;j0;kÞ−φðj;j0;kÞ

��
; ð4:10Þ

where SR is the Regge action and φ is the phase of the
determinant D of the Hessian, both being evaluated on the
spins ðj; j0; kÞ. Notice that φ is invariant under a homo-
geneous scaling of all spins. Since the expectation value of
the two-periodic return probability, Eq. (4.9), contains high
powers of cosine functions, the amplitudes are narrowly
peaked on the maxima of oscillation. Furthermore, since
the powers in Eq. (4.9) are even, no negative values occur.

1. Large Newton’s constant

As a first computation, we consider the limiting case of
G → ∞, where curvature oscillations become negligible. In
Fig. 18 we present the results for G ¼ 1010. This already
captures the large G behavior for the chosen jmax as we
have checked that for larger G the results do not change
anymore.
Just as for the one-periodic case, we observe that there

exists an intermediate flow of the spectral dimension for α
values in a certain interval α∈ ½αmin; αmax�, where αmin ≈
0.68 and αmax ≈ 0.7. From the results Sec. IVA, we
conclude that the intermediate spectral dimension is again
a result of the amplitudes exhibiting a scaling behavior.
Compared to the one-periodic case, the size of the interval
of α is smaller which is in accordance with the findings
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of [13]. As we are going to discuss in more detail in Sec. IV
D, this is expected. In the following we discuss the effects
of a finite value of G.

2. Regge curvature oscillations

Given that, in principle, an intermediate spectral dimen-
sion Dα

s can be observed in the case of N ¼ 2, we study
next the influence of oscillating amplitudes by varying G.
Following from the form of the amplitudes in Eq. (4.10),
Regge curvature oscillations are expected to become
relevant for G being comparable to SR. In the light of
the results of Sec. IV B, we expect that the oscillations, now
induced by Regge curvature, have an effect on the spectral
dimension. Our numerical results show that the spectral
dimension is indeed perceptive to the value of G. Since
small changes in G lead to very different flows of Ds, we
conclude that the spectral dimension is in fact highly
sensitive to Newton’s constant. In Fig. 19, we present
the spectral dimension at fixed α for three exemplary values
of G, showing that one can have either a positive or a
negative correction to the case G → ∞, or no correction
at all.

In contrast to one-periodic amplitudes oscillating with a
cosmological constant, the flow of the two-periodic spectral
dimension is not straightforwardly understood by consid-
ering the scaling behavior of the amplitudes. The main
reason for that is the strong dependence of the amplitudes
on the spins ðj; j0; kÞ, given explicitly in Eq. (4.10).

3. G-dependence of intermediate regime

Given the plots of Fig. 19, the blue and red curves might
indicate that the interval ½αmin; αmax� in which an inter-
mediate spectral dimension occurs depends on the value of
G. We test this possibility by computing the spectral
dimension for G ¼ 10−0.5 and G ¼ 102 and a wide range
of α. Our results are depicted in Fig. 20. Indeed, we observe
that for different values of G the boundaries αmin and αmax

change. While at G ¼ 10−0.5, these are αmin ≈ 0.67 and
αmax ≈ 0.69, their values at G ¼ 102 are αmin ≈ 0.69
and αmax ≈ 0.71.
An additional feature we observe is the following.

Within the interval ½αmin; αmax�, the spectral dimension of
purely scaling amplitudes is approximately a decreasing
linear function of α. In contrast, Fig. 20 suggests that the
slope of Ds as a function of α can be positive or negative,
depending on G. We will discuss interpretations of these
phenomena and their entailing consequences for the limit of
large periodicities N in Sec. V B.

4. Cosmological constant

Since the Regge curvature does not vanish for N > 1,
the effects of a nonvanishing cosmological constant,Λ ≠ 0,
on the amplitudes is not as apparent as in the one-periodic
case. Following Eq. (2.13), Λ introduces a phase shift to the
cosine term containing the parameter γBI. Entering with the
four-volume of the frusta, such a term scales quadratically
in the spins, leading to an intricate behavior in combination
with the Regge curvature contributions. Fixing G ¼ 1 and
α ¼ 0.69, we present the two-periodic spectral dimension
for a selection of Λ-values in Fig. 21.

FIG. 19. Two-periodic spectral dimension at α ¼ 0.69 for three
exemplary values of G.

FIG. 18. Left: Expectation value of the two-periodic return probability. Right: Two-periodic spectral dimension. Parameters G; γBI,
and Λ are set to G ¼ 1010, γBI ¼ 1=3, and Λ ¼ 0 with cutoffs jmin ¼ 1=2 and jmax ¼ 201.
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Effects of Λ become important only for Λ when it is not
much smaller than G, as expected from the form of the
amplitudes. The resulting phase shift in the oscillating part
of the amplitudes has significant impact on the flow of the
spectral dimension, as Fig. 21 shows. In comparison to
the one-periodic case discussed in Sec. IV B, we observe the
following additional features. First, high frequency oscil-
lations due to large values of Λ do not appear negligible, at
least in the small range of τ that we can observe. Second, the
region of τ’s, where Λ leads to a deviation in the flow ofDs,
is not as clearly localized as in Fig. 16. This is apparent by
observing that in the region τ∈ ½10−2; 10−0.6�, the spectral
dimension is affected for various orders of magnitude of Λ.
Third, the direction in which the spectral dimension is
corrected by the presence of Λ, so to lower or larger values
than for Λ ¼ 0, is obscured compared to the one-periodic
case. That is, because Λ does not solely control the position
of the first root of the amplitudes whenN ¼ 2 but leads to a
phase shift, the consequences of which are not as straight-
forward to analyze.
In the presence of a nonvanishing Regge curvature,

the amplitudes are not invariant under a sign change of
Λ. However, numerical tests have shown that, at least for

the small region of τ’s depicted in Fig. 21, different signs
of Λ have a negligible effect in Dα

s . Hence, the magnitude
of the cosmological constant appears to be the significant
quantity.
Similar to the above, we find that the range of α, for

which an intermediate dimension exists, depends on the
value of Λ. In summary, αmin and αmax are functions of both
Newton’s constant G as well as the cosmological constant
Λ. We will pursue this discussion in Sec. V B.

D. Analytical estimate of the spectral dimension

Building up on the ideas of [13], we present in this section
a strategy to extract information from the spectral dimension
of oscillating amplitudes using analytical methods. Tackling
first the spectral dimension of generalN -periodic spin foam
frusta, we obtain a qualitative expression for the spectral
dimension which is, however, still too intricate to compute
explicitly. Nevertheless it serves as a support for the
numerical results as well as a guidance for the limit
N → ∞, discussed in Sec. V B. In the second part of this
section, we consider an explicitly integrable model which
qualitatively explains the cosmological constant results of
Sec. IV B.

1. An analytical argument

For the analysis of the spectral dimension, it is advanta-
geous to introduce the average spin variable r2 ≔ 1

n

P
j2f,

where n is the total number of degrees of freedom, where
n ¼ 2N in the case of N -periodic spin foam frusta.
Technically, the variable r is a radial coordinate in the
space of configurations jf. Likewise, the remaining vari-
ables can be seen as an angular part, and we therefore
denote them by Ω in the following. As the definition of the
Laplace operator in Sec. II B 1 and the arguments of [71]
and [13,27] show, it is reasonable to assume under the spin
foam measure

ΔðjfÞ ∼
1

r
Δ; ð4:11Þ

FIG. 21. Two-periodic spectral dimension for varying Λ, with
G ¼ 1 and α ¼ 0.69.

FIG. 20. Two-periodic spectral dimension for G ¼ 10−0.5 (left) and G ¼ 102 (right) showing that the window of an intermediate
regime is G-dependent.
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whereΔ is the Laplace matrix on the equilateral hypercubic
lattice.
Within this assumption, let us have a closer look on the

expectation value of the return probability with respect to
semiclassical amplitudes. As we have argued in Sec. IVA,
for jmax

jmin
≫ 1, the summation over configurations can be

approximated by an integral. Following that and perform-
ing a change to spherical coordinates as described above,
we obtain

hPðτÞi ¼ 1

Z

Z
dΩ
Zjmax

jmin

drrn−1
Y
v

Avðr;ΩÞTrðeτΔr Þ: ð4:12Þ

Forming the logarithmic derivative of this expression yields

τ

hPi
∂hPi
∂τ

¼ 1

hPiZ
Z

drdΩrn−1
Y
v

AvTr

�
τΔ
r
e
τΔ
r

�
: ð4:13Þ

Since TrðeτΔr Þ is in fact a function of the ratio τ=r, we can
trade the derivative with respect to τ with an r derivative,

Tr

�
τΔ
r
e
τΔ
r

�
¼ −r

∂

∂r
TrðeτΔr Þ: ð4:14Þ

Using the r derivative, we can integrate by parts,

τ

hPi
∂hPi
∂τ

¼ 1

hPiZ
�
∂IðτÞ þ

Z
drdΩrn−1

Y
v

Av

×

�
nþ

X
v

r
Av

∂Av

∂r

�
TrðeτΔr Þ

�
: ð4:15Þ

Here, ∂I denotes the boundary term in the partial integra-
tion, explicitly given by

∂IðτÞ ¼ −
Z

dΩrn
Y
v

AvTrðeτΔr Þjjmax
r¼jmin

: ð4:16Þ

The other terms inside the brackets stem from the r
derivative acting first on rn and then on the product of
amplitudes. Notice that − r

Av

∂Av
∂r is exactly the effective

scaling γ of Av which we have discussed previously in
Sec. III B.
Before tackling more general cases, we consider the

simplified scenario in which the amplitudes satisfy a
uniform scaling behavior, i.e., Av ¼ hvðΩÞr−γcons . For a
scaling γcons ¼ 9–12α, this describes N -periodic cuboids
(and thus one-periodic frusta) with a vanishing cosmologi-
cal constant, Λ ¼ 0. Importantly, the radial and angular
parts factorize as a consequence of the scaling assumption
of Δ, simplifying the following equations significantly. As
the effective scaling of Av with respect to the radial
coordinate is the constant γcons, the spectral dimension is

DsðτÞ ¼ −2
τ

hPi
∂hPi
∂τ

¼ 2ðγconsV − nÞ − 2
∂IðτÞ
hPiZ : ð4:17Þ

Our results from one-periodic semiclassical frusta, together
with the findings of [13], suggest that, if α allows for an
intermediate spectral dimension 0 < Dα

s < 4, the boundary
term vanishes there. Consequently, Dα

s is given by

Dα
s ¼ 2ðð9 − 12αÞV − nÞ: ð4:18Þ

If the value of Dα
s lies outside the interval [0, 4], the

boundary term counteracts to yield either zero or four.
Because of the spatial homogeneity of frusta as well as the
assumptions we introduced, the number of vertices V and
the number configurations n are, respectively, given by
V ¼ N 4 and n ¼ 2N . Plugging these expressions into
Eq. (4.18) for N ¼ 1, the analytical estimate is compatible
with the numerical findings of Sec. IVA as well as the
previous results in [13].
Quantum amplitudes as well as semiclassical amplitudes

for N > 1 do not show a simple scaling behavior.
However, what all these more general cases have in
common is that they factorize into a scaling part and a
nontrivial residual part. To capture this, we write

Av ¼ r−γconsCvðr;ΩÞ; ð4:19Þ

where Cvðr;ΩÞ can be understood as a correction term to
the scaling part with constant γcons. Splitting the ampli-
tudes into this form allows us to reexpress the spectral
dimension as

Ds ¼ 2ðγconsV − nÞ− 2
X
v

R
dΩdrrn−1 r

Cv
∂Cv
∂r

Q
v0Av0TrðeτΔr ÞR

dΩdrrn−1
Q

v0Av0TrðeτΔr Þ
− 2

∂I
hPiZ : ð4:20Þ

For oscillating correction terms that attain many zeros, and
therefore lead to divergences of the effective scaling, the
integration domain of the above needs to be restricted
accordingly. Aspects of well-definedness and convergence
need to be addressed for each given Cv individually. Put
into this form, Eq. (4.20) suggests that the pure scaling
value of Dα

s ¼ 2ðð9 − 12αÞV − nÞ is corrected by a term
arising from the effective scaling − r

Cv
∂Cv
∂r of the correction

term Cv as well as the boundary term. Assuming that the
boundary term is negligible in the regime of an inter-
mediate spectral dimension, we compare the analytical
estimate in Eq. (4.20) with the results of one-periodic
quantum amplitudes, a cosmological constant for N ¼ 1
and finally the two-periodic case.
For α ≳ 0.24, extrapolated quantum amplitudes exhibit

an effective scaling larger than the semiclassical value, as
Fig. 13 shows. This implies that
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−
r
Cv

∂Cv
∂r

> 0; ð4:21Þ

and hence, that the spectral dimension is corrected to a
larger value. This is exactly what we observe in Fig. 15.
In the presence of a cosmological constant Λ, the

correction term in Eq. (4.4) is a shifted cosine with a
quadratically scaling phase. Since the constant shift is
smaller than 1, the correction terms hits many zeros, such
that the effective scaling diverges at these points.
Consequently, Eq. (4.20) is only valid on a restricted

domain. Still, let rðΛÞ0 denote the first zero of Cv depending
on Λ. Then the effective scaling of Cv is larger than zero in

the interval ½jmin; r
ðΛÞ
0 �. This suggests that for growing τ, the

first correction to the spectral dimension is to a larger value,
which can be observed numerically in Sec. IVB. For the

remaining integration range r∈ ½rðΛÞ0 ; jmax�, we conjecture
that the rapidly changing scaling behavior is averaged out
within the scales that are emphasized by TrðeτΔr Þ. However, it
is currently not in reach to substantiate this statement further.
Frusta amplitudes of periodicity N > 1 exhibit a highly

nontrivial correction term Cvðr;ΩÞ, as Eq. (4.10) indicates.
Given that Cv hits many zeros, leading to divergences of its
effective scaling, the integral in Eq. (4.20) has a highly
restricted domain of validity which depends sensitively on
the values of ðG; γBI;ΛÞ. Because of these obstacles for
understanding the correction term, let us first consider a
regime where Cv is approximately constant, obtained for
large values of G, and comment on the more general case
afterwards. In the absence of the correction and the
boundary term, the intermediate spectral dimension is
given by Eq. (4.18) for V ¼ 16 and n ¼ 4. The admissible
values of α to observe an intermediate spectral dimension
approximately lie in the interval [0.72, 0.73], as predicted
by the analytical considerations.
Our numerical results of Sec. IV C are in partial accor-

dance with this prediction. Qualitatively, we find an
intermediate spectral dimension which is controlled solely
by α, as Fig. 18 shows. Also, we find that the window of
admissible α for such a regime is smaller compared to the
one-periodic case. However, the qualitative predictions of
the analytical arguments, notably Eq. (4.18), do not agree
with the numerical results. In particular, the values of αmin
and αmax as well as the values of Dα

s of the analytical
derivation appear to be shifted with respect to the numerical
ones. Recall that the whole analytical argument hinges on
the assumption that the Laplacian exhibits a scaling behav-
ior with a negligible angular dependence, given in
Eq. (4.11). While this might be justified for N ¼ 1, the
angular dependence of Δ for N > 2 is more intricate.
Therefore, we suspect this assumption to be the main source
of the discrepancy between the analytical predictions and
the numerical results. As a result, changes of the inter-
mediate dimension which are not captured by Eq. (4.18) are

conceivable. Still, we recall that the window of intermediate
scales jmin < τ < jmax for the results of Sec. IV C is small,
necessitating further analysis of the qualitative inconsis-
tency between analytical and numerical results.
When correction terms cannot be neglected, i.e. when the

value of the action SR is of order G, the spectral dimension
is sensitive to the values of G and Λ, as the numerical
results of Sec. IV C show. In the intermediate regime jmin <
τ < jmax one observes corrections to Dα

s for some ðG;ΛÞ to
smaller as well as to larger values. Moreover, the window
½αmin; αmax� is shifted depending on G and Λ. This suggests
that for higher periodicities, the correction term is pre-
dominant, introducing an intricate dependence of the
intermediate dimension on the parameter values ðα; G;ΛÞ.

2. An integrable model with oscillations

Faced with the obstacle of computing the corrections of
oscillating terms explicitly, we consider in the following a
simplified integrable system. The results we derive support
the intuition we have attained in the preceding part of
this section.
The simplified model is an equilateral lattice. We find

closed expressions for the heat trace in one dimension,
though the results should extend to hypercubic lattices of
any dimension since the lattice heat trace factorizes [69].
On the one-dimensional lattice, it is possible to integrate the
heat trace

P1DðxÞ ≔
Z

π

0

dpe−xð1−cospÞ ¼ πe−xI0ðxÞ ð4:22Þ

where I0 is the modified Bessel function. For this,
integration with a purely scaling measure (constant
γ ¼ γcons) gives

hPðτÞiγ ≔
Zjmax

jmin

drr−γP1Dðτ=rÞ

¼ π

1− γ
r1−γ2F2

 
1
2
; γ− 1

1; γ
;−2τ=r

!����jmax

jmin

; ð4:23Þ

where pFqða1;…;ap
b1;…;bq

; zÞ is the generalized hypergeometric

function.21 In the regime jmin ≪ τ ≪ jmax, this example
gives the expected spectral dimension Ds ¼ 2ðγ − 1Þ,
presented in Fig. 22. In particular, one finds this value
as the exact constant result for the integral with jmin ¼ 0
and jmax ¼ ∞.
This example can still be integrated with an oscillating

measure over the positive reals,

21For an explicit definition of the generalized hypergeometric
function pFq, see for instance [82].
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hPðτÞiγ;ω ≔
Z

∞

0

r−γ cosðωrÞdrP1Dðτ=rÞ: ð4:24Þ

Interestingly, the result turns out to be a function solely in the combined variable ωτ up to a factor ωγ−1,

hPðτÞiγ;ω ¼ ffiffiffi
π

p Γð3
2
− γÞΓðγ − 1Þ
Γð2 − γÞ ð2τÞ1−γ2F5

 
3−2γ
4

; 5−2γ
4

1
2
; 2−γ

2
; 2−γ

2
; 3−γ

2
; 3−γ

2

;−ðωτÞ2=4
!

− ωγ−1πΓð−γÞ
"
cosðπγ=2Þωτ2F5

 
3
4
; 5
4

1; 3
2
; 3
2
; 1þγ

2
; 2þγ

2

;−ðωτÞ2=4
!

þ γ sinðπγ=2Þ2F5

 
1
4
; 3
4

1
2
; 1
2
; 1; 1þγ

2
; γ
2

;−ðωτÞ2=4
!#

:

As a consequence, the spectral dimension is also a function
in ωτ. Surprisingly, even though there are no boundary
terms, this spectral dimension shows a flow from 2ðγ − 1Þ to
Ds ¼ 1 with an intermediate maximum at τ ≈ 1=ω directly
followed by a local minimum already close to Ds ¼ 1; see
Fig. 22. For a finite upper integration boundary jmax > ωτ
we would therefore expect no significant difference.
The spin foam measure in Eq. (4.4) that we want to

model has a correction which is a linear combination of a
constant term and an oscillating one. Thus, we have
to consider the spectral dimension of the combination
ahPðτÞiγ þ hPðτÞiγ;ω, that is, the quantity

DsðτÞ ¼ −2τ
a∂τhPðτÞiγ þ ∂τhPðτÞiγ;ω
ahPðτÞiγ þ hPðτÞiγ;ω

: ð4:25Þ

From earlier work [69] we know that a linear combination
of two heat trace expectation values hPðτÞiγ and hPðτÞiγ0
with different scalings γ > γ0 leads to a spectral dimension
of value 2ðγ − 1Þ followed by a value 2ðγ0 − 1Þ at larger
scale τ. Something similar happens in the linear combi-
nation here when jmax ≫ 1=ω: As Fig. 23 shows, we see

10- 4 0.01 1 100
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0.8

0.9

1.0

1.1
Ds

FIG. 23. Spectral dimension of superposed one-dimensional
lattice geometries with a combined measure, Eq. (4.25), with
jmin ¼ 0, jmax ¼ 100 (in the scaling part), a relative factor
a ¼ 1.5, and oscillations ω ¼ 10; 1; 1=10 (with resulting peaks
at τ ∼ 1=ω from left to right); the purely scaling case is given for
comparison as dashed curve.
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FIG. 22. Left: Spectral dimension of superposed one-dimensional lattice geometries with purely scaling measure, γ ¼ 5
4
, integrated

from jmin ¼ 0 to jmax ¼ 1 (yellow) and jmax ¼ 100 (blue). Right: The same for an oscillating measure integrated from jmin ¼ 0 to
jmax ¼ ∞, with γ ¼ 5

4
and ω ¼ 1 (yellow) and ω ¼ 1=100 (blue).
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the oscillation peak of the hPðτÞiγ;ω part at ωτ ≈ 1 but after
that the hPðτÞiγ part dominates. Together, this yields a
spectral dimension which looks like the purely scaling
part with an extra local maximum superposed at scale
τ ≈ 1=ω. This is exactly the qualitative behavior found in
Fig. 16. In this way, the simplified example gives an
explanation of the mechanism underlying the effect of a
cosmological constant on the spectral dimension of
spin foams.

V. DISCUSSION

A. Renormalization and the spectral dimension

From the perspective of classical general relativity, return
probability and spectral dimension are reasonable observ-
ables. The return probability is coordinate independent
since it is a trace of the heat kernel over the entire space-
time. Equivalently, it is given by the exponentiated integral
of the spectrum of the Laplace operator. Therefore it should
be a suitable observable in the context of quantum gravity.
Diffeomorphism invariance is typically broken in spin

foam models, yet we expect its restoration to be tied to (a
notion of) discretization independence [43–45,52,53,83–86].
This is vital if we interpret the spin foam two-complex as a
fiducial object, providing a regularization of the theory.
Then, predictions of the theory must be consistent for
different regulator choices, i.e., the regulator can be
removed and the observables remain well defined in a
suitable refinement limit. In principle this logic should apply
to the spectral dimension as well, yet it is more subtle.
To point out the particularities of renormalization in a

background independent setting, it is helpful to first con-
sider the spectral dimension on two different discretizations
of the same manifold, where one is the refinement of the
other. For diffusion times much larger than the typical
length scale of the triangulation, their spectral dimension
will agree with the continuum result. By definition, for the
coarser triangulation this scale is larger; therefore, its
spectral dimension will deviate from the continuum result
for larger diffusion compared to the finer triangulation. This
is perfectly expected as the coarser triangulation is ignorant
to dynamics below its discretization scale. In the context of
spin foams however, this question is more intricate.
In a spin foam setting, consider two two-complexes,

where the coarser one arises from coarse graining the fine
one. Let us additionally assume that we can compute the
coarse graining flow of spin foam amplitudes, such that we
can assign a theory to the fine two-complex and its coarse
grained version to the coarse one. Crucially, in a back-
ground independent theory, the discretization scale is not a
parameter but part of the variables we are summing over.
Thus, instead of the scale, the difference between coarse
and fine theory is that the fine theory features more
variables and can thus capture more configurations than
the coarse one. Some of these fine configurations will

correspond to representations of coarse configurations on
the finer discretization, between which one could relate
with embedding maps, yet some configurations cannot be
captured in the coarse case. Therefore, one would expect
differences to occur when the spectral dimension probes
these fine configurations, assuming one is using the same
definition of Laplace operator. This might be avoided by
also coarse graining the Laplace operator such that the
coarse version effectively reflects how the scalar field
probes the fine version configurations leading to a modified
spectrum of the renormalized operator.22 However, this
procedure is ambitious and goes beyond the scope of
this article.
Another method to employ a refinement limit is to study

the same observable on finer and finer two-complexes, with
the same theory assigned to each complex. This is closer
to the setup of this article, but strictly speaking not a
renormalization procedure. The idea is to send the number
of building blocks to infinity with the goal to identify
whether the observable converges under refinement; and
further whether there are indications for a phase transition,
if it is indeed an order parameter for this transition. In this
way one might determine the set of parameters for which
the original theory approximates a potential fixed point.
Close to such a fixed point, discretization independence
would be approximately satisfied.23

Beyond the technical challenges, one must first define
how to systematically refine the two-complex in order
to define such a limit (if it indeed exists). In our setup of
N -periodic spin foams on hypercubic lattices, this is
straightforwardly the limit N → ∞, which simultaneously
removes the assumption of periodicity. To distinguish this
limit from the refinement limit as determined by a renorm-
alization procedure,24 we call the limit N → ∞ together
with jmax → ∞ the thermodynamic limit. We discuss the
implications of our analytical results for the thermody-
namic limit in the next section.

B. The thermodynamic limit

Several assumptions underlie the numerical results of
Sec. IV, the strongest of which is clearly that of N
periodicity of the geometric configurations. Furthermore,

22The interpretation is that the coarse theory arises as an
effective dynamics from the fine one after integrating out fine
degrees of freedom. This would apply to the scalar field even
though it is unphysical.

23Conceptually, the ideas outlined here can be straightfor-
wardly applied for two-complexes without a boundary. For two-
complexes with a boundary, one still needs to relate boundary
states in different Hilbert spaces to describe the same transition.

24It is not straightforward to implement N periodicity in a
coarse graining procedure: imagine coarse graining an N -
periodic spin foam such that the number of degrees of freedom
are halved. Unfortunately, without additional restrictions the
resulting spin foam will not be an N =2-periodic spin foam.
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we truncated the number of dressed vertex amplitudes toN
and introduced an upper cutoff jmax for a feasible numerical
implementation. Both the cutoff and the periodicity need to
be removed for physically viable results in the limits
jmax → ∞ and N → ∞, respectively. In the following,
we discuss these limits and the resulting interpretation of
the spectral dimension.
As shown, the cutoffs jmin and jmax mark the boundaries

for the scale τ between which an intermediate spectral
dimension is possible; outside these values it flows to the
value zero and four, respectively. In the limit jmax → ∞, we
therefore expect an indefinite continuation of the inter-
mediate regime to large scales. Because of the restrictive
value of jmax ¼ 201 in Sec. IV C and the intricate form of
Cv for N > 1 in Sec. IV D, inferring the explicit form of
this continued intermediate regime for N ≥ 2 remains an
open challenge. Further, the simplified integrable model of
Sec. IV D 2 has shown that oscillations can result in a flow
to the topological dimension around the scale given by the
frequency of the oscillations independent of an upper
cutoff. Whether this generalizes to the intricate oscillatory
dependence of spin foams is an intriguing direction for
future research.
The plateau of the spectral dimension for purely scaling

amplitudes, given in Eq. (4.18), depends on the number of
configuration variables n as well as the number of vertices
V. Within the approximations we have imposed, n and V
are related to the periodicity N via n ¼ 2N and V ¼ N 4,
respectively. Then, the interval ½αmin; αmax�, for which an
intermediate dimension 0 < Dα

s < 4 exists can be reex-
pressed in terms of N

αmin ¼
1

12

�
9−

2N þ 2

N 4

�
; αmax ¼

1

12

�
9−

2N
N 4

�
: ð5:1Þ

Clearly, in the limit N → ∞, the interval shrinks to a
single point α�, corresponding to the value at which the
amplitudes are scale invariant. This is due to the fact
that we are considering higher and higher powers of the
amplitudes. Following [13], in the context of cuboids, this
point marks a phase transition since the spectral dimension
changes discontinuously from 0 to 4 at α�. Since the
degrees of freedom as well as the combinatorial length
L ¼ N are taken to infinity while keeping their ratio fixed,
N → ∞ corresponds to a thermodynamic limit. Numerical
results for one-periodic frusta, presented in Sec. IVA, are
in alignment with the analytical formula in Eq. (4.18).
Also, the interval ½αmin; αmax� of admissible α values to
observe such an intermediate regime are supported by
our results.
Generalizing to two-periodic or higher configurations,

the parameter space of the theory extends as the amplitudes
now depend on ðα; G; γBI;ΛÞ. Qualitatively, for fixed
ðG; γBI;ΛÞ, we still observe that α controls the value of

the intermediate dimension and that the interval between
αmin and αmax is smaller in comparison to the one-periodic
case. This suggests that a similar argument as in [13]
applies: In the limit N → ∞, the spectral dimension
exhibits a nontrivial flow only when α is tuned to some
fixed value α�. Notice that, in comparison to cuboids, frusta
amplitudes are strictly speaking never scale invariant.
Consequently, α� is in general not given by α� ¼ 3

4
.

Crucially, we observe that ðG; γBI;ΛÞ impact the spectral
dimension only in the intermediate regime, which is
controlled by α. Conversely, outside the relevant α interval,
we did not observe these parameters inducing a change in
the spectral dimension.
If we vary ðG; γBI;ΛÞ, the value α� might change, in

principle, and become a function of these parameters.
Geometrically, this would imply in general a nontrivial
surface Σ� of codimension one in four-dimensional param-
eter space ðα; G; γBI;ΛÞwhich marks the phase transition in
the limitN → ∞. As demonstrated in Sec. IV C, the values
of αmin and αmax are indeed dependent on G and Λ.25 In the
limit N → ∞, the interval of α’s will shrink to a point, the
value of which depends on G; γBI, and Λ. Consequently,
α�ðG; γBI;ΛÞ defines a nontrivial embedded surface Σ�
which, tentatively speaking, marks the critical surface of a
phase transition.
Taking the perspective that γBI and α are fixed and

nonflowing parameters,26 the intersection of the α and γBI
hypersurfaces together with Σ� yield the lines of ðG;ΛÞ,
which we interpret as critical lines. A graphical intuition for
that is presented in Fig. 24 with the γBI-direction sup-
pressed. This intersection might also be empty though,
depending on the values of α and γBI.
In light of the previous discussion on renormalization,

we emphasize that the large-N limit is not to be understood
as a renormalization flow but rather as a removal of the N -
periodicity assumption. Defining a spin foam renormaliza-
tion flow requires a refinement of the combinatorial
structure as well as a relation between coarse and fine
geometric variables. In contrast, the large-N limit simply
considers the addition of building blocks and does not
affect the variables or the states. Consequently, the RG-
fixed points are in general not related to the “critical values”
ðα�; G�; γBI�;Λ�Þ of the limit N → ∞, but might provide
indications for such a fixed point.

25We fixed γBI to render the simulations feasible. However, if
not fixed by other arguments such as from black hole entropy
matching [87], we expect that γBI plays a similar role as G and Λ,
influencing the value of α�. We therefore assume in the following
that α� depends also on γBI.

26Matching the black hole entropy from LQG to the Bekenstein-
Hawking formula requires γBI to take a specific value [87]. We
remind the reader that α parametrizes an ambiguity in the
face amplitudes. Choosing a specific model with a given face
amplitude therefore corresponds to a fixed nonflowing α.
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C. Information about G, Λ and γBI
from the spectral dimension

As demonstrated in Sec. IV B and Sec. IV C, Newton’s
constant G and the cosmological constant Λ have an
immediate effect on the flow of the spectral dimension.
It is furthermore to be expected that γBI plays a similar role
for frusta of N > 2. In principle, this could open the
possibility to extract the values of G; γBI, and Λ in a given
regime from determining the effective, spectral dimension.
In this section we discuss this possibility and its limitations.
Consider the one-periodic case discussed in Sec. IV B

first, where the Regge curvature vanishes and only the ratio
Λ=G becomes relevant. Given that an intermediate regime
exists, the spectral dimension will locally flow to a larger
value in the vicinity of the scale at which the amplitude
completes the first oscillation. This scale is directly related
to the value of Λ=G. In principle, a given one-periodic
spectral dimension flow therefore provides insight to the
value of Λ=G.
This picture changes drastically when going to higher

periodicities where SR ≠ 0. In these cases the flow of the
spectral dimension is highly sensitive to the three param-
eters ðG; γBI;ΛÞ, where the effects do not seem to be
localized around a certain scale. Again, a given measure-
ment of the spectral dimension could, in principle, be used
to attain partial knowledge on the values of these param-
eters. Various caveats and limitations follow these sug-
gestions, the most important ones of which we discuss in
the following.
First, for computing the two-periodic spectral dimension

we have employed semiclassical amplitudes. Therefore,
quantum effects have been neglected on small scales
τ ∼ jmin. Such effects have presented themselves in two
ways. As discussed in Sec. IVA, quantum amplitudes
show a nonconstant modified scaling behavior. Following
[51], oscillating quantum amplitudes also show a phase
shift with respect to the semiclassical ones on low scales.

Clearly, both of these quantum effects need to be taken into
account when considering the spectral dimension as an
observable quantity.
Second, the results of Sec. IV C suggest that the map

between the parameters ðG; γBI;ΛÞ and the corresponding
spectral dimension is only surjective, such that one cannot
extract a unique triple ðG; γBI;ΛÞ from a measured flow of
Ds. Moreover, forN > 1, the amplitudes exhibit an intricate
oscillatory behavior which leads to a spectral dimension that
is highly sensitive to the values of ðG; γBI;ΛÞ. Indeed, we
expect that it is necessary to measure several observables to
determine these parameters accurately. Nevertheless, know-
ing Ds for all scales contains a lot of, albeit coarse grained,
information of quantum space-time that should allow us to
constraint the range of admissible parameters, e.g., to
distinguish whether G is large or small.
Third, the triple (G, γBI, Λ) entering the semiclassical

amplitudes in Eq. (2.13) is considered as the bare param-
eters.27 Thus, under a renormalization flow and under the
assumption that we project back onto the original theory
space, e.g., as in [31], it is, in general, to be expected that
(G; γBI;Λ) flow as well. As stressed above, for physical
viability, the spectral dimension must be considered at a
fixed point of the renormalization group flow to ensure
discretization independence of the result. The values of
ðG; γBI;ΛÞ at this fixed point are then the quantities that can
be, in principle, observed.
An observable effect of the parameters on the spectral

dimension requires the existence of an intermediate regime.
As discussed in Sec. V B, in the thermodynamic limit
jmax → ∞ and N → ∞, the values of ðα; G; γBI;ΛÞ for
which such a regime exists shrink to a point. At this
transition point, the spectral dimension is expected to show
a nontrivial behavior. However, with the assumptions of
finite upper cutoff jmax and periodicityN , necessary for the
computations in Sec. IV, determining the spectral dimen-
sion at the transition point is currently out of reach.
As a last caveat, we remind the reader that the model we

consider here presupposes a Euclidean space-time signa-
ture. The kinematics of physical scalar fields is governed by
the d’Alembert operator and not the four-dimensional
Laplace operator. Hence, deviations between predictions
based on Euclidean models and results from measurements
are in general to be expected. In addition to Lorentzian
effects, we recall that the Laplace operator was defined via
its action on scalar test fields. Physical fields used for actual
measurements couple nontrivially to the geometry of space-
time and lead to backreactions on the gravitational field;
see, e.g., [54]. As a result, the spectrum of the Laplace
operator and therefore the return probability as well as the

FIG. 24. Sketch of a critical surface Σ� in the parameter space
of theory with the γBI direction suppressed. Given that α is fixed
(blue plane), the intersection with Σ�, indicated by the red curve,
marks the critical values of G and Λ.

27This is discussed in more detail in the previous two sections.
For discussion on the flow of γBI, we refer the interested reader
to [88].
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scaling behavior of spin foam and matter amplitudes are
modified.

VI. CONCLUSIONS

In this work, we have studied the effects of quantum
amplitudes and oscillations on the spectral dimension
within the EPRL-FK model, restricted toN -periodic frusta
geometries. This marks a significant expansion of previous
work [13] on flat, nonoscillatory and purely semiclassical
cuboid geometries [52]. To bypass the steep numerical
costs for computing quantum frusta amplitudes already at
small spins [51], we have presented a method to extrapolate
quantum amplitudes for N ¼ 1 to large spins in Sec. III,
serving as an improved approximation compared to semi-
classical amplitude, in particular, at low spins. This marks
the first result of our work.
Computing the spectral dimension with respect to

extrapolated amplitudes, we find additive corrections at
low scales compared to the semiclassical results. Supported
by analytical computations, these quantum corrections can
be traced back to a modified effective scaling behavior of
the extrapolated amplitudes, constituting our second result.
As a third result we have found that curvature induced by

a cosmological constant Λ yields additive corrections of the
one-periodic spectral dimension at scales τ ∼ 1=

ffiffiffiffi
Λ

p
. We

have shown that such effects of Λ can also be understood
qualitatively by considering the effective scaling of the
amplitudes. Furthermore, we have given an explanation of
the mechanism underlying these results in terms of a
simplified integrable model with such oscillating measure.
Finally, we found that two-periodic amplitudes with an

intricate oscillatory behavior lead to a flow of the spectral
dimension which depends on the full set of parameters
ðα; G; γBI;ΛÞ. Summarizing, our numerical and analytical
results show that curvature is an essential factor for the
spectral dimension that requires further study.
In an overarching perspective, the results of the present

work are an intermediate step towards understanding the
spectral dimension of more general quantum geometries.
Spin foam frusta with their inherent high degree of sym-
metry present a strong restriction of the quantum geometry
compared to the general case. Retaining hypercubic combi-
natorics, a feasible scenario would be to construct a more
general restricted model, which however quickly becomes
cumbersome and the numerical challenges in the quantum
regime remain. Furthermore, there is evidence that the
EPRL-FK model for higher valent vertices differs from
the one defined on triangulations in the implementation of
simplicity constraints [89,90], and geometric critical points
with torsion and nonmetricity exist [52,91]. Therefore, if all
restrictions on the geometry are lifted, it is advantageous to
directly work on triangulations, where the semiclassical
amplitudes are well studied [32,33,92–96] and more numeri-
cal methods are available and in development [35–37,41,47].

In the following, we briefly discuss the challenges one
faces when defining the spectral dimension on unrestricted
spin foams defined on a triangulation.

(i) N -periodicity on a triangulation: The introduction
of N -periodicity [13] is highly beneficial for
reducing the computational effort. In particular,
formulating the spectrum of the Laplace operator
on momentum space is far more efficient than
directly diagonalizing the Laplace operator and
can be straightforwardly generalized to larger
two-complexes. The notion of N periodicity is
tied to combinatorial “directions,” which are nat-
urally defined on a hypercubic lattice. On four-
dimensional triangulations these intuitions are not
applicable and N periodicity is not straightfor-
wardly defined.

(ii) Vector geometries in the semiclassical limit: The
semiclassical amplitudes for a four-simplex exhibit
different types of critical points, depending on the
boundary data [32]. While Regge geometries present
one class of solutions, so-called vector geometries
[32] contribute with the same degree of polynomial
decay. Since such configurations do not correspond
to geometric four-simplices, their four-volume is not
defined, and it is not obvious how to generalize the
definition of a Laplace operator.

(iii) Nonmatching simplices/complex critical points: The
restriction to cuboid or frusta geometries is special,
as each 4D building block is evaluated on a critical
point and glued along matching 3D polyhedra. In
recent years, there has been growing evidence that
configurations beyond real critical points must be
taken into account for large, but finite spins. In
effective spin foams [37,40] and the hybrid algorithm
representation [36] these are parametrized as geo-
metric but nonmatching simplices, i.e., the shared 3D
building blocks have different shapes as seen from
their 4D building blocks. Alternatively, such con-
figurations are called complex critical points [41,50]:
such configurations can be interpreted as exhibiting
nonvanishing torsion and play an important role in
understanding and circumventing the flatness prob-
lem [37,50,97–100]. Following our definition, the
Laplace operator for such a nonmatching configu-
ration might not be symmetric any more.

(iv) Pregeometric configurations: Beyond a modified
scaling behavior, the deep quantum regime of spin
foams additionally features pregeometric configura-
tions which are not peaked (as coherent states) on the
shape of semiclassical polyhedra. It is an intriguing
question how a scalar test field can probe such a
quantum geometry.

(v) Numerical challenges in and beyond the quantum
regime: Although the computation of quantum
amplitudes is more feasible in the general simplicial
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case, the mere number of ten spin configurations per
vertex presents serious numerical challenges.

(vi) Lorentzian signature: The studies of the spectral
dimension presented here essentially examine a
diffusion process on Euclidean quantum space-time.
It will be interesting to see whether these concepts
can be generalized to Lorentzian test fields probing a
Lorentzian quantum space-time; see, e.g., [101]
for an implementation in causal set theory. For
the gravitational side, choosing the Lorentzian
EPRL-FK model might be beneficial compared to
the Euclidean one: semiclassical Lorentzian four-
simplices feature oscillations proportional to γBI.

We expect that several of the features mentioned above
will have an impact on the spectral dimension, which we
currently cannot estimate. In particular, it will be interesting
to see whether the effective scaling of the amplitudes can
still explain the behavior of the spectral dimension if
pregeometric configurations are considered. Therefore, it
is imperative to lift the restrictions of the frusta model and
work towards exploring the spectral dimension on unre-
stricted spin foam quantum geometries.
A possibility to define N periodicity in a simplicial

context could be to triangulate N -periodic cubical lattices.
There exist several inequivalent options to realize that, two
examples of which are given in [102,103], respectively.
Geometrically, these configurations correspond to different
triangulations of the torus. Explicitly setting upN -periodic
triangulations and computing the spectral dimension
thereof is left for future work.
Within the context of spin foam frusta, a conceivable

method to compute the spectral dimension for higher
periodicities and larger cutoffs jmax is to restrict to con-
figurations with small dihedral angles, e.g., via a Gaussian.
Previous work [13] supports the conjecture that this
restriction still captures the relevant geometric information.
If valid, this reduction of configurations would greatly
simplify the numerical effort required to compute Ds,
enabling exploration of regimes currently out of reach.
Also for less restricted geometries on a triangulation, a
linearization around flat configurations could be advanta-
geous as this simultaneously simplifies the form of the
amplitudes and the Laplace operator.
Going beyond small periodicities is numerically chal-

lenging regardless of the specific model at hand. This is
even more true for triangulations without geometric
restrictions, where we must consider vastly more variables
compared to the symmetry restricted frusta cases. To

reliably compute expectation values of observables, it is
therefore imperative to use a numerical method that does
not exponentially scale with the number of variables of the
system. In many areas of physics, Monte Carlo methods
serve this role, yet cannot be readily applied in spin foams.
Because of the oscillatory nature of spin foam amplitudes,
the spin foam partition function might not be naively
usable as a probability distribution to sample results with.
A way around this might be to define Markov Chain
Monte Carlo on Lefschetz thimbles of the spin foam
partition function [39], where the integration contour is
changed such that the imaginary part of the system is
constant and thus nonoscillatory. Alternatively, a potential
strategy might be to propose a new probability distribution
to sample configurations with. Recently, random sampling
of bulk quantum numbers was applied to approximate spin
foam amplitudes with many bulk faces in [49].
To conclude, the spectral dimension remains an in-

triguing observable in spin foam models that is far from
understood. Our results show that its value at small scales
depends on all the parameters α; G; γBI;Λ, though the
specific relations are sensitive to the specific restricted
model. Many effects such as pregeometric configurations
might alter its behavior. Hence, our work shows how the
spectral dimension of spin foam geometry can provide us
with a deeper, coarse grained understanding of quantum
space-time while at the same time allowing us to connect to
other approaches of quantum gravity as well as continuum
physics.
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