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We study the magnetic field effects on the quantum critical point (QCP) in the holographic Weyl
semimetal model. We show that it increases quadratically with the magnetic field for weak field and linearly
with the magnetic field for strong field. Our findings are compatible with previous results in the literature
from other approaches.

DOI: 10.1103/PhysRevD.108.066010

I. INTRODUCTION

The investigation on the topological states of matter, i.e.,
materials that do not fit in the usual Ginzburg-Landau
criteria being classified by topology rather than symmetry
(or breaking of it) has become increasingly stronger in
condensed matter physics. In such materials, the momen-
tum-space topology of the Fermionic ground states, most
commonly manifested in their electronic band structure,
plays a fundamental role [1,2]. The physical realization of
these states includes topological insulators (TI) [3–5],
topological superconductors (TSC) [6–8], and Weyl semi-
metals (WSM) [9–14].
The low energy effective field theory description of

WSM’s is a linear gapless effective Hamiltonian resem-
bling a relativistic Weyl fermion from particle physics
literature [15,16], whose geometric locus in momentum
space defines a cone centered at a given value of momenta
and energy, the Weyl cone [17–30]. These cones must
always occur in an even number throughout the k space, as
a result of the Fermion doubling theorem [31,32]. This
last feature, together with their associated topological
charge [33,34], endows the Weyl cones with a topological
stability against perturbations that preserves the original
symmetries of the system and leads to a series of interesting

physical consequences, e.g., Fermi-arcs [35–40] and the
chiral magnetic effect [41–43].
The development of the AdS=CFT correspondence or,

more generally known as the gauge/gravity duality, over the
past years has become an important tool for studying
strongly coupled systems. Originally, the AdS=CFT cor-
respondence states a duality between a gravity theory in a
(dþ 1)-dimensional anti–de Sitter (AdS) space andN ¼ 4
super-Yang-Mills theory, living on d-dimensional boun-
dary of AdS space. Namely, the physics of the strongly
coupled theory on d-dimensional boundary of AdS space is
encoded in the weakly coupled classical gravity living on a
(dþ 1)-dimensional AdS space. Nowadays, the extension
of this duality has allowed to model a variety of condensed
matter systems [44–46]. In particular, a holographic Weyl-
semimetal model and its quantum phase transition to a
trivial semimetal has been constructed in [47,48] by
including deformations in the gravitational theory which
mimic the essential features of a Weyl semimetal effective
field theory.
At zero temperature, the holographic Weyl semi-

metal [48] exhibits a topological quantum phase transition
from Weyl semimetal to a topological trivial phase, where
the order parameter is the anomalous Hall conductivity. The
quantum phase transition occurs at a critical value of the
effective coupling ðM=bÞcrit, whereM and b are parameters
included, via proper boundary conditions, in the holo-
graphic model and which are dual to the mass deformation
and the axial gauge field in the Weyl semimetal effective
field theory. Thus, due to the inclusion of essential features,
this approach provides a great tool to investigate various
properties of Weyl semimetal physics, such as surface
state [49], odd viscosity [50], conductivity [51], axial Hall
conductivity [52], topological invariants [53], momentum
relaxation [54,55], nodal line semimetal [56–58], and
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Weyl-Z2 semimetal [59]. Besides, see [60] for a recent
review. Further applications of holography in Weyl semi-
metal physics can be found, for instance, in [61–70].
Motivated by recent experimental progress on the

role played by the magnetic field as a driver of topo-
logical phase transitions for instance in Fe-doped hetero-
structures [71] and in a trivial semimetal [72], we extend
the previous framework of the holographic Weyl semimetal
model [47] and its quantum phase transition to a trivial
semimetal [48] by including a finite magnetic field in order
to study the behavior of the quantum critical point as a
function of the magnetic field. The paper is organized as
follows: in Sec. II, we revisit the Landau level picture in the
effective field theory description of Weyl semimetals. In
Sec. III, we present the holographic model for the Weyl
semimetal in a magnetic field and our numerical results.
Finally, in Sec. IV, we present our conclusions and
discussions.

II. REVISITING THE EFFECTIVE DESCRIPTION
OFWEYL SEMIMETALS IN AMAGNETIC FIELD:

LANDAU LEVELS

In this section, we revisit the low-energy effective
description of a Weyl semimetal in the presence of a
uniform magnetic field and compute the energy spectrum
associated with the Landau levels.
Weyl semimetals are exotic materials whose band

structure shows points around which the low-energy
excitations are a pair of left- and right-handed Weyl
fermions, which are chiral massless relativistic particles,
lying exactly at the Fermi level (for a short review,
see [73]). Their low-energy effective field theory descrip-
tion can be captured by a Lorentz-breaking Dirac
Lagrangian [74] coupled to an external electromagnetic
potential Aμ given by

L ¼ Ψ̄ðγμði∂μ − eAμÞ − γ5γ:b −MÞΨ; ð1Þ

where γμ ¼ ðγ0; γÞ are the gamma matrices which satisfy
the Clifford algebra fγμ; γνg ¼ 2ημν14, where ημν is the
Minkowski metric whose signature we take here to be
ðþ;−;−;−Þ. γ5 is the chiral matrix defined as
γ5 ¼ iγ0γ1γ2γ3, and the electromagnetic potential is gen-
erally given by Aμ ¼ ðϕ;−AÞ, where ϕ is the electric
potential and A is the vector potential. The vector b is an
axial vector responsible for breaking Lorentz symmetry,
and which wewill take it in the ẑ direction, i.e., b ¼ bẑ, and
will be the separation in momentum between the Weyl
nodes. Finally, M is the mass deformation.
The Dirac equation coming from the variation of the

above Lagrangian with respect to Ψ̄ reads

ðγμði∂μ − eAμÞ − γ5γ:b −MÞΨ ¼ 0: ð2Þ

Since in this section we are only interested in studying the
system in a constant and uniform magnetic field in the ẑ
direction, we take the electromagnetic potential to be
Aμ ¼ ð0;−AÞ, where the vector A will be chosen in the

symmetric gauge, which is given by A ¼
�
− By

2
; Bx
2
; 0
�
,

where B is the magnetic field. One can clearly see that this
choice for the vector potential yields ∇ ×A ¼ Bẑ. Thus,
the Dirac equation (2) takes the form,

ðγμði∂μÞ þ eγ:A − γ5γ:b −MÞΨ ¼ 0: ð3Þ

Now, going to momentum space [using the correspondence
principle i∂μ ¼ pμ ¼ ðE;−pÞ], we have

ðγ0Eþ γ:ð−pþ eAÞ − γ5γ:b −MÞΨ ¼ 0; ð4Þ

which can be written as

ðγ:ðp − eAÞ þ γ5γ:bþMÞΨ ¼ γ0EΨ: ð5Þ

Multiplying both sides from the left by γ0 and, using that
ðγ0Þ2 ¼ 1, we can turn the Dirac equation (2) into a
eigenvalue problem,

ĤΨ ¼ EΨ; ð6Þ

where the Hamiltonian operator Ĥ is given by

Ĥ ¼ ðγ0γ:ðp − eAÞ þ bγ0γ5γ3 þ γ0MÞ; ð7Þ

where we used that b ¼ bẑ. For our particular case, it will
be convenient to work in the Weyl representation for the
gamma matrices, which is given by

γ0¼
�

0 12
12 0

�
; γi¼

�
0 σi

−σi 0

�
; γ5¼

�−12 0

0 12

�
; ð8Þ

where 12 is the 2 × 2 identity matrix, and σi are the Pauli
matrices, given by

σx¼
�
0 1

1 0

�
; σy¼

�
0 −i
i 0

�
; σz¼

�
1 0

0 −1

�
: ð9Þ

Using the gamma matrices defined above, the Hamiltonian
operator takes the form,

Ĥ ¼
�
σ:ðp − eAÞ þ bσz M12

M12 −σ:ðp − eAÞ þ bσz

�
: ð10Þ
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Notice that the system have a well-defined helicity given by
the eigenvalues of the operator ĥ ¼ σ̂ · ð ˆ̄p − eÂÞ1—with ˆ̄p
being the momenta shifted by �b ¼ bẑ, which coincides
with the chirality in the massless limit, even though it is
well known that in the absence of external electromagnetic
field, it is also possible to define an effective chirality
operator if b > M [28].
Now, in order to proceed with the computation, let us

take a look on the term σ̂:ðp̂ − eÂÞ þ bσ̂z. In components
and, using the symmetric gauge for the vector potential Â,
we have

σ̂xΠ̂x þ σ̂yΠ̂y þ σ̂zðp̂z þ b1Þ; ð11Þ

where we introduced the operators Π̂x and Π̂y, defined by

Π̂x ≔ p̂x þ
eBŷ
2

; Π̂y ≔ p̂y −
eBx̂
2

; ð12Þ

which satisfy the canonical commutation relation
½Π̂x; Π̂y� ¼ ieB. Now, in terms of the “Π’s” operators above
defined, we introduce the annihilation and creation oper-
ators, â and â† [75–77],

â≔
ffiffiffiffiffiffiffiffi
1

2eB

r �
Π̂xþ iΠ̂y

�
; â† ≔

ffiffiffiffiffiffiffiffi
1

2eB

r �
Π̂x− iΠ̂y

�
; ð13Þ

which satisfy the canonical commutation relation
½â; â†� ¼ 1. Thus, Eq. (11) can be written as

ffiffiffiffiffiffiffiffi
2eB

p �
Ŝ−âþ Ŝþâ†

�
þ 2Ŝzðbþ p̂zÞ; ð14Þ

where Ŝ� ¼ 1
2
σ̂� ≔ 1

2
ðσ̂x � iσ̂yÞ and Ŝz ≔ 1

2
σ̂z are the spin

operators. Therefore, in terms of these definitions, the
Hamiltonian operator, given by Eq. (10), becomes

Ĥ ¼

0
B@

ffiffiffiffiffiffiffiffi
2eB

p �
Ŝ−âþ Ŝþâ†

�
þ 2Ŝzp̂z þ 2bŜz M1̂2

M1̂2 −
� ffiffiffiffiffiffiffiffi

2eB
p �

Ŝ−âþ Ŝþâ†
�
þ 2Ŝzp̂z

�
þ 2bŜz

1
CA: ð15Þ

Now, we have to define the ground state, which is going
to correspond to the lowest Landau level (LLL). It is
characterized by the tensor product,2

j0; kzi ⊗
���� 12 ;þ 1

2

�
≔
����0; kz;þ 1

2

�
;

where j 1
2
;þ 1

2
i is the eigenstate of the spin-1=2 operator Sz

with eingenvalue þ 1
2
.3 Note that the term ð ffiffiffiffiffiffiffiffi

2eB
p ðŜ−âþ

Ŝþâ†Þ þ 2Ŝzp̂z þ 2bŜzÞ in (15) is annihilated by the

ground state j0; kz;þ 1
2
i since Ŝ−âj0; kz;þ 1

2
i ¼ 0 and

Ŝþâ†j0; kz;þ 1
2
i ¼ 0. Thus, the matrix elements of (15),

hþ 1
2
; kz; 0jĤj0; kz;þ 1

2
i, are given by

H ¼
�
kz þ b M

M −ðkz − bÞ

�
; ð16Þ

where we used that p̂zj0; kz;þ 1
2
i ¼ kzj0; kz;þ 1

2
i and

Ŝzj0; kz;þ 1
2
i ¼ þ 1

2
j0; kz;þ 1

2
i. Thus, diagonalizing this

matrix, we find that the ground state is linearly dispersing
(see Fig. 1) and given by

E ¼ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þM2

q
; n ¼ 0: ð17Þ

Note that the energy dispersion for the LLL (17) is
independent of the magnetic field B and purely chiral,
i.e., right (left) movers for the negative (positive) chirality
node [78].
For the excited Landau levels, n ≥ 1, the most general

eigenstate is characterized by jn; kz;� 1
2
i. Therefore, in

order to construct the matrix elements, it will be convenient
to square the Hamiltonian operator (15) and writing them as
h� 1

2
; kz; njĤ2jn; kz;� 1

2
i. By doing this computation,

we find that the Hamiltonian operator (15) squared is
given by

1Usually the helicity operator is defined to be ĥ ¼ σ̂ · p̂, which
is generalized to this definition according to the usual minimal
coupling prescription.

2Since the spin does not depend on the spatial degrees of
freedom, the operator Ŝ commutes with all the spatial operators.
In particular, it commutes with the momentum operator p̂, i.e,
½Si; pj� ¼ 0. Therefore, it acts only on the spin part j 1

2
;þ 1

2
i and

leaves the rest unchanged.
3In this case, the spin up with ms ¼ 1

2
is the ground state

because the spinning motion gives rise to a magnetic dipole
moment given by μ⃗S ¼ e

2mc S⃗ which, when interacting with the
external magnetic field B⃗, in turn generates a coupling term
−μ⃗S:B⃗, which is minimized when the spin is aligned with the
magnetic field.
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Ĥ2 ¼

0
B@ 2eB

�
â†âþ 1

2
− Ŝz

�
þ ðp̂z þ bÞ2 þM2 4MbŜz

4MbŜz 2eB
�
â†âþ 1

2
− Ŝz

�
þ ðp̂z − bÞ2 þM2

1
CA: ð18Þ

Now, acting with this operator on the spin-up sector, with matrix elements given by hþ 1
2
; kz; njĤ2jn; kz;þ 1

2
i, we find

H2
↑¼
 
2eBnþðkzþbÞ2þM2 2Mb

2Mb 2eBnþðkz−bÞ2þM2

!
: ð19Þ

Analogously, for the spin-down sector, with matrix elements given by h− 1
2
; kz; njĤ2jn; kz;− 1

2
i, we obtain

H2
↓ ¼

 
2eBðnþ 1Þ þ ðkz þ bÞ2 þM2 −2Mb

−2Mb 2eBðnþ 1Þ þ ðkz − bÞ2 þM2

!
: ð20Þ

Therefore, the excited Landau levels (n ≥ 1) for both spin
up and down sectors, respectively, are given by

E↑
n ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 þ βn

q
; n ≥ 1; ð21Þ

E↓
n ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE↑

nÞ2 þ β
q

; ð22Þ

where E0 ¼ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þM2

p
is the LLL, and β ¼ 2eB.

From the above equations, one can see that there is an
energy gap ΔE2

n between the up and down spins, given by

ΔE2
n ≔ ðE↓

nÞ2 − ðE↑
nÞ2 ¼ β ¼ 2eB: ð23Þ

Finally, in Fig. 2, we display the energy dispersion
corresponding to the first excited Landau level for both
spins up and down.
Figures 1 and 2 should be compared with the energy

dispersion when the magnetic field is absent. In this case,
the energy dispersion is given by

EjB¼0 ¼ �
�
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þM2

q �
: ð24Þ

This energy dispersion is displayed in Fig. 3 One can see
from Fig. 1 that, even though the presence of an external
magnetic field “gaps out” the band touching points present
in the B ¼ 0 case (Fig. 3), the LLL still supports a Weyl
semimetal phase, once it still hosts a linearly dispersion
branch with a well-defined chirality close to Fermi level (set
to zero for convenience), which is in fact the most general
condition for the establishment of the phase, since it
automatically yields a nonzero flux of the corresponding
Berry curvature [13,79]. The maintenance of Weyl points
under weak, intermediate, and strongmagnetic fields is a far
general phenomenon with roots in the topological nature of
Weyl points, i.e., the fact that they are robust against
perturbations that preserve the original symmetries of the
system. To be more precise, in the absence of an external
magnetic field perpendicular to the separation of Weyl
points, the momenta along the latter is still a good quantum
number. Therefore, the many-body wave function of the
electron occupying the state of a Weyl node has a definitive
momenta eigenvalue [80]. The situation changes dramati-
cally if one includes a magnetic field perpendicular to the
Weyl nodes. Now, the translation symmetry along the Weyl
points is broken, the corresponding momenta is not a good

kz

E0

kz

E0

kz

E0

FIG. 1. Energy dispersion for the lowest Landau level (LLL), E0, in three different scenarios: (i) M ¼ 0; (ii) M
b < 1 and (iii) M

b > 1.
Note that between M

b < 1 and M
b > 1, a quantum phase transition takes place and, for M

b > 1, the system is gapped and become a trivial
semimetal, i.e., an insulator.
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quantum number anymore, and the many body wave
function is broadened into a finite peak around each node,
allowing for the corresponding collective counterpropagat-
ing modes to hybridize and establish an electronic gap.4 If
the Weyl nodes separation is smaller than the inverse
magnetic length, ðkmagÞ−1 ¼ ðeBÞ−1=2, the aforementioned
electronic gap is not negligible, which effectively “gaps out”
the system leading to the magnetic tunneling effect [81].

III. HOLOGRAPHIC SEMIMETAL MODEL IN A
UNIFORM MAGNETIC FIELD

A. Holographic setup

The holographic model for the Weyl semimetal we
consider here is an extension based on [47,48] (for a
review, see, e.g., [60]), in which we include a background
magnetic field.5 The bulk action is given by

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p 	
1

2κ2

�
Rþ 12

L2

�
−
1

4
ðF2 þ F 2Þ þ α

3
ϵabcdeAaðF bcF de þ 3FbcFdeÞ − ðDΦÞ2 − VðΦÞ



; ð25Þ

where, κ2 is the Newton’s constant, L is the AdS radius,
F ¼ dV and F ¼ dA are the vector and axial gauge field
strengths, α is the Chern-Simons coupling constant,
DaΦ ¼ ð∇a − iqAaÞΦ is the covariant derivative, and Φ
is a complex scalar field charged under the Uð1Þ axial
gauge symmetry. The scalar potential VðΦÞ is given by

VðjΦjÞ ¼ m2jΦj2 þ λ

2
jΦj4; ð26Þ

where, according to the holographic dictionary,
ðmLÞ2 ¼ ΔðΔ − 4Þ, and where Δ is the scaling dimension
of the operator dual to Φ and is chosen such that it has
scaling dimension Δ ¼ 3, which gives m2 ¼ −3.6

kz

E0

kz

E0

kz

E0

FIG. 3. Energy dispersion for zero magnetic field (B ¼ 0) in three different scenarios: (left panel) M ¼ 0; (middle panel) M
b < 1, and

(right panel) M
b > 1. Note that there is a quantum phase transition between M

b < 1 and M
b > 1. For M

b > 1, the system is gapped and
become a trivial semimetal, i.e., an insulator.

kz

E1

kz

E1

kz

E1

FIG. 2. Energy dispersion for the first excited Landau level, E1, for both spin up (black curve) and down (dashed black curve) in three
different scenarios: (i) M ¼ 0, (ii) M

b < 1, and (iii) M
b > 1. Note that for the excited Landau levels (n ≥ 1) the Weyl semimetal state is

destroyed. Also, there is an energy gap ΔE2
n between the up and down spins, which is of order ΔE2

n ¼ β ¼ 2eB.

4One can borrow a classical analogue: when one introduces the
magnetic field, each electron now describes a cyclotron motion in
the plane perpendicular to the applied magnetic field. This motion
delocalizes the electrons and their corresponding wave functions,
allowing for their superposition and a consequent energy differ-
ence, i.e., an electronic gap.

5Since this holographic model is purely bosonic, i.e., does not
contain fermions (in particular, Weyl fermions), it is not clear how
this model captures the physics of a strongly coupled Weyl
semimetal. However, this model does describe very well the
topological quantum phase transition between a nontrivial semi-
metal phase with nonvanishing anomalous Hall conductivity to a
trivial insulating phase with vanishing anomalous Hall conduc-
tivity [47,48,60]. In order to make a connection which is closer to
the physics of a strongly interacting Weyl semimetal in terms of
the spectral functions and energy dispersion relations, one should
consider a different holographic approach, like the one adopted
in [61].

6This matches the dimension of the boundary field theory
operator hΨ̄Ψi. Therefore, the dimension of the resulting deforma-
tion of the dual field theory agrees with the dimension of the
fermionic mass deformation, MΨ̄Ψ, appearing in (1).

MAGNETIC-FIELD-DRIVEN TOPOLOGICAL PHASE … PHYS. REV. D 108, 066010 (2023)

066010-5



Throughout this work, we will work in units in which
2κ2 ¼ L ¼ 1. Furthermore, we will set α ¼ q ¼ λ ¼ 1,7 so
that the quantum critical point at zero magnetic field will be
at Mcrit ≔ M

b jcrit ≈ 0.954, where M and b are the mass and
time-reversal breaking parameters appearing in (1) and, in
the holographic model described by (25). They are imple-
mented via the following boundary conditions on the scalar
and axial vector fields Φ and Az:

lim
r→∞

rΦðrÞ ¼ M; lim
r→∞

AzðrÞ ¼ b: ð27Þ

The field equations coming from the action (25) are
given by

Rab −
1

2
gabðRþ 12Þ − Tab ¼ 0; ð28Þ

∇bðFbaÞ þ 2αϵabcdeF bcFde ¼ 0; ð29Þ

∇bðF baÞ þ αϵabcdeðF bcF de þ FbcFdeÞ
− iqðΦ�DaΦ − ðDaΦÞ�ΦÞ ¼ 0; ð30Þ

DaDaΦ − ∂Φ�VðΦÞ ¼ 0; ð31Þ

where Tab is the total energy-momentum tensor, which is
given by

Tab ¼
1

2

�
F acF c

b −
1

4
gabF 2

�
þ 1

2

�
FacFc

b −
1

4
gabF2

�
þ 1

2

�
ðDaΦÞ�DbΦþ ðDbΦÞ�DaΦ

�
−
1

2
gab
�
ðDcΦÞ�DcΦþVðΦÞ

�
:

ð32Þ

The finite-temperature ansatz we consider for the back-
ground metric, scalar field, vector, and axial vector fields
are given by

ds2¼−fðrÞdt2þ dr2

fðrÞþuðrÞðdx2þdy2ÞþhðrÞdz2;

Φ¼ΦðrÞ;
V¼VtðrÞdtþ

B
2
ð−ydxþxdyÞ; A¼AzðrÞdz; ð33Þ

where B is a constant magnetic field along the z direction.
Using this ansatz, the equations of motion for the back-
ground functions u; f; h; Az; Vt;Φ are given by

u00

u
þ f00

2f
þ
�
f0

f
−

u0

2u

�
u0

2u
−
1

4

�
V 0
t
2

f
þ A0

z
2

h

�
þ 1

2
Φ02

þ ðhðλΦ2 − 6Þ − 2q2A2
zÞ

Φ2

4hf
−
6

f
þ B2

4u2f
¼ 0; ð34Þ

f00

f
−
u00

u
þ
�
f0

f
−
u0

u

�
h0

2h
−
V 0
t
2

f
−

B2

fu2
¼ 0; ð35Þ

Φ00 þ
�
f0

f
þ h0

2h
þu0

u

�
Φ0 þ

�
3−q2

A2
z

h
−λΦ2

�
Φ
f
¼0; ð36Þ

A00
z þ
�
f0

f
−
h0

2h
þu0

u

�
A0
z−

2q2Φ2

f
Azþ

8αB
ffiffiffi
h

p

fu
V 0
t¼0; ð37Þ

� ffiffiffi
h

p
uV 0

t þ 8αBAz

�0 ¼ 0; ð38Þ

and a first-order constraint given by

�
h0

h
þ u0

2u

�
u0

2u
þ
�
h0

2h
þ u0

u

�
f0

2f
þ 1

4

�
V 0
t
2

f
−
A0
z
2

h

�
−
1

2
Φ02

þ ðhðλΦ2 − 6Þ þ 2q2A2
zÞ

Φ2

4hf
−
6

f
þ B2

4u2f
¼ 0: ð39Þ

The prime 0 denotes derivative with respect to the radial
coordinate r. This system of differential equations can only
be solved numerically with proper boundary conditions
(see Appendix A for more details on the asymptotic
expansions and the numerical integration method). Note
that an analytic solution for Vt in (38) can be formally
obtained as

VtðrÞ ¼ μ

0
B@1 −

R
r
∞

1

uðxÞ
ffiffiffiffiffiffiffi
hðxÞ

p dxR
rh
∞

1

uðxÞ
ffiffiffiffiffiffiffi
hðxÞ

p dx

1
CA

þ 8αB

0
B@
R
rh
∞

AzðxÞffiffiffiffiffiffiffi
hðxÞ

p
uðxÞ dxR

rh
∞

1ffiffiffiffiffiffiffi
hðxÞ

p
uðxÞ dx

Z
r

∞

1ffiffiffiffiffiffiffiffiffi
hðxÞp

uðxÞ dx

−
Z

r

∞

AzðxÞffiffiffiffiffiffiffiffiffi
hðxÞp

uðxÞ dx

1
CA; ð40Þ

7In [52], it was shown that for fixedm2, which is the case in the
present paper, that the quantum phase transition persists for a
wide range of the quartic coupling λ, and that there is an upper
bound above which the transition to the trivial phase can not be
reached anymore. Since we are interested in studying the effects
of the magnetic field on the quantum critical point, we have fixed
the quartic coupling to a convenient value.

BRUNI, FERREIRA, and RODRIGUES PHYS. REV. D 108, 066010 (2023)

066010-6



where we used the boundary conditions Vtð∞Þ ¼ μ
and VtðrhÞ ¼ 0 and where μ is the chemical potential
and rh is the horizon position, such that fðrhÞ ¼ 0. Since
the Weyl semimetal phase is a zero density state, in this
work, we will take μ ¼ 0. Then, the formal solution for Vt
becomes

VtðrÞ ¼ 8αB

0
B@
R
rh
∞

AzðxÞffiffiffiffiffiffiffi
hðxÞ

p
uðxÞ dxR

rh
∞

1ffiffiffiffiffiffiffi
hðxÞ

p
uðxÞ dx

Z
r

∞

1ffiffiffiffiffiffiffiffiffi
hðxÞp

uðxÞ dx

−
Z

r

∞

AzðxÞffiffiffiffiffiffiffiffiffi
hðxÞp

uðxÞ dx

1
CA:

B. Numerical results

In this subsection, we present our numerical results
for the bulk profile of the background fields and for the
quantum critical point (QCP) as a function of the magnetic
field. The results were obtained by numerically solving
the system of equations (34)–(38) at small but finite

temperature. The reason behind this is that the boundary
conditions for the full zero-temperature solution with
magnetic field are very tricky, and we will explore this
analysis further in an upcoming publication.
Due to the scaling symmetries of the background, the

only relevant parameters are the dimensionless ratios which
we are going to define, for convenience, as follows:

T ≔
T
b
¼ 0.05; Temperature ðfixedÞ;

M ≔
M
b
; Effective coupling;

B ≔
B
T2

; Magnetic field;

Mcrit ≔
�
M
b

�
crit
; Quantum critical point ðQCPÞ;

with M and B being the free parameters of the model.

1. Background profiles

In Figs. 4–6, we display the holographic RG flow of the
axial vector and scalar fields at all topological phases,

FIG. 5. Bulk profile of the axial vector and scalar field in the quantum critical phase at T ¼ 0.05 and for different values of magnetic
field: B ¼ 0 (blue curve), B ¼ π2 (dashed red), B ¼ 2π2 (dashed black), and B ¼ 3π2 (dashed green). Here, we took M ¼
Mcrit ≈ ð0.954; 1.09; 1.21; 1.30Þ for B ¼ ð0; π2; 2π2; 3π2Þ, respectively.

FIG. 4. Bulk profile of the axial vector and scalar field in the topologically nontrivial (semimetal) phase at T ¼ 0.05 for different
values of magnetic field: B ¼ 0 (blue curve), B ¼ π2 (dashed red), B ¼ 2π2 (dashed black), B ¼ 3π2 (dashed green). Here, we took
M ¼ 1=3.
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namely the semimetal phase (M < Mcrit), the critical
phase (M ¼ Mcrit), and the topologically trivial phase
(M > Mcrit) for different values of B and smallM. Notice
that the value of scalar field is almost zero at the horizon in
the semimetal phase, it jumps at the critical point, and in the
trivial phase, it remains increasing near the horizon.
Meanwhile, the axial field has a continuous behavior in
all phases for all values of the magnetic field B. However, at
a nonzero magnetic field, one can observe that the axial
vector field develops a dip near the horizon, which makes
its behavior nonmonotonic for a nonzero field.

Finally, in Fig. 7, we display the bulk profile of the vector
field in all topological phases. One can observe that it
increases as we increase the magnetic field, as can be seen
from the formal solution (41) that is proportional to B.
Also, note that the vector field has its peak increased
substantially in the critical region M ¼ Mcrit, and it
remains stable in the trivial phase M > Mcrit. Finally, it
is worthy to mention that at the UV boundary, the vector
field is always zero because we have set the chemical
potential to zero (μ ¼ 0); i.e., there is no electric charge
density.

FIG. 6. Bulk profile of the axial vector and scalar field in the topologically trivial (insulator) phase at T ¼ 0.05 and for different values
of magnetic field: B ¼ 0 (blue curve), B ¼ π2 (dashed red), B ¼ 2π2 (dashed black), and B ¼ 3π2 (dashed green). Here, we took
M ¼ 3.

FIG. 7. Bulk profile of the vector potential in all topological phases at T ¼ 0.05 and for different values of magnetic field: B ¼ π2

(dashed red), B ¼ 2π2 (dashed black), and B ¼ 3π2 (dashed green). Here, we used the same values of M in the previous figures.
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2. QCP as a function of B

It has been known that the order parameter of the quantum
phase transition is the anomalous Hall conductivity σAHE,
which was obtained in holography in terms of the horizon
data [47,48]. Thus, the quantum critical point (QCP) Mcrit
can be extracted from the behavior of σAHE as a function of
the effective coupling M at both a zero and finite temper-
ature. However, in the presence of the magnetic field, we
found it more convenient to use another probe of the QCP,
which is the spatial anisotropy along the z direction in terms
of the horizon data. It is defined as follows:

ϵ ≔
hðrhÞ
uðrhÞ

− 1: ð41Þ

The anisotropy parameter ϵ as a function of the effective
coupling M has proven to be a good probe to detect the
location of the QCP as it is peaked around it, suggesting it
is a point or region (in the case of finite temperature) of
maximum anisotropy and strong divergences at zero
temperature, as shown in [82].
Note, however, that the (sharp) quantum phase transition

is expected to happen at zero temperature, and at a finite
temperature, it turns into a smooth crossover. Here, since
we are working at finite but small temperature (T ∼ 10−2),

the quantum critical point can still be estimated with certain
reliability compared to the zero temperature case.
From the numerical solution of the background, we

extracted the anisotropy parameter ϵ as a function of the
effective coupling M for several values magnetic field B,
as displayed in Fig. 8. From those anisotropy curves, we
extracted the location of the QCP for each magnetic field by
computing the value of M for which ϵ is maximum. These
points are represented by the black dots in Fig. 8. From this,
one can clearly see that the QCP increases as we increase
the value of the magnetic field B, suggesting that it is
favorable for the system to stay in the WSM phase
(nontrivial topological phase) in the presence of a finite
magnetic field, which is in agreement with the experimental
results on the effects of the magnetic field on other kinds of
topological materials [71,72].
In order to comprehend in more detail how the QCP

behaves as a function of the magnetic field, in the left panel
of Fig. 9, we display the behavior of Mcrit as a function of
B. Note that it presents different scalings depending on the
regime of the magnetic field B. For instance, at small B, it
has a quadratic-in-B dependence, while for large B, it has a
linear-in-B dependence, as shown in the fittings presented
in the right panel of Fig. 9. Those behaviors seem to agree
with the semiclassical and ultraquantum magnetotransport
regimes previously described in the literature within the
framework of Boltzmann transport theory (see [78] and
references therein). It is interesting to see that this holo-
graphic model can capture those behaviors through the
QCP. Ultimately, they are manifestations of quantum
anomalies, notably the chiral anomaly, which is responsible
for the quadratic-in-B in the magnetoconductivity, as
experimentally shown in [83]. However, in the intermediate
range of B, it should be expected a quantum oscillatory
behavior periodic in 1=B in the magnetotransport coeffi-
cients as described in [78], in which the present holo-
graphic model is not capable of capturing it. For a more
recent discussion on the role played by the quantum
oscillations within the nonlinear response regime in
WSMs, see [84].

FIG. 8. Horizon spatial anisotopry parameter ϵ as a function of
the effective couplingM for different values of the magnetic field
B at T ¼ 0.05. The black dots represent the QCP for each value
magnetic field.

FIG. 9. Left panel: Quantum critical point (QCP), Mcrit, as a function of the magnetic field B at fixed small temperature T ¼ 0.05.
Right panel: Quantum critical point (QCP), Mcrit, as a function of the magnetic field B at fixed small temperature T ¼ 0.05 together
with a quadratic-in-B and linear-in-B fittings.
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IV. CONCLUSION AND DISCUSSION

In this work, we have considered an extension of the
holographic Weyl semimetal model and its quantum phase
transition to a trivial semimetal by including a finite
magnetic field at a small but finite-temperature in order
to investigate the effects of the magnetic field on the
quantum critical point. For this purpose, we have made use
of the spatial anisotropy parameter in terms of the horizon
data and, from it, we extracted the QCP,Mcrit, as a function
of the magnetic field B. We have found that McritðBÞ
displays a quadratic-in-B for a weak field and linear-in-B
for a strong field compatible with results found in the
literature within the Boltzmann transport theory. Since we
have considered a finite but small temperature holographic
model, it would be interesting to try to construct a back-
ground at zero temperature in the presence of a magnetic
field [85] and compare the results with the ones obtained
here for McritðBÞ. Furthermore, one could study the
effects of the magnetic field on the QCP by analyzing
other probes that have been proposed recently, such as the c
function [67] and the entanglement entropy (EE) for the
case of nodal line WSMs [86].
Despite the fact the electrical transport coefficients, such

as the electrical conductivity, has been extensively studied
in the holographic semimetal model [48,51,52,55,58,62],
much less attention has been given to the holographic
calculation of magnetotransport in WSMs. From the
experimental observations, we know that the longitudinal
magnetoconductivity in the Weyl semimetal is enhanced by
the chiral anomaly, which is called as positive magneto-
conductivity or, equivalently, negative magnetoresesivity.
Experimentally, it was observed that the longitudinal
conductivity in this topological material has a B2 depend-
ence at a small magnetic field as a consequence of the chiral
magnetic effect (CME), which is the generation of a current
along the direction of the magnetic field. Therefore, it
would be interesting as a possible extension of this work to
consider the effects of including vector and chiral chemical
potentials in the current holographic WSM model, in order
to study the magnetoconductivity and see if one can
observe the presence of the CME.
Finally, another possible extension of the this work is the

study of the role played by the mixed-chiral gravitational

anomaly, which yields a nonconservation of the
chiral charge and energy [78,87,88]. This anomaly leads
to the enhancement of the longitudinal magnetothermal
conductivity and magnetothermoelectric transport coeffi-
cients [89]. Thus, it would be interesting to consider this
term in the holographic model, as done in [66], to study the
chiral-vortical conductivity in holography, and investigate
the magnetothermoelectric transport coefficients and com-
pare with experimental predictions [90–92]. We will leave
these further studies for the future.
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APPENDIX A: IR AND UV ASYMPTOTIC
EXPANSIONS AND NUMERICS

Here, we provide the asymptotic expansions for the
background fields near the horizon r → rh (IR) and near
the boundary r → ∞ (UV) as well as we briefly explain how
we numerically integrate the equations of motion (34)–(38).
Near the horizon, we assume the background fields can

be expressed in a regular Taylor expansion around r ¼ rh,
which can be written as

Az¼A0þ
−4αB

ffiffiffiffiffi
h0

p
V1þA0q2u0Φ2

0

2πTu0
ðr−rhÞþ���; ðA1Þ

Vt ¼ V1ðr − rhÞ þ � � � ; ðA2Þ

Φ¼Φ0þ
Φ0ðA2

0q
2þh0ð−3þλΦ2

0ÞÞ
4πTh0

ðr−rhÞþ���; ðA3Þ

f ¼ 4πTðr − rhÞ þ � � � ; ðA4Þ

u ¼ u0 þ
2B2 þ u20ð−24þ V2

1 þΦ2
0ð−6þ λΦ2

0ÞÞ
12πTu0

ðr − rhÞ þ � � � ; ðA5Þ

h ¼ h0 þ
B2h0 − u20ð6A2

0q
2Φ2

0 þ h0½−24þ V2
1 þΦ2

0ð−6þ λΦ2
0Þ�Þ

12πTu20
ðr − rhÞ þ � � � ; ðA6Þ

where in the numerics, we set rh ¼ 1 and T ¼ 1
π, and the shooting parameters near the horizon are A0, V1, Φ0, u0, and h0.

On the other hand, near the boundary r → ∞, we impose that the background is asymptotically AdS. Thus, the
asymptotic expansion for the various fields can be written as
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Az ¼ bþ bM2q2ð9b2M2q2 − 192α2B2 þM4ð9λþ 9q2 þ 5ÞÞ
12ðM4ðq2 þ 1Þ − 64α2B2Þr2 −

bM2q2 lnðrÞ
r2

þ � � � ; ðA7Þ

Vt ¼ μþ 2αbBM2q2ð9b2q2 þM2ð9λþ 6q2 þ 2ÞÞ
ð192α2B2 − 3M4ðq2 þ 1ÞÞr2 −

2αbBM2q2 lnðrÞ
r4

þ � � � ; ðA8Þ

Φ ¼ M
r
−
Mð3b2q2 þ ð3λþ 2ÞM2Þ lnðrÞ

6r3
þ � � � ; ðA9Þ

f ¼ r2 −
M2

3
þ ð−3B2 þ 3λM4 þ 2M4Þ lnðrÞ

18r2
þ � � � ; ðA10Þ

u ¼ r2 −
M2

3
þ ð3B2 þ 6λM4 þ 4M4Þ lnðrÞ

36r2
þ � � � ; ðA11Þ

h ¼ r2 −
M2

3
þ 9b2M2q2 þ ð9λþ 14ÞM4

72r2
þ ð9b2M2q2 − 3B2 þ ð3λþ 2ÞM4Þ lnðrÞ

18r2
: ðA12Þ

Since we have considered in this work the case of zero
chemical potential, we have set μ ¼ 0 in numerics. In
addition, due to the underlying conformal symmetry of the
background, the relevant model parameters are the dimen-
sionless ratios previously defined in the main text
ðT=b ≔ T ;M=b ≔ M;B=T2 ≔ BÞ.
The numerical integration of the background equations

of motion (34)–(38) were obtained using a matching
technique (for more details and practical examples, we
refer the reader to [93,94]). In the following, we briefly
summarize the numerical procedure,

(i) One solves numerically the equations from the
boundary to an intermediate point by imposing
the asymptotic expansion at boundary;

(ii) One solves numerically the equations from the
horizon to an intermediate point by imposing the
asymptotic expansion at horizon;

(iii) One matches the numerical solutions from
the first and second steps at the intermediate point
using a FindRoot routine in Mathematica. This
will give five equations (Ψi

r→∞ − Ψi
r→rh , where

Ψi ¼ A; Vt;Φ; u; h) for the five parameters, namely
A0, V1,Φ0, u0, and h0. For fixed T , these parameters

will vary as we vary the effective coupling M and
the magnetic field B.

One could also numerically solve the equations of motions
by making use of the scaling symmetries presented in the
background (for more details see, for instance, [48,57]).

APPENDIX B: ON THE FREE ENERGY AND
PHASE TRANSITION

In this appendix, we compute the free energy as a
function of M at finite T and B in the holographic
Weyl semimetal model using the holographic renormaliza-
tion prescription. This can be done by evaluating the
Euclidean bulk on shell action plus the Gibbons-
Hawking boundary action together with the appropriate
counterterms to cancel the UV (r → ∞) divergences. For
this purpose, we consider the renormalized gravitational
action as given by

Sren ¼ Sþ SGH þ Sc:t:; ðB1Þ

where SGH ¼ R β¼1=T
0 dτ

R
d3x

ffiffiffiffiffiffi−γp
2Kjr¼ϵ is the Gibbons-

Hawking boundary term, and ϵ is a UV cutoff. The
counterterms are written in the following form:

Sc:t: ¼
Z

β¼1=T

0

dτ
Z

d3x
ffiffiffiffiffiffi
−γ

p �
−6 − jΦj2 þ 1

2
ðlog r2Þ

	
1

4
F2 þ 1

4
F 2 þ jDmΦj2 þ jΦj4

�
1

3
þ λ

2

�
�����
r¼ϵ

; ðB2Þ

where γμν is the induced metric on the boundary r ¼ ∞, and the trace of the extrinsic curvature K ¼ γμν∇μnν with
nν being the outward unit vector normal to the boundary. Then, using the equations of motion, the on shell action
becomes

MAGNETIC-FIELD-DRIVEN TOPOLOGICAL PHASE … PHYS. REV. D 108, 066010 (2023)

066010-11



Son−shell
V

¼ −β
Z

rh

ϵ

ffiffiffi
h

p
u

�
8þ B2

3u2
þ 2Φ2 −

λ

3
Φ4 þ fA0

z

3h
−
V 0
t
2

3

�
drþ β

ffiffiffi
h

p
u

�
f0 þ f

�
h0

h
þ 2u0

u

������
r¼ϵ

þβ

	 ffiffiffiffiffiffi
fh

p
u

	
−6 −Φ2 þ log r

�
A2
zΦ2

h
þΦ02 þ

�
1

3
þ λ

2

�
Φ4 −

1

2
V 0
t
2 þ fA0

z
2

2h
þ B2

2u2

�

����
r¼ϵ

; ðB3Þ

where V ≡ R d3x is the spatial volume. Thus, the free
energy density is given by

F ¼ −T
Son shell

V
: ðB4Þ

Now, by numerically evaluating the renormalized on
shell action, given by (B3), and using the definition (B4),
one can clearly see that F ≔ F

b4 is negative and continuous
for all M finite, as shown in Fig. 10 for different values of
magnetic field and two fixed low temperatures, T ¼ 0.05
and T ¼ 0.01. The results show that there is no first-order
phase transition and, in this case, the system is always in the
black hole phase for any finite T, according with the criteria

in [95]. Furthermore, as also a established criterion in [95],
all nonconfining geometries at zero-T are always in the
black hole phase for any finite T, and this includes the
holographic geometry in the present paper, since it is a
nonconfining background.
Finally, it is worth to emphasize that free energy density

does not capture the topological nature of the quantum
phase transition between the nontrivial topological phase
and the trivial one in the holographic Weyl semimetal.
As shown in Fig. 10, the free energy density is continuous
and smooth at the QCPs. This is different from the
traditional concept of thermal phase transition, which is
formulated based on the Landau-Ginsburg-Wilson para-
digm, and is a consequence of symmetry breaking.
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