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We examine the black hole solutions of dS; gravity by applying the explicit dS;/CFT, correspondence.
The gravity theory is described by Chern-Simons theory with complex gauge group SL(2,C), and the
complexified theory is known to have too many saddle points. We determine the set of “allowable
geometry” from dual conformal field theory correlators. Concretely, we classify the possible complex
solutions corresponding to dS; black holes from Liouville two-point functions. We extend the analysis to
Liouville multipoint functions and among others we study geometry corresponding to two linked Wilson
loops on $* by the monodromy matrix of Liouville four-point function. Some parts of the results were
presented in a previous letter but here they are explained in more details and extended in various ways. In
particular, we generalize the results to the case with higher-spin gravity by focusing the effects of higher-

spin charges.
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I. INTRODUCTION

According to the no-boundary proposal by Hartle and
Hawking [1], the universe begins from nothing. More
precisely speaking, the universe starts from Euclidean
hemisphere and continues to Lorentzian de Sitter space-
time. Similarly, the temperature of black hole can be read
off from the periodicity of Euclidean time, where the
smoothness condition is assigned at the horizon [2]. It is
often argued whether these complex solutions to Einstein
equation are purely mathematical objects or physically
meaningful ones. If those unphysical ones were included
when we integrate over complex metrics in the path integral
of a gravity theory, then there would be too many saddle
points, and the sum over all saddle points should not lead to
a sensible answer. Recently, Witten investigated in [3] a
criterion of “allowable complex geometry” based on
previous works [4,5]. In this paper, we propose an alter-
native way to select the physical saddle points of quantum
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gravity by making use of a holography. Applying the
recently proposed dS;/CFT, correspondence in [6-9], we
examine explicit examples of three-dimensional de Sitter
(dS5) gravity from dual two-dimensional conformal field
theory (CFT,)." We have already presented some parts of
results in a previous letter [11], and we will explain the
derivation of the results in details and extend the analysis in
this paper.

A canonical example of complex geometry is given by
the no-boundary proposal for wave functional of universe
mentioned above. We may consider a complexified
(d + 1)-dimensional sphere (S!) with the metric

2
ds? = ¢* [(@) du® + cos?0(u)dQ3 |, (1.1)

u

where ¢ is a length scale and dQS is the metric of S¢.
Moreover, O(u) is a complex function of a complex
coordinate u. If O(u) = u and 0 < u < x, then the metric
is that of Euclidean S¢*!. On the other hand, if 6(u) = iu
and —oco < u < o0, then the universe is Lorentzian dS;.
Here we only complexify u-direction and not the S¢ part for
simplicity. We may assign that the universe starts from
nothing, that is

1See, e.g., [10] for a related work on three-dimensional gravity
with negative cosmological constant.
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1
0= <n+§)n, nez (1.2)

at the beginning, say, # = 0 and ends as 6 = iu at u — oo.
In this way, we consider a family of complex geometry
labeled by an integer n. The criterion of D-dimensional
allowable geometry in [3,5] is that the kinetic terms of
p-form fields for all p = 0,1, ..., D should have positive
real parts. In our example, allowable geometry is instead
only given by n = —1, 0, which is nothing but the geometry
considered by Hartle and Hawking in [1].

We would like to explicitly perform the path-integral of a
quantum gravity and determine the set of saddle points we
should take. It is a quite difficult task since we do not know
how to formulate quantum gravity in general. In this paper,
we study three-dimensional gravity theory with positive
cosmological constant. The theory has a Chern-Simons
description [12—14],2 moreover it also has an explicit
holographic dual formulation as detailed in [6-9], thus
we could study this theory in great depth. In dSs, there are
solutions to Einstein equation including the conical defect
geometries examined in [15]. They are often called as dS;
black hole solutions given by:

ds* = 2| —(rh — r)dr* + 5——dr* + r’d¢*|.  (1.3)
L=

This geometry can be regarded as the dS; analog of BTZ

black hole [16]. The parameter r, is related to the Newton

constant Gy and the black hole energy E as

r. =+/1—8GyE.

There is a horizon at r = r, and the Gibbons-Hawking
entropy associated with the horizon is [17-20]

S 2ntr,  ml\/1 —8GyE
ST 2Gy ‘

(1.4)

(1.5)

In terms of Chern-Simons gravity, we can construct a
configuration of gauge fields corresponding to the dS;
black hole geometry. Applying a large gauge transforma-
tion with winding number n to the gauge fields, we can
generate another configuration of gauge fields labeled by n.
This n turns out to be essentially the same as the one
introduced in (1.2) for the complexified sphere. In the
Chern-Simons gauge theory with complex gauge group,
large gauge transformations are known to generate new
physically inequivalent configurations, see, e.g., [14]. From
the viewpoint of gravity theory, we do not have any criteria

*We summarize some properties of Chern-Simons gauge
theory with complex gauge fields, in particular, the relation to
gravity theory with positive/negative cosmological constant in
Appendix A.

to determine which gauge configurations we should take
a priori. We shall attack this problem for various black hole
solutions by making use of the explicit dS;/CFT, corre-
spondence. We also examine its higher-spin generalizations
and their properties focusing the effects of higher-spin
charges.

We shall use the explicit dS;/CFT, correspondence
developed in [6-9], which may be regarded a lower
dimensional version of dS;/CFT; correspondence in
[21]. These are concrete examples of dS/CFT correspon-
dence proposed in [22-24], see also [25-27]. The duality
of [21] can be obtained as an “analytic continuation” of
Klebanov-Polyakov duality involving higher-spin AdS,
gravity [28]. Similarly, the duality used here is constructed
by an “analytic continuation” of Gaberdiel-Gopakumar
duality involving higher-spin AdS; gravity [29]. The gravity
theory is given by Prokushkin-Vasiliev theory [30] with
gauge fields with higher-spin s = 2, 3, ... and two complex
scalar fields with the mass parametrized as:

Ligsm® = =14 2. (1.6)
Here we denote the AdS radius by £p4g and set 0 < A < 1.
The dual CFT is supposed to be Wjy-minimal model
described by a coset

SU(N), ® SUN),
SUN) g1

(1.7)

with the central charge

N(N +1)
N+ OWN T+ kT 1))' (1.8)

c:(N—1)<1—

‘We take the so-called ’t Hooft limit, where N, k is taken to be
large with keeping

N

= 1.
g N+ k (19)

finite. In particular, the 't Hooft parameter 4 is identified with
the mass parameter A appeared in (1.6). A version of
dS;/CFT, correspondence can be constructed as follows
[8,9], see also [52]. For the higher-spin gravity, we just need
to flip the sign of cosmological constant, which can be done
by replacing £ 545 by i with the dS radius #. In the CFT side,
we perform an analytic continuation of parameters such that
the central charge becomes ¢ = ic¥) with ¢(9) € R while A is
kept unchanged.

The (A)dS;/CFT, correspondence introduced above
involves an infinite tower of higher-spin fields, which
makes analysis complicated. In three-dimension, a higher-
spin gravity with gauge fields with truncated spin s =
2,3, ..., N can be constructed by Chern-Simons theory with
gauge group SL(N, C). We largely study the simplest case
with N = 2, which is supposed to be equivalent to the pure
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gravity theory [12,31]. The holography involving the
Chern-Simons gravity with the finite dimensional group
can be constructed with the help of triality relation of the
higher-spin algebra [32-34]. The dual CFT is given by the
coset (1.7) with a finite N but a peculiar value of k as

k=-1-N +w+ O(c™?).  (1.10)

Here ¢ € R for the dual of AdS; and ¢ = ic(¥) with ¢9) e R
for the dual of dS;, see [6,7]. For generic value of k with
finite NV, it was shown in [35] that the correlation functions
of the coset model (1.7) are the same as those of 3I(N)
Toda field theory (Liouville field theory for N = 2). We
heavily use this version of (A)dS;/CFT, correspondence
since the Chern-Simons gravity with the finite dimensional
gauge group is much more tractable than the Prokushkin-
Vasiliev theory. Moreover, the dual CFT is quite well
studied as in [14,36,37] for Liouville field theory and as in
[38] for 8I(N) Toda field theory.” The coset (1.7) with a
finite N but a generic value of k has the Wy-algebra
symmetry with generators of spin s = 2,3, ..., N. There are
degenerate representations of the algebra, which are labeled
by two Young diagrams with no upper limit of the number
of boxes, see, e.g., [41]. They are proposed to be dual to
the bound states of scalar fields on a conical defect
geometry [32-34]. In terms of Liouville/Toda field theory,
we examine correlation functions of so-called maximally
degenerate operators. In this paper, we consider black hole
solutions created due to the back reactions of heavy
particles, which corresponds to the insertions of heavy
operators in the dual CFT.

In dS/CFT correspondence, it is not so straightforward
to compute bulk quantities from dual CFT in contrast with
AdS/CFT correspondence. In order to illustrate this, we

prepare the Hartle-Hawking wave functional ‘PMO)]. It is
obtained by the path integral over bulk fields y;

w[ ) = /D;(jeisu,-], (1.11)

where Sly;| is the action of dS gravity theory and the fields

. 0
X satisty y; :)(E. )

also denote a partition function of dual CFT by Zcgr b{ﬁo)],
where )(;(D are sources for their dual operators O;. Then the

proposal of [24] can be written as

at the future infinity t = 7, — c0. We

¥ = Zeprlr”). (1.12)

*It is not known how to couple matters to the Chern-Simons
gravity, so the first version will be utilized when examining the
propagation of matter fields on dS; black holes, see [39,40] for
recent related works.

With the wave functional, the gravity partition function at
the semiclassical level can be evaluated as

zis= [TIoa” W67 13)
J

We assume that there are several saddle points of bulk
theory labeled by n. In the previous example, n corresponds
to the winding number of large gauge transformation
generating new gauge configurations. It might be conven-
ient to write it in terms of the Gibbons-Hawking entropy as

Zos~ ) exp(Sga)- (1.14)

Here Sg’l){ represents the contribution to the Gibbons-
Hawking entropy from a saddle point labeled by n. In
the classical limit, Gy — 0, only the leading term domi-
nates among the sum, and the other terms can be regarded
as nonperturbative corrections. In the previous example, it
is given by (see, e.g., [3])

" 1\ n2\/1 —8GyE

with n = 0, —1. Therefore, S(GOI){ is the leading contribution

to the Gibbons-Hawking entropy Sgy and Sng)

as a nonperturbative correction.

In this paper we are mainly interested in black hole like
objects, which may be created due to the back reactions of
heavy objects. Let us assume that the geometry is created
by the back reaction of heavy particle y;. Then, the wave
functional of the geometry is related to two-point function
of dual operators O; as

is regarded

From the geometry, we can specify the saddle points and
compute the contribution from a saddle point to the
Gibbons-Hawking entropy. However, it is impossible to
determine the set of allowable geometry among them
unless the definite definition of quantum gravity is avail-
able. In the current case, the dual CFT is given by Liouville
field theory or more generally Toda field theory, and its
saddle points can be read off, e.g., as in [42]. We can thus
compute Sgl,){ from the dual CFT. For this purpose, it might
be convenient to rewrite the wave functional as

W) exp (Sg/2 + i), (1.17)

where iZ") represents purely imaginary contributions. We
identify the allowable geometry of gravity theory by
comparing the contributions to Gibbons-Hawking entropy
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from the both sides of duality. The above arguments can be
generalized to higher-point function as well. We examine
the three- and four-point functions in Liouville field theory
and interpret the saddle point analysis in terms of SL(2, C)
Chern-Simons theory along the line of [42]. Moreover, we
argue that the geometry corresponding to two linked
Wilson loops on S* is dual to the monodromy matrix of
four-point function and reproduce the results previously
obtained in [6,7]. The results on geometries dual to
Liouville two-point functions and those corresponding to
two linked Wilson loops on S* were already presented in
the previous letter [11]. In this paper, we explain details of
the derivations and extend the analysis to the geometries
dual to Liouville multipoint functions.

Since we deal with the pure gravity on dS; by Chern-
Simons formulation, it is straightforward to extend the
analysis to the higher-spin theory described by SL(N, C)
Chern-Simons theory. We examine the gravity theory by
dual CFT,, i.e., Toda field theory. We first construct higher-
spin dS; black hole by analytically continuing the case of
AdS; analyzed in [43], see [44] for a review.* We then
study the saddle points of gravity theory corresponding to
the solutions from Toda two-point functions as in the
Liouville case. In the previous letter [11], the higher-spin
extension is only briefly mentioned, in particular only
partial results on the geometries dual to Toda two-point
functions were provided. In order to study the detailed
properties of higher-spin dS; black hole, we extend the
construction of the solutions to the Prokushkin-Vasiliev
theory and probe the solutions by propagating a bulk scalar
field, see [46—49] for the AdS; case. Among others, we find
a light-like singularity in the two-point function of bulk
scalar field between the boundaries at the past and future
infinities. The singularity should be the same as the one
found in [23] in the pure dS case.

This paper is organized as follows. In the next section,
we examine the simplest case with pure gravity described
by SL(2,C) Chern-Simons theory to a large extent. We
describe the dS; black holes in terms of Chern-Simons
gravity. In particular, we find nontrivial saddles of the
complexified gravity, which are obtained by the large gauge
transformations. We then determine the allowable set of
saddles from two-point functions of dual Liouville field
theory. In Sec. III, we extend the analysis to more
complicated solutions dual to multipoint functions. We
can insert monodromies along deficit lines in the Chern-
Simons solutions, and the holonomies are read off from the
Liouville correlation functions. Moreover, we also study
geometry corresponding to two Wilson loops on S* con-
structed in [6,7]. We find that the entropy associated with
the geometry can be obtained by the monodromy matrix of
four-point function. In Sec. IV, we extend the analysis
in Sec. II to the higher-spin gravity described by SL(N, C)

“See also [45] for a related work.

Chern-Simons gravity, whose dual description is given by
Toda field theory. In Sec. V, we construct higher-spin dS;
black hole in the Prokushkin-Vasiliev theory and examine the
behaviors of boundary-to-boundary two-point functions of
bulk scalar field. Section VI is devoted to conclusion and
discussion. Several appendices follow, which explain tech-
nical details on the analysis in the main context. In
Appendix A, we discuss subtleties associated Chern-
Simons gauge theory based on complex gauge group and
relation to the gravity theory with negative/positive cosmo-
logical constant. In Appendix B, we summarize the proper-
ties of the Upsilon function, which is used to express three-
point functions of Liouville field theory. In Appendices C
and D, we explain the technical details of bulk analysis on
higher-spin (A)dS; black holes. In Appendix E, we provide
some CFT calculations as dual descriptions of higher-spin
black holes. In Appendix F, we examine Wilson line
operators in higher-spin dS; gravity and provide holographic
computations of entanglement and thermal entropies.

II. THREE-DIMENSIONAL DS BLACK HOLES

In this section, we examine the black hole solutions of
three-dimensional Einstein gravity both from the gravity
theory and its dual CFT,. We will first review the
construction of black hole solutions of three-dimensional
Einstein gravity with negative/positive cosmological con-
stants. In particular, we find out semiclassical saddle points
of path integral for the dS; gravity. In Sec. II B, we will
analyze the CFT, dual to the dS; gravity, i.e., Liouville
field theory. Finally we determine the set of allowable
saddles of the dS; gravity from the two-point functions of
dual Liouville field theory.

A. Chern-Simons description of pure gravity

In this subsection, we review several useful results on the
pure Einstein gravity on AdS; and dS; in the Chern-Simons
formulation and black hole solutions to their equations of
motion in order to prepare for the later sections, in
particular, for higher-spin extensions. The pure Einstein
gravity in three space-time dimensions with negative
cosmological constant can be described by SL(2,R) x
SL(2,R) Chern-Simons gauge theory [12,31]. See
Appendix A for some details. Its action is given by

S = SCS {A] - SCS [A}’

k 2
SesA] :E/tr<A/\dA+§A/\A/\A>. (2.1)

Here the Chern-Simons level k( €R) is related to gravi-
tational parameters as

4
k= ZAds

= (2.2)
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The independent gauge fields A, A are one-forms taking
values in 8[(2) Lie algebra. The generators of 3[(2) Lie
algebra are given by L, (n =0, £1) satisfying

[Lp L] = (n—m)L, . (23)
We normalize the generators as tr(LoLg) = % The solutions
to the equations of motion can be put into the forms

A = ePlogerto + Ldp, A = elogerM — Lydp

(2.4)
with

a=a,(x")dx", a=a_(x")dx". (2.5)
Here a, (xT), a_(x~) are arbitrary functions of x* = ¢ + ¢,
where the periodicity ¢ ~ ¢ + 2z is assigned. The bulk
metric can be read off from the gauge fields as

£z ~ ~
9w = %U‘(Aﬂ - Au)<Av - Au)'

(2.6)

The black hole solutions to the Einstein equations with
negative cosmological constant are given by BTZ black
holes with the metric [16]

£33ds? = —(r? = r2)de® + dr’ + r’d¢?,

(2.7)

2 2
re—ri

where the horizon is located at r = r, and the region
outside the horizon is r > r, . Here and in the following, we
only consider nonrotating black holes. Let us consider a
Euclidean time ¢ — ity with xT = z=itg +¢,x~ -
—Z = itg — ¢. Then the absence of conical singularity at
the horizon r = r,. requires the periodicity t; ~ t + pA%
with

iﬂAdS i
TAdS = —2” = r— . (28)
+

The BTZ black hole can be realized by the configuration of
gauge fields (2.4) with

a,(x*) =1L, - 27 L% L_y,
a_(x)=-L_, + Z”iAdS L, (2.9)
where we have set
it (2.10)

Loags = ==
A T 302Gy 87

We can read off the metric of the black hole from (2.6) as

2 EAdS 2 EAdS
£35ds? =dp® — (e”— z k e_/’> (ep— z T e"’) ar

2 LAdS 27 LAdS
+ (ef”+ ﬂ e‘P> <e”+ ” . e‘”) d¢?.
(2.11)
Performing a coordinate transformation
2 EAdS
r=e + e, (2.12)

the metric becomes that of BTZ black hole in (2.7). In the
pure gravity, the notion of horizon is gauge invariant, so
there is no problem to define black hole. However, in
higher-spin gravity theories, which we shall deal with, the
notion of horizon is not gauge invariant generically, and the
definition of black hole might be ambiguous. Following
[43,44], we shall use Wilson loop to define black hole since
itis a gauge invariant object. We thus introduce a holonomy
matrix for A along the thermal cycle

Pedt = Pei $Uhe — gnloReola, (2.13)
In the current case, the eigenvalue of Q can be evaluated
as (mi, —ri).

We then move to the case with positive cosmological
constant. The Einstein gravity can again be described by
SL(2,C) x SL(2, C) Chern-Simons theory with the action

S = SCS [A} - SCS [A]a

2
Scs[A] :—%/tr<A/\dA+§A/\A/\A). (2.14)

See Appendix A for some details. The relation to gravity
parameters is

(2.15)

We may relate the Euclidean version of (2.1)—(2.14) by
replacing the couplings k — ix, which corresponds to
€ ads — i¢.> The gauge fields A, A are one-forms taking
values in 81(2) Lie algebra. For generators, we assign the
relation of complex conjugation as (Lg)* = —L, and
(Ly)* = L+. As in [24], we may perform furthermore
the coordinate transformation

°In order to move from (2.1) to the Euclidean version, we need
to perform a Wick rotation ¢t — itg, which provide a phase i.
Combining the replacement k — ik, we have extra factor i - i =
—1 in the second equation of (2.14).
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e — —ie™? = e~ (PH7/2), (2.16)
Solutions to the equations of motion can be put into the
form

A = e~ PHri/DLog P4/l 4 [ dp,

A = elPtri/Dloge=(pHxi/2Le — Lodp (2.17)

with

a=a,(x")dx", a=a_(x")dx". (2.18)

Here a, (xT), a_(x™) are arbitrary functions of x* = it 4 ¢

(or z=x%,z=—x") and the periodicity ¢ ~ ¢ + 2x is
assigned. The bulk metric can be read off from

f2
G = — - tr(A

) _Au)(Au_Au)~

} (2.19)

Let us first consider the configuration of gauge fields of
the form

2zl
ay(x") =1, +TL_1’

then the metric (2.19) leads to

8L 8L
£2ds? = —diP? + ’TTsinh2 pdi + %coshz PR

(2.21)

Here we have performed a shift p — p + In /27zL/k. If we
regard p as a timelike coordinate, then the geometry
describes a cosmological universe. Near the asymptotic
future, the metric becomes

£72ds* = —dp? + %e%(dﬁ +dg?),  (2.22)
K

where the boundary geometry is with the flat metric

ds* =d* +d¢?, -co<t<oo, ¢~¢+2n (2.23)
Notice that the infinities r = + oo are not included, thus the
boundary topology is R x S', see, e.g., [50].

The metric obtained above is outside the horizon of our
static universe. The static patch is obtained instead by an

analytic continuation p — i@ as

87.L 87
£72ds? = dOP — "= sin? 0de> + = cos? 0dg?.  (2.24)
K K

A coordinate transformation

8nL £r’ Kr?

— 0 = r 2.25
" PR £ 32zGy  8x (225)
indeed leads to the metric in (1.3). Considering a Euclidean

time it — tz, the absence of conical singularity at the
horizon requires the periodicity 7z ~ tg + f with

if i 1
-r_- . 2.26
T2 V2Kl ( )

As in the AdS; case, it is convenient to define a holonomy
matrix for A along the time cycle by
PefA = Pefd’EA*

— o i047i/2)Lg pQ p(i6+i/2) L

e (2.27)
The eigenvalues of Q are computed as (zi, —7i).

Let us examine more about the holonomy condition. The
action of large gauge transformation changes the eigen-
values of Q as (2zi(n + 1/2), =2zi(n + 1/2)) with integer
n® A configuration of gauge fields with the holonomy
matrix is given by

a = — /%o‘l(dqﬁ + (2n + l)dl‘E)7

= /2o~ (20 + 1))

Ql

(2.28)
with
(2.29)

The metric from the configuration of gauge fields can be
read off as

8z(2n +1)2L

£72ds* = do* + - sin? O0d1t% + % cos? Odg?.
(2.30)
The classical action for the configuration is
—S(=8") = 4x(2n + 1)V 27kl
— (2n+ 1)—;:5\/12(—;57@@’ (2.31)

where Sg?{ was introduced in (1.14). See [6,7] for the case

with conical defect geometry. If we set n = 0, —1, then the

We may require that the holonomy matrix (2.27) is trivial. The
center of gauge group SL(N) x SL(N) is Z, for even N, and the
trivial holonomy means that the holonomy matrix is given by a
center of the gauge group =+1. Thus, the trivial holonomy
condition allows n € Z + 1/2, but such a case is not considered
here as it is not generated by a large gauge transformation.
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entropy reproduces (1.5). With an integer level and a
compact gauge group, a large gauge transformation is a
symmetry of Chern-Simons theory. However, now the level
is not integer valued nor the gauge group is complex
(noncompact), thus a large gauge transformation generates
a different configuration, see, e.g., [14,42]. In the Chern-
Simons formulation of gravity theory, there are no criteria
to choose the proper set of saddle points labeled by 7. In the
next subsection, we determine the proper set from its dual
CFT description.

B. Liouville description

In [6,7], the Gibbons-Hawking entropy (1.5) of the dS;
black hole (1.3) was evaluated from its dual CFT,. At the
leading order in Gy, the entropy is obtained from a
particular limit of modular S-matrix of SU(2) Wess-
Zumino-Witten (WZW) model by applying the method
of [51]. It was also argued that the same result can be
obtained through Liouville field theory in the correspond-
ing limit of large central charge. In fact, the entropy for pure
dS; was reproduced also from the vacuum sphere ampli-
tude of Liouville field theory in [7]. In this subsection, we
extend the result to the case with insertions of two heavy
operators, which is dual to the dS; black hole. We then read
off all the saddle points of complexified Liouville field
theory in the corresponding limit.

The action of Liouville field theory is given by

1 / ~
e / d*0\/30,0, 97" + QR + dmue®?).
(2.32)

Here and in the following, we follow the notation of [42],
see also [37]. We use g, as a reference metric with § =
det §,, and R as the curvature with respect to the reference
metric. The theory is invariant under the combination of the
Weyl transformation g,, — ©(0)g,. and the shift of field
¢ — ¢ —% In Q(o). With the help of the symmetry, we

may set the “physical” metric as g,, = eé‘f’gau/. The vertex
operators are defined by
V, = e*® (2.33)
with conformal weights h = h = a(Q — a). The Liouville
central charge c is related to the background charge Q =
b+b!as
c=1+60>=1+6(b+b")> (2.34)
We are interested in sphere amplitudes. We thus require
that the Liouville field is regular everywhere on S2. It is
convenient to move to flat space with the reference metric
ds’> = dzdz with z = ¢ + i, and Z = o, — ic, by making
use of the symmetry of Liouville field theory. Then the

regularity condition for the Liouville field on S? is mapped
to the boundary condition

¢ = -20 log |z| + O([z[") (2.35)
at the infinity |z| - oo. In order to remove the subtlety
associated with the infinity |z| — oo, we consider a disc D

with radius R — oo with the boundary dD. We then instead
use the regularized action [37]

1
S = 45 || Poloubout + dme)
4 D

+ 2% ¢$dO +20% In R, (2.36)
7 Jop

where 6 represents the coordinate of the boundary dD.
We would like to study classical dS; gravity from the

viewpoints of its dual CFT,. The asymptotic symmetry near

the future infinity is found to be Virasoro symmetry and its

central charge is obtained as [23] (see also [52])7

37
c(=ic¥9) =i -6k =i—

2.37

as in the well-known case of AdS; by [53]. We are
interested in the leading order of G, which is dual to that
of 1/c\9. Solving (2.34), we find

6 6

L, ic¥ 13

+ O((c@) ). (2.38)

A unitary region of Liouville field theory is obtained by a
real positive b, however the above equation implies that b
has to take a complex value. The Liouville field theory with
a complex b has appeared before in the context of timelike
Liouville theory describing rolling closed string tachyon,
where we set b = i, see, e.g., [54-56]. In the current case,
the central charge is large, so we need to set b~ 0.
Moreover, the order O((c'9))) contribution implies that
Re b2 < 0, which will be important later. At the leading
order in b ~ 0, the action may be written as

1
szL - / dza[azt¢cau¢c + ]6’16(/){:]
167 D
1
- f $.d0 +2 In R + O(b?) (2.39)
27 Jop

with finite ¢, = 2b¢ and A = wub?*. The boundary con-
dition is

"The central charge ¢ is an exact quantity including full
quantum corrections since it is fixed by commutation relations
among Virasoro generators. The relation to gravitational param-
eters may receive quantum corrections, but they should not
violate the condition ¢(9 €R as the physical gravitational
parameters take real values.

066005-7



CHEN, HIKIDA, TAKI, and UETOKO

PHYS. REV. D 108, 066005 (2023)

¢c(z) = =4 In |z] + O(|z[) (2.40)
for |z| = oo. Since b is a complex number, the Liouville
field is also assumed to take a complex value as emphasized
in [42]. In the study of rolling tachyon, we usually set 4 as a
real number, which makes A to be complex. Here we rather
set A as a real number, which implies that y is complex. We
will explain the reason of this choice later.

As mentioned above, we would like to determine the
saddle points of gravity path integral from Liouville two-
point function. The operator should have a large conformal
dimension if it is dual to a bulk field back reacting to create
a black hole geometry. Such an operator is usually called as
a heavy operator. At b ~ 0, the two-point function can be
evaluated as

(Va(z1)Va(z2)) E/D¢c€_sL exp (b7 a(¢e(z1) + e (22))).
(2.41)

A heavy operator is defined with a = 5/b, where 7 is kept
finite for b — 0. The conformal dimension /& = ih() of the
heavy operator and the energy E to create a black hole
geometry is related as

2h(=2a(Q - a)) = iZE.

1 -2y =+/1—-8GyE.

(2.42)

In particular, a black hole exists only if the condition

1
O<np<=

5 (2.43)

is satisfied. The upper bound is the same as so-called
Seiberg bound [57].

We regard the insertions of such heavy operators as a part
of action. The equation of motion thus becomes:
00, = 2he? —21n[6%) (6 — 6,) + 6P (6 —6,)].  (2.44)
Notice that the equation is invariant under the constant shifts
¢ = ¢ + 2rin with integer n. Therefore, once ¢, () is a
solution to the equation of motion, then the same is true for

d)c(n) = ¢c(0) + 2xin. (245)
Near z ~ 7;, the heavy operator behaves as
¢ (2) ~—4nlz — z4]. (2.46)
which implies that the physical metric is
1
ds* = —(dr* + r*d6?) (2.47)

r

near z ~ z;. In the presence of heavy operators, we use the
modified action [37,42]

~ 1
[ —
Y167 Jpa,—a,

1
+—j§ $.dd+21n R
2w oD

d*c[0°}.0,¢. + 160e?<]

—Z[i $od; + 22 In €|, (2.48)
— |27 Joa,

where d; is a small disk with radius € including z;. The
modified action at a saddle point was evaluated in [42] as

b8y = 2xi(n +1/2)(1 = 27)
+(@2n=1)In2+4(n—n*) In |z

+2[(1=2n) In (1 =29) = (1-2n)]. (2.49)
The semiclassical limit of two-point function (2.41) is
thus given by the sum of exp(—S, ) over some saddle points
(2.45).

Even in a nongravitational theory, it is difficult to
determine the set of all semiclassical saddle points of path
integral. Fortunately, the exact expression of Liouville
two-point function is known as [36,37]

2r
(Va(21)Va(22)) = |20 7@ 25 [mpy (b?)] @720/

b
Xy (2; -1- blz) y(2ba — b*)5(0).
(2.50)
Here we defined
o) =~ (Fl(f)x) . (2.51)

The delta function in the right-hand side of (2.50) comes
from the fact that (V, V) « 6(a — o). We then read off the
set of semiclassical saddles from the exact expression. For
b ~ 0, the two-point function reduces to

(Va(21)Va(z2)) ~ 8(0)|zy |41 =007 y(0=20)/?

}/(bz) (1-25)/b* 2,1_1
NG "\

). (2.52)

At the region of b ~ 0, we can easily see®

8Throughout this paper, we promise that log z for z € C takes
the principal value, satisfying —z < Im log z < z. By using this,
a* with a,z€C is defined as a®=e*!°2¢ Note that some
properties, e.g., log(ab) = log a + log b, may be lost for com-
plex case.

066005-8



COMPLEX SADDLES OF CHERN-SIMONS GRAVITY AND ...

PHYS. REV. D 108, 066005 (2023)

2\7 (1-2n)/b* 24 1
{y(bbz )} ~ exp {Tn <ln i ﬂi>:| . (2.53)

where —ri term comes from the difference of branches
between In b—lz and In # Furthermore, we can find (see [42])

271 (a5 i
y( e ) ~ (e-mi1=20)/5" _ gri(1=2)/b%)

4y -2
X exp{ nbz <ln(l —27)

1

by recalling that now Re b=2 < 0 as in (2.38). Here we have
used Stirling’s approximation

(2.54)

I'(x) = exp(x In x — x + O(In x)), (2.55)

for Rex > 0 and

= ﬁexp(x In(=x) — x + O(In(-x))),
(2.56)

for Re x < 0, and an identity In(—1/b?) = In(1/b?) — zi.In
summary, the two-point function behaves near b ~ 0 as

<V,,(Zl)va(Z2)> ~ 5(0)|le|—4ﬂ(1—71)/h2j’(1—2'7)/b2
x (e~m(1=2)/b* _ pmi(1-20)/b%)

X exp{—bzz[(l —2n)In(1 - 27)

—(1-29)] } (2.57)

This is the same as the sum of exp(—S; ) at the saddle points
with n=—1, 0. For b2~ ic9/6 with ¢ > 1, the
absolute value of two-point function behaves as

zcl9) el9)
[(Val(21) Val(22))] ~ [ €6 VITBNE _ o= SVI-SGVE| (. 58)

where we have used (2.42). Notice that the |z;,| dependence
is canceled due to the purely imaginary power of
—4n(1 —n)/b?, see Appendix A for the arguments. With
(1.16) and (1.17), we can read off the contributions corre-
sponding to those to the Gibbons-Hawking entropy.
Compared with (2.30), we can see that the possible saddles
are with n = —1, 0. This reproduces the result obtained from
the criteria of allowable complex geometry in [3].

Let us pause here to explain why we set the redefined
parameter A = b’y to be real. For simplicity, let us focus
on a vacuum amplitude. In the CFT side, it was computed
in [7] as

L((Jy) et

Zepr = Ce's A, (2.59)

where C is a constant independent of ¢(9. On the other
hand, the Hartle-Hawking wave functional of universe
should behave as (1.17),

Y ~exp (Sgu/2 + iZ). (2.60)

We have already seen that the part Sgy agrees among two
dual descriptions. Therefore, we should identify as

(9)

c
IT=— InAi

5 n

Since 7 is real, the above identification implies that A

should be real as well. In other words, if the Liouville

theory at large central charge is dual to the geometry for

Hartle-Hawking wave function, then A should be real.

(2.61)

III. GEOMETRIES DUAL
TO MULTIPOINT FUNCTIONS

In the previous section, we have examined the two-point
functions of heavy operators in Liouville field theory. From
their behaviors at the semiclassical limit with b ~ 0, we
have read off the saddle points of the path integral in the
Chern-Simons gravity we should take. In this section, we
extend the analysis to the cases with multipoint functions of
heavy operators in Liouville field theory. Namely, we
identify the wave functional of the Chern-Simons gravity
with Liouville n-point functions as

¥ = (Ve (1) Vi (20))- (3.1)
Here we require that the Liouville momenta @; of vertex
operators scale as «; =n;/b with #; fixed for b — 0.
Generically, the geometries dual to n-point functions can
be realized by S* with n conical deficits connected inside
the bulk.’ As pointed out in [42], we can insert mono-
dromies along the defect lines and the different monodro-
mies lead to different saddle points of gravitational path
integral. As in the case of Liouville two-point functions, we
shall read off the saddle points of the gravitational path
integral from the semiclassical analysis of Liouville multi-
point functions. In the next subsection, we first examine the
geometries dual to Liouville three-point functions. The
thee-point coefficients are obtained by so-called DOZZ
formula [36,37], and their semiclassical behaviors were
already examined in [42]. Applying their analysis, we
read off the saddle points of gravitational path integral.
In Sec. III B, we similarly examine the Liouville four-point

The Hartle-Harking wave functional is realized by a geometry
starting from hemisphere and connecting to Lorentzian dS. After
taking the square of the wave functional, only the part corre-
sponding to the sphere remains as the part corresponding to the
Lorentzian dS gives only a phase factor, see, e.g., [7].
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functions at the semiclassical limit and read off the saddle
points of dual gravity theory, see [58] for a related work.
The extensions to more higher-point functions of Liouville
field theory are analyzed in Appendix III C. In Sec. I D,
we consider some specific geometries constructed in [6,7],
which are related to S® with two linked (unlinked) Wilson
lines in Chern-Simons gauge theory. We determine the
set of saddle points of gravitational path integral from
|

Liouville four-point functions and compare with the pre-
vious results in [6,7].

A. Three-point functions

We would like to evaluate the semiclassical limits of
three-point functions in Liouville field theory. The explicit
form of three-point function is known in [36,37]:

C(ah a, 03)

Vo (21:21) Ve, (20:22) Ve, (23, 23)) =
(Va, (21:20)Va, (2. 22) Vi, (23, 23 |Z12|2(h]+h2—h3)|Z13|2(h1+h3—h2

Clay. ay.a3) = [y (b?)p~2) Q-2

Y, (0)Y,(200) Y, (202) Y3, (203)

, 32
)| g3 |22 ths=hi) (32)

See Appendix B for the definition and properties of the
Upsilon function Y, (x). Here Y, (x) denotes the derivative
with respect to x. As mentioned above, we consider the case
where all the external operators are heavy, i.e. a; = 5;/b
with b — 0 while #; kept fixed. Here we will consider real
n;, related to the bulk energy E; as 2n; = 1 — /1 — 8GyE,,
which satisfies the Seiberg bound 0 < 5; < 1/2. As argued
in [42], we can further divide them into two possible
regions, called Region I and Region II in that paper:

RegionI: Zni > 1, (3.4)
Zni < 1’
RegionII: i (3.5)
ni+1; = me > 0.

The condition of Region I comes from requiring the
convergence of path integral. On the other hand, the
original path integral over real ¢ does not converge in
|

Y, (i — O)Yh(ay + o —a3)Yp(an + a3 — ) Yp(as + o — )

(3.3)

|
Region II, which leads us to taking complex saddles into
account. The second condition in (3.5) is also satisfied in
Region I without any extra conditions. Further meanings of
the conditions will be explained below. First we evaluate a
three-point function for each region.

It is easily checked that the first term is universally
behaved as

[ﬂy(bz)b_2b2]<Q_Zfai)/b

Zi’?i ] 1

1 —
~ exp gﬂ—|—T Og?.

1=>

The semiclassical limits of the other terms are evaluated by
using the formula described in Appendix B. In particular,
the behavior of Y, (3", @; — Q) depends on which region #;
belong to.

Region I In this region, we can apply the asymptotic
formula (B7) to every Y, function in the DOZZ for-
mula (3.3). The result is

ST /B 1
Clay. ay, a3) ~ A" 2t exp [ﬁ{l - Z'h + F(2m) + F(2n,) + F(2n3) + F(0)

_F<§;m—1)‘me+m—nﬁ—FMr+%‘”0_Fm’+m_”ﬁ}}

(3.7)

where F(n) is defined through integral in (B5). Since #; are all real-valued while b*> and conformal weights are purely

imaginary, the absolute value is

(Vi (21.21) Vi, (22: 22) Vi (23. 23)) [* ~ O(1).

(3.8)

This result may be related to the fact that there is no bulk dual to the three-point functions in this regime. In other words, we
cannot construct the geometry of two-sphere with three conical deficits whose deficit angles are given by zy;.
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Region II Since > ;n; — 1 < 0, we have to use the recursion relation (B1)

Z ni=1)
Sim=1\ _b” i
Y ! Y, 3.9
"( b (Z ni— ) b (39)
By using this, (3.3) approximates
1\« 1)/ b* Y, (0)Y,(200) Y, (202) Y, (2
Clay, ay, a3) ~ </1_4> 2 (Z 7712 ) 5(0)Y}(201) Y, (205) Y (203 . (3.10)
b b Y, (i) Yp(ay + o —a3) Yy + a3 —ay) Yy (a3 + a) — )
Furthermore, since Re [(>_,n; — 1)/b%] > 0, we have
7 —1 B _lfzim R Zm 1
y<2:"l7)7’2>~(e T "R )exp[ ( Zﬂl> <10g <I—Zni>+logﬁ—m’—l)]. (3.11)
The zi factor, which comes from log(—1/b?) = log(1/b*) — xi, is canceled with
1) (=22 — 2l (1= "m)
<F) = exp ( o log b4> = exp [ L2 <logp - mﬂ (3.12)
Therefore, by using the asymptotic formula (B7), we find
~1_Zi"’ ~]_Zi'7’ 1
Clarsaya) ~ (¢ = TS0 exp L L) + Fom) + Fag) + F(O (Zm)
= F(n +m—=n3) = F(na+n3 —m) = F(ns +m — )
+2(1 —an) log (1‘2’71') —2<1 —Zn,) H (3.13)

We can see that the two saddles N = —1, 0 in Eq. (4.31) of [42] contribute to the DOZZ formula (3.3). Thus the absolute

value of the three-point function goes to

(
_ _ _ nc
|<Va1 (ZhZl)vaz(Z%ZZ)Vaz(ZSvZ3)>|2 ~ €Xp [ 3

Let us consider the bulk configurations dual to three-
point functions. The three insertions are parametrized by #;
with i =1, 2, 3 as above. We are interested in type II
region: 0 <n; <1/2,% 7, m; < 1,and 0 < #; +1; — 1. The
operator insertion with #; is known to create a conical
deficit with deficit angle 4zn;,. The way to create three
conical deficits on S? is summarized in subsection 4.2 of
[42]. In particular, we can see that the area of the geometry
is (1 =Y, n;) times that of S%. The dual geometry may be
constructed with the metric of the form:

ds* = dO” + cos? 0ds?,,, (3.15)
where ds2 , is the metric of $2 with three conical deficits.'
From the construction, we can see that the volume of the

It would be nice if we can construct the metric ds2,,
explicitly for any number of conical defects, see, e.g., [59,60].

(3.14)

“(1-3n)]

geometry is (1 =, 7;) times that of $*. This reproduces
the result from Liouville three-point function.

Let us discuss generic cases with s insertions of vertex
operators on S? in the Liouville field theory. The dual
geometry in the Chern-Simons theory may be given by 3
with s defect lines. The action of Chern-Simons theory is
given by (2.14). Precisely speaking, we need to add the
boundary term

S = ScslA] - Scs[A] +%AM Te(A A A),  (3.16)

where dM represents the boundary of the base manifold
M. Using the topological nature of Chern-Simons theory,
we may put the starting (ending) points of the defect lines to
the north (south) pole of $3, see Fig. 1. For solutions to the
equations of motion, only nontrivial contributions come
from the boundary (defect) of the manifold and the

066005-11



CHEN, HIKIDA, TAKI, and UETOKO

PHYS. REV. D 108, 066005 (2023)

FIG. 1. Utilizing the topological nature of Chern-Simons
gravity, conical defect lines are set such as to start from
(end on) the north (south) pole of S3.

topologically nontrivial configuration. For one insertion of
defect line, the value of action is shifted by

%c(-")mmi (3.17)

with integer m;. Adding the topological contribution with
the bulk winding number n, we have

gc@ (n - ; m,-r],»).

See Sec. 6 of [42] for details. The results from Liouville
three-point functions may be reproduced from setting

(3.18)

n:m1:m2:m3::|:1. (319)

The leading contribution comes from the case with +1.

B. Four-point functions

In this subsection, we consider the following generic
scalar four-point function in Liouville field theory:
G(z2.2) = (V1(0)V2(2.2)V3(1) V4 (e0)), (3.20)
where V; (i = 1, 2, 3, 4) have the momenta o; = 7;/b and
the conformal weights /;. From the Seiberg bound, every #;
satisfies 0 <n; < 1/2. If they satisfy Rea; + Rea, >

Re(Q/2) and Reas; + Rea, > Re(Q/2), the four-point
function can be decomposed as

1 [odP
G(Z,Z)—E/ EC(G],(ZQ,%—I'P>C<(Z3,(X4,%+iP)

x Fai(hpl2) 735 (hp[2) (3.21)

by using the three-point coefficient C(a, a,a3) of the
form (3.3) and the conformal block F12(h|z).

We are interested in the insertions of four heavy
operators «; = 15;/b with real #; such that the four-point

FIG. 2. S? with four conical deficits can be embedded in S? as a
spherical quadrangle with angles 8; (i = 1, 2, 3, 4). This picture
shows one way of triangulation by a geodesic that splits 8, and 0,
into 6, =@, + p, and 04, = @, + p,. We can also consider
another way of triangulation by splitting €; and 65.

function (3.20) has a dual geometry with four conical
deficits. Let us discuss the condition on #; in order to exist
such a dual geometry. The dual geometry is given in the
form of (3.15), where ds2,, is the metric of S? with four
conical deficits in this case. The sphere with conical deficits
are embedded to a spherical quadrangle in a unit two-
sphere. Assuming there exists a spherical quadrangle with
four angles 0; = (1 — 25;) (i = 1, 2, 3, 4). The spherical
quadrangle can be split into two spherical triangles in the
same way as the ordinary triangulation. There are multiple
ways to triangulate. Here we triangulate it by a geodesic
that splits 6, and 6,, then we get two spherical triangles
with angles 01, @5, @4 and @,, P4, 03, where @, + §, = 0,
and ¢4 + @4 = 0y, see Fig. 2. Each spherical triangle has to
satisfy the same condition as (3.5), therefore

01+ @2+ @y >, 01+ @ — @4 <m,

¢+ @4 — 0, <m, Y4+ 0, — @y <m, (3.22)
03 + @y + @y > 7, O3 + @y — 4 < m,
P2+ Py — 05 <m, Ps+ 03— @y <. (3.23)

Combining the two inequalities in each column, and
repeating the same analysis for all ways of triangulation,
we then obtain necessary conditions

Z’?i< I,
7

0<m+n+m—m<l, (i#j#k#]),

“l<nmi+n-m-m<1l,  (i#j#k#1). (3.24)
In particular, due to the first condition of (3.24), either n7; +
n, > 1/2 or g3 +n4 > 1/2 is broken. Hence «;’s do not
satisfy the condition for the conformal block decomposi-
tion (3.21) to hold. Therefore we have to be careful for

evaluating the four-point function.
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First we consider the case where the operators satisfy 7, +
ny > 1/2 and 3 + n4 < 1/2 for simplicity. The calculation
for this case is similar to that done in Sec. 5 of [58], although
the authors of the paper regard 73 and 5, as perturbatively
|

Gzz)=i >,

poles crossing R

2 ) o 21

Let us analyze the pole structure of C(as, ay, Q/2 + iP).
The zero-point structure of Y, (x) was analyzed in [55] (see
also [61]), where it was shown that the simple zeros of
Y, (x) are at

1 1
xe—bN—BN or x€Q+bN—I—BN (3.26)
(N includes 0) and it has no poles. We can deduce that the
factors in C(as, ay, Q/2 + iP) that produce the poles are
Y,(a3 +ay+iP—Q/2) and Y, (a3 + ay — iP — Q/2) in
the denominator, whose zero points are given by

iiP:—a3—a4+g—mb—g,

> (3.27)

1 [eodP
—|——/ —C(al,az,%—iP)C(og,oq,%—i—iP)]-"ﬁ(hpk)]:ﬁ(hpﬁ).

small. When 73 + 1, < 1/2, some poles of the DOZZ
coefficient C(as, ay, Q/2 + iP) cross the integral contour
along the real axis in P-plane. In that case, the conformal
block decomposition has contributions from the polesll

C(a] L, % - iP) Res C<a3, ay, % + iP> Fl3(hp|z) Fi2(hplZ)

(3.25)

il
:I:iP:—a3—a4+%+(ﬁ1+1)b+nZ ,

(3.28)

with non-negative integers m, n, 71, 7i. Since we are con-
sidering the range of Re @3 + Re a; < Re(Q/2), taking the
semiclassical limit b — 0, the poles that cross the real axis
are [58]

+iP, = -m3 —a4+%—mb, m=0,1,..., (3.29)

i.e. only (3.27) with n =0 contribute to the conformal
block decomposition. Therefore we have

G(z,2) = iz Clay, @y, Q — a3 —ay — mb)Res C(az, ay, a3 + a4 + mb)}"ﬁ(hpm |Z)]:§ﬁ(hpm 17)
m=0

+%/_:;l—§C(a1,a2,%— iP)C<a3,a4,%+ iP) Fi(hp|2) Fi(hplz). (3.30)
Let us denote the term that comes from the residue at a,, = a3 + a4 + mb as
a, =iC(a;,ay, Q — a3 — ay — mb)Res C(az, ay, a3 + ay + mb) Fii(hp |2)Fii(hp |2). (3.31)
First we consider the semiclassical limit of the m = 0 residue a,. Since Y, (x) ~ Y} (0)x for x < 1, we have
iClar.ax Q = a3 = ay)Res Clas. ay,ay +az) = (Ar(62)2 )l
Y5,(0) Y, (2a1) Y (202) Y (205 + 204) (3.32)

X .
Y, (O — O)Yy(ay + i —az —ag) Yy (Q + oy —ap —a3 —ay) V(0 — )+ — a3 —ay)

From Seiberg bound (2.43), the conditions for the existence of the dual geometry (3.24), and the current assumption
m +1 > 1/2,n3 +n4 < 1/2, we can see that the arguments of all Upsilon functions but Y, (3", a; — Q) are in the range
0 < Rex < Re Q, which is the condition that the asymptotic formula (B7) can be used. Due to Re(>; a; — Q) < 0 from the
first condition of (3.24), we have to use the defining recursion relation (B1):

. —1 . —1 -1 2(1_ X N
Yb <Ez’]l; ) _ 7(217;2 ) b1+b2(1 Ziﬂ,)Tb <sz’11>, (333)

"In this paper, we focus on the contribution from the poles. We are currently examining whether the contribution from the integration
over P can be interpreted as semiclassical saddles or not. See also arguments at the end of Sec. 5 of [58].
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then the residue (3.32) becomes

1= ) 7. — 1

« Y5,(0)Y;,(200) Y, (2a5) Y, (203 + 2a4) .
Y, (Do) Yplay + o —a3 —ag)Yp(Q+ay —aop —a3 —ag) Y, (Q — ) + o — a3 — ay)

(3.34)

Due to Reb? < 0, we have

n—1 . . 2 1
7(%) ~ (e_’”(l_zf’“)/bz - e’”“‘zf”f)/”z) exp [_ﬁ (1 - Zﬂi) <ln (1 -~ Zm) +Ins =i = 1)} (3.35)

The #i factor is canceled with

(bl4>fz<1—2m> = exp [1712 (1 - Zm) log (;)] = exp [bzz <1 - Zn,) log (blz - m)] . (3.36)

By using the formula for the semiclassical limit of the Y, function (B7), we finally obtain

) . 1
ag ~ (e—lﬂ(l—ziﬂi)/b2 _ el”(l_Zi”f)/bz),I(l_Zi'7i>/b2 exp |:b2 {F(zrll) + F(2;72) + F(2;73 + 27’]4) + F(O)

—F(p +m+ns+mna) —Fn +ny—n3—na) = F(Ltny —my—n3 —ny) — F(1 =y + 12— 113 — 114)
- 2(1 - Zni) In (l - Zm) + 2(1 - Zn,) H]—'ﬁ(% + ay|2) Fi2 (a3 + a4l2). (3.37)

Next let us consider all terms a,,. Note that the semiclassical conformal blocks behave as [62] (see [63] for a proof in that
case where c, h;, hp are all real)

Fii(hp|z) ~exp [—%f(ﬁ,h—”,zﬂ. (3.38)

c C

Since ¢ is pure imaginary as in (2.37) and the ratios h;/c, hp/c are real at the leading order in 1/¢, we can regard the
semiclassical conformal block as a pure phase. In the semiclassical limit » — 0, a ratio a,,,/a,, behaves as

A1 A
~ , 3.39
a, (m+1)b (339)
where A is a real constant given by
A v(2m3 + 204)%r (205 + 204 = 1)y (01 + 12 — 13 = m4) (3.40)

¥(2n3)y(2n4)y (205 + 204 — V)y(=ny + 02+ 03 +02)y(my — 12 + 13 +12)y(Ooimi — 1)

by using the recursion relations (B 1) and the asymptotic behavior of y(x) ~ x=2 for x < 1. Also note that (1 — x) = y(x)~".
Each residue is then

1 A m
(lm ﬁ% (ﬁ) ao. (341)
Therefore the semiclassical limit of the sum of the discrete terms is
- A
Z a,, ~ exp <ﬁ> ay. (3.42)
m=0

Thus we finally obtain the semiclassical limit of the four-point function:
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G(z,7) ~ (e—l'ﬂ(l—Z:,ﬂi)/h2 _ eiﬂ(l—zim)/b2)/1(1—z,.m)/hZeA/b2

1
sexp | { F(2m) + F(2e) + F1y+ 20 + FO) = Fl -+ 141

—F(n +m =3 —na) — F(1 41

=iy =n3—14) = F(1 =ny + 12— 13 —14)

_ 2<1 _ Zm) In < Zq ) 4 2<1 - Zn,> H]-"M aty + aul2) FR (s + aul2).

(3.43)

We can see that two saddle points contribute. Since the conformal weights are purely imaginary in b ~ 0, the conformal

block (3.38) just gives a phase. Therefore in the semiclassical limit 572 ~

function is

(
G(2.2)| ~exp [’”6

. e
~ sinh

—
(@)}

Even when n, + 71, < 1/2 and 3 + 14 < 1/2, the cal-
culation is essentially same to the above case. In this case
both two DOZZ coefficients have poles, but the leading
contribution comes from the “minimal” pole among o +
ay and a3 + ay. If n; + 1, > 13 + 14, then the minimal pole
is at a3 + a4 instead. Finally we have the same result as the
above case.

C. Higher-point functions

We can extend the above calculations to higher-point
functions. For simplicity, we only consider five-point
functions

(V1(0)V2(z2,22) V3(23, 23) Va(1) Vs(0)) (3.45)
for Liouville momenta «; = #;/b. The extension to general
correlation functions is straightforward.

First of all, we would like to identify the regions of #;
from the condition for the dual geometry to exist. The dual
geometry is expected to be §* with five conical defects with
deficit angles 4zn; with (3.15), each section of which can
be mapped to a spherical pentagon with five angles 0, =
z(1—=2x;) in S?. A spherical pentagon can be split into a
spherical triangle and a spherical quadrangle. Applying
conditions (3.5) and (3.24) to each way of splitting, we
finally obtain necessary conditions

Z’h<1,
7

O<mi+n+m+m—nn,<l, (i#j#k#l#m),
“l<mit+njtm—m—nn<l, ((#Fj#k#1#m).
(3.46)

(-0
“(o-53)]

ic9) /6, the absolute value of the four-point

(-32n)]

(3.44)

|
Furthermore, we assume 7, > 1, > 13 > n4 > 15 without
loss of generality.

Let us perform the conformal-block expansion in a
channel

1 4
f21534(hp1,hp2’22,23) =
2 P B 5
(3.47)

If n; satisfied 1y + 1, > 1/2 and 53 + 54 > 1/2, the con-
formal block decomposition have the form

(V1(0)V2(z2.22)V3(23. 23) V(1) Vs(00))

dpP dpP
/ 27;2/—2(j al?a27aP) (Q—apl,a3,ap2)

34
C(Q- ap,, 0y, a5).7:25

X f%§4(hpl,hpz|22,23).

(hp, . hp,|z2.23)
(3.48)

However this does not hold for #;’s in the region (3.46), so
we have to discuss the analytic continuation in #;. Let us
assume 17 + 1, > 1/2,n3 + 14 + 15 < 1/2. First, the inte-
gral contour in P;-plane picks up the poles

ap, =as+as+mb, m=0,1,... (3.49)

of C(Q—ap,,a4,as). As discussed in Sec. IIIB, the
contribution from summing over m finally gives just a

constant phase. Therefore we only focus on the contribu-
tion from the m = 0 pole
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ap, = ay + as. (3.50)
The residue for this pole is
ResC(Q —ay — as, a4, a5) = 1. (3.51)
Next, the integral contour of P, picks up a pole
ap, = a3+ ap, = a3+ ay +as (3.52)

Clay. oy a3 + ay + as) = [Ap(b?)p= 20 Q2 a)

Y5,(0)Y,(201) Y, (202) Y, (203 + 204 + 2a5)

of C(ap,,a3.0 —ay — as). The residue for this pole is
again

ResC(az + a4 + as, a3, 0 —ay — as) = 1. (3.53)
Therefore the coefficients of the conformal block decom-

position have the contributions from the first factor
Clay, a,ap,) at ay = a3 + ay + as:

X }
YD i = O)Yplay +ap —az —ay —as)Yy(ay —ap + a3 + g +as) Vp(—ay + oy + a3 + ay + as)

(3.54)

From the conditions (3.46) and the assumption 5y +1, > 1/2.n3 +n4 +ns < 1/2, we can see that only the factor
Y, (> ; a; — Q) produces the y function in the same way as four-point functions. Thus finally we have

C(al ’ a27 a3 + a4 + as) ~ (e_i”(l_Zini)/bz — ei”

(1—Zinf)/b2)/1(1—z,ni)/b2

1
xexp[bz{F(byl) + F(2ny) + F(2n3 + 204 + 2n5) + F(0) — F(ny + n2 + 13 + 14 +175)

—F(p +m—n3—=ny—ns) = F(ny = +n3 + 14 +ns) — F(=ny + 10 + 113 + 14 +175)

(i) (-3n) (-5

In the semiclassical limit b — 0, it is natural to expect that the five-point conformal block behaves as'

C ~ h’i hp] ]’lp2
fégét(hp.’hpz\zz,zs) ~ exp {—gf<?,7,7;12;13>}

(3.55)

2

(3.56)

as in the case of four-point conformal block in (3.38). Therefore the conformal blocks contribute to just a phase factor. Thus

finally we obtain the semiclassical approximation

2c(9) _ . _I[(‘(Q) _ X
(V1 (0)Va(2222) V(23 23) Va(1) Vs(00)) | ~ &5 (1200m) — =57 01-20m),

(3.57)

In the same way, we can calculate general correlation functions with any number of heavy operator insertions satisfying
certain conditions coming from the existence of the dual geometry. Expanding correlation functions by using the linear

channel s-point conformal block

Flinear) (fh v ico {hp hi<ics—3|{ziYocics_2) =

the correlation function would give the same semiclassical
approximation as above calculations.

As mentioned at the end of Sec. III A, the saddle points of
dual Chern-Simons gravity are classified by bulk winding
number n and monodromies around the defects labeled m;

"2See, e.g. [64] for a work on higher-point blocks.

2 3 4 s—1
L e
PP P,_3
[
(i=1,2,...,s) in case with Liouville s-point function.

Since the classical action for the saddle point with labels
n, m; is evaluated as (3.18), we conclude that the allowable
saddles are given with

(3.59)

n=m = -=my==+l.

The leading contribution comes from the case with +1.
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S? . S2

e 4

FIG. 3.

A

From the left to middle figures, we move the coordinate z around 1 anti-clockwise. From the middle to right figures, we glue

\ &/

the holomorphic and anti-holomorphic parts of four-point function. In the Chern-Simons description, there appears two Wilson loops

and they are wrapped around each other.

D. Four-point functions dual
to two bulk Wilson lines

In [6,7], a dS/CFT correspondence was proposed
between classical pure dS; gravity and SU(2) WZW model
at the critical level k — —2 or at the large central charge.
Applying the CS/WZW correspondence [51], the WZW
model can be described by SU(2) Chern-Simons theory. In
this way, we have a curious relation between dS; gravity
and Chern-Simons theory. We should emphasize here that
the relation is not the same as the Chern-Simons description
of dS; gravity. For the Chern-Simons formulation of
classical gravity, we take the level to infinity k — ioo,
though the Chern-Simons description of WZW model uses
the critical level k — —2. Therefore, the two Chern-Simons
descriptions are quite different. It is natural to suspect that
they should be related as the triality relation of higher spin
symmetry in the dual CFT [33]. In any cases, we can
construct a geometry corresponding to Chern-Simons
theory at the critical level possible with Wilson loop
operators. In particular, the gravity solution was identified
in [6,7] corresponding to the configuration of two linked
(unlinked) Wilson loops on S? in the Chern-Simons theory
at the critical level. According to [51], the configuration
corresponds to a four-point function of SU(2) WZW model
at the large central charge. Indeed, the partition function
was computed from the both sides of the holographic
duality and agreement was obtained.

In [6,7], it was assumed that the expressions for the SU
(2) WZW model at an integer level k£ can be analytically
continued to those at a complex k. In order to justify this, it
was first argued that SU(2) WZW model and the coset

SU(2), x SU(2),
SU2)i 41

becomes the same at the critical level k — —2 as the SU(2),
part of the coset dominates at the limit. Moreover, it was
shown in [35] that correlation functions of the coset (3.60)
and Liouville field theory are the same. Therefore, it should
be possible to describe the geometry corresponding to the
two linked (unlinked) Wilson loops on $* in the Chern-
Simons theory by a four-point function in Liouville field
theory at the semiclassical limit » — 0. Indeed, we show in

(3.60)

this subsection that the results obtained from the native
analytic continuation of S-matrix analysis lead to the
correct answers even including subleading terms at the
semiclassical limit.

We start by relating the CFT computations by four-point
functions and those by modular S-matrices. In order to
illustrate this, it is convenient to work with a rational CFT
like SU(N), WZW model. We will later consider a non-
rational CFT, i.e., Liouville field theory. We examine the
following four-point function

(O] ()0} (1)O
(@ente

((2)9,(0))
to;)

J

Cij(z.2) = : (3.61)

where O; is a CFT operator and (’)j- is its conjugate. We
define the function C;;(z,z) with a suitable normalization.
Inserting a complete set 1 =) |p)(p|, we can decom-
pose the four-point function by the sum of conformal
blocks as

Z}"” (pl2) Fii(plz). (3.62)

We are interested in the region with large central charge.
Then, we can argue that the identity block with p =0
dominates, see [65]. When considering z ~ 0, then the
function behaves as

In the Chern-Simons formulation of WZW model, the
four-point function (3.61) describes two unlinked Wilson
loops. In order to obtain a configuration with two linked
Wilson loops, we perform a move of the holomorphic
coordinate z as in Fig. 3. Namely, we start from z ~ 0, go
around z = 1 anti-clockwise, then come back to z ~ 0.
This move yields a monodromy matrix as

BThis procedure was used to compute out-of-time-order
correlators in 2d CFTs [66].
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]—"” (plz) = (3.64)

ZMMF” (ql2).

Combining the antiholomorphic part, where we do not
perform the move of z, we have

Cij(z.2) ~ Moo Fii(0|2) F¥(0]z) (3.65)
for z ~ 0. The monodromy matrix is [67,68]
S:iS00S00
o o o 3.66
M0 = oS0y (3.66)

As in Fig. 3, we can identify the four-point function as the
partition function of Chern-Simons theory with two linked
Wilson loops for the Chern-Simons theory, see [69]. We
thus find

; Si
(O] (0) O} (1)0;(2)0;(0)) |~ S_O:) (3.67)
which also implies that
t Soj
(O;0;)|~ Sor (3.68)

with i = 0. Here the correlator with the insertion of the
identity operator Oy = 1 is normalized as one,

(3.69)

as usual. In [6,7], unnormalized sphere correlators are used
by adopting the convention of [51]. Specifically, the
normalization of partition function,

(1) = Soos (3.70)

was used. Taking into account the normalization, we have

(OO ~ 1S (3.71)

and

{0} (c0)O1(1)0;(2)0;(0))| ~ S| (3.72)
These results reproduce those in [6,7] from the modular
S-matrix of WZW model. In case with two unlined
Wilson loops, we should have (3.63). Using (3.71),
we find

S0iSo,

(O] (0)O}(1)Oi(2)0;(0)) |~ »

(3.73)

Here we should keep track of nontrivial normalization Sy.
This also reproduces a finding in [6,7].

Up to now we have assumed that the dual CFT is a
rational one. In the following, we show that the same is true
also for the case with Liouville field theory, which is a
nonrational CFT. We start from the two-point function. In
Sec. II B, we have shown that the Liouville two-point
function behaves as (2.58). The modular S-matrix of SU(2)
WZW model with level k is given by

2 T
sl = i
j k+2sm[k+2

Plugging k ~ =2 + 6i/c9 and 2j + 1 ~ /T — 8GyE; into
the above expression as in [6,7], we find

Qi+ 1DQI+1)|.  (3.74)

|So;] ~ |€§C<”>\/WNEJ‘ - e_%c(g)mL (3.75)

This reproduces the subleading nonperturbative correc-
tions. We obtain the same conclusion even applying the
modular S-matrix of Liouville field theory between the
identity state p = 0 and nondegenerate state given by [70]

So; = —2V/2 sin 2zb(a; — Q/2) sin 2zb™ (a; — 0/2).
(3.76)

We then consider the four-point function corresponding
to two linked Wilson loops in the Chern-Simons theory as
in Fig. 3. The modular S-matrix of Liouville theory among
nondegenerate operators are given by [70]

Sij = V2 cos 4n(a; — 0/2)(a; — Q/2). (3.77)

Therefore, (3.72) leads to

(O] (0) 0} (1) 0i(2)0;(0))|
- |CI€%C(9)\/TM\/W + 6‘26—%C(g)\/mm|
(3.78)

with real coefficients ¢, ¢, both for SU(2) WZW model
and Liouville field theory for the large central charge. In the
following, we derive (3.78) directly from four-point func-
tions of Liouville field theory, or more precisely speaking,
four-point conformal blocks. We would like to read off the
monodromy matrix of four-point conformal blocks around
z=1. For this, we use the asymptotic behavior of
conformal block F'/(p|z) near z ~ 1, which was obtained

in [71] as
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Fili(plz) ~

> (1= o

no.==+

(3.79)
with

Ko = n(1—n) —%+ G— n) ((1=20:) + 6,(1 = 2n;))

_s 4 _2'7")2(] = 21) (3.80)

We take o, = £ and n € Z. The monodromy can be read
off as

Fhol) = exp (5 ) Fhpla). (381

The phase does not depend on the intermediate state p, but
it is anyway set as p = 0. Performing the procedure in
Fig. 3, the absolute value of four-point function becomes

(O](0)O}(1)0i(2)0,(0))]

~ D

5:.0;0e=+.n

ﬂ'C(g) KZK
3

(0103,0]0), ex0 (-

(3.82)

up to some coefficients. We already knew that the two-point
functions behave as

- Z €5 <OJT'OJ'>5]’
b=+

9 (1 - 2n;)

~ eXpod; ¢

((Ojoj)é, (3.83)
with real coefficients ¢,.. We are now interested in the
identity block, which is defined by dividing the two-point
functions as in (3.61). Therefore, it is natural to think that
the terms linear in (1 —27;) and (1 —2#;) come from the
two-point functions. This means that we should choose
n=(6;+1)/2 = (6,6, + 1)/2. This choice indeed leads
to (3.78).

IV. HIGHER-SPIN EXTENSION

With the Chern-Simons description of pure gravity
theory, it is straightforward to extend the previous analysis
to the case with higher-spin theory described by SL(N, C)
Chern-Simons gauge theory. As in the case of pure gravity,
we will first review the construction of AdS higher-spin
black holes, then perform the relevant analytic continuation
to obtain their dS higher-spin counterparts and classify the
possible saddles. We then determine the allowed set of
complex saddles from its dual CFT5,, i.e., Toda field theory
in Sec. IV B.

A. Chern-Simons higher-spin gravity

In this subsection, we examine dS; black hole solutions
of a higher-spin gauge theory described by SL(N,C)
Chern-Simons theory. For simplicity, we will first focus
on the simplest but nontrivial case with N = 3. We again
start from the case with negative cosmological constant by
reviewing [43,44]. We then move to the case with positive
cosmological constant, see [45] for a related work.

1. Higher-spin AdS3 black holes

The higher-spin theory with spin s =2, 3 gauge

fields can be described by the action (2.1) but now the

one-forms A, A take values in 81(3). We may introduce the

8[(3) generators L; (i = £1,0) and W,, (m = £2,+1,0)
satisfying

[Li’Lj] =(i- [LisW,] = (2i =

j)LH-j’ m>Wi+mv

1
W, W,| = -3 (m—n)(2m? 4+ 2n* —mn — 8)L,, ..

(4.1)

We consider the configuration of gauge fields of the form
(2.4) as
A = ePlogerlodp,

A = ethoge o — Lodp  (4.2)

with

a = a,dz + a:dz, a=a,dz+adz. (4.3)
The configuration with Lorentzian configuration is given
by replacing z > xT =t+¢ and 7 > —x~ = —t + ¢ as
before. It was claimed in [43] (see [72] for a review) that the
gauge configuration,

2 EAdS
- (Ll - i L—l

AdS
- W W_z) dz

k 2k
AdS <W2 B 4ﬂ.iAdS . N 4”2(f2AdS)2 W_z
+ 4”VZAdS L ) dz, (4.4)
and
a= (L_1 - Z”iAds L - ”V;}:ds W2> dz
—AdS <W . 4ﬂZ:AdS WO N 4ﬂ2(szdS)2 W2
+ 4”VZAdS L1> dz, (4.5)
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represents a higher-spin black hole geometry. In the
following, we consider the nonrotating case as

LASS — LAIS | PPAIS — _YpAS | pADS — _)AdS (4.6)
The configuration reduces to the case of BTZ black hole in
(2.9) if we set WAL = [AdS — (),

In the presence of higher-spin gauge symmetry, the
definition of black hole is not obvious as mentioned above.
In [43], the authors have declared the conditions of higher-
spin black hole as follows; (i) The Euclidean geometry is
smooth and the spin-three field is nonsingular at the

horizon. (ii) In the limit 49 — 0, the solution becomes
|

smoothly the BTZ black hole. (iii) The charge assignment
LA = [AIS(7AQS gAdS) and YYADS = JYAdS (7AdS GAdS),
where 7495 is inverse temperature as introduced earlier in
the AdS-BTZ black hole, while we have also introduced a
new parameter here a95(=7A95,A45) such that £A and
WACS gatisfy the integrability condition:

QLA  g)NAdS
oa orhdS

Here we clarify the meaning of the condition (iii) as the
others do not seem to need explanations. Let us consider the
partition function

_ _ 21 AdS PAdS | AdSYAIADS _=AdS PAAS _ Adsy; AdS
Z(TAdS,aAdS,TAdS’aAdS):tre47zz[r LIS 4 qaSYYALS _zads £ATS_pads)p A0

= trcprgho i Voglo—5iaWo, (4.8)
Here we treat the hatted quantities as operators, i.e.
2l — o LM =L, 20 —w,, 200 = W, (4.9)
Further, we set
g = 2™ g = 2™ u = 2t — iaS i = it _ pamiahsS (4.10)
In order to obtain the thermodynamic meaning of £4% and WA4S, we should have
phos = (29 = D ORE ymes — gy = L IRE (4.11)
The integrability of these equations leads to the condition (iii).
As in (2.13), it is convenient to introduce the holonomy matrix
pel« = e, = iprS(a, —a:) (4.12)

as it is invariant under the higher-spin gauge transformations. In [43], it is claimed that the conditions are satisfied by
requiring that the eigenvalues of Q are the same as the BTZ case. When the BTZ black hole is realized as a classical solution
of SL(3) Chern-Simons theory, the eigenvalues of Q are given by (2zi,0, —27zi). Equivalently, the conditions

tr(Q?) = —8x?,

r(Q3) =0 (4.13)

are required. For the gauge configuration (4.4), the conditions (4.13) become

0= —2048ﬂ2(ﬂAdS)3(£AdS)3 + 576ﬂkﬂAdS(£AdS)2 _ 864ﬂk(ﬂAdS)2WAdS£AdS + 864ﬂk(ﬂAdS)3(WAdS)2 _ 27k2WAdS,

0= 256”2(ﬂAdS)2(EAdS)2 4 A7k A _ 72ﬂﬂAdSWAdS 4

3k?
(FAdS)2

(4.14)

We can check that solutions to these equations satisfy the condition (iii), see [43,44]. Moreover, defining

k

AdS __
Z: - 32”(£Ad5)3w

AdS

2 LAdS
J/AdS — P 'uAdS’ (415)
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the solutions to the conditions (4.14) are obtained as

s 1+ 16(yA0)2 — (1 — 16 (yAdS)2) /1 4 128 (Ads)2
128( AdS) ’
k
pAds — V£ (4.16)
\/1 4 % (yA9S)2 — 12/AdS£AGS ' '
If we take yA% to zero, then 95 also goes to zero. This aas _ L 0S ads 1 OS (421)
means that the solution satisfies the condition (ii). T 4n2 9LASS”  4p? gWYAds '

It is actually hard to see the last condition (i).
Fortunately, a good gauge transformation was found in
[73], and it was shown that the condition (i) is satisfied as
well. The authors considered the gauge transformation of
the form

YA(p)gp) + glp)~'dg(p).
—dg(p)g(p)",

A= g(p)”

A = g(p)A(p)g(p) (4.17)

where g(p) takes a value in SL(3, R). The metric can be put
into the form of

(CAdS 2) (CAdS 3)
Irr = (CAIS —2 — cosh?r)?’
SﬂCAdS CASS — + b,cosh?r)sinh?r
I = ( ) ( (CATSY2 ) CAS _2 _coshZr)?
8 LA\ (CAS — 3\ (a, + bycosh?r)sinh?r
Ipp = ( ) (CAS) 2) (CASS —2 — cosh?r)?

(
()

1 + AdS)Z +1 2},AdS CAdS>

(4.18)

where r = p — p, with horizon exp(2p., ) = 22L"% /k and

CAS _ |
AdS _
¢ ESEE (4.19)
Moreover, a, and b, are functions of Y295 and CA%S as in

(C13). These coordinates describe the region outside the
black hole horizon. Inside the horizon, we should replace r
by i6. In terms of CA9S, the entropy can be expressed in a
quite simple way as

saryvril 3
S =2 ZﬂkﬁAds 1- W

We obtain the expression by solving the thermodynamic
relations

(4.20)

and the Eq. (4.14). This concludes our review of higher-
spin AdS black hole. We will now generalize the analysis to
the higher-spin dS cases in the next subsection.

2. Higher-spin dS3 black holes

We now extend the analysis above to the dS; case as in
Sec. IT A. We consider the Chern-Simons action (2.14) but
with the Chern-Simons level k € R. The solutions to the
equations of motion can be put into the forms (2.17). Thus,
in the inflation patch near the future infinity, we may use
the gauge configuration (2.4) but a is replaced by
e~ @)L ge(®i/2)Lo \which is evaluated as

e_(”i/z)LO ae(”i/2>1‘0
27l
= l(Ll —LL —1 —”2—WW >dZ

. vye 47202 v %%
—lﬂ<W2— p WQ“‘ P W_2

L
K

ez

(4.22)

We define a in a similar manner for nonrotating solution.
The rule of replacement we use is

EAdS N —i,C,

AdS

WAdS N W,

k — ik,

IuAdS — —i,u, T

— iT. (4.23)
As in the case of AdS;, we can transform the gauge field
such that the metric is of the form

ds* = g;5(p)dp* + g4(P)dr* + g4 (D) dp* (4.24)

by applying the gauge transformation similar to (4.17).
Moreover, by changing p — i, the metric becomes

ds® = Gy (0)d0” + 5, (0)dt* + Gy (0)dp?.  (4.25)
We may perform analytic continuations as it — tz with

tg ~ tg + f. We then define the holonomy matrix for a
along the thermal cycle
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Pedt =@  Q=pla.+ar).  (4.26)
The eigenvalues of Q are gauge invariant, in particular,
they do not change under the gauge transformation of
the form (4.17). We require them to be the same as those for
the dS black hole without any higher-spin charges, i.e.,

(27i,0, —2xi) or equivalently

tr(Q?) = —8x2, tr(Q?) =0, (4.27)
which become
0 = —20487%1> L3 + 5767mxul? — 864xku> WL
+ 864mKkuPW? = 27K°W,
2,22 3«
0 = 2567°u° L* + 24xkL — T27kpV — —5-. (4.28)
T
We may further define { and y by
K 27 L
= = , 4.29
Ve A e
and C is defined through the following relation:
Cc-1
¢ = Vel (4.30)

The entropy associated with the higher-spin black hole is

/ 3
SGH = 271'\/ 27[K£ 1- R

In above, we have assigned the condition that the
eigenvalues of the holonomy matrix defined by (4.26)
are the same as those of dS black hole without any higher-
spin charges (4.28). However, it might be possible to
consider the gauge configuration obtained by a large gauge
transformation as in the case with N = 2. We examine this
issue for generic N. We can see that the eigenvalues of € for
the gauge configuration corresponding to dS black hole

(4.31)

without any higher-spin charges are 2zi(py,ps, ..., pPn)s
where
N+1 . .
pi=—n T (j=12,...,N). (4.32)

As we will define below, these are the components of Weyl
vector of SU(N) in the orthogonal basis. If we require only
that the holonomy matrix exp € is the same as the one for
dS black hole without any higher-spin charges, then the
eigenvalues of Q can take

27[i(A1,A2,...,AN), Ajzm]—f—p], mJEZ (433)

satisfying ;m; = 0. As in the case of N = 2, the saddle
points of SL(N) Chern-Simons gravity may be labeled by
(n—1) integers m; or A;=m;+ p;. Defining
leijlx) = 6;x0;,, the corresponding gauge configuration
may be given in a diagonal form as

N

Z ((p—n)d + Ajdtz),

j=1

N
=i _e;((p—n)de — Adty).
j=1

(4.34)

The action corresponding to the configuration can be
evaluated as in [7]

-, A
—S(ES(G/}{)) = gMM (4.35)

S AT
which takes a different value depending on the label A of
the saddle points. In the next subsection, we read off the
possible saddles from 8I(N) Toda field theory by compar-
ing the classical action at each saddle point as in the case
with Liouville field theory.

B. Toda description

In this subsection, we extend the Liouville theory
analysis in Sec. II B to that by 8[(N) Toda field theory.
We first introduce notations for 8[(N) Lie algebra. Let us
denote the orthonormal basis of RV by € (j=1,2,...,N)
satisfying (e;, €;) = &; ;. Then, the simple roots are given
by

e, =€ =€ LN=1), (4.36)
which satisfy (e;,e;) = K;; with K;; being the Cartan
matrix for 8[(N). The fundamental weights w; (j = 1,
2,...,N —1) satisfy (w;,e;) =6, ; and given by

=~

J N
=> a-5> e (4.37)
=1 =1

The Weyl vector p is the half of the sum over all positive
root or equivalently the sum over fundamental weights as

=

—1

N
p=> w = pip

1 j=1

(4.38)

~.
Il

with p; defined in (4.32).
We consider the Toda ﬁeld b=> " lej or ;=
(ej.¢) with ¢p; = >"¥5' K ;;¢p". The action is given by
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1 1 . -
St | cﬂrﬁy[i (0u.0:D7" + (Q. DR

+ 4y %‘i eb(e,»d))] . (4.39)
=1
The background charge here is
Q= (b+b"MY, (4.40)
and the central charge is
c=N-14+12(0,0)=(N=1)(1+N(N+1)
x (b +b71)?). (4.41)

We consider sphere amplitudes as in the Liouville case.
The theory is invariant under the combination of Weyl
transformation §,, — Q(6)J,s and ¢ — ¢ — Q In Q(o).
Making use of it, we set §,, = 6, €xcept at the infinity
|z] = oo and the boundary condition

¢ =-0nz[+0O(1) (4.42)
at |z| — oo.
We consider the vertex operators of the form
V= e, (4.43)
whose conformal weights are
hy = b, = (®20=0) 2% —a) (4.44)

The correlation functions are defined in the path integral
formulation as

Vo @) Ve )} = [ DIe1Voy (@) Vi an)
(4.45)
We use the normalization of two-point function as

5(0)

=—— (4.46)
|212|4h”

(Val(21)Vap-a(22))

Performing a reflection relation, we obtain (see, e.g., [38])

S(0)R ' (a
Vale)Varle)y = 2ORSD 4y
|21 [*"
where the conjugate parameter is defined as
(a,e;) = (", ey_;). (4.48)

The coefficient is

R (@) =+ <2AQ(“_) . (4.49)
with
A(@) = (muy(67)) @< P T[T (1 = b(Q = . €))
xT(=b™(Q —a, e)>)0 : (4.50)

where the product is over the positive roots. In the
following, we set
Rea < Re Q (4.51)
by performing a certain reflection to the vertex operator.
As in the Liouville case, we set b ~0, Reb~2 < 0, and

A = nub? real. In the semiclassical limit with finite N, the
central charge behaves as [7]

N(N? -1
which implies
po =i L L o(cw) ). (453)
= — Cc\: . .
N(N*-1) N(N+1)

We consider a two-point function of heavy operators with
a = n/b. The equations of motion reduce to

0“0, = dmub*e? —4xn(n,e) 8 (6 —06,) + 6P (6 —0)].
(4.54)

As in the case of Liouville description, suppose there exists
$c(0) as a classical solution to the equations of motion, then
we have multiple solutions

Den)y = Pe(0) + 2min (4.55)
with (e;, n) € Z for all j. In other words, there are different
solutions labeled by N — 1 integers (e;, n).

We can read off the semiclassical saddles of Toda field
theory from the exact expression (4.49) with (4.50) by
taking the limit of b — 0 with Re b=2 < 0. Near b ~ 0, the
two-point function can be written as

R (o) o 2y [TB)] 20710y T(B2 (=)
((Z) - b? HF —b2(y— :
e>0 ( (’1 P, e))

(4.56)

Using the Stirling’s formula, we obtain:
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8(p—n.p) Inb
b2

[}/(lﬂ)] 2(p—n.p)/b?

P | )

and

L(b=2(n—p.e))
D(=b7%(n—p,e))
o (e—m'(p—n.e)/b2 — eﬂi(p—n,e)/b2>

X exp {W (In(p—n,e)—21nb - 1)}, (4.58)

the asymptotic behavior of two-point function is found
to be

“Ha) ~ 220~ —n.p)/ b (e—in'(p—w)/b2 _eﬂi(p—n»e)/bz)
2(n—p.e
cenp | 202 (n(p =) - 1),
e>0
(4.59)

Taking the absolute value of two-point function of heavy
operators, we find

Zz |~H|e% ) (/’t’ _e‘g"(”WZZZJf)L

e>0

[(Va(z1) (4.60)

Here we consider the Weyl group of SL(N) denoted by W,
such that an element we& W exchanges the indices of
orthogonal basis ¢; (j=1,2,...,N). Then, the above
expression can be rewritten as (see [74] for the modular

S-matrix of Toda field theory)

>

wew

[(Va(z1)Var (22))] ~

~ [Soal,  (4.61)

where e(w) is a sign related to w. This is consistent with
(3.71) even after including the subleading nonperturbative
corrections. Compared with (4.35), we find that the
allowable set of saddle points is given by

A =w(p). (4.62)
The final answer is quite natural since the gauge configu-
rations labeled by (4.62) can be mapped to each other by
acting elements of Weyl group of SU(N). Namely, the
gauge configurations related by this way should represents
the same higher-spin dS; black hole.

V. PROBING HIGHER-SPIN dS; BLACK HOLES

In the previous section, we have constructed higher-spin
dS; black holes and computed their partition functions (or
Gibbons-Hawking entropy) both from the higher-spin

theory and its dual Toda field theory. In particular, we
have identified all geometries realized by path integral
saddles. In this section, we examine in more details the
properties of higher-spin dS; black holes realized as the
dominant contributing saddle. For the purpose, it is
convenient to study the boundary-to-boundary two-point
function of bulk scalar field on the black hole geometry. If
we view the dS; black hole arises due to the back reaction
of a pair of heavy operators insertion on the boundary, we
can alternatively view this computation as a special case of
so-called heavy-heavy-light-light limit [75]. However, it is
known to be difficult to couple matter fields to higher-spin
theory described by Chern-Simons gauge theory with finite
dimensional group like SL(N,C). We can avoid such a
difficulty by working with the Prokushkin-Vasiliev theory
on dS; [30] instead of the Chern-Simons gravity with the
finite dimensional group. In the next subsection, we
introduce the Prokushkin-Vasiliev theory and compute
the partition function of its black hole solution. In
Sec. VB, we will compute the boundary-to-boundary
two-point function of bulk scalar field and examine its
properties. In this section, we mainly explain the analysis
by the dual CFT description, see Appendix D for details on
the analysis from the bulk viewpoints.

A. Partition functions

The Prokushkin-Vasiliev theory contains an infinite
tower of higher-spin gauge fields with s = 2,3,... and
two complex scalar fields with mass

Pm?=1-)2 (5.1)
Note that we need to replace £, 45 — iZ as in (1.6) in order
to move from the case with negative cosmological constant
to that with positive cosmological constant. The higher-
spin gauge fields can be described by Chern-Simons gauge
theory based on the infinite dimensional higher-spin
algebra h3[1]. The generators of the algebra can be
expressed as

Vs, s=2,3,.., n=-s+1,-s+2,....,s —1.
(5.2)

Here V§ and V3, form an 8[(2) sub-algebra, and
the commutation relation with the other remaining gen-
erators are

[Vznv Vfl] = (_n + m(s - 1))V;n+n (53)
See [76,77] for generic commutation relations. A feature of
h8[4] is that it can be truncated to 8[(N) at 1 = £N by
dividing ideal formed. We would like to construct a black

hole solution as in the case with SL(3,C) Chern-Simons
gravity analyzed in subsection IV A. Using 81(2) € h3[/),
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the dS; black hole in Sec. II A can be embedded into the
Prokushkin-Vasiliev theory. As in Sec. [V A, we introduce a
nontrivial spin-3 charge to the black hole. In the current
infinite dimensional case, there are gauge fields with spin
s > 3. They have also induced charges, which can be
evaluated by solving equations of motion.

We would like to compute the partition function of
higher-spin black holes. In the AdS; case, the higher-spin
black hole as a solution to the Prokushkin-Vasiliev theory
was constructed in [46] as reviewed in Appendix D 1. The
gravity partition function of the black hole solution with
the higher-spin charges was also computed in [46] as the
following perturbative expansion:

InZ ggsp (2%, %)
inc 4 (ar95)2 40027 =7 (@A9S)4
127AdS 3 (TAdS)4 27 12 —4 (TAdS)S

160054* — 854% + 377 (a”45)®

27 (/12 _ 4)2 (TAdS)IZ ’

(5.4)

where 7295 is the parameter related to mass of black hole

given by (2.8). The leading factor exp % represents (the
holomorphic part of) the partition function without intro-
ducing higher spin charges. The parameter a?%S =
7AdSAdS play the role of chemical potential for the
spin-3 charge as in Sec. IVA 1, see Appendix D 1. The
partition function is evaluated perturbatively in the dimen-
sionless parameter a5 /(7495)2, It was reproduced from
the CFT computation in [47] by

Zepr = Tr(e P H+2mia* S Wo) (5.3)
up to the order in (5.4). In the gravity side, the partition
function can be mapped to the one for dS black hole by
changing the parameters as

AdS ; AdS _ %AdS

Sirn o« AdS _,

a, (5.6)

c— ic(g), T u

as in (4.23), see also Appendix D 1. Thus we have

imc9) 402 40042 -7a*

e | 3A T oA
1600524 — 8512 + 377 af
21 (P-4 L

In Zyspu(z, ) =

(5.7)

as in (D21). In order to obtain the gravity partition function,
we have to multiply by a factor two, since we need to
consider the square of wave functional of universe as in
(1.13). We also need to multiply the anti-holomorphic part
as well. Putting [see (2.25) and (2.26)]

i
VI—8GyE’

the leading order in a becomes ZcW\/T—8GyE by
combining the antiholomorphic part. It reproduces
Scu/2, where Sgy is (1.5) with (2.37). In the rest of this
subsection, we will derive this from its dual CFT.

We would like to extend the CFT analysis in [47] for
AdS; to that for dS;. As argued above, the map from AdS;
to dS; is not so difficult in the gravity side. What we have to
do is just inserting —1 and/or i in a proper way. However, it
does not look straightforward in the dual CFT side. In the
AdS/CFT correspondence, the dual CFT is supposed to
live on the spatial boundary of AdS; black hole. The
boundary of Euclidean BTZ black hole is given by a torus,
thus the dual CFT is living on a torus. In the dS/CFT
correspondence, the dual CFT is supposed to live on the
future or past infinity. The geometry of the boundary is
given by a cylinder as we saw in Sec. II A. Therefore, it
seems impossible to directly map the result for AdS; to that
for dS; as in the gravity analysis. However, we are only
interested in thermodynamic quantities, which are obtained
in the high temperature limit. We shall show that the
difference between torus and cylinder amplitudes disap-
pears at the high temperature limit.

In Sec. I B, we have reproduced the gravity partition
function from the two-point function of heavy operators in
Liouville field theory. The heavy operators create conical
defects on S? as explained around (2.47), thus the same
quantity can be computed as the partition function on 2
with two conical defects as shown in Appendix E 1. The
discussion was done for the pure gravity (or Liouville field
theory), but it can be extended for the Prokushkin-Vasiliev
theory (or the ’t Hooft limit of Toda field theory) as argued
in Appendix E 2. We compute the CFT partition function in
the expansion of «, thus the insertions of spin-3 current can
be treated perturbatively. Therefore, we can compute the
partition function on $? with two conical defects and also
with the deformation of spin-3 currents. As mentioned
before, the Toda field theory has the symmetry under the
combination of the Weyl transformation and the shift of
fields. Utilizing it, we can transform S with two conical
defects to a cylinder with coordinates (o, 0;) satisfying

(5.8)

T =

6o~ 6o+ f, 0<o,<L. (5.9)

Here we have introduced an infrared cutoff L, which takes a
very large value. Applying again the Weyl transformation
and the shift of fields, we may set

6o ~ 6o + 27, Vi :% 0<o0, <2z (5.10)
We need to redefine another parameter a. Since the
parameter has conformal dimension —2, we have to rescale

a= (2z/L)*a.

066005-25



CHEN, HIKIDA, TAKI, and UETOKO

PHYS. REV. D 108, 066005 (2023)

Now the computation reduces to that of CFT partition function on the cylinder as

Zepr = Tr, ( e—/}H+2maW0 )’

(5.11)

where r denote a representation. We expand the partition function in the parameter &, thus we compute the cylinder

amplitude of the form at order &"

Tr, (Wge ) dzl dz” (W.z1)s s (W, 2,)57) (5.12)
with z = 6y + io; and 7 = i3/ (2zL). Here we use the notation in (2.12) of [47] as
F(a'z). (a2, 0) =2 o Te (Vi zy) - V(a", 2,) 3" 75) (5.13)
with h; as the conformal weight of @/ and § = exp(2xit). Moreover, we set
= Zamz—m—h, (5.14)
mez
Performing the S-transformation, we obtain
(2700)" T, (Whe P ) ~ 720 ]qdz—zll. . [ ! d;’" O[V(W.3)) - V(W,2,)3"5|0). (5.15)
Since L is a large number acting as an IR regulator, 7 = —1/7 = iL/f is now very large. Therefore, the dominant

contribution comes from the amplitude where the in and out states are given by the identity one as above.
With very large %, we can also use the fact that the dominant contribution comes from the primary state |0) among the

descendant states represented by [{k,}) as

OIV(W.2)) - V(W,2,)4575(0) = Y ({k,}[V(W,2)) - V(W 2,)35 75| {k, })
{ka}
=Tro(V(W.21) - V(W.Z,)g"7%). (5.16)

Here the sum is over all descendants labeled by {k,, }. In this way, we can relate the cylinder amplitude to the torus one at the
large 7 limit. Borrowing the result from [47], the CFT partition function can be obtained as

2 incl® 4 &2

R B

The prefactor is set such that the partition function without
higher-spin charge should be invariant under the Weyl
transformation and the shift of fields. The above expression
reproduces the gravity computation (5.7).

B. Two-point functions of boundary operators

In this subsection, we examine the two-point functions of
scalar operators in the dual CFTs, which correspond to the
boundary-to-boundary two-point functions of bulk scalar
fields. We first focus on the case without any higher-spin
charges and then move to the case with higher-spin charges.

We start from the BTZ black hole, whose metric may be
expressed as in (2.7). For simplicity we set £4q5 = 1 here.

400> -7a* 160052* —

8542 + 377 &

272488 27 (B-42 2

(5.17)

|

There are two disconnected boundaries at » = +o0. If the
CFT operators are inserted in the same boundary, then the
two-point function is [78]

[se]

Z [— cosh(r1)

n=—oo

+ cosh ry (¢p + 27n)] 72",

(01(1.4)0,(0,0)) =
(5.18)

where h denotes the conformal dimension of O and
the subscript in O;, denotes the two boundaries. The
two-point function exhibits a light-like singularity at
t = ¢ + 2zn. If two CFT operators are inserted in different
boundaries, then the two-point function is [79]

066005-26



COMPLEX SADDLES OF CHERN-SIMONS GRAVITY AND ...

PHYS. REV. D 108, 066005 (2023)

(01(1,$)0,(0,0))

[Se]

= Z [cosh(r,.t) + cosh r (¢ + 27n)]~2".

n—=——0oo

(5.19)

There are no singularities in the two-point function. This is
related to the fact that the two boundaries are separated by
the horizon in the bulk. The two-point function may
explore the insider of horizon, but it does not show any
divergences associated with black hole singularity as
explained in [79,80].

Let us move to the dS; black hole with the metric (1.3).
The metric can be used for the region with r, < r, but the
role of time and space is exchanges as r <> t. There are
boundaries at the past and future infinities (|r| - o). We
again consider the two-point functions of CFT operator
dual to a bulk scalar operator.'* If CFT operators are
inserted only in the future (or past) infinity, then the
two-point function is

(01(1.4)0,(0.0))

o0

= Z [—cosh(r,t) + cos r, (¢ + 2zn)| 72",

n=—oo

(5.20)

see (D32). Since the CFT is defined on a Euclidean space,
there is only a singularity at the equal point = ¢ +
2zn = 0. If two CFT operators are inserted in different
boundaries, then the two-point function is

(01(1,$)0,(0.0))

= Z [cosh(r 1) + cos r (¢ + 2zn)|72",  (5.21)
see (D33). There is a singularity at t=0 and

¢ + 2zn = z/r_. This should be the same lightlike singu-
larity, which was observed for pure de Sitter case in [23].
The two-point function does not have any divergences
associated with black hole (conical deficit) singularities.
This may be explained along the line of [80].

Up to now, we have considered a scalar propagation with
generic mass on BTZ or dS; black holes. In the following,
we focus on the case with the Vasiliev theory. The theory
includes two complex scalar fields, whose dual operators
O* have the conformal dimensions A, =2h, =14 4.
We first consider the case of BTZ black hole. It is
convenient to rewrite the two-point function of CFT
operator in (5.18) and (5.19) as

(% %)Zhi

(4 sin % sin

(0F(2,2)07(0,0))©) =

"It is interesting to see the relation to a recent work [81].

(OF(2.2)0£(0,0))© = (27)2=

N [ z
(4 cos & cos 5

e (5.23)

Here we set z = ¢ + itg, 7 = ¢ — ity and neglect the sum
over n # 0 terms since it iS not important in the current
analysis. Furthermore, we set

(5.24)

with 7 = 7 as the moduli parameter of boundary torus. In
the Lorentzian section with z=¢ +¢ and Z = ¢ — ¢, we
see the lightlike singularity at ¢p = ¢ = 0 in (5.22) but no
singularity in (5.23). In order to move to dS; black hole, we
just need to replace the parameters as

. 2, ~ 2 A L _ L _
- | — - [— - — - —7.
‘ lLT’ ! ILT’ . ZﬂZ’ . 27/7Z
(5.25)

Note here that we set z = ¢ + it,Z = ¢ — it. Thus we find
a singularity at ¢ =¢r=0 in (5.22) and a light-like
singularity at =0, =x/|z|] in (5.23) as men-
tioned above.

We would like to deform the background by inserting
spin-3 charge with the deformation parameter « as in the
previous subsection. In perturbative expansion with respect
to a, the two-point function after the deformation was
obtained in [48,49]. If CFT operators are inserted in the
same boundary, then the two-point function is

(01 (2.2)07(0,0))
(07 (2.2)07(0.0))@
aw, =3 sin(3z) + (22 = 77)(2 + cos(%z))

—14 .
72 2 sin

+ O(a?)

2%z
2
(5.26)

with w. = (1 £1)(2 £4)/6. Thus the deformation only
change the singularity structure from z 72" to z72"=2. If two
CFT operators inserted in different boundaries, then the
two-point function is

(07 (2.2)05(0,0))
(07 (2.2)05(0,0))©
aw, —sin(2z) + (12 — 72)(2 — cos(%z))

72 2cos? &

+ 0(?),
(5.27)

which does not produce any new singularity. As discussed
above, in order to move to the case with positive cosmo-
logical constant, we just need to replace the parameters
a — (2r/L)%a together with the parameter changes in
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(5.25). Therefore, we conclude that the deformation
changes the singularity structure from z=>* to z7>"~2 for
the both types of two-point functions (5.22) and (5.23).

VI. CONCLUSION AND DISCUSSION

In this paper, we examined solutions of Chern-Simons
(higher-spin) gravity corresponding to dS; (higher-spin)
black holes both from the bulk theory and dual CFT. Some
parts of results were presented in a previous letter [11], and
here the details of their derivations were explained and the
analysis was extended in several directions.

We first focused on the simplest case with pure gravity.
The gravity theory is described by SL(2, C) Chern-Simons
gauge theory and we found a family of solutions obtained
by large gauge transformations labeled by winding number
n. Its CFT dual description is given by Liouville field
theory as proposed in [6-9]. We examined the saddle points
of Liouville two-point function by following [42] and
found that the saddle points of Chern-Simons gravity are
realized by n = 0,—1. We also examined Chern-Simons
solutions dual to Liouville multipoint functions. Generic
solutions are expected to correspond to Wilson line net-
works on S* as in Fig. 1. The solutions are labeled by
monodromies along the deficit lines. From the detailed
analysis of Liouville multipoint functions, we determined
the monodromies realized in the gravity theory and found
that two saddles contribute to the semiclassical limit of
correlators. There are special geometries corresponding to
two Wilson loops on S° as analyzed in [6,7]. We found that
their entropy can be described by the monodromy matrix of
four-point functions. From the analysis of Wilson loops in
Chern-Simons gauge theory as in [51], it is natural to guess
that all geometries can be described by combining these
approaches in the dual CFT. In any case, it is an important
open problem to classify all the possible saddles of Chern-
Simons gravity and describe all of them in terms of
dual CFT.

We also extended the analysis to the higher-spin gravity
on dS; described by SL(N, C) Chern-Simons gauge theory.
As in the pure gravity case, we classified the solutions by
large gauge transformations or equivalently monodromy
matrix defined in (2.27). We then examined two-point
functions in the dual CFT, i.e., 8[(N) Toda field theory as in
the Liouville case. We found out that the allowed saddles of
Chern-Simons higher-spin gravity are given by the solu-
tions labeled by (4.62). We also examined the properties of
higher-spin dS; black holes in Prokushkin-Vasiliev theory
from the propagation of bulk scalar field. In particular, we
found a lightlike singularity in the two-point function
between two boundaries at past and future infinities. It
should be important to analyze gravity solutions dual to
correlation functions of s heavy operators in 3[(N) Toda
field theory as was done in Sec. III for Liouville field
theory. We can evaluate the action of the Chern-Simons
theory for the configuration in Fig. 1. Near the defect lines,

we may put the gauge field configuration as in (4.34). For
one insertion of defect line, the value of action is shifted by

_ i) AG)
z g p=n"AY)

3 o) (6.1

Adding the topological contribution with bulk winding
numbers, the total contribution is

T () [(p. A) = 52D, AD)] .

—C

3 (p.p) (62)

It is an important problem to determine the set of possible A
from dual Toda field theory.

There are several open problems to be pursued. Among
them, we would like to consider the followings in near
future. Firstly, we have examined only the semiclassical
contributions to the Gibbons-Hawking entropy, however
there are also perturbative corrections in 1/¢(9). These are
expected to be asymptotic series, and it is important to see
the relation to other saddles realized in Chern-Simons
gravity."” In the dual CFT, we can obtain exact expressions,
s0 it should be possible to analyze for all orders in 1/¢(9).
Furthermore, we would like to extend the analysis to more
generic cases. It should be possible to include nonzero
rotations and/or Maxwell fields. It is also interesting to
consider higher dimensional holography, e.g., dS,/CFT;
by [21]. It is also nice if we can find the relation to
superstring theory, see the series of previous works [83,84]
and [85-87] for the attempts to relate stringy and higher-
spin holographic dualities on AdS;.
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APPENDIX A: CHERN-SIMONS GRAVITY
ON (A)dS;

In this appendix, we explain in some details about the
Chern-Simons descriptions of gravity theory on AdS; and
dS; by following [12-14]. Related works may be found in,
e.g., [88,89]. We consider complex Chern-Simons gauge
theory with the action

t 7 -
S = ESCS[A} +§SCS[AL

1 2
SeslA] :E/tr<AAdA+§AAAAA>. (A1)

We set the gauge group as G = SL(2,C) (but it is easy
to generalize to the case with G = SL(N, C)). Let us first
set A = A with A as a complex conjugate of A. Moreover,
we set

f=n-is

t=n-+is, (A2)

with n € Z and s € R. Then the action can be written as

S =—sIm SCS +n Re Scs. (A3)
The quantum theory is given by a path integral of exp(iS)
over A, A. When the real slice of SL(2,C) is SU(2), then
Re Scg is gauge invariant modulo 27 if the trace, tr, is
properly normalized. Thus the gauge invariance of exp(iS)
requires n € Z. However, there is no such constraint for
Im Scg, thus we can use any real s (or any complex s after
analytic continuation). It is convenient to use A = A + i3,
where A, B take in some real forms of 8[(2, C). The action
is rewritten as

S:i/tr<AAdA—BAdB
4z
+§AAA/\A—2A/\B/\B>

—i/tr(.A/\dB—i—ZA/\A/\B—%B/\B/\B).
2r 3
(A4)

Let us consider the cases with positive and negative
cosmological constants [13]. We first consider (2 + 1)-
dimensional gravity in a Lorentzian space-time with
positive cosmological constant. In this case, we set s € R
and A as the complex conjugate of A without taking its
transposition. This implies that our real slice is
A, Be8l(2,R). A and B are identified with spin con-
nection @ and vielbein e, respectively. The case with
nonzero n may lead to additional gravitational Chern-
Simons theory [12], but we set n =0 for our purpose.
A vacuum solution is given by dS;. We then consider

three-dimensional gravity in an Euclidean space-time with
negative cosmological constant. In this case, we set s =
—2ik with real k and A as the complex conjugate of A with
taking its transposition. This implies that our real slice is
A, iB€3u(2). A vacuum solution is given by AdSs.

In previous works [6-9], we construct Chern-Simons
gravity in a Lorentzian space-time with positive cosmo-
logical constant by performing an analytic continuation as
k — is/2 with s real. However, as indicated above, this is
not enough. For AdS;, we assign A = A" by combining the
simple complex conjugate and the transposition. However,
for dS;, we set A = A* by the simple complex conjugate
together with k — is/2. Therefore, the simple change of
variable from k — is/2 is not enough. For instance, in the
case of dS;, A and A and related by a simple complex
conjugation, the central charge of dual energy momentum
tensor would be ¢ = 3is and ¢ = —3is for holomorphic
and antiholomorphic sector, respectively, with large s.
However, for AdS;, the central charge of dual energy
momentum tensor is ¢ = ¢ = 6k both for holomorphic
and antiholomorphic sector with large k. This implies that
naive analytic continuation of k — is/2 leads to
¢ = ¢ = 3is. Therefore, in order to map the energy-
momentum tensor in the antiholomorphic part of CFT
and the Chern-Simons gauge field A, we need to perform a
field redefinition of one of them, see, e.g., the end of
Sec. 2.4 of [52].

Here we would like to mention the cases where A and A
are independent with each other. We may write A = A + B
and A = A — B. Then the action (A1) becomes

s="

= tr(A/\d.A—l—B/\dB
dr

+§A/\AAA+2A/\B/\B)

+%/tr<AAdB+2AAAAB+§BABAB).

(AS)

Setting n = 0, the action can be identified with Einstein-
Hilbert action in the first order formulation, where A, B are
spin-connection , vielbein e, respectively. Let us first set
A,Be3u(2), then the gravity theory describes three-
dimensional Euclidean space with positive cosmological
constant. A vacuum solution is given by Euclidean dS;, i.e.,
S3. In order to describe the Hartle-Hawking universe, then
we use A=A* for T >0 with global time 7 and
A, A € 3u(2) independent with each other for 7 < 0. Let
us next set A, Be 8[(2,R) with s — —2ik (k€ R). In this
case, the gravity theory describes (2 + 1)-dimensional
Lorentzian space-time with a negative cosmological con-
stant. A vacuum solution is given by Lorentzian AdS;.
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APPENDIX B: SEMICLASSICAL LIMIT
OF Y, FUNCTION

Here we summarize the properties of the Upsilon
function Y, (x), especially on the asymptotic behavior in
the semiclassical limit. The basic properties of the Upsilon
function are summarized for real b in, e.g. Appendix A of
[42]. Since our interests include an imaginary central
charge, we extend to the case with complex b. See also
[61] for more detailed discussions on analytic continuation
of the Upsilon function.

The Upsilon function Y,(x) is defined as the unique
solution to the recursion relations

Yy (x + b) = y(bx)b' =20, (x),

Y, <x + é) = 7(%) b5, (x),

where y(x) is defined by (2.51). When Reb > 0, there
exists an integral form of the Y, function:

©d
og 1) = [ |(5-

0 <Rex <ReQ,

(B1)

. 2et sinh?(($ - )5)
sinh £ smh

(B2)

where Q = b+ 1/b. By using the defining recursion
relations (B1), we can extend the range of x to the whole
complex plane.

For applications to CFT, it is useful to introduce the
central charge ¢ = 1 + 6Q? € C. Note that we can express
it as ¢ = 13+ 6(b* + b72). For any ¢ & (—o0, 1], we can
choose the branch of b-plane such that it satisfies Reb > 0.
Therefore we can define Y, (x) in the way described above
for any CFTs that has the central charge ¢ ¢ (—oo0, 1]. On
the other hand, for ¢ € (—o0,1], b should be purely
imaginary. Therefore the integral form (B2) cannot be
defined. In order to consider CFTs that have ¢ € (—o0, 1],
we have to use another function Y,(x) defined by the
modified recursion relations [55]

Y, (x + b) = y(bx)(ib) 2T, (x),

Y, <x + %) =y (%) (ib)5 1Y, (x).

For example, to discuss so-called timelike Liouville theory

(B3)

[54] we have to use Y’b (x) since it has negative central
charge. The function Y, (x) can be defined for Imb < 0,
equally ¢ & [25, o). Therefore we can use either Y, (x) or
Y, (x) for CFTs with ¢ ¢ (—oo, 1] U [25, 00). Because the
theory of our interest has imaginary ¢, henceforth we will

discuss only the unhatted Upsilon function Y,(x) by
promising we always take a branch Reb > 0.

Let us discuss the semiclassical limits » — 0 of Y, (x)
assuming that x scales as x =#/b. For simplicity, we
restrict ourselves to real ;7,16 which is the situation we are
interested in. We first consider x = { + g, keeping 7 fixed
under b — 0. When 0 < < 1, we find

b? long(b—i—[;)

-l [

_ 2sinh*((n = 1/2)3)

4
. sinh £ + O(b%). (B4)
If we define:
_[dt 1\2 _, 2sinh*((n—1/2)%)
Fn) =/0 n K”‘z) T inh!
(B5)

and use the integral representation (B2) together with an
identity

o dt
log x = / — (e —e™),
o !

Rex > 0. (B6)

We find the asymptotic formula for Y';:

Y, (g) = exp <% [—(n = 1/2)? log b

F(n) + O(b log b)]> (B7)

Here we again emphasize that this formula is applicable for
any b with Reb > 0, equally ¢ ¢ (—oo, 1], but only for
0 < n < 1. We can obtain the asymptotic formula for other
ranges of 5 by applying the recursion relations (B1). For
example, let us consider —1 < 77 < 0, and use inversely the
second equation in (B1),

2n
b\ b _ [m+1 b
Y S Z B
b(iﬁz) ) ( b *2)’ (B8)

b2

'®When both b and 7 are imaginary, the condition 0 < Rez < 1
does not imply 0 < Re(r7/b) < Re Q. We then would need some
additional condition for Imz.
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we obtain: negative/positive cosmological constant. In this appendix,
we summarize the technical details of the bulk analysis for
n bl 1 , the higher-spin black holes.
Yb E :@exp ﬁ{—(f’]‘l'l/Z) 10gb
b 1. Higher-spin AdS; black holes

+F(n+1)+ O(b log b)]> . (B9) We start by examining black hole solutions with higher-

spin charges of SL(3) Chern-Simons gravity with nega-

tive cosmological constant. In [43], the configuration of

. gauge fields corresponding to the black hole solutions

APPENDIX C: SL(3) CHERN-SIMONS GRAVITY was obtained as in (4.4) in the form of (2.4). From the

In Sec. IVA, we examined black hole solutions with ~ gauge field configuration, the metric can be read
higher-spin charges of SL(3) Chern-Simons gravity with  off from (2.6) as

|

YYAdS Q2 AdS ( LAdS)2 2
£24ds? = dp* — { (2IuAdSe2p +” ; o2 _STH k§ ) e—2p>

27 LA 4y AdSYPAdS 2
+ <e”— ﬂk e+ H P e‘”) }dt2

AdS
—”V\;C e +

2,,AdS ( rAdS)2 2
+ { <2ﬂAdSe2p + 8””}(# e—2p>
AdS AdSyA ) AdS 2 2(,,AdS\2( rAdS\2
+<eﬂ + 2”/]“; e 4 27 kW e—ﬂ> Mt )2 ) }d¢2. (C1)
3k

In [43], they proposed the conditions of black hole as (i), (ii), and (iii) given above (4.7). The authors of [73] have found a
good gauge transformation and shown that the condition (i) is satisfied. We review this transformation below.

We consider the connection with the gauge transformation (4.17). Then the metric and spin-3 field may take the form

ds* = g, (r)dr* + g,(r)de* + g, (r)d¢?*,
Papydx*dxPdx! = @, (r)depdr® + @ (r)dpdt® + @y (r)dgy, (C2)

where r = p — p, and p = p, are the event horizons, we also set exp(2p ) = 27LA% /k. In order to satisfy the condition
(i), we demand

zgrr(o) -2 2€0¢rr(0) (C3)

p=2r X
—91(0) —(P;Qn(())

and the metric components enjoy the following symmetries:

9rr(=1) =g (r). gu(=1) = gu(r).  gpp(=r) = gpy(r).
(pq‘)rr(_r) = (p(/)rr(r)7 (/’(/)tt(_r) = (p(/)tt(r)’ (pqﬁqﬁqﬂ(_r) = (pqﬁqﬁcﬁ(r) (C4)

Then the transformed metric becomes (4.18) with

a, = (C— 124" -VC?,  a,=(C—1P#AS +VC),
C—2)(C?=2C +2) - 8yASV/C(2C? - 6C +5) + C(3C - 4),
C —2)(C* =2C +2) + 8y28/C(2C? — 6C + 5) + C(3C — 4). (C5)
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2. Higher-spin dS; black holes

We then move to the black hole solutions with higher-spin charges of SL(3) Chern-Simons gravity with positive
cosmological constant. We consider the configuration of gauge fields in the form of (2.17). We here use a nonrotating solution

27l aw ) 4zl 47202 AW
a = (L1+—L_1+I—W_2)dZ+IM<W2+ X Wy + 5 W_,—i L_l)dZ,

2 K K
2L w 4zl 47% L2 iy %Y
q— (L_l+LL1_,”2—W2)dz—m<W_2+”TWO+ ”K W, +i ”K 1>dz, (C6)

with z = it + ¢, 7 = —(it — ¢), then we have (4.22)

e_(”i/z)LOGE(”i/z)LO = i<L1 _—L—l ——W_2
K 2K

The metric after changing p — i0 is

. o 8mtul? . \? o 2nL ., 4 )2
£72ds? = do® + {<2ﬂ6216 4 Me—ha _or /; e—2;9> 4 (e,e _ T -0 UV e—za> }dﬂ
K

K K K

) 8 2 \2 ) 2 ) 4 \2 64 2,22
+ { <2/,t€216 +7[W —2i6 L s 4 /LC —216) + <eu9 +L£e—l9 + ”ﬂW €_“9> U L }d¢2 (CS)
K K K

32

Let us consider the condition (i) for dS; black hole case. We again consider the connection with the gauge transformation
g(0) €SL(3,R), where 6 = 0 — 6, and exp(2i6, ) = 2zL/k. Then the metric and spin-3 field may take the form

ds*> = géé(é)déz + gtt(é)dtz + g¢¢(é)d¢za
PapydX XX = 355(D)dPdr + (D) ADAL + gy (D). (C9)

In order to satisfy the condition (i), we also demand

29p5(0) _ . 2¢,455(0)

—4(0) (0 (C10)

p=2r

and

géé<_é) = g*g(é), gtt(_é) = gtt(é)’ g¢¢(_‘§> = g¢¢(é),
P405(—0) = 05500),  0pu(=0) = 94u(0),  Dppg(—0) = P4y (0). (C11)
Then the transformed metric becomes
 (c=2)(c-3)
900 = (2 co2(@)
(8L (C =3\ (g, + b,cos®(6))sin*(0)
I ( B ) ( c ) (C—2-cos’(B))

e (50) () e (50) )

with
a,=(C=12(4 -VC)?,  a,=(C-1)* (4 +VC),
b, =16y*(C—-2)(C*-2C+2) — 87/\/5(2C2 —6C+5)+C(3C-4),
by = 16y*(C —2)(C* -=2C +2) + 8}/\/6(2C2 —-6C+5)4+C(3C—-4). (C13)
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APPENDIX D: PROKUSHKIN-VASILIEV
THEORY

In Sec. V, we have examined black hole solutions with
higher-spin charges in the Prokushkin-Vasiliev theory [30].
We have computed the gravity partition function of the
black hole solution and evaluated two-point functions of
bulk scalar field on the black hole background. In the main
context, we presented the analysis mainly from the dual
CFT as it is rather nontrivial. In this appendix, we explain
its bulk counterparts, which may be obtained quite straight-
forwardly by analytically continuing the analysis done in
[46,48] for the case of AdS;.

1. Higher-spin black holes

As usual, we start by reviewing the known results for
AdS; case. The massless sector of the Prokushkin-Vasiliev
theory can be described by Chern-Simons gauge theory
with the action (2.1), but the gauge algebra is given by an
infinite dimensional one denoted by H3[]. The generators
of the algebra are V3, with s > 0,|m| < s, and the com-
mutation relations may be written as

Zg m, n; AV, (D1)

see also (5.3). The explicit expression of the structure
constants may be found in [76,77]. It is also convenient to
define the lone star product

Vs *Vt — 2ngl m, n; ﬂ. Vert—u'

m+n

(D2)

The black hole solutions of the Chern-Simons gravity
with negative cosmological constant were obtained in [46].
We consider the gauge configuration of the form (4.2) with
(4.3). The gauge configuration corresponding to the BTZ
black hole is given by [see (2.9)]

2 EAdS
T V2 a- = 0.

VZ k -1 Z

a,=Vi—

(D3)

On the other hand, the ansatz for the gauge configuration
with higher spin charges is considered as

2”[’AdS ﬂwAdS
= V=T VN T Vi s
2z AdS
a; = _IuAdSN(/l) <az*az — ”3£k (,12 - 1)) (D4)
Here we use
20
N =1\l (Ds)

and

4 5
J ads :J,(Agsvi3+J5xcisV5—4+"'v (D6)

where J%S are spin-s charges. We can check that the gauge

configuration solves the equations of motion [a,, a:] = 0.

As in the SL(3) case, we require that the eigenvalues of
holonomy matrix are the same as that of the BTZ black
hole. Since the holonomy matrix is computed as in (4.12),
we have

(D7)

) ZEEAdS
QBTZ:zﬁAdS(v’f— . V’£1>

for the BTZ black hole and

2 £AdS
Q = ifASa, — 27 SN(2) (az*az Saiindy G 1))

3k
(D8)

for the ansatz of higher-spin black hole. We thus consider
the holonomy constraints
tr(Q") = tr(Qry), n=2.3,.... (D9)
We treat the effect of spin-3 charge perturbatively. This
means that we solve the constraints perturbatively in %5,
Then we can express charges £A9, WAIS in terms of
parameters k and 7295, Integrating an equation in (4.11), we
arrive at the expression of the partition function in (5.4).
Let us turn to the case with positive cosmological
constant. We use the gauge configuration of the form
(2.17). For the black hole without higher-spin charges, the
gauge configuration is [see (2.20)]

2
a—V2+L£V_1, a:=0.  (DI0)

For the black hole with higher-spin charges, we use the
ansatz

a, = V2+L£V2 +zN(A)2—VkVV3 +J.
= uN(2) (a *a, —I—%(ﬂz—l)) (DI11)
Here N(J) is given in (D5) and
J=JOVA, IOV, 4 (D12)

We can check that this ansatz reduces to (4.22) with the SL
(3) case. The holonomy matrices become

066005-33



CHEN, HIKIDA, TAKI, and UETOKO

PHYS. REV. D 108, 066005 (2023)

2nLl
Q4sH —ﬂ(V% +TV%1> (D13)

for the black hole without higher-spin charges and

20

Q = Ba, + 2naN (1) (az*az + 5 (4= 1)) (D14)

for the black hole with higher-spin charges. Here we also
use the same constructions as the negative cosmological
constant case:

The lower even-n traces are

tr(Qspn) = —87°,
8t
tr(Qsp) = ?(312 =7),

87°

r(Qspn) =~~~ (32 = 1822 +31).  (DI6)

and all odd-n traces vanish. Solving the constraint
equations (D16) perturbatively in a, we obtain the follow-

tr(Q”) = tr(QgSBH)’ n=273,--- (DIS) ing solutions:
|
K 5¢ , 50k A2-=7 , 2600k 5A* — 851> +377
L=t @ @ 1 2 7 @
8nr=  6nt 3act 27 —4 27t (A7 —4)
68000k 202° — 6004* + 63874% — 23357 n
- B+,
81xr!8 (22 —4)?
K 200k A2 =7 , 400k 51* —852* 4+ 377 |
W=-~a 92 _4% To9,.13 2_ )2
3z 270’ A= — 4 Ort! (A2 —4)
32000k 2018 — 6004* + 63874% — 23357
= — a4 (D17)
81zt (A7 —4)
In addition, we find
@ _ 35 1 o 700 2% -21 o 2800202* — 4804% + 3189 o
S92 —47 9222 —4)? 9r!6 (22 —4)} ’
16) — 100V/5 1 , 400v5442% — 635
= gl (/12_4)3/2“ T 5705 (/12_4)5/20‘
14300 1
1 =gt P
Note that we have the relations
[LAdS I WWAdS W . S . .
= =i Je=u@, g0 =i, SO =—JO, (D19)
which imply that
I{)s = elmi/2s (), (D20)
Integrating an equation in (4.11), we arrive at
In Z(z. ) inK q 4 400> —Ta* 160052* — 854> + 377 o
k] a) = —— — 54 A R 10
‘ 2| 37 2T A48 27 (Z-4F 1?2
32000204° — 6004* + 63874% — 23357 o
+ il 2 (D21)

81 (/12_4)3

as in (5.7).

‘[16

066005-34



COMPLEX SADDLES OF CHERN-SIMONS GRAVITY AND ...

PHYS. REV. D 108, 066005 (2023)

2. Two-point functions

In this subsection, we study the two-point functions in
higher-spin black holes on dS; by extending the argument
in AdS; [48]. We again start by reviewing the known results
in the case of AdS;. In the Prokushkin-Vasiliev theory, the
master field C, which contains the bulk scalar field, satisfies
the linearized equation

dC + AxC — C*xA = 0, (D22)
where A is the gauge field of §8[4] Chern-Simons theory.
The scalar field can be obtained by Tr[C], which satisfies a
Klein-Gordon equation, see also [90]. According to [48],
we may derive the scalar propagator by

A -

G.(p,x;0) = £ = eIFPTr[e~ M ke *eM],  (D23)
/4

where + and — denote the standard and alternate quantiza-

tion conditions, respectively. Here c. is the master field in

the trivial gauge with A = 0. The master field C, can be

obtained by gauge transformation as

C. =g '%coxg. (D24)

Moreover, A

,. A, are defined as

— V2 vz A — V(7 -pV2
A, = e Vok(a,xt) ke, A, = elYox(a,xt) ke o

(D25)

with gauge solutions a, a.

At A = 1/2, the lone star product is known to reduce to
the Moyal product. Let us introduce generators y, (@ = 1,
2), which satisfy [y,, ys], = 2i€,. For the function of y,,
the Moyal product acts as the differential form

Jd 0

€ — = , (D26
aﬂ aya ay;} ( )

!

y=y

}f(y)g(y/)

(F+ 9)(5) = exp {i

where €, is the antisymmetric tensor €j, = 1. In terms of
Ya» We can rewrite the h3[1] generators

_l s - S—m—
Vi = (T) Tyt (D27)

The authors of [48] has nicely shown that we may obtain
the scalar propagator for all backgrounds with following c .

. 1 .
c. = e—lyl)’z7 .= <2>)’1 * VY2 Yo, (D28)
1

and the propagator becomes

G.(p.x;0) = :i:Z]—ﬂe(li%)/’Tr[e‘Aﬂ xcy*xev].  (D29)
Using the solution (2.9), it leads to the correct AdS; result.
Besides, for general value of A, we should use c as the
highest weight state of H3[1].

Let us extend this calculation for dS; black holes. We use
the gauge configuration (4.4) and the solution (2.20) for the
case of pure dS; and define A; and /_\,-, as

_ 2 _
A= ey {i(V% - ”Tﬁvzl)z] v e

—_— ~ ) 2 £ b
A; = eV x [i <V%1 _E V%) Z} * e Vo, (D30)
K

see (2.16). It leads to the scalar bulk-boundary propagator
at A=1/2 as

Gi(ﬁ’X;o)
= :I:ie(li%)ﬁTr[e‘Aﬁ xcy % eM]
27

n 1 e’ 145
Y <e‘27’ cosh (%) cosh(£) — 477 sinh(£) sinh (é)) ’
(D31)

At p — oo, the two-point function can be read off as [see
(5.20)]

1

G(r,x;0) ~ [—cosh(r,t) + cos(r, @)U+, (D32)

where z = it + ¢. At p — —oo, we also obtain the behavior
of different boundaries as [see (5.21)]
Gy (r.x;0) ~ [cosh(r, 1) 4 cos(r.¢)]"(#2).  (D33)

Let us turn to the case with higher-spin charges. We use the
solution (D11) as

e~ /25 qe @DV — ja_ — iuN(2) <az~kaZ - % (2> - 1)> daz,
a, =V} —#V{l - N(A)%Vﬁz + IOV L IOV, 4 (D34)
Here we focus on the first order @ correction of G.. Note that the charges (D17) and (D18) are
Logat 0@, W=-gsat0@), 0 =0@?), (D35)
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We also expand the propagator in a as

G.=GY+> G (D36)
n=1

where Gg(;) is the result without any higher-spin charges in

(D31). Through complicated computation, it leads to the
ratio of the scalar propagators at p — +oo as

GUl e a 3sini+ (24 cos £)(E-L)

: , D37
GO ., 167 sin? £ (D37)
and at p - —oo as:
G| sin £4 (2 —cos Z)(£-1
|/’ a T ( ‘r)(‘r 7) (D38)

cos? i

GO, 167 L

APPENDIX E: SOME CFT CALCULATIONS

In the main context, we have analyzed partition function
on S? in the presence of two heavy operators. Due to the
symmetry under the combination of Weyl transformation
and shift of fields, we can compute the same quantity as a
partition function without any insertions of operators but on
a locally S? with two conical deficits as explained in the
next subsection. Here we focus on the leading contribution
to the Gibbons-Hawking entropy. For the purpose, we use
the Liouville description. However, if the vertex operator is
of the form V, with a  p, then the same analysis applies to
the Toda case as shown in Sec. E 2.

1. Partition function of CFT on conical defect
The metric of S? is given by
4dzdz

ds*> = =
11+ zz|?

4(dr + rPdg?)
(1+r)?

(E1)

with z = re® and 7 = re”*. Performing a coordinate
transformation r = 1/ tan(6/2), we find

ds> = dO* + sin® Odg>. (E2)
The partition function is evaluated in (4.9) of [7] as
|Zcrr|* ~ 5 (E3)

Let us introduce the conical deficits at 0 =0, z/2
with the deficit angle 4z17(0 <5 <1/2). Performing
a coordinate transformation as z = r'"2leil=20¢ and
7 = r1=21¢=i(1-20)¢  the metric becomes

4dzdz  4(1—2n)*(dr* + r*d¢?
dSzZ Z_Zz: ( 477)( rz_—zrz d)) (E4)
|1+ zz| r¥(1 4 =)
Applying  another coordinate transformation  as

r'=21 = 1/ tan(6/2), then we find

ds* = d&® + (1 —2n)?sin® Od¢?. (ES)
The metric indeed has conical deficits at 8 = 0, z/2 with
the deficit angle 4z5. The period of ¢ is now 2z(1 — 27),
which makes the volume to be (1 —27) times that of S°.
From the computation in [7], we can see that the leading
contribution to the entropy is proportional to the volume,
ie.,

|Zcpr|* ~ 5 (1=2),

(E6)

Using the relation (2.42), we reproduce exp Sgy with (1.5).

2. A two-point function of ’t Hooft limit CFT

In the main context, we deal with 8[(N) Toda field
theory with finite N, which can be used to compute
correlation functions of the coset (1.7) with finite N as
shown in [35]. However, we also need to consider the coset
(1.7) at the ’t Hooft limit, where N,k — oo but A in (1.9)
finite. In order to obtain the expressions at the 't Hooft
limit, we utilize the triality relation in [33]. Namely, we
obtain the expressions in terms of N, ¢ and then replace N
by +A. The relation to parameter b is

A
b=iy/1—-—. E7
if1-4 (E7)
In particular, we have
2 NA?

b+b ') ~——"F~——"—+O(N°. (ES8
(b7 =l = s HONY). (B8)

Here we compute the two-point function
<Va(Z1)Va* (Z2)> (E9)

with a = (1 — /T =8GyE)Q. The background charge Q
is given in (4.40). If a is proportional to the Weyl vector p,
then the operator does not carry any higher-spin charges.
Therefore, the operator is dual to dS; black hole without
any higher-spin charges. In this case, the two-point function
(4.60) becomes simplified as

[(Vel(20) Ve (22)) P ~ &3 VITSOE . (E10)

We thus reproduced the leading order expression of
exp(Sgy) with (1.5).
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APPENDIX F: WILSON LINES IN DE
SITTER GRAVITY

In this appendix, we extend the calculation of holo-
graphic entanglement entropy using Wilson line in [72,91]
to our dS; higher-spin gravity. See also [6,7,92-96] for
related works.

1. Entanglement entropy from open Wilson lines

Let us introduce the Wilson line operator with two
boundary states |U;), |Uy) [72,91]

W«%):<UAP&p<AA)Pwp<LA>M@, (F1)

where P is the path ordering. Denoting a world line field on
s € [s;,s7] by U(s), the expectation value of Wilson line
(F1) is given by

W(C;) = /DUDP exp(—1(U, P)), (F2)

where P is a canonical momentum conjugate to U. The
action I(U, P) describes an auxiliary system, which lives
on the Wilson line. It is explicitly given by

uam:/”wmmﬂmm+mgmqun

i

(F3)

in the case of a SL(2)-valued U. Here c, is the quadratic
Casimir and the covariant derivative D, is defined by

dUu - dx*
DU=—+AU-UA,, A,=A,—.
s ds+ s § H ds

(F4)

Note that the action (F3) is invariant under a local gauge
transformation

U(s) = L(s)U(s)R(s), P(s) = R™'(s)P(s)R(s). (F5)

The equations of motion from I(U, P) are given by

dP -
—+[A;,P] =0,

U™'D,U +22P =0,
ds

tr[P?] = c,.
(Fo)

A trivial solution for A = A =0 is

P(s) = Py, U(s) = Uy(s) = ugexp (—2v(s)Py),
% =3, (F7)

where P, and u, are constant elements. Moreover, (F6)
leads to the on-shell action

1(U, P)

N
s = =262 [ ds(s) = ~2e280, (FS)
Si
where Av = v(sy) — v(s;). The authors of [72] showed that
this on-shell action with boundary conditions U(s;) =
U(sy) = 1 leads to the holographic entanglement entropy
with (2.9) and setting \/2¢, = ¢/6. In the following, we
consider our case of dSs.
In the pure dS;, we can write the solution (2.17) in the
following pure gauge form:

A= LdL™", A =R"'dR, (F9)

where L and R given by
L — ¢—i0Lop=iLix*

R = e iL-1x" g=ifLo, (F10)

The actual solution can be found by acting gauge trans-
formation to a trivial solution as

U(si) = L(s;) (upe 2" P0)R(s)),

U(ss) = L(ss)(upe™2"6rP0)R (s ). (F11)
Eliminating u, with boundary conditions U(s;) =
U(sy) = 1, we obtain

e 280 = R(s;)L(s;)(R(sy)L(sf))™".  (F12)

To evaluate Aw, we take the trace of (F12) for the
fundamental representation of SL(2). Then we obtain

A1)+ (Ag)* .
I(U’ P)on—shell = \/ECOSh_1 (1 - ( ) —;( d)) 62190)’
(F13)
where we set O(s;) = 0(s;) =60y, At =1t(sp) —1(s;),

Ap = (sp) — ¢(s;) with x* =it+¢. For ehAp=
e 'A¢ > 1 and At = 0, we obtain

(9) A (9)
C c
SEE = I(U7 P)on—shell = lTlog( ¢> + 6

€

(F14)

where we set \/2¢c, = ¢/6 = ic(9) /6. This reproduces the
results in [7]. As argued in [94,96], this quantity should be
interpreted as an generalization of entanglement entropy,
called pseudo entropy [97], which takes complex-valued.
In the dS; black holes, let us consider the solution (2.20)
and define the following L and R
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L — e—ié)LOe—i(Ll—%L_l)x+ R— e—i(L_l—%Ll)x‘e—iaLo'

s

(F15)

In the same steps as above, we obtain

(9) 1 27l
c K V4
Spp=1—1 — i —A
we = g o (zm/ﬁez s 500

. 27l ncl9)

xsin| {|—A¢p | | + G (F16)
K

fore™'A¢p > 1.1f we set £ = L and define § = x, /5%, the
result (F16) becomes

cl9) [rA zcl9)
Sgg = leog <£sm<7¢>) + ¢

Let us move to the higher-spin dS; black holes.
According to [72], the evaluation of Wilson line for SL(3)-
valued U is given by the action

(F17)

(U, P) = / Y ds(@[PU-' DU + %, () (t[P?] = ¢3)

+ Z3(s) (tr[P?] = ¢3)). (F18)
where we define
[P = PPPS,, 6, = %tr[TaTb],
tr[P3] = P*PPPChy,., hape = [T, TpT].  (F19)

(9) A (9)
Sgp = i%log(%sin(%)) + zrc6

with T, as the generators of 8[(3). The equations of motion
are given by

dP -
U™'D,U +2%,P 4+ 3%;P x P =0, - TALP]=0,
S

wlP) =c,, P =c, (F20)

with the definition P x P = h,,. T*P”P¢. These equations
of motion lead to the on-shell action

I(U. P)opsnen = —2€280; = 3Av;. (F21)
We again start from a trivial solution
dvi
Uo(s) = ugexp (=2v(s) Py — 3v3(s) Py x Py), PRy
(F22)

and use the nonrotating solution (4.22) as

L = ¢~0Lop=ila,x"+a_x7) R = eil@ax+a.x") ,—ifLy

’

(F23)

Here L, R take values in SL(3). We consider the case of
¢y #0, ¢3 =0 in order to evaluate the entanglement
entropy. Using the same steps as above, see also
[72,98], for e 'A¢p > 1 and At = 0, we obtain the follow-
ing first spin-3 correction at y — 0

el ()

I8 I

4rA¢p . <27:A¢> < (27:A¢>> <27rA¢> 2 <2]‘[A¢>:|
— sin 1+ 2cos +6 cos + F24
g "\ s g g (F24)
Here we use the relation in terms of a dimensionless parameter C in (4.30);
4(C-1 2 - 4C —
W (Cc-1) ﬂ'ﬁ’ . 3y/C K p_3(C=3)V c2 3 (F25)
Cc3/? K 4(2C-3) \ 2zL p 4r (2C-3)

2. Thermal entropy from Wilson loops

Let us consider the Wilson loop and evaluate the thermal entropy. The expectation value of Wilson loop is given by [72,91]

W(C) = tr [Pexp (jiA)Pexp (ﬁA)] - /DU’DPexp(—I(U, P)).

(F26)
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where we take the trace for the representation of the gauge
group. The action I(U, P) is same as (F3) with the path
x#(s;) = x*(s;) and the boundary condition for U(s) is

U(s;) = U(sf), P(s;) = P(sf). (F27)
With this condition, as in the Sec. F 1, we evaluate Av from

L(s;)(uge 2P0 )R(s;) = L(sy) (uge ")) R(s ).

(F28)

Note that, from x*(s;) = x*(s;), we have
L7 (s,)L(s;) = e 4% = e=2ms (F29)
R(s))R™"(ss) = o~ $ay _ ey, (F30)

where we only consider the holonomy along the ¢-cycle.
Thus we obtain the on-shell action

](Uv P)on—she]l = _ZCZAU =2 V 202“7(@\/} - [_\4))‘,0)’
(F31)

where A4 and /_\4, are the diagonal matrix of the eigenvalues
of ay and a,. Moreover, tr, means that we take the trace for
the fundamental representation.

Let us examine explicit examples. In the case of dS;
black holes, the thermal entropy of BTZ black holes is
evaluated as

S = 27V2akL + 27V 27KkL. (F32)
Here the diagonal matrix is
27l 2zL
A, = diag <i\ [== =iy /”T) (F33)

which comes from the solution (2.20). Let us now turn to
the case of the higher-spin black hole. The thermal entropy
is evaluated as

1=32
S=drv 27r1</3734c. (F34)
=3¢
The diagonal matrix is
2zl . (34 C(-2++/-3+4C) 2

Ay =2i diag =

K VC(=3+2C) VC
3—C(2+\/—3+4C)> (F35)

VC(=3+20C) ’

which comes from the solution (4.22). Here we have
used the relation (F25). Note here that the result (F34) is
the dS; counterpart of AdS; one computed with the bulk
Hamiltonian [99,100]. On the other hand, the result (4.31)
is the dS; counterpart of AdS; one by using the boundary
stress tensor [43]. According to [100], in the presence of the
chemical potential y, these results disagree, see also [72].
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