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We analyze the amplitudes of one highly excited string (HES) state with two or three tachyons in open
bosonic string theory. We argue that these processes are chaotic by showing that the spacing ratios of
successive peaks in the angular dependence of the amplitudes are distributed as predicted by the
β-ensemble of random matrix theory (RMT). We show how the continuous parameter β depends on the
level and helicity of the scattered HES state. We derive the scattering amplitude of an HES and three
tachyons and show that it takes the form of the Veneziano amplitude times a dressing factor, and that the
dressing is chaotic as a function of the scattering angle, in the sense that its spacing ratios match with RMT
predictions.
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I. INTRODUCTION

Chaotic processes are common in a wide range of
domains from physics, chemistry, and biology, to sociology
and more. In physics they appear both in classical and in
quantum phenomena, both for single-body and for many-
body systems.
Several definitions and measures have been propo-

sed in the analysis of chaos. In the context of quantum
Hamiltonian systems one time-tested method is to compare
the statistics of the energy spectrum to the predictions of
random matrix theory (RMT), namely, to matrices whose
elements are randomly chosen from a (usually Gaussian)
random distribution (see [1,2] and many references
therein). This correspondence was verified for single-
particle systems as well as for many-body systems. Most
of the latter models were discrete ones and only recently
studies of continuous systems, and in particular quantum
field theory (QFT), have been performed [3]. The tool-
kit for analyzing QFT models is not yet complete and

devising new and efficient measures is an important task in
the field.
Recently in [4], motivated by [5], we proposed a novel

measure for quantum scattering processes. The crucial idea
was to relate the angular distribution of scattering ampli-
tudes to the spectral statistics of quantum systems governed
by RMT. We believe that this measure could be applied on
any quantum amplitude given by an S-matrix.
In [4] we applied it in particular to scattering on a leaky

torus [6] and to the decay of highly excited string (HES)
states into two tachyons. A comparison was made against
the “prototype” of quantum chaos that is the distribution of
nontrivial zeros of the Riemann zeta function [7,8].
It is very natural to suspect that not only the decays of

HES states, but the scattering processes of such states admit
chaotic behavior as well. This study was initiated in
[5,9,10], where scattering amplitudes involving three or
four external legs were analyzed and were shown to display
erratic behavior. In particular a drastic difference was
observed in the scattering amplitudes where the scattered
HES state is changed in a minor way in its structure.
However, the authors of [5,9,10] did not directly quantify
these type of differences. The measure that we proposed in
[4] was introduced to fulfill this purpose. Indeed it allowed
us to demonstrate that decays of HES states into two
tachyons did admit a chaotic behavior.
The goal of this paper is to expand on the results of [4]

and to apply the method also to four-point scattering
amplitudes involving an HES state. Chaotic scattering of
HES states is especially interesting because of the proposed
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correspondence with black holes [11,12]. Determining
chaotic patterns of string scattering together with the
knowledge about the chaotic nature of black holes, may
shed new light on the string/black hole correspondence.
Let us briefly review the relation of the spectral structure

of a Hamiltonian system with eigenvalues En and RMT.
Consider the spacings between eigenvalues [13],

δn ¼ Enþ1 − En ð1:1Þ

and define the ratios of successive spacings

rn ≡ Enþ1 − En

En − En−1
¼ δnþ1

δn
: ð1:2Þ

In chaotic systems the level spacings are distributed as the
spacings of eigenvalues of random matrices. In order to see
this onemust first “unfold” the spectrum [14], to account for
the average density of states and expose the erratic fluctua-
tions. The related distribution function for rn, as a ratio of
nearby spacings is not very sensitive to the unfolding
procedure and as such can be used directly on the spectrum.
Distributions of these spacing ratios has been successfully
used as a measure of chaos in works such as [3,15]. In some
cases the normalized ratios r̃n ≡minfrn; 1

rn
g, defined to be

between 0 and 1, are used.
In analogy to the energy spacings, we proposed in [4]

to analyze the spacings between successive peaks of a
scattering amplitude AðαÞ as a function of a continuous
kinematical variable α, relevant to the scattering process
under scrutiny. As for the energy spacings, we define the
spacings δn between successive peaks and their ratios rn,
and compare the resulting distribution to RMT predictions.
Our analysis of the chaotic behavior of decays and

scattering processes involving HES states can be divided
in three steps. First, we construct the HES state in the DDF
approach (after Del Giudice, Di Vecchia, and Fubini) [16].1

In the second step we compute the relevant decay and
scattering amplitudes as a function of the available kin-
ematical variables. In this paper, this is done for a decay of an
HES state into two tachyons and for the four point amplitude
of an HES state and three tachyons. In both cases the
amplitude is analyzed as a function of an angle. In the former
case the angle is the difference between the emission angle
of the outgoing tachyons and the momentum of the photons
used to create the DDF state. In the latter it is the usual
scattering angle in the 2 → 2 process. The third step is to
determine the locations of the maxima of the amplitudes,
then compute the adjacent spacings and their ratios.We then
perform a statistical analysis of the probability distribution
function of the ratios for various levelsN and spin/helicity J
of the HES state. This is fitted to the predicted distribution of

rn from the Gaussian β-ensemble [25], in which β is a
continuous variable interpolating between the classical
Gaussian ensembles—orthogonal (GOE), unitary (GUE)
and symplectic (GSE)—of RMT.
The results of our analysis are the following:
(i) For the decay processes we find that the distribution

of spacings of peaks of the amplitude is well
modeled by the RMT formula of the β-ensemble,
with the parameter β depending on the level N and
the helicity J of the HES state. In the range of
N ¼ 50–1600, we find that β is decreasing from
3.4 to around 1.7. This is also observed as a slow
monotonous increase of the measured average hrni
as a function of N.

(ii) For the four-point scattering amplitude, we show
that the amplitude is given by the Veneziano
amplitude times a chaotic dressing factor which
depends on the HES state. We analyze these dressing
factors in the high-energy fixed-angle limit and the
Regge limit, for HES states with N ¼ 100 and find
similar distributions for their rn with values of β
around 2 (the GUE value).

(iii) In some cases, one can see clearly a transition from
chaotic to regular spacings as one moves from small
to large scattering angles.

(iv) The chaotic behavior is observed for generic HES
states, but it completely disappears for for states in
the leading Regge trajectory or nearby states, i.e., for
states with N ≈ J.

The paper is organized as follows. After this introduc-
tion, in Sec. II we present and discuss measures of chaos in
quantum scattering amplitudes. In particular we describe
the novel measure that we have proposed in [4] and
mention certain generalizations. In Sec. III we briefly
review the β-ensemble of random matrices, including its
Coulomb gas description. Section IV is devoted to a review
of highly excited string states. We describe the construction
of HES states using DDF operators and discuss integer
partitions and the role of the helicity J. We then study the
chaotic behavior of the decay of these highly excited states
in Sec. V. We write down the decay amplitude of an HES to
two tachyons and perform a statistical analysis of the
relevant spacing ratios. This includes specifying a pre-
scription of selection of the states and the fitting model. We
then present the result of this analysis. Section VI is
devoted to chaotic four-point scattering process involving
one HES and three tachyons. The scattering amplitude of
these processes is derived and written down. The amplitude
is then analyzed in the high-energy fixed-angle regime and
the Regge limit. We determine the spacing ratios for the
four-point scattering amplitude, and describe the chaotic
behavior in the two high-energy limits. We summarize the
paper and mention several open questions in Sec. VII.
For the benefit of the reader we add four appendixes. In

Appendix A we describe the kinematics of the four-point
1See also [17–24] for more recent reviews and other

applications.
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amplitude at hand. We then present a derivation of the HES-
three tachyon amplitude in Appendix B. In Appendix C we
make an explicit comparison of the beta-ensemble with the
log-normal distribution of rn which we utilized as our main
fitting model in our previous work [4]. Random partitions
of a large-integer N are discussed in Appendix D.

II. MEASURE OF CHAOS FOR QUANTUM
SCATTTERING AMPLITUDES

Quantum scattering processes are characterized by a
scattering amplitude. Suppose first that the scattering
amplitude is a function of a scattering angle α, i.e., of a
single continuous real parameter.
In analogy to energy-level spacings and their ratios, we

propose to analyze a scattering amplitude AðαÞ as a
function of a scattering angle α as follows. In our case
the “eigenvalues” would be the positions of local maxima
and/or minima of the amplitude. We usually utilize the
logarithmic derivative

FðαÞ≡ d
dα

logA ð2:1Þ

to find them. Then, our discrete levels are given by the set
of zeros of FðαÞ in the range ð0; 2πÞ,2

FðznÞ ¼ 0: ð2:2Þ

Then we define, as for the energy levels, the spacings δn
and the ratios of consecutive spacings, rn and r̃n,

δn ¼ zn − znþ1 ð2:3Þ

and

rn ≡ znþ1 − zn
zn − zn−1

¼ δnþ1

δn
; r̃n ¼ min

�
rn;

1

rn

�
: ð2:4Þ

As mentioned in the introduction, when comparing level
spacings to the predictions of random matrix theory, one
typically has to perform an unfolding of the spectrum. A
prototypical and useful example which we discussed in
some detail in [4] is the distribution of spacings of non-
trivial zeros of the Riemann zeta function. In that case, the
zn are the solutions of FðznÞ ¼ ζð1

2
þ iznÞ ¼ 0. There are

infinitely many solutions, but one can consider finite
subsets of them by limiting the range of zn. Then, the

normalized spacings δ̄n ¼ ðzn − zn−1Þ logðzn=2πÞ2π are known
to match almost exactly with the distribution of spacings in
the Gaussian unitary ensemble. In this case the formula for
unfolding is known explicitly, but one could start with rn as

defined above to see the agreement with the GUE without
normalizing the spacings, since the logarithmic dependence
in δ̄n is slow enough such that rn ≈ δ̄nþ1=δ̄n. In many
practical applications, unfolding is done by fitting the
average density to a polynomial rather than a logarithm.
Still, as long as this function is slowly varying at the scale
of the spacings, the distribution of rn is only weakly
affected by the unfolding procedure.
A generic scattering amplitude would depend on several

kinematic variables like the incoming scattering angle,
impact parameters, momenta, etc. In particular, a 2 → 2
scattering amplitude can be written as a function of two
independent Mandesltam variables s and t, or alternatively
as a function of s and one scattering angle, which is a
simple function of the ratio t=s. Regardless of the para-
metrization, if we find an appropriate continuous variable α
and function FðαÞ which appears erratic, we can analyze
the spacings between zeros of FðαÞ. If we can unfold the
resulting “spectrum”, or simply use the ratios rn, then we
should not be too sensitive to the choice of variable and be
able to compare with the predictions of RMT.
We can also generalize to a higher-dimensional version

where the scattering depends on several continuous vari-
ables, which we can denote generically as αðiÞ. In a similar

way, one can define FðzðiÞn Þ ¼ 0 and analyze the spacing
vectors δin ¼ zin − zinþ1. In the following, we will focus only
on the dependence on a single kinematical variable. For the
four-point scattering amplitude, as we will see, we will
compute only chaotic behavior in the scattering angle θ
when s is large and fixed.
We now review the statistical distributions for the

spacings and their ratios associated to random matrices.

III. THE β-ENSEMBLE OF RANDOM MATRICES

A. Distributions of eigenvalue spacings
and their ratios

The three classical Gaussian ensembles of random
matrix theory [1,2] are the Gaussian orthogonal ensemble,
the Gaussian unitary ensemble, and the Gaussian symplec-
tic ensemble. The eigenvalues of N × N matrices in these
ensembles have the joint probability density function (PDF)
which is

PNðλ1; λ2;…; λNÞ

¼ CðβÞ × exp

�
−
β

2

XN
i¼1

λ2i

� Y
1≤i<j≤N

jλi − λjjβ; ð3:1Þ

where β ¼ 1, 2, or 4 for the GOE, GUE, and GSE,
respectively, and CðβÞ is a normalization constant. One
can generalize from these three special cases by taking β
to be a continuous parameter, and defining in this way
the β-ensemble for any β > 0 starting from the above
distribution.

2Symmetries of the amplitude in the angle would allow us to
eventually reduce the range to (0, π=2).
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One of the main objects of study in a given system are its
level spacings. The distributions for the difference of
eigenvalues δ ¼ λ2 − λ1 of a 2 × 2 matrix of the ensemble,
properly normalized such that hδi ¼ 1, are given by the
well-known Wigner surmises,

pβðδÞ ¼ N βδ
β expð−cβδ2Þ ð3:2Þ

with

N β ¼ 2
½Γðβþ2

2
Þ�βþ1

½Γðβþ1
2
Þ�βþ2

; cβ ¼
�
Γðβþ2

2
Þ

Γðβþ1
2
Þ

�2

: ð3:3Þ

Rather than the spacings themselves, we will focus on
the ratios of consecutive spacings. In the minimal case of a
3 × 3matrix with eigenvalues λ1 < λ2 < λ3, the PDF of the
ratio r ¼ ðλ3 − λ2Þ=ðλ2 − λ1Þ in the β-ensemble is [25]

fβðrÞ ¼
3

3þ3β
2 Γð1þ β

2
Þ2

2πΓð1þ βÞ
ðrþ r2Þβ

ð1þ rþ r2Þ1þ3
2
β
. ð3:4Þ

The distribution is symmetric under r → 1
r since

fβðrÞ ¼
1

r2
fβ

�
1

r

�
. ð3:5Þ

For larger N × N matrices it is shown numerically that the
deviations from the distributions (3.2) and (3.4) are small.
An explicit comparison can be found in [25] where finite
size random matrices and exact results for large N size are
shown to agree up to negligible corrections.
Equation (3.4) will be our main fitting model for the

distribution of spacing ratios in string scattering ampli-
tudes. We will also consider the variable r̃≡minðr; 1rÞ.
Thanks to the symmetry property of r → 1=r, the PDF of r̃
is simplify 2fβðr̃Þ restricted to the range r̃∈ ½0; 1�.
For large matrix sizes, the formulas for level spacings

and spacing ratios are also applicable to the spacings of the
phases of eigenvalues of the circular ensembles of random
unitary matrices, being the circular orthogonal (COE),
unitary (CUE), and symplectic (CSE) ensembles [1].

B. Log-gases and the β-ensemble

A physical system described by the β-ensemble is the
log-gas [26,27], a Coulomb gas of N charged particles
interacting through a logarithmic potential between each
pair,

Vijðxi; xjÞ ¼ log jxi − xjj: ð3:6Þ

For our purposes, the system is taken to be one
dimensional.
In addition to the pairwise interaction one should

introduce a background charge density ρ0ðxÞ such that

the total charge is zero. The neutrality condition is thatR
dxρ0ðxÞ ¼ −N, since each particle is taken to have unit

charge. The interaction of the background charge density
with the ith charge contributes a term

ViðxiÞ ¼
Z

dx0 log jx − x0jρ0ðx0Þ ð3:7Þ

to the total potential.
Now, taking a charge density confined to the interval

ð− ffiffiffiffiffiffiffi
2N

p
;

ffiffiffiffiffiffiffi
2N

p Þ and of the form

ρ0ðxÞ ¼ −
ffiffiffiffiffiffiffi
2N

p

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

x2

2N

r
ð3:8Þ

one finds that, up to a constant, ViðxÞ ¼ − x2
2
. The full

potential is

Vðx1;…;xNÞ¼Const−
XN
i¼1

x2i
2
þ

X
1≤i<j≤N

logjxi−xjj: ð3:9Þ

Then, one can see that, for a given “microstate” corre-
sponding to a choice of (x1; x2;…; xN), the Boltzmann
factor e−βVðx1;…;xNÞ takes exactly the form of Eq. (3.1), with
β precisely identified with the inverse temperature of
the gas.3

IV. HIGHLY EXCITED STRING STATES

A. Regge resonances and DDF operators

The string spectrum contains an infinite number of
massive higher-spin excitations often called Regge reso-
nances. They lie on linear Regge trajectories in the plane
ðJ;M2Þ with Regge slope α0 and an intercept that depends
on the model. For the open bosonic strings that we focus on
the spectrum is given by

α0M2 ¼ N − 1; ð4:1Þ

where N ¼ P
n ngn is the “level” and J ¼ P

n¼1 gn ≤ N is
the helicity of the string state, assuming only transverse
oscillators are taken into account.
The lowest-lying states are easy to characterize. The

ground state N ¼ 0 is a scalar tachyon with J ¼ 0 and
α0M2 ¼ −1. The first excited state N ¼ 1 is a massless
vector boson (J ¼ 1, α0M2 ¼ 0). The first massive (second
excited) level N ¼ 2 is a massive tensor boson made up
of two terms, J ¼ 2 ¼ g1 and J ¼ 1 ¼ g2, such that
α0M2 ¼ 1 ¼ ð1þ 1Þ − 1 ¼ 2 − 1. Note that the J ¼ 1
transverse “vector” polarizations are those needed to make

3The Coulomb gas representation corresponding to a loga-
rithmic potential finds many applications in 2D − CFT including
minimal models, Liouville models and many others [28–30].
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the helicity J ¼ 2 states massive (the latter comprise a
J ¼ 0 state related to the “trace” over the transverse indices,
i.e., their contractions).
The situation soon becomes very messy since the

degeneracy of the states with the level grows (for large
N and up to a constant) as

dN ≃N−cþ3
4 exp

�
2π

ffiffiffiffiffiffiffi
c
6
N

r �

¼ N−27
4 expð4π

ffiffiffiffi
N

p
Þ for c¼ ct ¼ 24¼ 26− 2 ð4:2Þ

which counts the partitions of the integer N, encoded in
Dedekind η function

ZBðqÞ ¼
1

ηðqÞ24 ¼
1

q
Q∞

n¼1ð1 − qnÞ24

¼ 1

q

�X
k

dkqk
�

24

: ð4:3Þ

The situation drastically simplifies for the first Regge
trajectory with J ¼ N, i.e., for the states with maximal
spin at a given level. These correspond to g1 ¼ N and all
the other gk ¼ 0 for k > 1.
Counting states with a given spin S at level N is quite

involved. One starts with the multihelicity (super)trace

Bðq; αIÞ ¼
1

q
Q

12
I¼1

Q∞
n¼1ð1 − eiαI qnÞð1 − e−iαI qnÞ ð4:4Þ

and then expands in characters of SOð24Þ. Setting αI ¼ α
for all I ¼ 1;…12 counts the total “helicity” J, which is
less than the full actual “spin”, J ≤ S ≤ SMax ¼ N, where S
is what classifies the representations of SOð25Þ. In fact
tensors with mixed symmetry can appear for which the
notion of spin is not even well-defined.
If one focuses on three spatial directions the situation

improves since one can put α1 ¼ α and all the rest to zero,
αI ¼ 0 for I ¼ 2;…12. The relevant characters of SUð2Þ ∼
SOð3Þ ⊃ SOð2ÞT are identical to the Gegenbauer poly-
nomials of parameter 14

X JðαÞ ¼
Xm¼J

m¼−J
eiαm ¼ sin ð2J þ 1Þ α

2

sin α
2

: ð4:5Þ

Using orthogonality of the characters

Bðq; α1;αI≠1 ¼ 0Þ ¼ 1

q

X
N

dNðJÞqNXJðαÞ ð4:6Þ

one has

dNðJÞ ¼
I

dq
qN

Z
dα
2π

XJðαÞBðq; α1; αI≠1 ¼ 0Þ: ð4:7Þ

Later on we will give an estimate of dðN; JÞ.
Let us consider other physical properties of HES states.

Regge resonances are very narrow (zero width) for string
coupling gs ¼ 0 (free string) but acquire a finite width
when gs ≠ 0. To lowest order in gs, their decay amplitude
corresponds to a 3-point function on the disk

Aðp1; p2; p3Þ ¼ hVðp1; H1ÞVðp2; H2ÞVðp2; H2Þi; ð4:8Þ

where V is a Becchi-Rouet-Stora-Tyutin (BRST) invariant
vertex operator with momentum p and “polarization” H.
Let us focus on the decay amplitude of a massive higher-
spin state at level N into two tachyons.
While the BRST invariant vertex operator for a tachyon

is simply

VT ¼ eipX ð4:9Þ

with p2 ¼ −M2 ¼ 1=α0, writing down the most general
“covariant” vertex operator for massive states is very
challenging due to the large “gauge symmetry”. The
problem can be overcome by relying on the time-honored
DDF approach [16].
The DDF construction is based on the choice of an

arbitrary tachyonic momentum p (p2 ¼ 1=α0) and a null
momentum q (q2 ¼ 0) chosen in such a way that
2α0p · q ¼ −1. A massive on-shell momentum at level N
obtains

pN ¼ p − Nq; ð4:10Þ

that suggests a physical interpretation of the excited
string state as the tachyonic state with momentum p that
successively emits (absorbs) massless vector bosons with
momentum q (-q). See Fig. 1 for a pictorial representation.
With a choice of q one can define the DDF operators

Ai
nðqÞ ¼

I
dz
2π

∂XieinqX; ð4:11Þ

where i runs over the transverse directions, i.e., q · A ¼ 0.
The most general BRST invariant state can be written as

���fgng∶N ¼
X
n

ngn; pN ¼ p − Nq
E
¼

Y∞
n¼1

Ain
−nðqÞj0; pi:

ð4:12Þ

For simplicity let us focus on the level N states of
the form4These are relevant in the scattering in D ¼ 5 as in [31,32].
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Y∞
n¼1

ðλ · A−nðqÞÞgn j0; pi ¼ jHðiÞ
N ðfζgÞi; ð4:13Þ

where λ is a complex transverse (“null” in the sense that
λ · λ ¼ 0) vector polarization and ζ ¼ λ − 2α0ðλ · pÞq such
that p · ζ ¼ q · ζ ¼ 0. For this state we can compute for
instance its decay amplitude into two tachyons with
momenta p1 and p2 with p − Nqþ p1 þ p2 ¼ 0 for
momentum conservation.
Moreover if the initial excited string state had definite

spin S⃗ (whichever the mass/level)5 the amplitude would
simply be

AHTT ¼ CðHÞ
S HS · ðp⃗1 − p⃗2Þ⊗s ð4:14Þ

so that the angular distribution of the products (tachyons)
would be completely fixed to be the Legendre polynomial
PSðn⃗ · n⃗pÞ with n⃗p ¼ p⃗1−p⃗2

jp⃗1−p⃗2j in the rest frame of the

decaying particle, whereby p⃗2 ¼ −p⃗1, while jp⃗1j ¼ jp⃗2j ¼
1
α0 þ M2

4
.

This shows no chaotic behavior, for instance this would
be the case for states of the first Regge trajectory. On the
contrary using the exponential degeneracy at level N one

can consider a generic state HðiÞ
N without definite helicity J

or even with definite helicity but without definite spin S.
This exposes chaotic behavior due to the random and
highly erratic superposition of spin components in the

generic state. As shown in [9] the erratic behavior is
exposed even for similar partitions.
Though the HES state we consider in (4.13) is quite

generic it is not the most general one. We cannot exclude
that this choice might introduce some biases in our analysis
below of the chaotic behavior of processes involving these
HES. The analysis of similar processes with the most
general BRST invariant HES is much more involved and
beyond the scope of the present investigation.

B. Integer partitions

Since our HES states are characterized by a choice of a
partition of the level N ∼M2, we discuss here some basic
properties of integer partitions that will be useful in the
following.
The state HðiÞ

N is a state constructed from the DDF
operators with a particular choice of polarizations,

jHðiÞ
N i ¼

YN
n¼1

ðλ · AnÞgn j0i ð4:15Þ

and is defined by the integer partition fgng for which

N ¼
X∞
n¼1

ngn; J ¼
X∞
n¼1

gn: ð4:16Þ

For fixed λ, the number of states of this form at level N is
equal to the total number of integer partitions of N. In our
notation (i) is an index enumerating the states at level N
which needs no precise definition.
The total number of partitions of N into at most J

summands can be computed from the generating function

FJðxÞ ¼
X∞
N¼1

CN;JxN ¼
YJ
k¼1

1

1 − xk
ð4:17Þ

and therefore the number of partitions of length exactly J is
given by

pN;J ¼ CN;J − CN;J−1: ð4:18Þ

The total number of partitions of N is also given by the
above generating function as pN ¼ CN;N . The number of
partitions behaves for large N as

pN ≈
1

4
ffiffiffi
3

p
N
eC

ffiffiffi
N

p
; C≡ π

ffiffiffi
2

3

r
: ð4:19Þ

The number of partitions of fixed length J is asymptotically
given by a Gumbel distribution [33], i.e., according to the
probability density function

FIG. 1. Above: a representation of the profile of a generic
highly excited open string state, where the magenta lines describe
the complexity of the profile. Below: the DDF construction
of such state. We start from a tachyonic vacuum state with
momentum p and we use the iterative action (codified in the
operator product expansion represented by the red points) of DDF
creation operators (which are described by the photon lines with
polarizations fλg and momentum −ngnq). We end up with a final

state HðiÞ
N ðfζg;pNÞ with final momentum pN ¼ p − q

P
n ngn

and polarizations fζg, as in Eq. (4.13).

5Even superposition of mass eigenstates with different masses
would give a ‘trivial’ angular distribution as long as all the spins
are aligned, i.e., J⃗N ¼ J⃗0N in the superposition.
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dNðJÞ ¼
1

ν
exp

�
−
J − μ

ν
− e−

J−μ
ν

�
ð4:20Þ

with the parameters scaling as μ ∼
ffiffiffiffi
N

p
logN and ν ∼

ffiffiffiffi
N

p
.

More specifically the distribution is centered around

hJi ≈ 1

C

ffiffiffiffi
N

p
logN ð4:21Þ

which makes this the “typical helicity” of a randomly
chosen string state at level N.
In addition to J another useful parameter of a given

partition is nmax, the largest summand in the partition, i.e.,
the largest n for which gn ≠ 0. It is easy to see that nmax is
exactly the length of the conjugate partition. The con-
jugation of integer partition is most easily understood as
a rotation and reflection of the Ferrers diagram associ-
ated with the partition, exchanging rows for columns. For
example

4þ 3þ 2þ 2þ 1 5þ 4þ 2þ 1

• • • • • • • • •

• • • ⟷ • • • •

• • • •

• • •

•

are two partitions of 12, conjugate to each other. Since
conjugation is a one-to-one operation, it follows immedi-
ately that the number of partitions of N into integers less or
equal to n is the same as the number of partitions of length
J ¼ n. This is particularly useful for generating random
partitions of fixed length, as described in Appendix D.

V. CHAOS IN THE DECAY AMPLITUDE
OF A HIGHLY EXCITED STRING

A. The decay amplitude

We study the decay amplitude of a highly excited string
state into two tachyons. The relevant kinematical variable is
α, the angle between the outgoing tachyons and the photons
used to create the DDF state, i.e., the angle between the
momentum of one of the tachyons and the photon
momentum q seen e.g., in Eq. (4.13).
The angular dependence of the full amplitude can be

compactly written as [9]

A
HðiÞ

N →TT

∝ ðsinαÞJ
YN
n¼1

�
sin

�
πncos2

α

2

�
Γðncos2 α

2
ÞΓðnsin2 α

2
Þ

ΓðnÞ
�gn

;

ð5:1Þ

where HðiÞ
N is a state defined by an integer partition fgng of

level N and with helicity J, as described in the previous
section.
Another representation of the amplitude can be reached

using basic identities of the gamma function, Γðzþ 1Þ ¼
zΓðzÞ and ΓðzÞΓð1 − zÞ sinðπzÞ ¼ π. Then, each term in the
product is a a polynomial in x≡ cos2 α

2
of degree m − 1,

which can be written compactly using the Pochhammer
symbol,

Γðnð1 − xÞÞΓðnxÞ sinðnπxÞ
ΓðnÞ

¼ π

ðn − 1Þ! ð1 − nxÞn−1

¼ π

�
1 −

nx
n − 1

��
1 −

nx
n − 2

�
…

�
1 −

nx
1

�
ð5:2Þ

so that the amplitude is written most compactly as

A
HðiÞ

N →TT
∝ ðsin αÞJ

YN
n¼1

�ð1 − ncos2 α
2
Þn−1

ΓðnÞ
�gn

: ð5:3Þ

It is convenient for computation and visualization to
work with the logarithmic derivative,

FðαÞ≡ d
dα

logA

¼ Jcotα−
1

2
sinα

XN
n¼1

gn
Xn−1
k¼1

n
n−k−ncos2 α

2

: ð5:4Þ

The points zn at which FðznÞ ¼ 0 are the local maxima and
minima of AðαÞ, and they are always maxima of the
absolute value jAj. For this reason we can refer to all the
extremal points of the amplitude collectively as its peaks.
In terms of x ¼ cos2 α

2
, the peaks are located at the points

where

FðxÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

×

�
Jð2x − 1Þ − 2xð1 − xÞ

XN
n¼1

gn
Xn−1
k¼1

n
k − nx

�

¼ 0 ð5:5Þ

which is a polynomial equation in x.
Our object of study is the distribution of the ratios of the

spacings between consecutive solutions of FðαÞ ¼ 0.

B. Statistical analysis of spacing ratios

Our main result is that the ratios rn of the spacings
between consecutive peaks of the amplitude (5.1) are
distributed as predicted by the β-ensemble, i.e., as in the
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distribution of Eq. (3.4), with β depending on the param-
eters of the HES state. In the following we describe in detail
the statistical analysis that leads to this result.

1. Fitting model and selection of states

For a generic state at level N, the number of peaks in the
decay amplitude (or zeros of its logarithmic derivative)
scales linearly with N. For very large values of N, say
N ∼ 10; 000, there would be sufficient zeros such that one
could measure the distribution of spacing ratios in a single
amplitude of a particular excited string state. For intermedi-
ate N, meaning of order 100, we collect data from many
different states in order to perform the statistical analysis.
Denoting the set of ratios for a specific state HðiÞ

N as
frngNðiÞ , we will study the distribution of the values in the
union of many such sets, which we can write as

frngðSÞ≡ ⋃
NðiÞ ∈S

frngNðiÞ ð5:6Þ

for some specific sample subset of states S.
Once we have a set of frng with enough data points, we

fit their distribution to that of r in the β-ensemble of
Eq. (3.4). There is a single continuous and positive fitting
parameter, β, which can be directly related to the average
value of the distribution hri. We will examine the behavior
of the average hrni in detail in the following.
Since the space of all possible states is too large to study,

we must choose wisely which states would go into a
representative sample. We observe from the data that there
is a dependence of hrni on the level number N and the
helicity J. It is then assumed, as a model, that the fitting
parameters depend only on N and J, though the full
physical picture could be more complex.
There are some technical difficulties in selecting random

states to go into a sample. Our aim is to choose “generic”
states once we have fixed N and (optionally) J. The most
straightforward way is to select at random a small sample
from the full list of possible states, with each state having
an equal probability of being chosen. At some point this
becomes impractical as the list of possible states grows
exponentially. It is nontrivial to devise an algorithm that
will generate random partitions of a large integer in such a
way that all partitions are equally likely to be chosen (see
Appendix D for details). For our purposes it is important
not to introduce any biases in the selection of states, since
we cannot predict how that might affect the results. Once
we fix the parameters, the selection will be random, with all
partitions of the given N (and J when that is fixed) having
equal probability to go into the sample. Our samples will
typically consist of thousands of states, which will provide
more than enough data to observe a distribution of the
spacing ratios, but we keep in mind that the states in the
sample still represent only an exponentially small fraction
of the states of the highly excited string.

2. Results

The results of our analysis indicate that the distribution
of spacings of peaks of the amplitude is well modeled by
the random matrix formula of the β-ensemble, with the β
parameter depending on the decaying state. Specifically we
measure the dependence on the level N and the helicity J.
The results are collected in Tables I–III.
In the present case we have analyzed states up to

N ¼ 1600. The results are generally well-fitted by the
predicted distribution. There are some deviations, but these
become small as we increase N, see Fig. 2.
We observe a monotonous increase of the average hrni

with the level N. The growth appears to be logarithmic at
most, and it is impossible to tell from the data whether it
continues indefinitely as N → ∞ or approaches some
asymptotic value. In [4] we noted that there is a similar
dependence of hrni when examining the spacings of the
nontrivial zeros of the Riemann zeta function. There, the
average increased slowly as one covered a larger and larger
range of zeros, but it eventually approaches the value
predicted from the GUE. The numerical evidence for this is
very strong, thanks to the vast range of zeros of the zeta
function that has been computed [34,35].
For reference, the predicted averages of hri (hr̃i) are,

1.75 (0.536) for GOE and 1.361 (0.603) for GUE. As a
function of β, hri is a monotonously decreasing function. It
diverges at β ¼ 0 and approaches 1 at large β. The average
of hr̃ increases from ≈0.408 at β ¼ 0 to 1 at large β.6

A question that one can ask is whether spacing ratios in
the string amplitudes also approach the GUE distribution at
very large N. This distribution is supported by the obser-
vations that the S-matrix is a unitary operator and that the
HES we consider is a “random” superposition of states at
level N related to one another by a unitary transformation.7

In fact the CUE that describes random unitary matrices with
norm one eigenvalues λk ¼ eiφk would look even more
appropriate, given the unitarity of the scattering matrix and
the fact that our eigenvalues are indeed angles. However,
the distinction between CUE and GUE will not come into
play here, since as mentioned above, it is known that for
large matrices GUE and CUE distributions coincide insofar
as the level spacings are concerned.
From Table I one can see that around N ¼ 200 the best

fit for β is close to the GUE value of 2, but as we increase N
we reach β < 2. The deviation that we find at N ¼ 1600,
the largest value examined, is big enough to suggest that 2
is not a good asymptotic value for β at large N. The GOE
value of β ¼ 1 is still theoretically possible, but at the
presently examined values of N we are still far from it, and
the rate at which β decreases is already slowed down. A

6The distribution at β ¼ 0 is close to but not the same as the
Poisson distribution, for which hri diverges while hr̃i ≈ 0.386.

7This is excepting the normalization, which becomes irrelevant
once one takes the logarithmic derivative of the decay amplitude.

MASSIMO BIANCHI et al. PHYS. REV. D 108, 066006 (2023)

066006-8



simple fit of the form βðNÞ ¼ aþ b=N is in good agree-
ment with all the values quoted in Table I and suggests
β ¼ 1.68 as the asymptotic value. On the other hand, a
continuing logarithmic decrease cannot be ruled out from
the data.
In addition, there is a dependence on J when N is fixed.

In this case the average is greater for values of J for which
there is a larger degeneracy. This is visible in Fig. 3, where
we plot hrni alongside the logarithm of the number of
partitions of length J at level N ¼ 100. The plots do not
match exactly, in particular the maximum points are at
different values of J, but a correlation is visible. Then, the
common observation from the dependence on N and J, is
that the average appears to grow in correlation with the

number of degenerate states at the given level, but in a slow,
at most logarithmic fashion.

VI. CHAOTIC FOUR-POINT SCATTERING
PROCESS: ONE HES AND THREE TACHYONS

A. The scattering amplitude

The aim of this section is to analyze the chaotic behavior
of the simplest four-point scattering amplitude involving
one generic HES, i.e., scattering of three tachyons and one
HES. In particular we will present the construction of the
most general scattering amplitude based on the combina-
tion of the DDF formalism and string coherent state
formalism, which is a suitable tool for the building of
generating functions of amplitudes [19].
The cross symmetric generating scattering ampli-

tude in Fig. 4 is composed of the following amplitudes8

AHES
gen ðs;t;uÞ¼AHES

gen ðs;tÞþAHES
gen ðt;uÞþAHES

gen ðs;uÞ; ð6:1Þ

where

AHES
gen ðt; uÞ ¼ AHES

gen ðs; tÞjp2⇔p3
;

AHES
gen ðs; uÞ ¼ AHES

gen ðs; tÞjp1⇔p2
: ð6:2Þ

TABLE I. Dependence of hri and β on N, based on samples of 2000 states at each N and J. The value of J is fixed
to the value with a maximum number of partitions. The distributions are plotted in Fig. 2.

N J Total number of states Points in sample Per state Average hrni Average hr̃ni Fitted β

50 11 17,475 46,354 24 1.206 0.662 3.36
75 15 552,767 69,247 34 1.247 0.641 2.81
100 18 11.1 × 106 92,251 46 1.271 0.628 2.55
150 23 1.90 × 109 139,428 70 1.307 0.614 2.26
200 28 158 × 109 184,705 90 1.333 0.606 2.09
300 37 295 × 1012 276,244 138 1.357 0.599 1.96
400 45 184 × 1015 370,123 186 1.372 0.596 1.88
800 70 1.08 × 1026 728,048 362 1.400 0.590 1.76
1600 109 4.22 × 1038 1,446,008 720 1.413 0.588 1.72

TABLE II. Dependence of hri and β on N, based on samples of 10,000 random partitions of N. The value of J is
not fixed, but distributed as predicted by (4.20).

N Total number of states Points in sample Per state Average hrni Average hr̃ni Fitted β

50 204,226 215,980 22 1.194 0.670 3.58
60 966,467 261,619 26 1.213 0.660 3.27
80 15.8 × 106 352,526 34 1.244 0.644 2.87
100 191 × 106 441,100 44 1.266 0.633 2.62
150 40.9 × 109 668,831 66 1.301 0.618 2.32
200 3.97 × 1012 886,007 88 1.325 0.610 2.15

TABLE III. Dependence of hri and β on J for N ¼ 100. For
each J we take 2000 states chosen at random. See plot in Fig. 3.

J
Total number

of states
Points in
sample

Per
state

Average
hrni Fitted β

6 143,247 155,162 80 1.203 3.60
10 2.98 × 106 126,008 64 1.241 2.95
14 8.86 × 106 105,502 54 1.263 2.65
18 11.1 × 106 92,251 46 1.271 2.55
22 9.24 × 106 83,405 42 1.276 2.52
26 6.32 × 106 76,211 38 1.272 2.57
30 3.91 × 106 70,650 30 1.262 2.69
50 204,226 51,287 26 1.209 3.38
70 5604 31,060 16 1.197 3.50

8We set 2α0 ¼ 1.
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The generating amplitude of the process is given by

AHES
gen ðs; tÞ ¼

Z
1

0

dz z−
s
2
−2ð1 − zÞ−t

2
−2

× e
P

n
J nOnðzÞþ

P
n;m

J nJ mMn;mðzÞ; ð6:3Þ

where the contribution proportional to the contractions
ζn · pj is given by

OnðzÞ ¼ T ð2Þ
n ðq · p3; q · p2; zÞ

þ T ð3Þ
n ðq · p3; q · p2; zÞ ð6:4Þ

with the explicit form of the single contributions propor-
tional to ζn · p2 and ζn · p3 (Appendix B)

FIG. 2. The measured distributions of r̃ across samples of 2000 states chosen at random with fixed N and J, fitted to a β-ensemble
distribution (black line). The distribution is also compared to theGUEdistribution (red, dashed). The fitting parameters are listed in Table I.

FIG. 3. The average value hrni as a function of J, where N is
fixed at 100. The black dots are the measured values of hrni on
samples of 2000 partitions at each helicity J. Also drawn is the
number of states of a given J at N ¼ 100, on a logarithmic scale.
Some specific values are in Table III. FIG. 4. Representative picture of the process under analysis.
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T ð2Þ
n ðq ·p3;q ·p2;zÞ

¼ zζn ·p2

ðnq ·p3Þn−1
ΓðnÞ 2F1

�
1þnq ·p2;1−n

2−nð1þq ·p3Þ

����z
�
; ð6:5Þ

T ð3Þ
n ðq ·p3;q ·p2;zÞ

¼ζn ·p3

ð1þnq ·p3Þn−1
ΓðnÞ 2F1

�
nq ·p2;1−n

1−nð1þq ·p3Þ

����z
�
; ð6:6Þ

while the contribution proportional to the contractions
ζn · ζm can be written as

Mn;mðzÞ ¼ ζn · ζm
Xm
k¼1

k
ðnq · p3Þnþk

ðnþ kÞ!

× 2F1

�
nq · p2;−n− k

1− nð1þ q · p3Þ− k

����z
� ðmq · p3Þm−k

ðm− kÞ!

× 2F1

�
mq · p2;−mþ k

1−mð1þ q · p3Þ þ k

����z
�
: ð6:7Þ

The projection of the amplitude onto a precise HES state
insertion can be realized as follows:

AðTðp1Þ; Tðp2Þ; Tðp3Þ; HNðfglg; q; pÞÞ

¼
YN
l¼1

�
d

dJ l

�
gl
AHES

gen ðs; tÞ
���
fJ ng¼0

ð6:8Þ

since the identification between a precise HES state and the
corresponding amplitude can be seen through the relation

YN
l¼1

dgl

dJ gl
l
e
P

n
J nλn·A−n jp̃ijfJ¼0g ¼

YN
l¼1

ðλl · A−lÞgl jp̃i

¼ jHES; fglgiN; ð6:9Þ

where p̃ is the tachyonic reference momentum of the DDF
formalism.
A compact representation of the generating scattering

amplitude can be given by promoting the coefficients On
and Mn;m to derivative operators acting on a generating
function of powers of z. In particular after the integration
over z one has

AHES
gen ðs; tÞ ¼ AVenðs; tÞe

P
n
J nOnð ddβÞþ

P
n;m

J nJ mMn;mð ddβÞ

× 1F1

� −α0s − 1

−α0s − α0t − 2

����β
�����

β¼0

ð6:10Þ

this representation is a realization of the identification

X
l

Cl

Z
1

0

zlz−α
0s−2ð1− zÞ−α0t−2

¼Bð−α0s−1;−α0t−1Þ
X
l

Cl
ð−α0s−1Þl

ð−α0s−α0t−2Þl
; ð6:11Þ

where the coefficients Cl are dictated by combinations of
(6.4) and (6.7). We can observe a complete factorization
between the partition structure and the pole structure,
leading to a dressing factor of the Veneziano amplitude

AVenðs; tÞ ¼ Bð−α0s − 1;−α0t − 1Þ: ð6:12Þ

B. The HES amplitude in the high-energy
fixed-angle regime

In the kinematical regime where s; jtj ≫ 1 and s=t is
fixed, one can study the behavior the amplitude looking at
the saddle point analysis of (6.3), where the saddle is
located at z� ¼ s=ðsþ tÞ. Alternatively, one can obtain the
same result studying (6.10) in the fixed angle limit where
the action of the derivative operators turns out to be
reproduced by the replacement d=dβ → s=ðsþ tÞ. The
amplitude in fixed angle regime is then

AHES
gen ðs; tÞjf:a ¼Af:a

Venðs; tÞe
P

n
J nOnð s

sþtÞþ
P

n;m
J nJ mMn;mð s

sþtÞ;

ð6:13Þ

where the standard behavior of the Veneziano amplitude in
this limit,

Af:a
Venðs; tÞ ∼ e−s log s−t log tþðsþtÞ log ðsþtÞ ð6:14Þ

gets combined with an exponential dressing factor obtained
by evaluating (6.5)–(6.7) at the saddle point z� ¼ s=ðsþ tÞ.
To write the dressing factor more compactly, let us denote

ρðs; θÞ≡ −q · p2: ð6:15Þ

Following the kinematics (Appendix A), it always holds
that 1þ q · p3 ¼ 2ρ. Using this notation, the dressing
factor will be made up of

T ð2Þ
n jz¼z� ¼

ζn ·p2

ΓðnÞ ð2nρ− nÞn−1z�2F1

�
1− nρ;1− n

2− 2nρ

����z�
�
;

ð6:16Þ
T ð3Þ

n jz¼z� ¼
ζn ·p3

ΓðnÞ ð2nρ− nþ 1Þn−12F1

�−nρ;1− n

1− 2nρ

����z�
�
;

ð6:17Þ

and
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Mn;mjz¼z�

¼ ζn · ζm
Xm
k¼1

k
ð−n− 2nρÞnþk

ðnþ kÞ! 2F1

�−nρ;−n− k

1− 2nρ− k

����z�
�

×
ð−m− 2mρÞm−k

ðm− kÞ! 2F1

�−mρ;−mþ k

1− 2mρþ k

����z�
�
: ð6:18Þ

The hypergeometric function 2F1ða; 1 − n; c; zÞ for posi-
tive integer n is a polynomial in z of degree n − 1. Using its
explicit form one can rewrite the expressions as

T ð2Þ
n jz¼z� ¼

ζn · p2

ΓðnÞ
Xn−1
k¼0

�
n − 1

k

�
ð2nρ − nÞn−k−1

× ð1 − nρÞkðz�Þkþ1; ð6:19Þ

T ð3Þ
n jz¼z� ¼

ζn · p3

ΓðnÞ
Xn−1
k¼0

�
n − 1

k

�
ð2nρ − nþ 1Þn−k−1

× ð−nρÞkðz�Þk; ð6:20Þ

from which one can see the dependence on the functions
z� and ρ is a polynomial one. One can also write the
polynomial form of Mn;m in terms of a similar expansion.
To simplify the analysis of the amplitude, we can go to

the specific case of identical circular polarizations, namely
taking ζn ¼ ζ for all n, with ζ2 ¼ 0.
In the case of circular polarizations, the termsMn;m drop

out and the amplitude in the fixed angle regime can be
written as

AHES
f:a ¼ Af:a

Venðs; θÞ
YN
n¼1

ðT ð2Þ
n ðs; θÞ þ T ð3Þ

n ðs; θÞÞgn : ð6:21Þ

From the kinematics in Appendix A, specialized to the
high-energy, fixed angle regime one can use approximate
forms for ρ, z�, and ζ · pi when s ≫ 2N, and reduce the
expressions to

T ð2Þ
n ðs; θÞ ¼ z�ðθÞ ffiffiffi

s
p

2ΓðnÞ ðρðθÞ cos θ − 1Þð2nρðθÞ − nÞn−1

× 2F1

�
1 − nρðθÞ; 1 − n

2ð1 − nρðθÞÞ

����z�ðθÞ
�
; ð6:22Þ

T ð3Þ
n ðs; θÞ ¼ −

ffiffiffi
s

p
ΓðnÞ ρðθÞ cos θð2nρðθÞ − nþ 1Þn−1

× 2F1

�−nρðθÞ; 1 − n

1 − 2nρðθÞ

����z�ðθÞ
�
; ð6:23Þ

with

ρðθÞ ¼ 1

1þ sin θ
; z�ðθÞ ¼ 1

cos2ðθ=2Þ : ð6:24Þ

The s dependence in the dressing factor reduces to a simple
prefactor of sJ=2.

C. The HES amplitude in the Regge regime

In the kinematical regime where s ≫ jtj one can study
the small angle dependence of the amplitude, in particular
the amplitude behavior in the Regge regime is provided by
(6.3) specialized around the leading contribution at z ¼ 1.
Alternatively it can be obtained from the representation
(6.10) in the limit s ≫ t. From the latter one can recover a
trivial action of the derivative operators which corresponds
to the replacement of d=dβ → 1. In any case the amplitude
can be written as

AHES
gen ðs; tÞjRegge
¼ ARegge

Ven ðs; tÞe
P

n
J nOnð1Þþ

P
n;m

J nJ mMn;mð1Þ; ð6:25Þ

where there is the standard behavior of the Veneziano
amplitude

ARegge
Ven ðs; tÞ ∼ Γ

�
−
t
2
− 1

�
s
t
2
þ1 ð6:26Þ

and a nontrivial dressing factor made of the following
contributions (see Appendix B for details):

Onð1Þ ¼ ð−Þnζn · p1

ð1þ nq · p1Þn−1
ΓðnÞ ; ð6:27Þ

Mn;mð1Þ ¼ ζn · ζm
nm

nþm
q · p1ð1þ q · p1Þ

Onð1ÞOmð1Þ
ζn · p1ζm · p1

.

ð6:28Þ

Since s ≫ 2N and s ≫ jtj such that sin θ ≪ 1, one can
take simplified forms for the kinematic factors in
appendix A, and see the explicit dependence on the angle.
In particular one can take

q · p1 ¼ −
1

1þ sin θ
≈ −1þ sin θ ð6:29Þ

to write

Onð1Þ ≈ −ζn · p1

Γðn sin θÞΓðn − n sin θÞ
ΓðnÞ sinðnπ sin θÞ;

ð6:30Þ

Mn;mð1Þ ≈ ζn · ζm
nm

nþm
sin θ

Onð1ÞOmð1Þ
ζn · p1ζm · p1

: ð6:31Þ

In the Regge regime, products of Mn;mð1Þ are suppressed
since they contain higher powers of sin θ, allowing us to
consider only the leading contributions provided by Onð1Þ.
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The Mn;m can also be eliminated by a choice of circular
polarizations.
Finally, we can write the Regge limit of the amplitude

AHES
Regge ¼ ARegge

Ven ðs; tÞ
YN
n¼1

ðOnð1ÞÞgn ð6:32Þ

in an explicit form as

AHES
Regge ¼ ARegge

Ven ðs; tÞ
�
−

ffiffiffi
s

p �
1 −

1

2
sin θ

��
J

×
YN
n¼1

�
Γðn sin θÞΓðn − n sin θÞ

ΓðnÞ sinðnπ sin θÞ
�

gn
;

ð6:33Þ

where it was used that ζ · p1 ≈
ffiffiffi
s

p ð1 − 1
2
sin θÞ in this limit.

The dressing factor of this amplitude bears strong resem-
blance to the three-point function of Eq. (5.1).

D. Spacing ratios for the four-point
scattering amplitude

We will search for chaotic behavior in the scattering
angle, by analyzing the ratios of spacings of consecutive
peaks for the amplitude derived above. The procedure will
be the same as the one described in Sec. V B 1.
We have seen that the amplitude can be factorized as the

Veneziano amplitude times a dressing factor that depends
on the HES state which we write as

AHESðs; tÞ ¼ AVenðs; tÞDHESðs; θÞ: ð6:34Þ

The dressing factor DHES is a complicated product of
polynomials whose peaks are spaced erratically. We show
that for solutions of

FDðθÞ≡ d logDHES

dθ
¼ 0 ð6:35Þ

the ratios of consecutive spacings will follow again the
β-ensemble distribution, in both the fixed angle and Regge
limits.
The interplay between the HES dressing factor and the

Veneziano amplitude it multiplies can create a transition
from chaotic to regular spacings, as will be discussed at the
end of this section.

1. Chaotic behavior in the fixed angle regime

The dressing factor in the high energy limit was

Df:a:
HESðs; θÞ ¼

YN
n¼1

ðT ð2Þ
n ðs; θÞ þ T ð3Þ

n ðs; θÞÞgn ; ð6:36Þ

where we can write the polynomial form of T ð2Þ
n and T ð3Þ

n in
this limit, which explicitly reads

T ð2Þ
n ðs; θÞ ¼

ffiffiffi
s

p
ΓðnÞ ðρðθÞ cos θ − 1Þ

Xn−1
k¼0

�
n − 1

k

�

× ð2nρðθÞ − nÞn−k−1ð1 − nρðθÞÞk
×

�
1

cos2ðθ=2Þ
�

kþ1

T ð3Þ
n ðs; θÞ ¼

ffiffiffi
s

p
ΓðnÞ ρðθÞ cos θ

Xn−1
k¼0

�
n − 1

k

�

× ð2nρðθÞ − nþ 1Þn−k−1ð−nρðθÞÞk
×

�
1

cos2ðθ=2Þ
�

k
ð6:37Þ

with ρðθÞ ¼ 1=ð1þ sin θÞ. Since the s dependence is only
a prefactor in this limit it cannot affect the distribution of
spacings.
Taking a sample of 2000 random partitions of N ¼ 100,

J ¼ 18, we collect all the solutions of d logD=dθ ¼ 0 in
the range θ∈ ð0; π

2
Þ, and find the distribution plotted in

Fig. 5. There are 29 data points per state in the sample.
We notice that there is an asymmetry in the distribution

about r → 1=r with values r > 1 being favored, which
causes it to deviate from the prediction. The average hrni is
1.497, while h1=rni ¼ 1.318, where they should be equal.
However, if one looks only at the normalized variable
r̃ ¼ minðr; 1=rÞ, which in a way symmetrizes the distri-
bution, the agreement with the β-ensemble is improved
considerably. It is not clear what is the reason that r > 1 is
preferred, but the asymmetry could be a consequence of our
looking solely at the partAðs; tÞ of the full amplitude, or of
not looking at the full range of allowed angles.

FIG. 5. Distribution for r̃ for the dressing factor in the fixed
angle limit. The best fit is with β ¼ 1.86 (black line), which is
very close to the GUE (dashed red line). The average value is
hr̃ni ¼ 0.600.
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2. Chaotic behavior in the Regge regime

In the Regge regime, the dressing factor that depends on
the HES state is

DRegge
HES ðs; θÞ ¼

�
−

ffiffiffi
s

p �
1þ cos θ

1þ sin θ

��
J

×
Y
n

�ð1 − nþ n
1þsin θÞn−1

ΓðnÞ
�gn

; ð6:38Þ

where in the present analysis we take Eq. (6.32) before the
small angle approximation. This is done mainly for
practical reasons, since we have to go beyond small angles
(sin θ ≪ 1) to collect enough data points for the statistical
analysis.9

It has almost the same form as the three-point ampli-
tude of Eq. (5.1) after the replacement of cos2 α

2
→

1=ð1þ sin θÞ. Each term in the product is a polynomial
in 1=ð1þ sin θÞ. The dependence of the dressing factor on
s is trivial, and the logarithmic derivative of the dressing
factor is a function only of θ of a simple enough form

FDðθÞ ¼
d logDRegge

HES

dθ

¼ −
J

1þ cos θ þ sin θ

−
cos θ

1þ sin θ

XN
n¼1

gn
Xn−1
k¼1

n
n − kð1þ sin θÞ : ð6:39Þ

We can find the zeros of this function of θ and plot the
distribution of r̃n for their spacings, when considering only
zeros in the range θ∈ ð0; π

4
Þ. The results are similar to what

we obtained in the fixed-angle regime in the previous
subsection, with a slightly skewed distribution that agrees
well with the β-ensemble distribution once we symmetrize
it. See Fig. 6.

3. Transition from chaotic to regular behavior

The interplay between the Veneziano amplitude and its
dressing factor can create a transition from chaotic to
regular spacings as one moves from small to large angles.
The erratic dressing factor is multiplied by the Veneziano

amplitude, which is a highly oscillatory function of the
angle at high energies, but one that is regular in the sense
that it has regularly spaced zeros as a function of t, which
leads to almost regularly spaced peaks of the amplitude
between these zeros. As a function of θ these zeros become
denser at large angles, but remain quite regular. In the
interplay between the Veneziano and the HES dressing
factors, the spacings between peaks depend on which of the

two is oscillating faster. For large angles, the Veneziano
factor will usually dominate and cause the peaks to be
regularly spaced, while at smaller angles one can see the
chaotic spacings coming from the HES factor.
Whether we can see these two regimes clearly will

depend on the scattering energy, and on the level of the
HES state. It is somewhat difficult to find the range of
parameters (s and N) where this can be computed and seen
clearly. One example in which we see it in the Regge limit
amplitude of (6.33).10

Recall that the full form of the Veneziano amplitude in
the Regge limit is

ARegge
Ven ðs;tÞ¼ sin½πα0ðsþ tÞ�

sinðπα0sÞ Γð−α0t−1Þðα0sÞα0tþ1: ð6:40Þ

Importantly, here we retain the oscillating factor which is
usually averaged over in discussing the Regge behavior.
Taking the log derivative we get the term

d logARegge
Ven

dθ
¼ dt

dθ
α0ðlogðα0sÞ þ π cot½πα0ðsþ tÞ�

− ψð−α0t − 1ÞÞ ð6:41Þ

which is a complicated function of the angle with many
zeros, which are almost regularly spaced. Note the implicit
dependence on the level N which enters through the
kinematic relation of tðθÞ.
Now, in studying the distribution of zeros of the log-

derivative of the full amplitude,

FIG. 6. Distribution for r̃ for the dressing factor in the Regge
limit. We take zeros in the range θ∈ ð0; π=4Þ and find 17 points
per state. The average of hr̃ni is 0.605 and the best fit (black) has
β ¼ 2.27. The distribution is also close to GUE (red, dashed).

9An alternative would be to use (6.33) and ignore the fact that
we assumed sin θ ≪ 1 to get it. That dressing factor will also have
a similar distribution of rn.

10This is not an optimal example, since we should not trust
(6.33) away from small angles. We choose it for illustration
purposes, and because it is the simplest amplitude that we can
write that realizes this transition in an explicit and easy to
calculate way.
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FðθÞ ¼ d logARegge
Ven

dθ
þ d logDRegge

HES

dθ
¼ 0 ð6:42Þ

we can observe a transition between the chaotic and regular
spacings, as illustrated in Fig. 7.

VII. SUMMARY AND OUTLOOK

We have expanded on the analysis of string scatte-
ring amplitudes involving an HES state, randomly chosen
among the huge number of states with the given
mass (α0M2 ¼ N − 1 ¼ P

n ngn − 1) and helicity J (N ¼
SMax ≥ S ≥ J ¼ P

n gn). In [4] we fitted the spacing ratios
to a log-normal distribution. Although the log-normal
distribution proved to be a good approximation of the
available results, in the present work we have improved and
argued that the β-ensemble distribution represents a better
fit for the larger and finer set of data analyzed here.
Moreover we have also argued that the β-ensemble dis-
tribution is better motivated by physical considerations.
We observed the chaotic behavior in the angular

dependence of scattering amplitudes involving one highly
excited string state. We can ascribe the chaos to the random
superposition of the relevant spherical harmonics in the
partial wave expansion of the amplitude. Given the uni-
tarity of the process (the overall normalization is irrelevant
in the analysis) we would expect β-ensemble distribution
with β ¼ 2 as for GUE, or equivalently for large N, CUE.
Instead we found better fits with values of β around 1.7; not

far from 2 but significantly different from it such that the
distribution cannot be precisely that of GUE. Comparing
our data to similar samples drawn directly from GUE can
confirm that deviations from β ¼ 2 are expected, but they
are smaller than what we observed.
The scattering amplitude of HES states and three

tachyons which we derived and analyzed in various regimes
shows chaotic behavior associated to a dressing factor
multiplying the ‘standard’ Veneziano amplitude. In this
case we did not examine in as much detail the dependences
of the distributions on N and J, but our observation is that
the general behavior is the same as in the three-point
function.
There are several possible directions for followup work:
(i) One should try and clarify the origin of the mild but

non-negligible dependence of the fitted β parameter
and the average ratio hri on the chosen data, most
prominently on N and J.

(ii) One could conceive extending the analysis to proc-
esses with two or more HES states. The first obvious
choice that comes to mind is generalized Compton
scattering of a low-mass probe off HES states,
possibly including inelastic channels involving ex-
citations of the HES itself (to a nearby HES state).
A related amplitude was computed already in [36].

(iii) One could consider similar processes in hadronic
models inspired by holographic QCD, along the
lines of [37,38] and prove or disprove the emergence
of chaotic behavior in this context.

FIG. 7. Top: The spacings δn as a function of zn for two random states of N ¼ 100. The spacings exhibit a transition from random to
regular behavior. Bottom: The distribution of spacing ratios (rn) for zeros in the ranges θ∈ ð0.15; 0.45Þ (left) and θ∈ ð0.15; 0.75Þ (right).
In the latter, a narrow peak around r ¼ 1 appears on top of the chaotic distribution.
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(iv) Finding other tractable examples for chaos in quan-
tum scattering amplitudes is another important task.
In [4] we have discussed the leaky torus as another
example where an analytic formula is known [6].
Another example of chaotic quantum scattering is
in [39].

(v) One could give further quantitative support to
the string/black hole correspondence by relating the
“measurable” chaotic behavior found here with the
expected chaotic behavior of scattering, absorption,
and thermalization in black hole processes [40–51].
To this end, a givenHES state, that may be considered
a (a)typical microstate of a putative black hole
ensemble, would better be replaced with a coherent
state with mass, charge and spin distributed around
some large “classical” value. Using the results in [19]
could prove crucial in this endeavor.

(vi) In [3], it was observed that while the spectra of some
nonintegrable QFT models displayed chaotic behav-
ior, the associated distribution of eigenvectors did
not match the RMT expectations, and was in fact
unchanged from the integrable, nonchaotic models.
One should identify what are the eigenvectors
associated with the scattering amplitudes and verify
if they are distributed as predicted by RMT. This has
consequences for thermalization, as stressed in [3].

We hope to report soon on some of the above issues.
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APPENDIX A: FOUR-POINT
AMPLITUDE KINEMATICS

Let us introduce the center-of-mass (c.m.) system kine-
matics of scattering three tachyons of momenta p1, p2, and
p3 with an HES state of momentum p.

We choose the momenta of the scattered states as

p1 ¼ ðE1; pin; 0; 0⃗Þ; p2 ¼ ðE2;−pin; 0; 0⃗Þ ðA1Þ

p3 ¼ −ðE3; pout cos θ; pout sin θ; 0⃗Þ;
p ¼ −ðE4;−pout cos θ;−pout sin θ; 0⃗Þ ðA2Þ

such that

p1 þ p2 ¼
ffiffiffi
s

p
; p1 þ p2 þ p3 þ p ¼ 0: ðA3Þ

The DDF reference lightlike momentum q and polari-
zation λ are constrained by q · p ¼ 1

11 and λ · q ¼ 0, and
they are represented by

q ¼ ð1; 0; 1; 0⃗Þ
E4 þ sin θpout

; λ ¼ ð0; 1; 0; Λ⃗Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ⃗ · Λ⃗�p : ðA4Þ

Since, for simplicity, we chose to work with “null” λ,
λ · λ ¼ 0, we may choose a complex Λ⃗ such that Λ⃗ · Λ⃗ ¼
−1 and yet Λ⃗ · Λ⃗� ¼ þ1.
Following the CMS kinematics one has

E1 ¼
sþM2

1 −M2
2

2
ffiffiffi
s

p ¼
ffiffiffi
s

p
2

;

E2 ¼
sþM2

2 −M2
1

2
ffiffiffi
s

p ¼
ffiffiffi
s

p
2

; ðA5Þ

E3 ¼
sþM2

3 −M2
4

2
ffiffiffi
s

p ¼ s − 2N
2

ffiffiffi
s

p ;

E4 ¼
sþM2

4 −M2
3

2
ffiffiffi
s

p ¼ sþ 2N
2

ffiffiffi
s

p ; ðA6Þ

and

p2
in ¼ 2þ s

4
; p2

out ¼ 2þ s
4

�
1 −

2N
s

�
2

: ðA7Þ

The relevant scalar products involving momenta are
given by

q · p1 ¼ −
E1

sin θpout þ E4

¼ −1

1þ 2N
s þ 2 sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
s þ 1

4
ð1 − 2N

s Þ2
q ¼ q · p2; ðA8Þ

q ·p3 ¼
E3 −pout sinθ
E4 þpout sinθ

¼
1− 2N

s − 2 sinθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
sþ 1

4
ð1− 2N

s Þ2
q

1þ 2N
s þ 2 sinθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
sþ 1

4
ð1− 2N

s Þ2
q :

ðA9Þ

11Here and throughout we work in units where α0 ¼ 1
2
.
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Using conservation of momentum and q · p ¼ 1 one can
easily derive the relation

q · p3 ¼ −1 − q · ðp1 þ p2Þ ¼ −1 − 2q · p1: ðA10Þ
The relevant scalar products involving polarizations are

given by

λ ·p¼ pout cosθ ¼
ffiffiffi
s

p
cosθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

s
þ 1

4

�
1−

2N
s

�
2

s
¼ −λ ·p3;

ðA11Þ

λ · p1 ¼ pin ¼
ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffi
2

s
þ 1

4

r
¼ −λ · p2; ðA12Þ

where for convenience it was constrained the free para-
meter to be Λ⃗ · Λ⃗ ¼ −1. Given the general form of the
covariant polarization ζμ ¼ λμ − λ · pqμ, it follows that

ζ · p1 ¼
ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffi
2

s
þ 1

4

r
þ

ffiffiffi
s

p
cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
s þ 1

4
ð1 − 2N

s Þ2
q

1þ 2N
s þ 2 sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
s þ 1

4
ð1 − 2N

s Þ2
q ;

ðA13Þ

ζ · p2 ¼ −
ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffi
2

s
þ 1

4

r
þ

ffiffiffi
s

p
cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
s þ 1

4
ð1 − 2N

s Þ2
q

1þ 2N
s þ 2 sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
s þ 1

4
ð1 − 2N

s Þ2
q ;

ðA14Þ

ζ · p3 ¼ −
2

ffiffiffi
s

p
cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
s þ 1

4
ð1 − 2N

s Þ2
q

1þ 2N
s þ 2 sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
s þ 1

4
ð1 − 2N

s Þ2
q ; ðA15Þ

where the combination of these terms reflects momentum
conservation ζ · ðp1 þ p2 þ p3Þ ¼ 0 and transversality
ζ · p ¼ 0, as expected.

APPENDIX B: DERIVATION OF THE
HES-THREE TACHYON AMPLITUDE

In this section we will review the main steps for the
computation of the scattering amplitude involving three
tachyons and one generic HES state in an open bosonic
string. Let us start by considering the tachyonic vertex
operators inserted in the ordered positions zj of the disk,
with j ¼ 1, 2, 3

VTðpj; zjÞ ¼ eipj·XðzjÞ ðB1Þ

and the coherent vertex operator inserted in position z4,

VCðp; z4Þ ¼ exp

�X
n;m

ζn · ζm
2

Sn;me−iðnþmÞq·X

þ
X
n

ζn · Pne−inq·X þ ip̃ · X

�
ðz4Þ: ðB2Þ

The generating scattering amplitude is given by

AHES
gen ðs; tÞ ¼

Z
z2

z4

Y4
l¼1

dzlhVTðp1; z1ÞVTðp2; z2Þ

× VTðp3; z3ÞVCðp; z4Þi: ðB3Þ
From the correlator one can factorize the Koba-Nielsen
contribution due to the contractions

hpj · XðzjÞpl · XðzlÞi ¼ −pj · pl logðzjlÞ;
zjl ¼ zj − zl ðB4Þ

finding

KNðfzjgÞ ¼ zp1·p2

12 zp1·p3

13 zp1·p
14 zp2·p3

23 zp2·p
24 zp3·p

34 : ðB5Þ
Using the general kinematics

ðp3 þ pÞ2 ¼ −s ¼ ðp1 þ p2Þ2;
ðp2 þ p3Þ2 ¼ −t ¼ ðp1 þ pÞ2;
ðp1 þ p3Þ2 ¼ −u ¼ ðp2 þ pÞ2; ðB6Þ

where sþ tþ u ¼ 3M2
T þM2

N with M2
N ¼ 2ðN − 1Þ the

mass square of a generic state of the level N, the Koba-
Nielsen contribution can be written as

KNðfzjgÞ ¼
�
z12z34
z13z24

�
−s
2
−2
�
z14z23
z13z24

�
−t
2
−2

× ðz13z24Þ−2
�
z34z14
z13

�
N
: ðB7Þ

The last factor is related to the exponential nature of the
insertion (B2), and it can be reabsorbed as a dressing factor
of the linear and bilinear contributions

e−inq·X⇒

�
z34z14
z13

�
n
; e−iðmþnÞq·X⇒

�
z34z14
z13

�
mþn

: ðB8Þ

The remaining contributions are related to the contractions

hpj · XðzjÞζn · ∂Xðz4Þi ¼
ζn · pj

zj4
ðB9Þ

that combined with the operator structure ζn · Pn and Sn;m

yield

ζn ·Pnðz4Þ⇒
Xn
k¼1

�Y
j≠4

ζn ·pj

zj4

�
Zn−k

�
n
X
j≠4

q ·pj

zj4

�
ðB10Þ
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and

Sn;mðz4Þ ¼
Xm
r¼1

rZnþr

�
n
X
j≠4

q · pj

zj4

�
Zm−r

�
m
X
j≠4

q · pj

zj4

�
: ðB11Þ

The combination of all the contractions yields

AHES
gen ðs; tÞ ¼

Z
z2

z4

Y4
l¼1

dzl

�
z12z34
z13z24

�
−s
2
−2
�
z14z23
z13z24

�
−t
2
−2
ðz13z24Þ−2

× exp

�X
n

�
z34z14
z13

�
n Xn
k¼1

�Y
j≠4

ζn · pj

zj4

�
Zn−k

�
n
X
j≠4

q · pj

zj4

��

× exp

�X
n;m

ζn · ζm
2

�
z34z14
z13

�
nþm Xm

r¼1

rZnþr

�
n
X
j≠4

q · pj

zj4

�
Zm−r

�
m
X
j≠4

q · pj

zj4

��
: ðB12Þ

Eliminating the redundancy of the SLð2; RÞ invariance
fixing z1, z2, and z4 produces the standard transformation of
the integration measure

Y4
j¼1

dzj ¼ z12z14z24dz3 ðB13Þ

which combined with ðz13z24Þ−2 gives a finite result in the
limit z1 ¼ ∞, z2 ¼ 1, z3 ¼ z, z4 ¼ 0

z12z14
z213z24

����
z1¼∞

¼ 1; ðB14Þ

while for the other terms one has�
z12z34
z13z24

�
−s
2
−2

¼ z−
s
2
−2;

�
z14z23
z13z24

�
−t
2
−2

¼ ð1 − zÞ−t
2
−2:

ðB15Þ
Finally, one can study how the remaining contributions
transform under the SLð2; RÞ invariance, finding the final
expression of the scattering amplitude given in (6.3).

APPENDIX C: COMPARISON OF THE
β-ENSEMBLE WITH A LOG-NORMAL

DISTRIBUTION

In our previous paper [4] we fitted the spacing ratios rn to
a log-normal distribution

fLNðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffi

2πσ2
p

r
exp

�
−
½logðrÞ − μ�2

2σ2

�
: ðC1Þ

This distribution proved good as a first approximation of
the result, but in the present work we have seen that the
β-ensemble distribution (3.4) is both a better fit for the data,
and is better motivated by random matrix theory.

The distributions are quite close. For a given β we can
find a log-normal distribution with μ ¼ 0 (because of the
r → 1=r symmetry) and an appropriate value of σ to
approximate it very well. One can measure the distance
between the distributions using the relative entropy,

Iðβ; σÞ ¼
Z

∞

0

drfβðrÞ log
�

fβðrÞ
fLNðrÞ

�
ðC2Þ

and, for a given β, pick the value of σ that minimizes it. For
instance, for β ¼ 1, 2, and 4 the closest log-normal
distributions are at σ ≈ 1.014, 0.773, and 0.565, respec-
tively. The value of the relative entropy at the minimum is
in these three cases between 0.002–0.009, with the better
agreement occurring for larger β.
For a direct comparison, in Fig. 8 we plot one of the

distribution we had in Sec. V, for the decay amplitude of
states with N ¼ 400, now together with a fitted log-normal

FIG. 8. Distribution of spacing ratios in the decay amplitude of
states with N ¼ 400, fitted to a log-normal distribution with
σ ¼ 0.79 (dashed-red line) and to the β-ensemble (black line)
distribution with β ¼ 1.88. The better fit is with β.
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distribution. We would also note that in [4] we used an
approximated form of the HES → TT amplitude (5.1)
which separately caused deviations in the result for the
spacing ratios. The excess of points around r ¼ 1 noted
there does not occur when we use the exact formula.

APPENDIX D: RANDOM PARTITIONS
OF A LARGE INTEGER

As discussed in Sec. IV B, the number of partitions of an
integer N grows exponentially in

ffiffiffiffi
N

p
. Since we cannot

probe the full space of states, we need a reliable method of
picking representative, generic states in a random way.
Picking a partition of a large integer N at random, with

each partition having an equal probability of being chosen,
is a nontrivial task. We present here one algorithm that
accomplishes this goal.
We represent a partition as a list fgng, n ¼ 1; 2;…N,

where gn is the number of times that n occurs in the
partition. The algorithm relies on a result [52] regarding the
asymptotic distributions of fgng for large N, namely that
each gn has the geometric distribution

Pðgn ¼ kÞ ¼ ð1 − pnÞkpn ðD1Þ

with the parameter

pn ¼ 1 − exp

�
−

nπffiffiffiffiffiffiffi
6N

p
�
: ðD2Þ

One can generate a random partition of N by drawing
values of fgng, n ¼ 1; 2;…; N from the above distribution,
treating each gn as an independent variable, until one
reaches a set that corresponds to a partition of N. That is,
until one gets a set of fgng that satisfies

P
n ngn ¼ N. The

result of [52] implies that the partitions of N that will be
reached by this algorithm will be uniformly distributed, at

least at largeN. Each partition ofN has an equal probability
of being chosen.
The downside of the algorithm is that it needs to reject

many sets of fgng until it reaches one that satisfies the
constraint, with the expected number of rejections being
OðN3=4Þ. By use of probabilistic algorithms one can improve
the number of rejections to OðN1=4Þ or even Oð1Þ [53].
The simpler, OðN1=4Þ algorithm is as follows:
(1) Draw fgng for n ≥ 2, with gn distributed according

to (D1).
(2) Set k≡ N −

P
N
n¼2 ngn. If k < 0, restart from step 1.

(3) Draw a random variable u∈ ð0; 1Þ from the uniform

continuous distribution. If u < e−
kπffiffiffiffi
6N

p
, reject the

partition and return to step 1.
(4) Else, set g1 ¼ k to finish.

Step 3, where some partitions are rejected with a specifi-
cally chosen probability, assures that the probability to
output any given partition is as before.
We can use a modification of the above algorithm to

generate a partition of a given length J. We modify only
step 1, where we start by choosing fgng such that gJ ≥ 1
and gn>J ¼ 0. Then, the result after step 4 will be a partition
of N where the maximum summand in the partition is
nmax ¼ J. Then, taking the conjugate partition, we get a
partition of N into exactly J parts.
In the preparation of this work, we have used several

methods of picking random partitions. One is the brute force
method; generate a list of all possible partitions of a given N
(and J when that is constrained), then, select random
elements from the list with equal probability. This is the
simplest method at smaller N, but becomes impractical
quickly as one increases N. For unconstrained partitions
of N we have used Mathematica’s built-in (as part of the
Combinatorica package) function RandomPartition[N]. To
produce partitions of large N with fixed J, we have used the
algorithm described in the previous paragraph.
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