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We examine the black hole solutions of dS3 gravity by applying the explicit dS3=CFT2 correspondence.
The gravity theory is described by Chern-Simons theory with complex gauge group SLð2;CÞ, and the
complexified theory is known to have too many saddle points. We determine the set of “allowable
geometry” from dual conformal field theory correlators. Concretely, we classify the possible complex
solutions corresponding to dS3 black holes from Liouville two-point functions. We extend the analysis to
Liouville multipoint functions and among others we study geometry corresponding to two linked Wilson
loops on S3 by the monodromy matrix of Liouville four-point function. Some parts of the results were
presented in a previous letter but here they are explained in more details and extended in various ways. In
particular, we generalize the results to the case with higher-spin gravity by focusing the effects of higher-
spin charges.
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I. INTRODUCTION

According to the no-boundary proposal by Hartle and
Hawking [1], the universe begins from nothing. More
precisely speaking, the universe starts from Euclidean
hemisphere and continues to Lorentzian de Sitter space-
time. Similarly, the temperature of black hole can be read
off from the periodicity of Euclidean time, where the
smoothness condition is assigned at the horizon [2]. It is
often argued whether these complex solutions to Einstein
equation are purely mathematical objects or physically
meaningful ones. If those unphysical ones were included
when we integrate over complex metrics in the path integral
of a gravity theory, then there would be too many saddle
points, and the sum over all saddle points should not lead to
a sensible answer. Recently, Witten investigated in [3] a
criterion of “allowable complex geometry” based on
previous works [4,5]. In this paper, we propose an alter-
native way to select the physical saddle points of quantum

gravity by making use of a holography. Applying the
recently proposed dS3=CFT2 correspondence in [6–9], we
examine explicit examples of three-dimensional de Sitter
(dS3) gravity from dual two-dimensional conformal field
theory (CFT2).

1 We have already presented some parts of
results in a previous letter [11], and we will explain the
derivation of the results in details and extend the analysis in
this paper.
A canonical example of complex geometry is given by

the no-boundary proposal for wave functional of universe
mentioned above. We may consider a complexified
(dþ 1)-dimensional sphere ðSdþ1Þ with the metric

ds2 ¼ l2

��
dθðuÞ
du

�
2

du2 þ cos2θðuÞdΩ2
d

�
; ð1:1Þ

where l is a length scale and dΩ2
d is the metric of Sd.

Moreover, θðuÞ is a complex function of a complex
coordinate u. If θðuÞ ¼ u and 0 ≤ u ≤ π, then the metric
is that of Euclidean Sdþ1. On the other hand, if θðuÞ ¼ iu
and −∞ ≤ u ≤ ∞, then the universe is Lorentzian dS3.
Here we only complexify u-direction and not the Sd part for
simplicity. We may assign that the universe starts from
nothing, that is
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1See, e.g., [10] for a related work on three-dimensional gravity
with negative cosmological constant.
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θ ¼
�
nþ 1

2

�
π; n∈Z ð1:2Þ

at the beginning, say, u ¼ 0 and ends as θ ¼ iu at u → ∞.
In this way, we consider a family of complex geometry
labeled by an integer n. The criterion of D-dimensional
allowable geometry in [3,5] is that the kinetic terms of
p-form fields for all p ¼ 0; 1;…; D should have positive
real parts. In our example, allowable geometry is instead
only given by n ¼ −1, 0, which is nothing but the geometry
considered by Hartle and Hawking in [1].
We would like to explicitly perform the path-integral of a

quantum gravity and determine the set of saddle points we
should take. It is a quite difficult task since we do not know
how to formulate quantum gravity in general. In this paper,
we study three-dimensional gravity theory with positive
cosmological constant. The theory has a Chern-Simons
description [12–14],2 moreover it also has an explicit
holographic dual formulation as detailed in [6–9], thus
we could study this theory in great depth. In dS3, there are
solutions to Einstein equation including the conical defect
geometries examined in [15]. They are often called as dS3
black hole solutions given by:

ds2 ¼ l2

�
−ðr2þ − r2Þdt2 þ 1

r2þ − r2
dr2 þ r2dϕ2

�
: ð1:3Þ

This geometry can be regarded as the dS3 analog of BTZ
black hole [16]. The parameter rþ is related to the Newton
constant GN and the black hole energy E as

rþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8GNE

p
: ð1:4Þ

There is a horizon at r ¼ rþ and the Gibbons-Hawking
entropy associated with the horizon is [17–20]

SGH ¼ 2πlrþ
4GN

¼ πl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8GNE

p
2GN

: ð1:5Þ

In terms of Chern-Simons gravity, we can construct a
configuration of gauge fields corresponding to the dS3
black hole geometry. Applying a large gauge transforma-
tion with winding number n to the gauge fields, we can
generate another configuration of gauge fields labeled by n.
This n turns out to be essentially the same as the one
introduced in (1.2) for the complexified sphere. In the
Chern-Simons gauge theory with complex gauge group,
large gauge transformations are known to generate new
physically inequivalent configurations, see, e.g., [14]. From
the viewpoint of gravity theory, we do not have any criteria

to determine which gauge configurations we should take
a priori. We shall attack this problem for various black hole
solutions by making use of the explicit dS3=CFT2 corre-
spondence. We also examine its higher-spin generalizations
and their properties focusing the effects of higher-spin
charges.
We shall use the explicit dS3=CFT2 correspondence

developed in [6–9], which may be regarded a lower
dimensional version of dS4=CFT3 correspondence in
[21]. These are concrete examples of dS=CFT correspon-
dence proposed in [22–24], see also [25–27]. The duality
of [21] can be obtained as an “analytic continuation” of
Klebanov-Polyakov duality involving higher-spin AdS4
gravity [28]. Similarly, the duality used here is constructed
by an “analytic continuation” of Gaberdiel-Gopakumar
duality involving higher-spin AdS3 gravity [29]. The gravity
theory is given by Prokushkin-Vasiliev theory [30] with
gauge fields with higher-spin s ¼ 2; 3;… and two complex
scalar fields with the mass parametrized as:

l2
AdSm

2 ¼ −1þ λ2: ð1:6Þ

Here we denote the AdS radius by lAdS and set 0 ≤ λ ≤ 1.
The dual CFT is supposed to be WN-minimal model
described by a coset

SUðNÞk ⊗ SUðNÞ1
SUðNÞkþ1

ð1:7Þ

with the central charge

c ¼ ðN − 1Þ
�
1 −

NðN þ 1Þ
ðN þ kÞðN þ kþ 1Þ

�
: ð1:8Þ

We take the so-called ’t Hooft limit, whereN, k is taken to be
large with keeping

λ ¼ N
N þ k

ð1:9Þ

finite. In particular, the ’t Hooft parameter λ is identified with
the mass parameter λ appeared in (1.6). A version of
dS3=CFT2 correspondence can be constructed as follows
[8,9], see also [52]. For the higher-spin gravity, we just need
to flip the sign of cosmological constant, which can be done
by replacinglAdS by ilwith the dS radiusl. In the CFT side,
we perform an analytic continuation of parameters such that
the central charge becomes c ¼ icðgÞ with cðgÞ ∈Rwhile λ is
kept unchanged.
The ðAÞdS3=CFT2 correspondence introduced above

involves an infinite tower of higher-spin fields, which
makes analysis complicated. In three-dimension, a higher-
spin gravity with gauge fields with truncated spin s ¼
2; 3;…; N can be constructed by Chern-Simons theory with
gauge group SLðN;CÞ. We largely study the simplest case
with N ¼ 2, which is supposed to be equivalent to the pure

2We summarize some properties of Chern-Simons gauge
theory with complex gauge fields, in particular, the relation to
gravity theory with positive/negative cosmological constant in
Appendix A.
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gravity theory [12,31]. The holography involving the
Chern-Simons gravity with the finite dimensional group
can be constructed with the help of triality relation of the
higher-spin algebra [32–34]. The dual CFT is given by the
coset (1.7) with a finite N but a peculiar value of k as

k ¼ −1 − N þ NðN2 − 1Þ
c

þOðc−2Þ: ð1:10Þ

Here c∈R for the dual of AdS3 and c ¼ icðgÞ with cðgÞ ∈R
for the dual of dS3, see [6,7]. For generic value of k with
finite N, it was shown in [35] that the correlation functions
of the coset model (1.7) are the same as those of slðNÞ
Toda field theory (Liouville field theory for N ¼ 2). We
heavily use this version of ðAÞdS3=CFT2 correspondence
since the Chern-Simons gravity with the finite dimensional
gauge group is much more tractable than the Prokushkin-
Vasiliev theory. Moreover, the dual CFT is quite well
studied as in [14,36,37] for Liouville field theory and as in
[38] for slðNÞ Toda field theory.3 The coset (1.7) with a
finite N but a generic value of k has the WN-algebra
symmetry with generators of spin s ¼ 2; 3;…; N. There are
degenerate representations of the algebra, which are labeled
by two Young diagrams with no upper limit of the number
of boxes, see, e.g., [41]. They are proposed to be dual to
the bound states of scalar fields on a conical defect
geometry [32–34]. In terms of Liouville/Toda field theory,
we examine correlation functions of so-called maximally
degenerate operators. In this paper, we consider black hole
solutions created due to the back reactions of heavy
particles, which corresponds to the insertions of heavy
operators in the dual CFT.
In dS=CFT correspondence, it is not so straightforward

to compute bulk quantities from dual CFT in contrast with
AdS=CFT correspondence. In order to illustrate this, we

prepare the Hartle-Hawking wave functional Ψ½χð0Þj �. It is
obtained by the path integral over bulk fields χj

Ψ½χð0Þj � ¼
Z

DχjeiS½χj�; ð1:11Þ

where S½χj� is the action of dS gravity theory and the fields

χj satisfy χj ¼ χð0Þj at the future infinity t ¼ t∞ → ∞. We

also denote a partition function of dual CFT by ZCFT½χð0Þj �,
where χð0Þj are sources for their dual operatorsOj. Then the
proposal of [24] can be written as

Ψ½χð0Þj � ¼ ZCFT½χð0Þj �: ð1:12Þ

With the wave functional, the gravity partition function at
the semiclassical level can be evaluated as

ZdS ¼
Z Y

j

Dχð0Þj jΨ½χð0Þj �j2: ð1:13Þ

We assume that there are several saddle points of bulk
theory labeled by n. In the previous example, n corresponds
to the winding number of large gauge transformation
generating new gauge configurations. It might be conven-
ient to write it in terms of the Gibbons-Hawking entropy as

ZdS ∼
X
n

expðSðnÞGHÞ: ð1:14Þ

Here SðnÞGH represents the contribution to the Gibbons-
Hawking entropy from a saddle point labeled by n. In
the classical limit, GN → 0, only the leading term domi-
nates among the sum, and the other terms can be regarded
as nonperturbative corrections. In the previous example, it
is given by (see, e.g., [3])

SðnÞGH ¼
�
nþ 1

2

�
πl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8GNE

p
GN

ð1:15Þ

with n ¼ 0;−1. Therefore, Sð0ÞGH is the leading contribution

to the Gibbons-Hawking entropy SGH and Sð−1ÞGH is regarded
as a nonperturbative correction.
In this paper we are mainly interested in black hole like

objects, which may be created due to the back reactions of
heavy objects. Let us assume that the geometry is created
by the back reaction of heavy particle χj. Then, the wave
functional of the geometry is related to two-point function
of dual operators Oj as

Ψ ∼ hOjOji: ð1:16Þ

From the geometry, we can specify the saddle points and
compute the contribution from a saddle point to the
Gibbons-Hawking entropy. However, it is impossible to
determine the set of allowable geometry among them
unless the definite definition of quantum gravity is avail-
able. In the current case, the dual CFT is given by Liouville
field theory or more generally Toda field theory, and its
saddle points can be read off, e.g., as in [42]. We can thus

compute SðnÞGH from the dual CFT. For this purpose, it might
be convenient to rewrite the wave functional as

Ψ ∼
X
n

exp ðSðnÞGH=2þ iI ðnÞÞ; ð1:17Þ

where iI ðnÞ represents purely imaginary contributions. We
identify the allowable geometry of gravity theory by
comparing the contributions to Gibbons-Hawking entropy

3It is not known how to couple matters to the Chern-Simons
gravity, so the first version will be utilized when examining the
propagation of matter fields on dS3 black holes, see [39,40] for
recent related works.
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from the both sides of duality. The above arguments can be
generalized to higher-point function as well. We examine
the three- and four-point functions in Liouville field theory
and interpret the saddle point analysis in terms of SLð2;CÞ
Chern-Simons theory along the line of [42]. Moreover, we
argue that the geometry corresponding to two linked
Wilson loops on S3 is dual to the monodromy matrix of
four-point function and reproduce the results previously
obtained in [6,7]. The results on geometries dual to
Liouville two-point functions and those corresponding to
two linked Wilson loops on S3 were already presented in
the previous letter [11]. In this paper, we explain details of
the derivations and extend the analysis to the geometries
dual to Liouville multipoint functions.
Since we deal with the pure gravity on dS3 by Chern-

Simons formulation, it is straightforward to extend the
analysis to the higher-spin theory described by SLðN;CÞ
Chern-Simons theory. We examine the gravity theory by
dual CFT2, i.e., Toda field theory. We first construct higher-
spin dS3 black hole by analytically continuing the case of
AdS3 analyzed in [43], see [44] for a review.4 We then
study the saddle points of gravity theory corresponding to
the solutions from Toda two-point functions as in the
Liouville case. In the previous letter [11], the higher-spin
extension is only briefly mentioned, in particular only
partial results on the geometries dual to Toda two-point
functions were provided. In order to study the detailed
properties of higher-spin dS3 black hole, we extend the
construction of the solutions to the Prokushkin-Vasiliev
theory and probe the solutions by propagating a bulk scalar
field, see [46–49] for the AdS3 case. Among others, we find
a light-like singularity in the two-point function of bulk
scalar field between the boundaries at the past and future
infinities. The singularity should be the same as the one
found in [23] in the pure dS case.
This paper is organized as follows. In the next section,

we examine the simplest case with pure gravity described
by SLð2;CÞ Chern-Simons theory to a large extent. We
describe the dS3 black holes in terms of Chern-Simons
gravity. In particular, we find nontrivial saddles of the
complexified gravity, which are obtained by the large gauge
transformations. We then determine the allowable set of
saddles from two-point functions of dual Liouville field
theory. In Sec. III, we extend the analysis to more
complicated solutions dual to multipoint functions. We
can insert monodromies along deficit lines in the Chern-
Simons solutions, and the holonomies are read off from the
Liouville correlation functions. Moreover, we also study
geometry corresponding to two Wilson loops on S3 con-
structed in [6,7]. We find that the entropy associated with
the geometry can be obtained by the monodromy matrix of
four-point function. In Sec. IV, we extend the analysis
in Sec. II to the higher-spin gravity described by SLðN;CÞ

Chern-Simons gravity, whose dual description is given by
Toda field theory. In Sec. V, we construct higher-spin dS3
black hole in theProkushkin-Vasiliev theory and examine the
behaviors of boundary-to-boundary two-point functions of
bulk scalar field. Section VI is devoted to conclusion and
discussion. Several appendices follow, which explain tech-
nical details on the analysis in the main context. In
Appendix A, we discuss subtleties associated Chern-
Simons gauge theory based on complex gauge group and
relation to the gravity theory with negative/positive cosmo-
logical constant. In Appendix B, we summarize the proper-
ties of the Upsilon function, which is used to express three-
point functions of Liouville field theory. In Appendices C
and D, we explain the technical details of bulk analysis on
higher-spin (A)dS3 black holes. In Appendix E, we provide
some CFT calculations as dual descriptions of higher-spin
black holes. In Appendix F, we examine Wilson line
operators in higher-spin dS3 gravity and provide holographic
computations of entanglement and thermal entropies.

II. THREE-DIMENSIONAL DS BLACK HOLES

In this section, we examine the black hole solutions of
three-dimensional Einstein gravity both from the gravity
theory and its dual CFT2. We will first review the
construction of black hole solutions of three-dimensional
Einstein gravity with negative/positive cosmological con-
stants. In particular, we find out semiclassical saddle points
of path integral for the dS3 gravity. In Sec. II B, we will
analyze the CFT2 dual to the dS3 gravity, i.e., Liouville
field theory. Finally we determine the set of allowable
saddles of the dS3 gravity from the two-point functions of
dual Liouville field theory.

A. Chern-Simons description of pure gravity

In this subsection, we review several useful results on the
pure Einstein gravity on AdS3 and dS3 in the Chern-Simons
formulation and black hole solutions to their equations of
motion in order to prepare for the later sections, in
particular, for higher-spin extensions. The pure Einstein
gravity in three space-time dimensions with negative
cosmological constant can be described by SLð2;RÞ ×
SLð2;RÞ Chern-Simons gauge theory [12,31]. See
Appendix A for some details. Its action is given by

S ¼ SCS½A� − SCS½Ã�;

SCS½A� ¼
k
4π

Z
tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
: ð2:1Þ

Here the Chern-Simons level kð∈RÞ is related to gravi-
tational parameters as

k ¼ lAdS

4GN
: ð2:2Þ

4See also [45] for a related work.
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The independent gauge fields A; Ã are one-forms taking
values in slð2Þ Lie algebra. The generators of slð2Þ Lie
algebra are given by Ln ðn ¼ 0;�1Þ satisfying

½Ln; Lm� ¼ ðn −mÞLnþm: ð2:3Þ

We normalize the generators as trðL0L0Þ ¼ 1
2
. The solutions

to the equations of motion can be put into the forms

A ¼ e−ρL0aeρL0 þ L0dρ; Ã ¼ eρL0 ãe−ρL0 − L0dρ

ð2:4Þ

with

a ¼ aþðxþÞdxþ; ã ¼ ã−ðx−Þdx−: ð2:5Þ

Here aþðxþÞ; ã−ðx−Þ are arbitrary functions of x� ¼ t� ϕ,
where the periodicity ϕ ∼ ϕþ 2π is assigned. The bulk
metric can be read off from the gauge fields as

gμν ¼
l2
AdS

2
trðAμ − ÃμÞðAν − ÃνÞ: ð2:6Þ

The black hole solutions to the Einstein equations with
negative cosmological constant are given by BTZ black
holes with the metric [16]

l−2
AdSds

2 ¼ −ðr2 − r2þÞdt2 þ
1

r2 − r2þ
dr2 þ r2dϕ2; ð2:7Þ

where the horizon is located at r ¼ rþ and the region
outside the horizon is r > rþ. Here and in the following, we
only consider nonrotating black holes. Let us consider a
Euclidean time t → itE with xþ → z ¼ itE þ ϕ; x− →
−z̄ ¼ itE − ϕ. Then the absence of conical singularity at
the horizon r ¼ rþ requires the periodicity tE ∼ tE þ βAdS

with

τAdS ¼ iβAdS

2π
¼ i

rþ
: ð2:8Þ

The BTZ black hole can be realized by the configuration of
gauge fields (2.4) with

aþðxþÞ ¼ L1 −
2πLAdS

k
L−1;

ã−ðx−Þ ¼ −L−1 þ
2πLAdS

k
L1; ð2:9Þ

where we have set

LAdS ¼
lAdSr2þ
32πGN

¼ kr2þ
8π

: ð2:10Þ

We can read off the metric of the black hole from (2.6) as

l−2
AdSds

2¼dρ2−
�
eρ−

2πLAdS

k
e−ρ
��

eρ−
2πLAdS

k
e−ρ
�
dt2

þ
�
eρþ2πLAdS

k
e−ρ
��

eρþ2πLAdS

k
e−ρ
�
dϕ2:

ð2:11Þ

Performing a coordinate transformation

r ¼ eρ þ 2πLAdS

k
e−ρ; ð2:12Þ

the metric becomes that of BTZ black hole in (2.7). In the
pure gravity, the notion of horizon is gauge invariant, so
there is no problem to define black hole. However, in
higher-spin gravity theories, which we shall deal with, the
notion of horizon is not gauge invariant generically, and the
definition of black hole might be ambiguous. Following
[43,44], we shall use Wilson loop to define black hole since
it is a gauge invariant object. We thus introduce a holonomy
matrix for A along the thermal cycle

Pe
H

A ¼ Pei
H

dtEAþ ¼ e−ρL0eΩeρL0 : ð2:13Þ

In the current case, the eigenvalue of Ω can be evaluated
as ðπi;−πiÞ.
We then move to the case with positive cosmological

constant. The Einstein gravity can again be described by
SLð2;CÞ × SLð2;CÞ Chern-Simons theory with the action

S ¼ SCS½A� − SCS½Ā�;

SCS½A� ¼ −
κ

4π

Z
tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
: ð2:14Þ

See Appendix A for some details. The relation to gravity
parameters is

κ ¼ l
4GN

: ð2:15Þ

We may relate the Euclidean version of (2.1)–(2.14) by
replacing the couplings k → iκ, which corresponds to
lAdS → il.5 The gauge fields A; Ā are one-forms taking
values in slð2Þ Lie algebra. For generators, we assign the
relation of complex conjugation as ðL0Þ� ¼ −L0 and
ðL�Þ� ¼ L∓. As in [24], we may perform furthermore
the coordinate transformation

5In order to move from (2.1) to the Euclidean version, we need
to perform a Wick rotation t → itE, which provide a phase i.
Combining the replacement k → iκ, we have extra factor i · i ¼
−1 in the second equation of (2.14).

COMPLEX SADDLES OF CHERN-SIMONS GRAVITY AND … PHYS. REV. D 108, 066005 (2023)

066005-5



e−ρ → −ie−ρ̃ ¼ e−ðρ̃þπi=2Þ: ð2:16Þ

Solutions to the equations of motion can be put into the
form

A ¼ e−ðρ̃þπi=2ÞL0aeðρ̃þπi=2ÞL0 þ L0dρ̃;

Ā ¼ eðρ̃þπi=2ÞL0 āe−ðρ̃þπi=2ÞL0 − L0dρ̃ ð2:17Þ

with

a ¼ aþðxþÞdxþ; ā ¼ ā−ðx−Þdx−: ð2:18Þ

Here aþðxþÞ; ā−ðx−Þ are arbitrary functions of x� ¼ it� ϕ
(or z ¼ xþ; z̄ ¼ −x−) and the periodicity ϕ ∼ ϕþ 2π is
assigned. The bulk metric can be read off from

gμν ¼ −
l2

2
trðAμ − ĀμÞðAν − ĀνÞ: ð2:19Þ

Let us first consider the configuration of gauge fields of
the form

aþðxþÞ ¼ L1 þ
2πL
κ

L−1; ā−ðx−Þ ¼ −L−1 −
2πL
κ

L1;

ð2:20Þ

then the metric (2.19) leads to

l−2ds2 ¼ −dρ̃2 þ 8πL
κ

sinh2 ρ̃dt2 þ 8πL
κ

cosh2 ρ̃dϕ2:

ð2:21Þ

Here we have performed a shift ρ̃ → ρ̃þ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πL=κ

p
. If we

regard ρ̃ as a timelike coordinate, then the geometry
describes a cosmological universe. Near the asymptotic
future, the metric becomes

l−2ds2 ¼ −dρ̃2 þ 8πL
κ

e2ρ̃ðdt2 þ dϕ2Þ; ð2:22Þ

where the boundary geometry is with the flat metric

ds2 ¼ dt2 þ dϕ2; −∞ < t < ∞; ϕ ∼ ϕþ 2π: ð2:23Þ

Notice that the infinities t ¼ �∞ are not included, thus the
boundary topology is R × S1, see, e.g., [50].
The metric obtained above is outside the horizon of our

static universe. The static patch is obtained instead by an
analytic continuation ρ̃ → iθ as

l−2ds2 ¼ dθ2 −
8πL
κ

sin2 θdt2 þ 8πL
κ

cos2 θdϕ2: ð2:24Þ

A coordinate transformation

r ¼
ffiffiffiffiffiffiffiffiffi
8πL
κ

r
cos θ; L ¼ lr2þ

32πGN
¼ κr2þ

8π
ð2:25Þ

indeed leads to the metric in (1.3). Considering a Euclidean
time it → tE, the absence of conical singularity at the
horizon requires the periodicity tE ∼ tE þ β with

τ ¼ iβ
2π

¼ iκ
2

1ffiffiffiffiffiffiffiffiffiffiffi
2πκL

p : ð2:26Þ

As in the AdS3 case, it is convenient to define a holonomy
matrix for A along the time cycle by

Pe
H

A ¼ Pe
H

dtEAþ ¼ e−ðiθþπi=2ÞL0eΩeðiθþπi=2ÞL0 : ð2:27Þ

The eigenvalues of Ω are computed as ðπi;−πiÞ.
Let us examine more about the holonomy condition. The

action of large gauge transformation changes the eigen-
values ofΩ as ð2πiðnþ 1=2Þ;−2πiðnþ 1=2ÞÞ with integer
n.6 A configuration of gauge fields with the holonomy
matrix is given by

a ¼ −
ffiffiffiffiffiffiffiffiffi
2πL
κ

r
σ1ðdϕþ ð2nþ 1ÞdtEÞ;

ā ¼ −
ffiffiffiffiffiffiffiffiffi
2πL
κ

r
σ1ðdϕ − ð2nþ 1ÞdtEÞ ð2:28Þ

with

σ1 ¼
1

2

�
0 1

1 0

�
: ð2:29Þ

The metric from the configuration of gauge fields can be
read off as

l−2ds2 ¼ dθ2 þ 8πð2nþ 1Þ2L
κ

sin2 θdt2E þ 8πL
κ

cos2 θdϕ2:

ð2:30Þ

The classical action for the configuration is

−Sð≡SðnÞGHÞ ¼ 4πð2nþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffi
2πκL

p

¼ ð2nþ 1Þ πl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8GNE

p
2GN

; ð2:31Þ

where SðnÞGH was introduced in (1.14). See [6,7] for the case
with conical defect geometry. If we set n ¼ 0;−1, then the

6We may require that the holonomy matrix (2.27) is trivial. The
center of gauge group SLðNÞ × SLðNÞ is Z2 for even N, and the
trivial holonomy means that the holonomy matrix is given by a
center of the gauge group �1. Thus, the trivial holonomy
condition allows n∈Zþ 1=2, but such a case is not considered
here as it is not generated by a large gauge transformation.
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entropy reproduces (1.5). With an integer level and a
compact gauge group, a large gauge transformation is a
symmetry of Chern-Simons theory. However, now the level
is not integer valued nor the gauge group is complex
(noncompact), thus a large gauge transformation generates
a different configuration, see, e.g., [14,42]. In the Chern-
Simons formulation of gravity theory, there are no criteria
to choose the proper set of saddle points labeled by n. In the
next subsection, we determine the proper set from its dual
CFT description.

B. Liouville description

In [6,7], the Gibbons-Hawking entropy (1.5) of the dS3
black hole (1.3) was evaluated from its dual CFT2. At the
leading order in GN , the entropy is obtained from a
particular limit of modular S-matrix of SU(2) Wess-
Zumino-Witten (WZW) model by applying the method
of [51]. It was also argued that the same result can be
obtained through Liouville field theory in the correspond-
ing limit of large central charge. In fact, the entropy for pure
dS3 was reproduced also from the vacuum sphere ampli-
tude of Liouville field theory in [7]. In this subsection, we
extend the result to the case with insertions of two heavy
operators, which is dual to the dS3 black hole. We then read
off all the saddle points of complexified Liouville field
theory in the corresponding limit.
The action of Liouville field theory is given by

SL ¼ 1

4π

Z
d2σ

ffiffiffĩ
g

p
½∂aϕ∂a0ϕg̃aa0 þQR̃ϕþ 4πμe2bϕ�:

ð2:32Þ

Here and in the following, we follow the notation of [42],
see also [37]. We use g̃aa0 as a reference metric with g̃ ¼
det g̃aa0 and R̃ as the curvature with respect to the reference
metric. The theory is invariant under the combination of the
Weyl transformation g̃aa0 → ΩðσÞg̃aa0 and the shift of field
ϕ → ϕ − Q

2
ln ΩðσÞ. With the help of the symmetry, we

may set the “physical” metric as gaa0 ¼ e
2
Qϕg̃aa0 . The vertex

operators are defined by

Vα ¼ e2αϕ ð2:33Þ

with conformal weights h ¼ h̄ ¼ αðQ − αÞ. The Liouville
central charge c is related to the background charge Q ¼
bþ b−1 as

c ¼ 1þ 6Q2 ¼ 1þ 6ðbþ b−1Þ2: ð2:34Þ

We are interested in sphere amplitudes. We thus require
that the Liouville field is regular everywhere on S2. It is
convenient to move to flat space with the reference metric
ds2 ¼ dzdz̄ with z ¼ σ1 þ iσ2 and z̄ ¼ σ1 − iσ2 by making
use of the symmetry of Liouville field theory. Then the

regularity condition for the Liouville field on S2 is mapped
to the boundary condition

ϕ ¼ −2Q log jzj þOðjzj0Þ ð2:35Þ

at the infinity jzj → ∞. In order to remove the subtlety
associated with the infinity jzj → ∞, we consider a disc D
with radius R → ∞ with the boundary ∂D. We then instead
use the regularized action [37]

SL ¼ 1

4π

Z
D
d2σ½∂aϕ∂aϕþ 4πμe2bϕ�

þQ
π

I
∂D

ϕdθ þ 2Q2 ln R; ð2:36Þ

where θ represents the coordinate of the boundary ∂D.
We would like to study classical dS3 gravity from the

viewpoints of its dual CFT2. The asymptotic symmetry near
the future infinity is found to be Virasoro symmetry and its
central charge is obtained as [23] (see also [52])7

cð≡icðgÞÞ ¼ i · 6κ ¼ i
3l
2GN

ð2:37Þ

as in the well-known case of AdS3 by [53]. We are
interested in the leading order of GN , which is dual to that
of 1=cðgÞ. Solving (2.34), we find

b−2 ¼ icðgÞ

6
−
13

6
þOððcðgÞÞ−1Þ: ð2:38Þ

A unitary region of Liouville field theory is obtained by a
real positive b, however the above equation implies that b
has to take a complex value. The Liouville field theory with
a complex b has appeared before in the context of timelike
Liouville theory describing rolling closed string tachyon,
where we set b ¼ i, see, e.g., [54–56]. In the current case,
the central charge is large, so we need to set b ∼ 0.
Moreover, the order OððcðgÞÞ0Þ contribution implies that
Re b−2 < 0, which will be important later. At the leading
order in b ∼ 0, the action may be written as

b2SL ¼ 1

16π

Z
D
d2σ½∂aϕc∂aϕc þ 16λeϕc �

þ 1

2π

I
∂D

ϕcdθ þ 2 ln RþOðb2Þ ð2:39Þ

with finite ϕc ¼ 2bϕ and λ≡ πμb2. The boundary con-
dition is

7The central charge c is an exact quantity including full
quantum corrections since it is fixed by commutation relations
among Virasoro generators. The relation to gravitational param-
eters may receive quantum corrections, but they should not
violate the condition cðgÞ ∈R as the physical gravitational
parameters take real values.
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ϕcðzÞ ¼ −4 ln jzj þOðjzj0Þ ð2:40Þ

for jzj → ∞. Since b is a complex number, the Liouville
field is also assumed to take a complex value as emphasized
in [42]. In the study of rolling tachyon, we usually set μ as a
real number, which makes λ to be complex. Here we rather
set λ as a real number, which implies that μ is complex. We
will explain the reason of this choice later.
As mentioned above, we would like to determine the

saddle points of gravity path integral from Liouville two-
point function. The operator should have a large conformal
dimension if it is dual to a bulk field back reacting to create
a black hole geometry. Such an operator is usually called as
a heavy operator. At b ∼ 0, the two-point function can be
evaluated as

hVαðz1ÞVαðz2Þi≡
Z

Dϕce−SL exp ðb−1αðϕcðz1Þþϕcðz2ÞÞÞ:

ð2:41Þ

A heavy operator is defined with α ¼ η=b, where η is kept
finite for b → 0. The conformal dimension h≡ ihðgÞ of the
heavy operator and the energy E to create a black hole
geometry is related as

2hð≡2αðQ − αÞÞ ¼ ilE; 1 − 2η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8GNE

p
:

ð2:42Þ

In particular, a black hole exists only if the condition

0 < η <
1

2
ð2:43Þ

is satisfied. The upper bound is the same as so-called
Seiberg bound [57].
We regard the insertions of such heavy operators as a part

of action. The equation of motion thus becomes:

∂∂ϕc ¼ 2λeϕc − 2πη½δð2Þðσ − σ1Þ þ δð2Þðσ − σ2Þ�: ð2:44Þ

Notice that the equation is invariant under the constant shifts
ϕc → ϕc þ 2πin with integer n. Therefore, once ϕcð0Þ is a
solution to the equation of motion, then the same is true for

ϕcðnÞ ¼ ϕcð0Þ þ 2πin: ð2:45Þ

Near z ∼ z1, the heavy operator behaves as

ϕcðzÞ ∼ −4ηjz − z1j; ð2:46Þ

which implies that the physical metric is

ds2 ¼ 1

r4η
ðdr2 þ r2dθ2Þ ð2:47Þ

near z ∼ z1. In the presence of heavy operators, we use the
modified action [37,42]

b2S̃L ¼ 1

16π

Z
D−d1−d2

d2σ½∂aϕc∂aϕc þ 16λeϕc �

þ 1

2π

I
∂D

ϕcdθ þ 2 ln R

−
X
i

�
η

2π

I
∂di

ϕcdθi þ 2η2 ln ϵ

�
; ð2:48Þ

where di is a small disk with radius ϵ including zi. The
modified action at a saddle point was evaluated in [42] as

b2S̃L ¼ 2πiðnþ 1=2Þð1 − 2ηÞ
þ ð2η − 1Þ ln λþ 4ðη − η2Þ ln jz12j
þ 2½ð1 − 2ηÞ ln ð1 − 2ηÞ − ð1 − 2ηÞ�: ð2:49Þ

The semiclassical limit of two-point function (2.41) is
thus given by the sum of expð−S̃LÞ over some saddle points
(2.45).
Even in a nongravitational theory, it is difficult to

determine the set of all semiclassical saddle points of path
integral. Fortunately, the exact expression of Liouville
two-point function is known as [36,37]

hVαðz1ÞVαðz2Þi ¼ jz12j−4αðQ−αÞ 2π
b2

½πμγðb2Þ�ðQ−2αÞ=b

× γ

�
2α

b
− 1 −

1

b2

�
γð2bα − b2Þδð0Þ:

ð2:50Þ

Here we defined

γðxÞ ¼ ΓðxÞ
Γð1 − xÞ : ð2:51Þ

The delta function in the right-hand side of (2.50) comes
from the fact that hVαVα0 i ∝ δðα − α0Þ. We then read off the
set of semiclassical saddles from the exact expression. For
b ∼ 0, the two-point function reduces to

hVαðz1ÞVαðz2Þi ∼ δð0Þjz12j−4ηð1−ηÞ=b2λð1−2ηÞ=b2

×

�
γðb2Þ
b2

�ð1−2ηÞ=b2
γ

�
2η − 1

b2

�
: ð2:52Þ

At the region of b ∼ 0, we can easily see8

8Throughout this paper, we promise that log z for z∈C takes
the principal value, satisfying −π < Im log z ≤ π. By using this,
az with a; z∈C is defined as az ≡ ez log a. Note that some
properties, e.g., logðabÞ ¼ log aþ log b, may be lost for com-
plex case.
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�
γðb2Þ
b2

�ð1−2ηÞ=b2
∼ exp

�
2 − 4η

b2

�
ln

1

b2
− πi

��
; ð2:53Þ

where −πi term comes from the difference of branches
between ln 1

b2 and ln
1
b4. Furthermore, we can find (see [42])

γ

�
2η − 1

b2

�
∼ ðe−πið1−2ηÞ=b2 − eπið1−2ηÞ=b2Þ

× exp

�
4η − 2

b2

�
lnð1 − 2ηÞ

þ ln
1

b2
− πi − 1

��
ð2:54Þ

by recalling that now Reb−2 < 0 as in (2.38). Here we have
used Stirling’s approximation

ΓðxÞ ¼ expðx ln x − xþOðln xÞÞ; ð2:55Þ

for Re x > 0 and

ΓðxÞ ¼ 1

eπix − e−πix
expðx lnð−xÞ − xþOðlnð−xÞÞÞ;

ð2:56Þ

for Re x < 0, and an identity lnð−1=b2Þ ¼ lnð1=b2Þ − πi. In
summary, the two-point function behaves near b ∼ 0 as

hVαðz1ÞVαðz2Þi ∼ δð0Þjz12j−4ηð1−ηÞ=b2λð1−2ηÞ=b2

× ðe−πið1−2ηÞ=b2 − eπið1−2ηÞ=b2Þ

× exp

�
−

2

b2
½ð1 − 2ηÞ lnð1 − 2ηÞ

− ð1 − 2ηÞ�
�
: ð2:57Þ

This is the same as the sum of expð−S̃LÞ at the saddle points
with n ¼ −1, 0. For b−2 ∼ icðgÞ=6 with cðgÞ ≫ 1, the
absolute value of two-point function behaves as

jhVαðz1ÞVαðz2Þij∼ jeπcðgÞ
6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8GNE

p
−e−

πcðgÞ
6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8GNE

p
j; ð2:58Þ

where we have used (2.42). Notice that the jz12j dependence
is canceled due to the purely imaginary power of
−4ηð1 − ηÞ=b2, see Appendix A for the arguments. With
(1.16) and (1.17), we can read off the contributions corre-
sponding to those to the Gibbons-Hawking entropy.
Compared with (2.30), we can see that the possible saddles
are with n ¼ −1, 0. This reproduces the result obtained from
the criteria of allowable complex geometry in [3].
Let us pause here to explain why we set the redefined

parameter λ≡ πb2μ to be real. For simplicity, let us focus
on a vacuum amplitude. In the CFT side, it was computed
in [7] as

ZCFT ≃ Ce
πcðgÞ
6 λi

cðgÞ
6 ; ð2:59Þ

where C is a constant independent of cðgÞ. On the other
hand, the Hartle-Hawking wave functional of universe
should behave as (1.17),

Ψ ∼ exp ðSGH=2þ iIÞ: ð2:60Þ
We have already seen that the part SGH agrees among two
dual descriptions. Therefore, we should identify as

I ¼ cðgÞ

6
ln λ: ð2:61Þ

Since I is real, the above identification implies that λ
should be real as well. In other words, if the Liouville
theory at large central charge is dual to the geometry for
Hartle-Hawking wave function, then λ should be real.

III. GEOMETRIES DUAL
TO MULTIPOINT FUNCTIONS

In the previous section, we have examined the two-point
functions of heavy operators in Liouville field theory. From
their behaviors at the semiclassical limit with b ∼ 0, we
have read off the saddle points of the path integral in the
Chern-Simons gravity we should take. In this section, we
extend the analysis to the cases with multipoint functions of
heavy operators in Liouville field theory. Namely, we
identify the wave functional of the Chern-Simons gravity
with Liouville n-point functions as

Ψ ¼ hVα1ðz1Þ…VαnðznÞi: ð3:1Þ

Here we require that the Liouville momenta αi of vertex
operators scale as αi ¼ ηi=b with ηi fixed for b → 0.
Generically, the geometries dual to n-point functions can
be realized by S3 with n conical deficits connected inside
the bulk.9 As pointed out in [42], we can insert mono-
dromies along the defect lines and the different monodro-
mies lead to different saddle points of gravitational path
integral. As in the case of Liouville two-point functions, we
shall read off the saddle points of the gravitational path
integral from the semiclassical analysis of Liouville multi-
point functions. In the next subsection, we first examine the
geometries dual to Liouville three-point functions. The
thee-point coefficients are obtained by so-called DOZZ
formula [36,37], and their semiclassical behaviors were
already examined in [42]. Applying their analysis, we
read off the saddle points of gravitational path integral.
In Sec. III B, we similarly examine the Liouville four-point

9The Hartle-Harking wave functional is realized by a geometry
starting from hemisphere and connecting to Lorentzian dS. After
taking the square of the wave functional, only the part corre-
sponding to the sphere remains as the part corresponding to the
Lorentzian dS gives only a phase factor, see, e.g., [7].
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functions at the semiclassical limit and read off the saddle
points of dual gravity theory, see [58] for a related work.
The extensions to more higher-point functions of Liouville
field theory are analyzed in Appendix III C. In Sec. III D,
we consider some specific geometries constructed in [6,7],
which are related to S3 with two linked (unlinked) Wilson
lines in Chern-Simons gauge theory. We determine the
set of saddle points of gravitational path integral from

Liouville four-point functions and compare with the pre-
vious results in [6,7].

A. Three-point functions

We would like to evaluate the semiclassical limits of
three-point functions in Liouville field theory. The explicit
form of three-point function is known in [36,37]:

hVα1ðz1; z̄1ÞVα2ðz2; z̄2ÞVα3ðz3; z̄3Þi ¼
Cðα1; α2; α3Þ

jz12j2ðh1þh2−h3Þjz13j2ðh1þh3−h2Þjz23j2ðh2þh3−h1Þ ; ð3:2Þ

Cðα1; α2; α3Þ ¼ ½λγðb2Þb−2b2 �ðQ−
P

i
αiÞ=b ϒ0

bð0Þϒbð2α1Þϒbð2α2Þϒbð2α3Þ
ϒbð
P

iαi −QÞϒbðα1 þ α2 − α3Þϒbðα2 þ α3 − α1Þϒbðα3 þ α1 − α2Þ
: ð3:3Þ

See Appendix B for the definition and properties of the
Upsilon function ϒbðxÞ. Here ϒ0

bðxÞ denotes the derivative
with respect to x. As mentioned above, we consider the case
where all the external operators are heavy, i.e. αi ¼ ηi=b
with b → 0 while ηi kept fixed. Here we will consider real
ηi, related to the bulk energy Ei as 2ηi ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8GNEi

p
,

which satisfies the Seiberg bound 0 < ηi < 1=2. As argued
in [42], we can further divide them into two possible
regions, called Region I and Region II in that paper:

Region I∶
X
i

ηi > 1; ð3:4Þ

Region II∶

8<
:
P
i
ηi < 1;

ηi þ ηj − ηk > 0:
ð3:5Þ

The condition of Region I comes from requiring the
convergence of path integral. On the other hand, the
original path integral over real ϕ does not converge in

Region II, which leads us to taking complex saddles into
account. The second condition in (3.5) is also satisfied in
Region I without any extra conditions. Further meanings of
the conditions will be explained below. First we evaluate a
three-point function for each region.
It is easily checked that the first term is universally

behaved as

½λγðb2Þb−2b2 �ðQ−
P

i
αiÞ=b

≃ exp

�
1 −

P
iηi

b2
log λþ 1 −

P
iηi

b2
log

1

b2

�
: ð3:6Þ

The semiclassical limits of the other terms are evaluated by
using the formula described in Appendix B. In particular,
the behavior of ϒbð

P
i αi −QÞ depends on which region ηi

belong to.
Region I In this region, we can apply the asymptotic

formula (B7) to every ϒb function in the DOZZ for-
mula (3.3). The result is

Cðα1; α2; α3Þ ∼ λð1−
P

i
ηiÞ=b2 exp

�
1

b2

�
1 −

X
i

ηi þ Fð2η1Þ þ Fð2η2Þ þ Fð2η3Þ þ Fð0Þ

− F

�X
i

ηi − 1

�
− Fðη1 þ η2 − η3Þ − Fðη2 þ η3 − η1Þ − Fðη3 þ η1 − η2Þ

��
; ð3:7Þ

where FðηÞ is defined through integral in (B5). Since ηi are all real-valued while b2 and conformal weights are purely
imaginary, the absolute value is

jhVα1ðz1; z̄1ÞVα2ðz2; z̄2ÞVα3ðz3; z̄3Þij2 ∼Oð1Þ: ð3:8Þ

This result may be related to the fact that there is no bulk dual to the three-point functions in this regime. In other words, we
cannot construct the geometry of two-sphere with three conical deficits whose deficit angles are given by πηi.
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Region II Since
P

i ηi − 1 < 0, we have to use the recursion relation (B1)

ϒb

�P
iηi − 1

b

�
∼
b1−

2ð
P

i
ηi−1Þ

b2

γ
	P

i
ηi−1
b2


ϒb

�P
iηi
b

�
: ð3:9Þ

By using this, (3.3) approximates

Cðα1; α2; α3Þ ∼
�
λ
1

b4

�ð1−
P

i
ηiÞ=b2

γ

�P
iηi − 1

b2

�
ϒ0

bð0Þϒbð2α1Þϒbð2α2Þϒbð2α3Þ
ϒbð
P

iαiÞϒbðα1 þ α2 − α3Þϒbðα2 þ α3 − α1Þϒbðα3 þ α1 − α2Þ
: ð3:10Þ

Furthermore, since Re ½ðPi ηi − 1Þ=b2� > 0, we have

γ

�P
iηi − 1

b2

�
∼ ðe−πi

1−
P

i
ηi

b2 − eπi
1−
P

i
ηi

b2 Þ exp
�
−

2

b2

�
1 −

X
i

ηi

��
log

�
1 −

X
i

ηi

�
þ log

1

b2
− πi − 1

��
: ð3:11Þ

The πi factor, which comes from logð−1=b2Þ ¼ logð1=b2Þ − πi, is canceled with�
1

b4

�ð1−
P

i
ηiÞ=b2 ¼ exp

�
1 −

P
iηi

b2
log

1

b4

�
¼ exp

�
2ð1 −PiηiÞ

b2

�
log

1

b2
− πi

��
: ð3:12Þ

Therefore, by using the asymptotic formula (B7), we find

Cðα1; α2; α3Þ ∼ ðe−πi
1−
P

i
ηi

b2 − eπi
1−
P

i
ηi

b2 Þλð1−
P

i
ηiÞ=b2 exp

�
1

b2

�
Fð2η1Þ þ Fð2η2Þ þ Fð2η3Þ þ Fð0Þ − F

�X
i

ηi

�

− Fðη1 þ η2 − η3Þ − Fðη2 þ η3 − η1Þ − Fðη3 þ η1 − η2Þ

þ 2

�
1 −

X
i

ηi

�
log

�
1 −

X
i

ηi

�
− 2

�
1 −

X
i

ηi

���
: ð3:13Þ

We can see that the two saddles N ¼ −1, 0 in Eq. (4.31) of [42] contribute to the DOZZ formula (3.3). Thus the absolute
value of the three-point function goes to

jhVα1ðz1; z̄1ÞVα2ðz2; z̄2ÞVα3ðz3; z̄3Þij2 ∼ exp

�
πcðgÞ

3

�
1 −

X
i

ηi

��
: ð3:14Þ

Let us consider the bulk configurations dual to three-
point functions. The three insertions are parametrized by ηi
with i ¼ 1, 2, 3 as above. We are interested in type II
region: 0 ≤ ηi ≤ 1=2,

P
i ηi < 1, and 0 < ηi þ ηj − ηk. The

operator insertion with ηi is known to create a conical
deficit with deficit angle 4πηi. The way to create three
conical deficits on S2 is summarized in subsection 4.2 of
[42]. In particular, we can see that the area of the geometry
is ð1 −Pi ηiÞ times that of S2. The dual geometry may be
constructed with the metric of the form:

ds2 ¼ dθ2 þ cos2 θds2con; ð3:15Þ

where ds2con is the metric of S2 with three conical deficits.10

From the construction, we can see that the volume of the

geometry is ð1 −Pi ηiÞ times that of S3. This reproduces
the result from Liouville three-point function.
Let us discuss generic cases with s insertions of vertex

operators on S2 in the Liouville field theory. The dual
geometry in the Chern-Simons theory may be given by S3

with s defect lines. The action of Chern-Simons theory is
given by (2.14). Precisely speaking, we need to add the
boundary term

S ¼ SCS½A� − SCS½Ã� þ
κ

4π

Z
∂M

TrðA ∧ ÃÞ; ð3:16Þ

where ∂M represents the boundary of the base manifold
M. Using the topological nature of Chern-Simons theory,
we may put the starting (ending) points of the defect lines to
the north (south) pole of S3, see Fig. 1. For solutions to the
equations of motion, only nontrivial contributions come
from the boundary (defect) of the manifold and the

10It would be nice if we can construct the metric ds2con
explicitly for any number of conical defects, see, e.g., [59,60].
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topologically nontrivial configuration. For one insertion of
defect line, the value of action is shifted by

π

3
cðgÞmiηi ð3:17Þ

with integer mi. Adding the topological contribution with
the bulk winding number n, we have

π

3
cðgÞ
�
n −

Xs
i¼1

miηi

�
: ð3:18Þ

See Sec. 6 of [42] for details. The results from Liouville
three-point functions may be reproduced from setting

n ¼ m1 ¼ m2 ¼ m3 ¼ �1: ð3:19Þ

The leading contribution comes from the case with þ1.

B. Four-point functions

In this subsection, we consider the following generic
scalar four-point function in Liouville field theory:

Gðz; z̄Þ≡ hV1ð0ÞV2ðz; z̄ÞV3ð1ÞV4ð∞Þi; ð3:20Þ

where Vi (i ¼ 1, 2, 3, 4) have the momenta αi ¼ ηi=b and
the conformal weights hi. From the Seiberg bound, every ηi
satisfies 0 < ηi < 1=2. If they satisfy Re α1 þ Re α2 >
ReðQ=2Þ and Reα3 þ Reα4 > ReðQ=2Þ, the four-point
function can be decomposed as

Gðz; z̄Þ ¼ 1

2

Z
∞

−∞

dP
2π

C

�
α1; α2;

Q
2
− iP

�
C

�
α3; α4;

Q
2
þ iP

�
× F 12

34ðhPjzÞF 12
34ðhPjz̄Þ ð3:21Þ

by using the three-point coefficient Cðα1; α2;α3Þ of the
form (3.3) and the conformal block F 12

34ðhjzÞ.
We are interested in the insertions of four heavy

operators αi ¼ ηi=b with real ηi such that the four-point

function (3.20) has a dual geometry with four conical
deficits. Let us discuss the condition on ηi in order to exist
such a dual geometry. The dual geometry is given in the
form of (3.15), where ds2con is the metric of S2 with four
conical deficits in this case. The sphere with conical deficits
are embedded to a spherical quadrangle in a unit two-
sphere. Assuming there exists a spherical quadrangle with
four angles θi ¼ πð1 − 2ηiÞ (i ¼ 1, 2, 3, 4). The spherical
quadrangle can be split into two spherical triangles in the
same way as the ordinary triangulation. There are multiple
ways to triangulate. Here we triangulate it by a geodesic
that splits θ2 and θ4, then we get two spherical triangles
with angles θ1;φ2;φ4 and φ̃2; φ̃4; θ3, where φ2 þ φ̃2 ¼ θ2
and φ4 þ φ̃4 ¼ θ4, see Fig. 2. Each spherical triangle has to
satisfy the same condition as (3.5), therefore

θ1 þ φ2 þ φ4 > π; θ1 þ φ2 − φ4 < π;

φ2 þ φ4 − θ1 < π; φ4 þ θ1 − φ2 < π; ð3:22Þ

θ3 þ φ̃2 þ φ̃4 > π; θ3 þ φ̃2 − φ̃4 < π;

φ̃2 þ φ̃4 − θ3 < π; φ̃4 þ θ3 − φ̃2 < π: ð3:23Þ

Combining the two inequalities in each column, and
repeating the same analysis for all ways of triangulation,
we then obtain necessary conditions

X
i

ηi < 1;

0 < ηi þ ηj þ ηk − ηl < 1; ði ≠ j ≠ k ≠ lÞ;
−1 < ηi þ ηj − ηk − ηl < 1; ði ≠ j ≠ k ≠ lÞ: ð3:24Þ

In particular, due to the first condition of (3.24), either η1 þ
η2 > 1=2 or η3 þ η4 > 1=2 is broken. Hence αi’s do not
satisfy the condition for the conformal block decomposi-
tion (3.21) to hold. Therefore we have to be careful for
evaluating the four-point function.

FIG. 2. S2 with four conical deficits can be embedded in S2 as a
spherical quadrangle with angles θi (i ¼ 1, 2, 3, 4). This picture
shows one way of triangulation by a geodesic that splits θ2 and θ4
into θ2 ¼ φ2 þ φ̃2 and θ4 ¼ φ4 þ φ̃4. We can also consider
another way of triangulation by splitting θ1 and θ3.

FIG. 1. Utilizing the topological nature of Chern-Simons
gravity, conical defect lines are set such as to start from
(end on) the north (south) pole of S3.
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First we consider the casewhere the operators satisfy η1 þ
η2 > 1=2 and η3 þ η4 < 1=2 for simplicity. The calculation
for this case is similar to that done in Sec. 5 of [58], although
the authors of the paper regard η3 and η4 as perturbatively

small. When η3 þ η4 < 1=2, some poles of the DOZZ
coefficient Cðα3; α4; Q=2þ iPÞ cross the integral contour
along the real axis in P-plane. In that case, the conformal
block decomposition has contributions from the poles11

Gðz; z̄Þ ¼ i
X

poles crossing R

C

�
α1; α2;

Q
2
− iP

�
ResC

�
α3; α4;

Q
2
þ iP

�
F 12

34ðhPjzÞF 12
34ðhPjz̄Þ

þ 1

2

Z
∞

−∞

dP
2π

C

�
α1; α2;

Q
2
− iP

�
C

�
α3; α4;

Q
2
þ iP

�
F 12

34ðhPjzÞF 12
34ðhPjz̄Þ: ð3:25Þ

Let us analyze the pole structure of Cðα3; α4; Q=2þ iPÞ.
The zero-point structure of ϒbðxÞ was analyzed in [55] (see
also [61]), where it was shown that the simple zeros of
ϒbðxÞ are at

x∈ − bN −
1

b
N or x∈Qþ bNþ 1

b
N ð3:26Þ

(N includes 0) and it has no poles. We can deduce that the
factors in Cðα3; α4; Q=2þ iPÞ that produce the poles are
ϒbðα3 þ α4 þ iP −Q=2Þ and ϒbðα3 þ α4 − iP −Q=2Þ in
the denominator, whose zero points are given by

�iP ¼ −α3 − α4 þ
Q
2
−mb −

n
b
; ð3:27Þ

�iP ¼ −α3 − α4 þ
Q
2
þ ðm̃þ 1Þbþ ñþ 1

b
; ð3:28Þ

with non-negative integers m; n; m̃; ñ. Since we are con-
sidering the range of Re α3 þ Re α4 < ReðQ=2Þ, taking the
semiclassical limit b → 0, the poles that cross the real axis
are [58]

�iPm ≡ −α3 − α4 þ
Q
2
−mb; m ¼ 0; 1;…; ð3:29Þ

i.e. only (3.27) with n ¼ 0 contribute to the conformal
block decomposition. Therefore we have

Gðz; z̄Þ ¼ i
X∞
m¼0

Cðα1; α2; Q − α3 − α4 −mbÞResCðα3; α4; α3 þ α4 þmbÞF 12
34ðhPm

jzÞF 12
34ðhPm

jz̄Þ

þ 1

2

Z
∞

−∞

dP
2π

C

�
α1; α2;

Q
2
− iP

�
C

�
α3; α4;

Q
2
þ iP

�
F 12

34ðhPjzÞF 12
34ðhPjz̄Þ: ð3:30Þ

Let us denote the term that comes from the residue at αm ¼ α3 þ α4 þmb as

am ≡ iCðα1; α2; Q − α3 − α4 −mbÞResCðα3;α4; α3 þ α4 þmbÞF 12
34ðhPm

jzÞF 12
34ðhPm

jz̄Þ: ð3:31Þ
First we consider the semiclassical limit of the m ¼ 0 residue a0. Since ϒbðxÞ ≃ ϒ0

bð0Þx for x ≪ 1, we have

iCðα1; α2; Q − α3 − α4ÞResCðα3; α4;α3 þ α4Þ ≃ ðλγðb2Þb−2b2Þ 1

b2
ð1−
P

i
ηiÞ

×
ϒ0

bð0Þϒbð2α1Þϒbð2α2Þϒbð2α3 þ 2α4Þ
ϒbð
P

iαi −QÞϒbðα1 þ α2 − α3 − α4ÞϒbðQþ α1 − α2 − α3 − α4ÞϒbðQ − α1 þ α2 − α3 − α4Þ
: ð3:32Þ

From Seiberg bound (2.43), the conditions for the existence of the dual geometry (3.24), and the current assumption
η1 þ η2 > 1=2; η3 þ η4 < 1=2, we can see that the arguments of all Upsilon functions but ϒbð

P
i αi −QÞ are in the range

0 < Re x < ReQ, which is the condition that the asymptotic formula (B7) can be used. Due to ReðPi αi −QÞ < 0 from the
first condition of (3.24), we have to use the defining recursion relation (B1):

ϒb

�P
iηi − 1

b

�
¼ γ

�P
iηi − 1

b2

�
−1
b1þ

2

b2
ð1−
P

i
ηiÞϒb

�P
iηi
b

�
; ð3:33Þ

11In this paper, we focus on the contribution from the poles. We are currently examining whether the contribution from the integration
over P can be interpreted as semiclassical saddles or not. See also arguments at the end of Sec. 5 of [58].
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then the residue (3.32) becomes

iCðα1; α2; Q − α3 − α4ÞResCðα3; α4;α3 þ α4Þ ∼ ðλb−4Þ 1

b2
ð1−
P

i
ηiÞγ
�P

iηi − 1

b2

�

×
ϒ0

bð0Þϒbð2α1Þϒbð2α2Þϒbð2α3 þ 2α4Þ
ϒbð
P

iαiÞϒbðα1 þ α2 − α3 − α4ÞϒbðQþ α1 − α2 − α3 − α4ÞϒbðQ − α1 þ α2 − α3 − α4Þ
: ð3:34Þ

Due to Reb2 < 0, we have

γ

�P
iηi − 1

b2

�
∼
�
e−iπð1−

P
i
ηiÞ=b2 − eiπð1−

P
i
ηiÞ=b2

�
exp

�
−

2

b2

�
1 −

X
i

ηi

��
ln

�
1 −

X
i

ηi

�
þ ln

1

b2
− πi − 1

��
: ð3:35Þ

The πi factor is canceled with

�
1

b4

� 1

b2
ð1−
P

i
ηiÞ ¼ exp

�
1

b2

�
1 −

X
i

ηi

�
log

�
1

b4

��
¼ exp

�
2

b2

�
1 −

X
i

ηi

�
log

�
1

b2
− πi

��
: ð3:36Þ

By using the formula for the semiclassical limit of the ϒb function (B7), we finally obtain

a0 ∼ ðe−iπð1−
P

i
ηiÞ=b2 − eiπð1−

P
i
ηiÞ=b2Þλð1−

P
i
ηiÞ=b2 exp

�
1

b2

�
Fð2η1Þ þ Fð2η2Þ þ Fð2η3 þ 2η4Þ þ Fð0Þ

− Fðη1 þ η2 þ η3 þ η4Þ − Fðη1 þ η2 − η3 − η4Þ − Fð1þ η1 − η2 − η3 − η4Þ − Fð1 − η1 þ η2 − η3 − η4Þ

− 2

�
1 −

X
i

ηi

�
ln

�
1 −

X
i

ηi

�
þ 2

�
1 −

X
i

ηi

���
F 12

34ðα3 þ α4jzÞF 12
34ðα3 þ α4jz̄Þ: ð3:37Þ

Next let us consider all terms am. Note that the semiclassical conformal blocks behave as [62] (see [63] for a proof in that
case where c; hi; hP are all real)

F 12
34ðhPjzÞ ∼ exp

�
−
c
6
f

�
hi
c
;
hP
c
; z

��
: ð3:38Þ

Since c is pure imaginary as in (2.37) and the ratios hi=c; hP=c are real at the leading order in 1=c, we can regard the
semiclassical conformal block as a pure phase. In the semiclassical limit b → 0, a ratio amþ1=am behaves as

amþ1

am
∼

A
ðmþ 1Þb2 ; ð3:39Þ

where A is a real constant given by

A ¼ −
γð2η3 þ 2η4Þ2γð2η3 þ 2η4 − 1Þ2γðη1 þ η2 − η3 − η4Þ

γð2η3Þγð2η4Þγð2η3 þ 2η4 − 1Þγð−η1 þ η2 þ η3 þ η4Þγðη1 − η2 þ η3 þ η4Þγð
P

iηi − 1Þ ð3:40Þ

by using the recursion relations (B1) and the asymptotic behavior of γðxÞ ∼ x−2 for x ≪ 1. Also note that γð1 − xÞ ¼ γðxÞ−1.
Each residue is then

am ≃
1

m!

�
A
b2

�
m
a0: ð3:41Þ

Therefore the semiclassical limit of the sum of the discrete terms is

X∞
m¼0

am ≃ exp

�
A
b2

�
a0: ð3:42Þ

Thus we finally obtain the semiclassical limit of the four-point function:
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Gðz; z̄Þ ∼ ðe−iπð1−
P

i
ηiÞ=b2 − eiπð1−

P
i
ηiÞ=b2Þλð1−

P
i
ηiÞ=b2eA=b2

× exp

�
1

b2

�
Fð2η1Þ þ Fð2η2Þ þ Fð2η3 þ 2η4Þ þ Fð0Þ − Fðη1 þ η2 þ η3 þ η4Þ

− Fðη1 þ η2 − η3 − η4Þ − Fð1þ η1 − η2 − η3 − η4Þ − Fð1 − η1 þ η2 − η3 − η4Þ

− 2

�
1 −

X
i

ηi

�
ln

�
1 −

X
i

ηi

�
þ 2

�
1 −

X
i

ηi

���
F 12

34ðα3 þ α4jzÞF 12
34ðα3 þ α4jz̄Þ: ð3:43Þ

We can see that two saddle points contribute. Since the conformal weights are purely imaginary in b ∼ 0, the conformal
block (3.38) just gives a phase. Therefore in the semiclassical limit b−2 ∼ icðgÞ=6, the absolute value of the four-point
function is

jGðz; z̄Þj ∼ exp

�
πcðgÞ

6

�
1 −

X
i

ηi

��
− exp

�
−πcðgÞ

6

�
1 −

X
i

ηi

��

∼ sinh

�
πcðgÞ

6

�
1 −

X
i

ηi

��
: ð3:44Þ

Even when η1 þ η2 < 1=2 and η3 þ η4 < 1=2, the cal-
culation is essentially same to the above case. In this case
both two DOZZ coefficients have poles, but the leading
contribution comes from the “minimal” pole among α1 þ
α2 and α3 þ α4. If η1 þ η2 > η3 þ η4, then the minimal pole
is at α3 þ α4 instead. Finally we have the same result as the
above case.

C. Higher-point functions

We can extend the above calculations to higher-point
functions. For simplicity, we only consider five-point
functions

hV1ð0ÞV2ðz2; z̄2ÞV3ðz3; z̄3ÞV4ð1ÞV5ð∞Þi ð3:45Þ

for Liouville momenta αi ¼ ηi=b. The extension to general
correlation functions is straightforward.
First of all, we would like to identify the regions of ηi

from the condition for the dual geometry to exist. The dual
geometry is expected to be S3 with five conical defects with
deficit angles 4πηi with (3.15), each section of which can
be mapped to a spherical pentagon with five angles θi ¼
πð1 − 2ηiÞ in S2. A spherical pentagon can be split into a
spherical triangle and a spherical quadrangle. Applying
conditions (3.5) and (3.24) to each way of splitting, we
finally obtain necessary conditions

X
i

ηi < 1;

0 < ηi þ ηj þ ηk þ ηl − ηm < 1; ði ≠ j ≠ k ≠ l ≠ mÞ;
−1 < ηi þ ηj þ ηk − ηl − ηm < 1; ði ≠ j ≠ k ≠ l ≠ mÞ:

ð3:46Þ

Furthermore, we assume η1 ≥ η2 ≥ η3 ≥ η4 ≥ η5 without
loss of generality.
Let us perform the conformal-block expansion in a

channel

ð3:47Þ

If ηi satisfied η1 þ η2 ≥ 1=2 and η3 þ η4 ≥ 1=2, the con-
formal block decomposition have the form

hV1ð0ÞV2ðz2; z̄2ÞV3ðz3; z̄3ÞV4ð1ÞV5ð∞Þi

¼ 1

2

Z
R

dP1

2π

1

2

Z
R

dP2

2π
Cðα1; α2; αP1

ÞCðQ − αP1
; α3; αP2

Þ

× CðQ − αP2
; α4; α5ÞF 134

25 ðhP1
; hP2

jz2; z3Þ
× F 134

25 ðhP1
; hP2

jz̄2; z̄3Þ: ð3:48Þ

However this does not hold for ηi’s in the region (3.46), so
we have to discuss the analytic continuation in ηi. Let us
assume η1 þ η2 ≥ 1=2; η3 þ η4 þ η5 ≤ 1=2. First, the inte-
gral contour in P1-plane picks up the poles

αP2
¼ α4 þ α5 þmb; m ¼ 0; 1;… ð3:49Þ

of CðQ − αP2
; α4;α5Þ. As discussed in Sec. III B, the

contribution from summing over m finally gives just a
constant phase. Therefore we only focus on the contribu-
tion from the m ¼ 0 pole
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αP2
¼ α4 þ α5: ð3:50Þ

The residue for this pole is

ResCðQ − α4 − α5; α4; α5Þ ¼ 1: ð3:51Þ
Next, the integral contour of P1 picks up a pole

αP1
¼ α3 þ αP2

¼ α3 þ α4 þ α5 ð3:52Þ

of CðαP1
; α3; Q − α4 − α5Þ. The residue for this pole is

again

ResCðα3 þ α4 þ α5;α3; Q − α4 − α5Þ ¼ 1: ð3:53Þ

Therefore the coefficients of the conformal block decom-
position have the contributions from the first factor
Cðα1; α2; αP1

Þ at α1 ¼ α3 þ α4 þ α5:

Cðα1;α2; α3 þ α4 þ α5Þ ¼ ½λγðb2Þb−2b2 �1bðQ−
P

i
αiÞ

×
ϒ0

bð0Þϒbð2α1Þϒbð2α2Þϒbð2α3 þ 2α4 þ 2α5Þ
ϒbð
P

iαi −QÞϒbðα1 þ α2 − α3 − α4 − α5Þϒbðα1 − α2 þ α3 þ α4 þ α5Þϒbð−α1 þ α2 þ α3 þ α4 þ α5Þ
: ð3:54Þ

From the conditions (3.46) and the assumption η1 þ η2 ≥ 1=2; η3 þ η4 þ η5 ≤ 1=2, we can see that only the factor
ϒbð
P

i αi −QÞ produces the γ function in the same way as four-point functions. Thus finally we have

Cðα1; α2; α3 þ α4 þ α5Þ ∼ ðe−iπð1−
P

i
ηiÞ=b2 − eiπð1−

P
i
ηiÞ=b2Þλð1−

P
i
ηiÞ=b2

× exp

�
1

b2

�
Fð2η1Þ þ Fð2η2Þ þ Fð2η3 þ 2η4 þ 2η5Þ þ Fð0Þ − Fðη1 þ η2 þ η3 þ η4 þ η5Þ

− Fðη1 þ η2 − η3 − η4 − η5Þ − Fðη1 − η2 þ η3 þ η4 þ η5Þ − Fð−η1 þ η2 þ η3 þ η4 þ η5Þ

− 2

�
1 −

X
i

ηi

�
ln

�
1 −

X
i

ηi

�
þ 2

�
1 −

X
i

ηi

���
: ð3:55Þ

In the semiclassical limit b → 0, it is natural to expect that the five-point conformal block behaves as12

F 134
25 ðhP1

; hP2
jz2; z3Þ ∼ exp

�
−
c
6
f̃

�
hi
c
;
hP1

c
;
hP2

c
; z2; z3

��
ð3:56Þ

as in the case of four-point conformal block in (3.38). Therefore the conformal blocks contribute to just a phase factor. Thus
finally we obtain the semiclassical approximation

jhV1ð0ÞV2ðz2; z̄2ÞV3ðz3; z̄3ÞV4ð1ÞV5ð∞Þij ∼ e
πcðgÞ
6

ð1−
P

i
ηiÞ − e−

πcðgÞ
6

ð1−
P

i
ηiÞ: ð3:57Þ

In the same way, we can calculate general correlation functions with any number of heavy operator insertions satisfying
certain conditions coming from the existence of the dual geometry. Expanding correlation functions by using the linear
channel s-point conformal block

ð3:58Þ

the correlation function would give the same semiclassical
approximation as above calculations.
As mentioned at the end of Sec. III A, the saddle points of

dual Chern-Simons gravity are classified by bulk winding
number n and monodromies around the defects labeled mi

ði ¼ 1; 2;…; sÞ in case with Liouville s-point function.
Since the classical action for the saddle point with labels
n;mi is evaluated as (3.18), we conclude that the allowable
saddles are given with

n ¼ m1 ¼ � � � ¼ ms ¼ �1: ð3:59Þ
The leading contribution comes from the case with þ1.12See, e.g. [64] for a work on higher-point blocks.
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D. Four-point functions dual
to two bulk Wilson lines

In [6,7], a dS=CFT correspondence was proposed
between classical pure dS3 gravity and SU(2) WZW model
at the critical level k → −2 or at the large central charge.
Applying the CS/WZW correspondence [51], the WZW
model can be described by SU(2) Chern-Simons theory. In
this way, we have a curious relation between dS3 gravity
and Chern-Simons theory. We should emphasize here that
the relation is not the same as the Chern-Simons description
of dS3 gravity. For the Chern-Simons formulation of
classical gravity, we take the level to infinity k → i∞,
though the Chern-Simons description of WZW model uses
the critical level k → −2. Therefore, the two Chern-Simons
descriptions are quite different. It is natural to suspect that
they should be related as the triality relation of higher spin
symmetry in the dual CFT [33]. In any cases, we can
construct a geometry corresponding to Chern-Simons
theory at the critical level possible with Wilson loop
operators. In particular, the gravity solution was identified
in [6,7] corresponding to the configuration of two linked
(unlinked) Wilson loops on S3 in the Chern-Simons theory
at the critical level. According to [51], the configuration
corresponds to a four-point function of SU(2) WZWmodel
at the large central charge. Indeed, the partition function
was computed from the both sides of the holographic
duality and agreement was obtained.
In [6,7], it was assumed that the expressions for the SU

(2) WZW model at an integer level k can be analytically
continued to those at a complex k. In order to justify this, it
was first argued that SU(2) WZW model and the coset

SUð2Þk × SUð2Þ1
SUð2Þkþ1

ð3:60Þ

becomes the same at the critical level k → −2 as the SUð2Þk
part of the coset dominates at the limit. Moreover, it was
shown in [35] that correlation functions of the coset (3.60)
and Liouville field theory are the same. Therefore, it should
be possible to describe the geometry corresponding to the
two linked (unlinked) Wilson loops on S3 in the Chern-
Simons theory by a four-point function in Liouville field
theory at the semiclassical limit b → 0. Indeed, we show in

this subsection that the results obtained from the native
analytic continuation of S-matrix analysis lead to the
correct answers even including subleading terms at the
semiclassical limit.
We start by relating the CFT computations by four-point

functions and those by modular S-matrices. In order to
illustrate this, it is convenient to work with a rational CFT
like SUðNÞk WZW model. We will later consider a non-
rational CFT, i.e., Liouville field theory. We examine the
following four-point function

Cijðz; z̄Þ ¼
hO†

i ð∞ÞO†
jð1ÞOiðzÞOjð0Þi

hO†
iOiihO†

jOji
; ð3:61Þ

where Oj is a CFT operator and O†
j is its conjugate. We

define the function Cijðz; z̄Þ with a suitable normalization.
Inserting a complete set 1 ¼Pp jpihpj, we can decom-
pose the four-point function by the sum of conformal
blocks as

Cijðz; z̄Þ ¼
X
p

F ii
jjðpjzÞF̄ ii

jjðpjz̄Þ: ð3:62Þ

We are interested in the region with large central charge.
Then, we can argue that the identity block with p ¼ 0
dominates, see [65]. When considering z ∼ 0, then the
function behaves as

Cijðz; z̄Þ ∼ 1: ð3:63Þ

In the Chern-Simons formulation of WZW model, the
four-point function (3.61) describes two unlinked Wilson
loops. In order to obtain a configuration with two linked
Wilson loops, we perform a move of the holomorphic
coordinate z as in Fig. 3. Namely, we start from z ∼ 0, go
around z ¼ 1 anti-clockwise, then come back to z ∼ 0.13

This move yields a monodromy matrix as

FIG. 3. From the left to middle figures, we move the coordinate z around 1 anti-clockwise. From the middle to right figures, we glue
the holomorphic and anti-holomorphic parts of four-point function. In the Chern-Simons description, there appears two Wilson loops
and they are wrapped around each other.

13This procedure was used to compute out-of-time-order
correlators in 2d CFTs [66].
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F ii
jjðpjzÞ →

X
q

MpqF ii
jjðqjzÞ: ð3:64Þ

Combining the antiholomorphic part, where we do not
perform the move of z̄, we have

Cijðz; z̄Þ ∼M00F ii
jjð0jzÞF̄ ii

jjð0jz̄Þ ð3:65Þ

for z ∼ 0. The monodromy matrix is [67,68]

M00 ¼
S�ijS00S00
S00S0iS0j

: ð3:66Þ

As in Fig. 3, we can identify the four-point function as the
partition function of Chern-Simons theory with two linked
Wilson loops for the Chern-Simons theory, see [69]. We
thus find

jhO†
i ð∞ÞO†

jð1ÞOiðzÞOjð0Þij∼
���� SijS00

����; ð3:67Þ

which also implies that

jhO†
jOjij∼

���� S0jS00

���� ð3:68Þ

with i ¼ 0. Here the correlator with the insertion of the
identity operator O0 ≡ 1 is normalized as one,

h1i ¼ 1; ð3:69Þ

as usual. In [6,7], unnormalized sphere correlators are used
by adopting the convention of [51]. Specifically, the
normalization of partition function,

h1i ¼ S00; ð3:70Þ

was used. Taking into account the normalization, we have

jhO†
jOjij ∼ jS0jj; ð3:71Þ

and

jhO†
i ð∞ÞO†

jð1ÞOiðzÞOjð0Þij ∼ jSijj: ð3:72Þ

These results reproduce those in [6,7] from the modular
S-matrix of WZW model. In case with two unlined
Wilson loops, we should have (3.63). Using (3.71),
we find

jhO†
i ð∞ÞO†

jð1ÞOiðzÞOjð0Þij∼
���� S0iS0jS00

����: ð3:73Þ

Here we should keep track of nontrivial normalization S00.
This also reproduces a finding in [6,7].
Up to now we have assumed that the dual CFT is a

rational one. In the following, we show that the same is true
also for the case with Liouville field theory, which is a
nonrational CFT. We start from the two-point function. In
Sec. II B, we have shown that the Liouville two-point
function behaves as (2.58). The modular S-matrix of SU(2)
WZW model with level k is given by

Sjl ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

kþ 2

r
sin

�
π

kþ 2
ð2jþ 1Þð2lþ 1Þ

�
: ð3:74Þ

Plugging k ∼ −2þ 6i=cðgÞ and 2jþ 1 ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8GNEj

p
into

the above expression as in [6,7], we find

jS0jj ∼ jeπ
6
cðgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8GNEj

p
− e−

π
6
cðgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8GNEj

p
j: ð3:75Þ

This reproduces the subleading nonperturbative correc-
tions. We obtain the same conclusion even applying the
modular S-matrix of Liouville field theory between the
identity state p ¼ 0 and nondegenerate state given by [70]

S0j ¼ −2
ffiffiffi
2

p
sin 2πbðαj −Q=2Þ sin 2πb−1ðαj −Q=2Þ:

ð3:76Þ

We then consider the four-point function corresponding
to two linked Wilson loops in the Chern-Simons theory as
in Fig. 3. The modular S-matrix of Liouville theory among
nondegenerate operators are given by [70]

Sij ¼
ffiffiffi
2

p
cos 4πðαi −Q=2Þðαj −Q=2Þ: ð3:77Þ

Therefore, (3.72) leads to

jhO†
i ð∞ÞO†

jð1ÞOiðzÞOjð0Þij
∼ jc1e

π
6
cðgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8GNEi

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8GNEj

p
þ c2e

−π
6
cðgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8GNEi

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8GNEj

p
j

ð3:78Þ

with real coefficients c1, c2 both for SU(2) WZW model
and Liouville field theory for the large central charge. In the
following, we derive (3.78) directly from four-point func-
tions of Liouville field theory, or more precisely speaking,
four-point conformal blocks. We would like to read off the
monodromy matrix of four-point conformal blocks around
z ¼ 1. For this, we use the asymptotic behavior of
conformal block F ii

jjðpjzÞ near z ∼ 1, which was obtained
in [71] as
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F ii
jjðpjzÞ ∼

X
n;δκ¼�

cδκn ð1 − zÞc6κδκn ð3:79Þ

with

κδκn ¼ nð1 − nÞ − 1

2
þ
�
1

2
− n

�
ðð1 − 2ηiÞ þ δκð1 − 2ηjÞÞ

− δκ
ð1 − 2ηiÞð1 − 2ηjÞ

2
: ð3:80Þ

We take δκ ¼ � and n∈Z. The monodromy can be read
off as

F ii
jjðpjzÞ → exp

�
πic
3

κδκn

�
F ii

jjðpjzÞ: ð3:81Þ

The phase does not depend on the intermediate state p, but
it is anyway set as p ¼ 0. Performing the procedure in
Fig. 3, the absolute value of four-point function becomes

jhO†
i ð∞ÞO†

jð1ÞOiðzÞOjð0Þij

∼
X

δi;δj;δκ¼�;n

����hO†
iOiiδihO†

jOjiδj exp
�
−
πcðgÞκδκn

3

�����
ð3:82Þ

up to some coefficients. We already knew that the two-point
functions behave as

hO†
jOji ¼

X
δj¼�

cδjhO†
jOjiδj ;

hO†
jOjiδj ∼ exp δj

πcðgÞð1 − 2ηjÞ
6

ð3:83Þ

with real coefficients c�. We are now interested in the
identity block, which is defined by dividing the two-point
functions as in (3.61). Therefore, it is natural to think that
the terms linear in ð1 − 2ηiÞ and ð1 − 2ηjÞ come from the
two-point functions. This means that we should choose
n ¼ ðδi þ 1Þ=2 ¼ ðδjδκ þ 1Þ=2. This choice indeed leads
to (3.78).

IV. HIGHER-SPIN EXTENSION

With the Chern-Simons description of pure gravity
theory, it is straightforward to extend the previous analysis
to the case with higher-spin theory described by SLðN;CÞ
Chern-Simons gauge theory. As in the case of pure gravity,
we will first review the construction of AdS higher-spin
black holes, then perform the relevant analytic continuation
to obtain their dS higher-spin counterparts and classify the
possible saddles. We then determine the allowed set of
complex saddles from its dual CFT2, i.e., Toda field theory
in Sec. IV B.

A. Chern-Simons higher-spin gravity

In this subsection, we examine dS3 black hole solutions
of a higher-spin gauge theory described by SLðN;CÞ
Chern-Simons theory. For simplicity, we will first focus
on the simplest but nontrivial case with N ¼ 3. We again
start from the case with negative cosmological constant by
reviewing [43,44]. We then move to the case with positive
cosmological constant, see [45] for a related work.

1. Higher-spin AdS3 black holes

The higher-spin theory with spin s ¼ 2, 3 gauge
fields can be described by the action (2.1) but now the
one-forms A; Ā take values in slð3Þ. We may introduce the
slð3Þ generators Li ði ¼ �1; 0Þ and Wm ðm ¼ �2;�1; 0Þ
satisfying

½Li; Lj� ¼ ði − jÞLiþj; ½Li;Wm� ¼ ð2i −mÞWiþm;

½Wm;Wn� ¼ −
1

3
ðm − nÞð2m2 þ 2n2 −mn − 8ÞLmþn:

ð4:1Þ

We consider the configuration of gauge fields of the form
(2.4) as

A ¼ e−ρL0aeρL0dρ; Ā ¼ eρL0 āe−ρL0 − L0dρ ð4:2Þ

with

a ¼ azdzþ az̄dz̄; ā ¼ āzdzþ āz̄dz̄: ð4:3Þ

The configuration with Lorentzian configuration is given
by replacing z → xþ ¼ tþ ϕ and z̄ → −x− ¼ −tþ ϕ as
before. It was claimed in [43] (see [72] for a review) that the
gauge configuration,

a ¼
�
L1 −

2πLAdS

k
L−1 −

πWAdS

2k
W−2

�
dz

− μAdS
�
W2 −

4πLAdS

k
W0 þ

4π2ðLAdSÞ2
k2

W−2

þ 4πWAdS

k
L−1

�
dz̄; ð4:4Þ

and

ā ¼
�
L−1 −

2πL̄AdS

k
L1 −

πW̄AdS

2k
W2

�
dz̄

− μ̄AdS
�
W−2 −

4πL̄AdS

k
W0 þ

4π2ðL̄AdSÞ2
k2

W2

þ 4πW̄AdS

k
L1

�
dz; ð4:5Þ
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represents a higher-spin black hole geometry. In the
following, we consider the nonrotating case as

L̄AdS ¼ LAdS; W̄AdS ¼ −WAdS; μ̄AdS ¼ −μAdS: ð4:6Þ

The configuration reduces to the case of BTZ black hole in
(2.9) if we set WAdS ¼ μAdS ¼ 0.
In the presence of higher-spin gauge symmetry, the

definition of black hole is not obvious as mentioned above.
In [43], the authors have declared the conditions of higher-
spin black hole as follows; (i) The Euclidean geometry is
smooth and the spin-three field is nonsingular at the
horizon. (ii) In the limit μAdS → 0, the solution becomes

smoothly the BTZ black hole. (iii) The charge assignment
LAdS ≡ LAdSðτAdS; αAdSÞ and WAdS ≡WAdSðτAdS; αAdSÞ,
where τAdS is inverse temperature as introduced earlier in
the AdS-BTZ black hole, while we have also introduced a
new parameter here αAdSð≡τ̄AdSμAdSÞ, such that LAdS and
WAdS satisfy the integrability condition:

∂LAdS

∂αAdS
¼ ∂WAdS

∂τAdS
: ð4:7Þ

Here we clarify the meaning of the condition (iii) as the
others do not seem to need explanations. Let us consider the
partition function

ZðτAdS; αAdS; τ̄AdS; ᾱAdSÞ ¼ tre4π
2i½τAdSL̂AdSþαAdSŴAdS−τ̄AdS ˆ̄LAdS−ᾱAdS ˆ̄W

AdS�

¼ trCFTqL0− c
24uW0 q̄L̄0− c

24ūW̄0 : ð4:8Þ

Here we treat the hatted quantities as operators, i.e.

2πL̂AdS ¼ L0; 2π ˆ̄L
AdS ¼ L̄0; 2πŴAdS ¼ W0; 2π ˆ̄W

AdS ¼ W̄0: ð4:9Þ

Further, we set

q ¼ e2πiτ
AdS
; q̄ ¼ e2πiτ̄

AdS
; u ¼ e2πiμτ̄

AdS ¼ e2πiα
AdS
; ū ¼ e2πiμ̄τ

AdS ¼ e2πiᾱ
AdS
: ð4:10Þ

In order to obtain the thermodynamic meaning of LAdS and WAdS, we should have

LAdS ¼ hL̂AdSi ¼ −
i

4π2
∂ lnZ
∂τAdS

; WAdS ¼ hŴAdSi ¼ −
i

4π2
∂ lnZ
∂αAdS

: ð4:11Þ

The integrability of these equations leads to the condition (iii).
As in (2.13), it is convenient to introduce the holonomy matrix

Pe
R

a ¼ eΩ; Ω ¼ iβAdSðaz − az̄Þ ð4:12Þ

as it is invariant under the higher-spin gauge transformations. In [43], it is claimed that the conditions are satisfied by
requiring that the eigenvalues ofΩ are the same as the BTZ case. When the BTZ black hole is realized as a classical solution
of SL(3) Chern-Simons theory, the eigenvalues of Ω are given by ð2πi; 0;−2πiÞ. Equivalently, the conditions

trðΩ2Þ ¼ −8π2; trðΩ3Þ ¼ 0 ð4:13Þ

are required. For the gauge configuration (4.4), the conditions (4.13) become

0 ¼ −2048π2ðμAdSÞ3ðLAdSÞ3 þ 576πkμAdSðLAdSÞ2 − 864πkðμAdSÞ2WAdSLAdS þ 864πkðμAdSÞ3ðWAdSÞ2 − 27k2WAdS;

0 ¼ 256π2ðμAdSÞ2ðLAdSÞ2 þ 24πkLAdS − 72πμAdSWAdS þ 3k2

ðτAdSÞ2 : ð4:14Þ

We can check that solutions to these equations satisfy the condition (iii), see [43,44]. Moreover, defining

ζAdS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
32πðLAdSÞ3

s
WAdS; γAdS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πLAdS

k

r
μAdS; ð4:15Þ
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the solutions to the conditions (4.14) are obtained as

ζAdS ¼
1þ 16ðγAdSÞ2 − ð1 − 16

3
ðγAdSÞ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 128

3
ðγAdSÞ2

q
128ðγAdSÞ3 ;

βAdS ¼
ffiffiffiffiffiffiffiffiffi
πk

2LAdS

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16

3
ðγAdSÞ2 − 12γAdSζAdS

q : ð4:16Þ

If we take γAdS to zero, then ζAdS also goes to zero. This
means that the solution satisfies the condition (ii).
It is actually hard to see the last condition (i).

Fortunately, a good gauge transformation was found in
[73], and it was shown that the condition (i) is satisfied as
well. The authors considered the gauge transformation of
the form

A → gðρÞ−1AðρÞgðρÞ þ gðρÞ−1dgðρÞ;
Ā → gðρÞĀðρÞgðρÞ − dgðρÞgðρÞ−1; ð4:17Þ

where gðρÞ takes a value in SLð3;RÞ. The metric can be put
into the form of

grr ¼
ðCAdS − 2ÞðCAdS − 3Þ
ðCAdS − 2 − cosh2rÞ2 ;

gtt ¼ −
�
8πLAdS

k

��
CAdS − 3

ðCAdSÞ2
� ðat þ btcosh2rÞsinh2r

ðCAdS − 2 − cosh2rÞ2 ;

gϕϕ ¼
�
8πLAdS

k

��
CAdS − 3

ðCAdSÞ2
� ðaϕ þ bϕcosh2rÞsinh2r

ðCAdS − 2 − cosh2rÞ2

þ
�
8πLAdS

k

��
1þ 16

3
ðγAdSÞ2 þ 12γAdSζAdS

�
;

ð4:18Þ

where r ¼ ρ − ρþ with horizon expð2ρþÞ ¼ 2πLAdS=k and

ζAdS ¼ CAdS − 1

ðCAdSÞ3=2 : ð4:19Þ

Moreover, at and bt are functions of γAdS and CAdS as in
(C13). These coordinates describe the region outside the
black hole horizon. Inside the horizon, we should replace r
by iθ. In terms of CAdS, the entropy can be expressed in a
quite simple way as

S ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πkLAdS

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3

4CAdS

r
: ð4:20Þ

We obtain the expression by solving the thermodynamic
relations

τAdS ¼ i
4π2

∂S
∂LAdS ; αAdS ¼ i

4π2
∂S

∂WAdS ð4:21Þ

and the Eq. (4.14). This concludes our review of higher-
spin AdS black hole. We will now generalize the analysis to
the higher-spin dS cases in the next subsection.

2. Higher-spin dS3 black holes

We now extend the analysis above to the dS3 case as in
Sec. II A. We consider the Chern-Simons action (2.14) but
with the Chern-Simons level κ∈R. The solutions to the
equations of motion can be put into the forms (2.17). Thus,
in the inflation patch near the future infinity, we may use
the gauge configuration (2.4) but a is replaced by
e−ðπi=2ÞL0aeðπi=2ÞL0 , which is evaluated as

e−ðπi=2ÞL0aeðπi=2ÞL0

¼ i

�
L1 −

2πL
κ

L−1 −
πW
2κ

W−2

�
dz

− iμ

�
W2 −

4πL
κ

W0 þ
4π2L2

κ
W−2 þ

4πW
κ

L−1

�
dz̄:

ð4:22Þ

We define ā in a similar manner for nonrotating solution.
The rule of replacement we use is

k → iκ; LAdS → −iL; WAdS → W;

μAdS → −iμ; τAdS → iτ: ð4:23Þ

As in the case of AdS3, we can transform the gauge field
such that the metric is of the form

ds2 ¼ gρ̃ ρ̃ðρ̃Þdρ̃2 þ gttðρ̃Þdt2 þ gϕϕðρ̃Þdϕ2 ð4:24Þ

by applying the gauge transformation similar to (4.17).
Moreover, by changing ρ̃ → iθ, the metric becomes

ds2 ¼ g̃θθðθÞdθ2 þ g̃ttðθÞdt2 þ g̃ϕϕðθÞdϕ2: ð4:25Þ

We may perform analytic continuations as it → tE with
tE ∼ tE þ β. We then define the holonomy matrix for a
along the thermal cycle
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Pe
H

a ¼ eΩ; Ω ¼ βðaz þ az̄Þ: ð4:26Þ

The eigenvalues of Ω are gauge invariant, in particular,
they do not change under the gauge transformation of
the form (4.17). We require them to be the same as those for
the dS black hole without any higher-spin charges, i.e.,
ð2πi; 0;−2πiÞ or equivalently

trðΩ2Þ ¼ −8π2; trðΩ3Þ ¼ 0; ð4:27Þ

which become

0 ¼ −2048π2μ3L3 þ 576πκμL2 − 864πκμ2WL

þ 864πκμ3W2 − 27κ2W;

0 ¼ 256π2μ2L2 þ 24πκL − 72πκμW −
3κ2

τ2
: ð4:28Þ

We may further define ζ and γ by

ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

κ

32πL3

r
W; γ ¼

ffiffiffiffiffiffiffiffiffi
2πL
κ

r
μ; ð4:29Þ

and C is defined through the following relation:

ζ ¼ C − 1

C3=2 : ð4:30Þ

The entropy associated with the higher-spin black hole is

SGH ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffi
2πκL

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3

4C

r
: ð4:31Þ

In above, we have assigned the condition that the
eigenvalues of the holonomy matrix defined by (4.26)
are the same as those of dS black hole without any higher-
spin charges (4.28). However, it might be possible to
consider the gauge configuration obtained by a large gauge
transformation as in the case with N ¼ 2. We examine this
issue for genericN. We can see that the eigenvalues ofΩ for
the gauge configuration corresponding to dS black hole
without any higher-spin charges are 2πiðρ1; ρ2;…; ρNÞ,
where

ρj ¼
N þ 1

2
− j ðj ¼ 1; 2;…; NÞ: ð4:32Þ

As we will define below, these are the components of Weyl
vector of SUðNÞ in the orthogonal basis. If we require only
that the holonomy matrix expΩ is the same as the one for
dS black hole without any higher-spin charges, then the
eigenvalues of Ω can take

2πiðΛ1;Λ2;…;ΛNÞ; Λj ¼ mj þ ρj; mj ∈Z ð4:33Þ

satisfying
P

j mj ¼ 0. As in the case of N ¼ 2, the saddle
points of SL(N) Chern-Simons gravity may be labeled by
(n − 1) integers mi or Λi ¼ mi þ ρi. Defining
½eij�kl ¼ δi;kδj;l, the corresponding gauge configuration
may be given in a diagonal form as

a ¼ −i
XN
j¼1

ejjððρ − ηÞjdϕþ ΛjdtEÞ;

ā ¼ i
XN
j¼1

ejjððρ − ηÞjdϕ − ΛjdtEÞ: ð4:34Þ

The action corresponding to the configuration can be
evaluated as in [7]

−Sð≡SðΛÞGHÞ ¼
π

3
cðgÞ

ðρ − η;ΛÞ
ðρ; ρÞ ; Λ ¼

X
j

Λjϵj; ð4:35Þ

which takes a different value depending on the label Λ of
the saddle points. In the next subsection, we read off the
possible saddles from slðNÞ Toda field theory by compar-
ing the classical action at each saddle point as in the case
with Liouville field theory.

B. Toda description

In this subsection, we extend the Liouville theory
analysis in Sec. II B to that by slðNÞ Toda field theory.
We first introduce notations for slðNÞ Lie algebra. Let us
denote the orthonormal basis of RN by ϵj ðj ¼ 1; 2;…; NÞ
satisfying ðϵi; ϵjÞ ¼ δi;j. Then, the simple roots are given
by

ej ¼ ϵj − ϵjþ1 ðj ¼ 1; 2;…; N − 1Þ; ð4:36Þ

which satisfy ðei; ejÞ ¼ Kij with Kij being the Cartan
matrix for slðNÞ. The fundamental weights ωj ðj ¼ 1;
2;…; N − 1Þ satisfy ðωi; ejÞ ¼ δi;j and given by

ωj ¼
Xj
l¼1

ϵl −
j
N

XN
l¼1

ϵl: ð4:37Þ

The Weyl vector ρ is the half of the sum over all positive
root or equivalently the sum over fundamental weights as

ρ ¼
XN−1

j¼1

ωj ¼
XN
j¼1

ρjϵj ð4:38Þ

with ρj defined in (4.32).
We consider the Toda field ϕ ¼PN−1

j¼1 ϕjej or ϕj ¼
ðej;ϕÞ with ϕj ¼

P
N−1
i¼1 Kjiϕ

i. The action is given by
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ST ¼ 1

4π

Z
d2σ

ffiffiffĩ
g

p �
1

2
ð∂aϕ; ∂a0ϕÞg̃aa0 þ ðQ;ϕÞR̃

þ 4πμ
XN−1

j¼1

ebðej;ϕÞ
�
: ð4:39Þ

The background charge here is

Q ¼ ðbþ b−1Þρ; ð4:40Þ

and the central charge is

c ¼ N − 1þ 12ðQ;QÞ ¼ ðN − 1Þð1þ NðN þ 1Þ
× ðbþ b−1Þ2Þ: ð4:41Þ

We consider sphere amplitudes as in the Liouville case.
The theory is invariant under the combination of Weyl
transformation g̃aa0 → ΩðσÞg̃aa0 and ϕ → ϕ −Q ln ΩðσÞ.
Making use of it, we set g̃aa0 ¼ δaa0 except at the infinity
jzj → ∞ and the boundary condition

ϕ ¼ −Q ln jzj þOð1Þ ð4:42Þ

at jzj → ∞.
We consider the vertex operators of the form

Vα ¼ eðα;ϕÞ; ð4:43Þ

whose conformal weights are

hα ¼ h̄α ¼
ðα; 2Q − αÞ

2
: ð4:44Þ

The correlation functions are defined in the path integral
formulation as

hVα1ðz1Þ � � �VαnðznÞi ¼
Z

Dϕe−STVα1ðz1Þ � � �VαnðznÞ:

ð4:45Þ

We use the normalization of two-point function as

hVαðz1ÞV2Q−αðz2Þi ¼
δð0Þ

jz12j4hα
: ð4:46Þ

Performing a reflection relation, we obtain (see, e.g., [38])

hVαðz1ÞVα� ðz2Þi ¼
δð0ÞR−1ðαÞ
jz12j4hα

; ð4:47Þ

where the conjugate parameter is defined as

ðα; ejÞ ¼ ðα�; eN−jÞ: ð4:48Þ

The coefficient is

R−1ðαÞ ¼ AðαÞ
Að2Q − αÞ ð4:49Þ

with

AðαÞ ¼ ðπμγðb2ÞÞðQ−α;ρÞ=bY
e>0

Γð1 − bðQ − α; eÞÞ

× Γð−b−1ðQ − α; eÞÞ; ð4:50Þ

where the product is over the positive roots. In the
following, we set

Reα < ReQ ð4:51Þ

by performing a certain reflection to the vertex operator.
As in the Liouville case, we set b ∼ 0, Re b−2 < 0, and

λ≡ πμb2 real. In the semiclassical limit with finite N, the
central charge behaves as [7]

c ¼ NðN2 − 1Þ
b2

þ N − 1þOðbÞ; ð4:52Þ

which implies

b−2 ¼ icðgÞ

NðN2 − 1Þ −
1

NðN þ 1Þ þOððcðgÞÞ−1Þ: ð4:53Þ

We consider a two-point function of heavy operators with
α ¼ η=b. The equations of motion reduce to

∂
a
∂aϕ

j ¼ 4πμb2eϕ
j − 4πðη; ejÞ½δð2Þðσ− σ1Þþ δð2Þðσ− σ2Þ�:

ð4:54Þ

As in the case of Liouville description, suppose there exists
ϕcð0Þ as a classical solution to the equations of motion, then
we have multiple solutions

ϕcðnÞ ¼ ϕcð0Þ þ 2πin ð4:55Þ

with ðej; nÞ∈Z for all j. In other words, there are different
solutions labeled by N − 1 integers ðej; nÞ.
We can read off the semiclassical saddles of Toda field

theory from the exact expression (4.49) with (4.50) by
taking the limit of b → 0 with Re b−2 < 0. Near b ∼ 0, the
two-point function can be written as

R−1ðαÞ∼λ2ðρ−η;ρÞ=b2
�
γðb2Þ
b2

�
2ðρ−η;ρÞ=b2Y

e>0

Γðb−2ðη−ρ;eÞÞ
Γð−b−2ðη−ρ;eÞÞ :

ð4:56Þ

Using the Stirling’s formula, we obtain:
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�
γðb2Þ
b2

�
2ðρ−η;ρÞ=b2

∼ exp

�
−
8ðρ − η; ρÞ ln b

b2

�
ð4:57Þ

and

Γðb−2ðη− ρ; eÞÞ
Γð−b−2ðη− ρ; eÞÞ
∼ ðe−πiðρ−η;eÞ=b2 − eπiðρ−η;eÞ=b2Þ

× exp

�
2ðη− ρ; eÞ

b2
ðlnðρ− η; eÞ− 2 ln b− 1Þ

�
; ð4:58Þ

the asymptotic behavior of two-point function is found
to be

R−1ðαÞ ∼ λ2ðρ−η;ρÞ=b2
Y
e>0

ðe−πiðρ−η;eÞ=b2 − eπiðρ−η;eÞ=b2Þ

× exp
�X
e>0

2ðη − ρ; eÞ
b2

ðlnðρ − η; eÞ − 1Þ
�
:

ð4:59Þ

Taking the absolute value of two-point function of heavy
operators, we find

jhVαðz1ÞVα� ðz2Þij ∼
Y
e>0

jeπ
6
cðgÞðρ−η;eÞðρ;ρÞ − e−

π
6
cðgÞðρ−η;eÞðρ;ρÞ j: ð4:60Þ

Here we consider the Weyl group of SLðNÞ denoted by W,
such that an element w∈W exchanges the indices of
orthogonal basis ϵj ðj ¼ 1; 2;…; NÞ. Then, the above
expression can be rewritten as (see [74] for the modular
S-matrix of Toda field theory)

jhVαðz1ÞVα�ðz2Þij ∼
����X
w∈W

ϵðwÞeπ
6
cðgÞðρ−η;wðρÞÞðρ;ρÞ

���� ∼ jS0αj; ð4:61Þ

where ϵðwÞ is a sign related to w. This is consistent with
(3.71) even after including the subleading nonperturbative
corrections. Compared with (4.35), we find that the
allowable set of saddle points is given by

Λ ¼ wðρÞ: ð4:62Þ

The final answer is quite natural since the gauge configu-
rations labeled by (4.62) can be mapped to each other by
acting elements of Weyl group of SUðNÞ. Namely, the
gauge configurations related by this way should represents
the same higher-spin dS3 black hole.

V. PROBING HIGHER-SPIN dS3 BLACK HOLES

In the previous section, we have constructed higher-spin
dS3 black holes and computed their partition functions (or
Gibbons-Hawking entropy) both from the higher-spin

theory and its dual Toda field theory. In particular, we
have identified all geometries realized by path integral
saddles. In this section, we examine in more details the
properties of higher-spin dS3 black holes realized as the
dominant contributing saddle. For the purpose, it is
convenient to study the boundary-to-boundary two-point
function of bulk scalar field on the black hole geometry. If
we view the dS3 black hole arises due to the back reaction
of a pair of heavy operators insertion on the boundary, we
can alternatively view this computation as a special case of
so-called heavy-heavy-light-light limit [75]. However, it is
known to be difficult to couple matter fields to higher-spin
theory described by Chern-Simons gauge theory with finite
dimensional group like SLðN;CÞ. We can avoid such a
difficulty by working with the Prokushkin-Vasiliev theory
on dS3 [30] instead of the Chern-Simons gravity with the
finite dimensional group. In the next subsection, we
introduce the Prokushkin-Vasiliev theory and compute
the partition function of its black hole solution. In
Sec. V B, we will compute the boundary-to-boundary
two-point function of bulk scalar field and examine its
properties. In this section, we mainly explain the analysis
by the dual CFT description, see Appendix D for details on
the analysis from the bulk viewpoints.

A. Partition functions

The Prokushkin-Vasiliev theory contains an infinite
tower of higher-spin gauge fields with s ¼ 2; 3;… and
two complex scalar fields with mass

l2m2 ¼ 1 − λ2: ð5:1Þ

Note that we need to replace lAdS → il as in (1.6) in order
to move from the case with negative cosmological constant
to that with positive cosmological constant. The higher-
spin gauge fields can be described by Chern-Simons gauge
theory based on the infinite dimensional higher-spin
algebra hs½λ�. The generators of the algebra can be
expressed as

Vs
n; s ¼ 2; 3;…; n ¼ −sþ 1;−sþ 2;…; s − 1:

ð5:2Þ

Here V2
0 and V2

�1 form an slð2Þ sub-algebra, and
the commutation relation with the other remaining gen-
erators are

½V2
m; Vs

n� ¼ ð−nþmðs − 1ÞÞVs
mþn: ð5:3Þ

See [76,77] for generic commutation relations. A feature of
hs½λ� is that it can be truncated to slðNÞ at λ ¼ �N by
dividing ideal formed. We would like to construct a black
hole solution as in the case with SLð3;CÞ Chern-Simons
gravity analyzed in subsection IVA. Using slð2Þ∈ hs½λ�,
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the dS3 black hole in Sec. II A can be embedded into the
Prokushkin-Vasiliev theory. As in Sec. IVA, we introduce a
nontrivial spin-3 charge to the black hole. In the current
infinite dimensional case, there are gauge fields with spin
s > 3. They have also induced charges, which can be
evaluated by solving equations of motion.
We would like to compute the partition function of

higher-spin black holes. In the AdS3 case, the higher-spin
black hole as a solution to the Prokushkin-Vasiliev theory
was constructed in [46] as reviewed in Appendix D 1. The
gravity partition function of the black hole solution with
the higher-spin charges was also computed in [46] as the
following perturbative expansion:

lnZAdSBHðτAdS;αAdSÞ

¼ iπc
12τAdS

�
1 −

4

3

ðαAdSÞ2
ðτAdSÞ4 þ

400

27

λ2 − 7

λ2 − 4

ðαAdSÞ4
ðτAdSÞ8

−
1600

27

5λ4 − 85λ2 þ 377

ðλ2 − 4Þ2
ðαAdSÞ6
ðτAdSÞ12 þ � � �

�
; ð5:4Þ

where τAdS is the parameter related to mass of black hole
given by (2.8). The leading factor exp iπc

12τAdS
represents (the

holomorphic part of) the partition function without intro-
ducing higher spin charges. The parameter αAdS ¼
τ̄AdSμAdS play the role of chemical potential for the
spin-3 charge as in Sec. IVA 1, see Appendix D 1. The
partition function is evaluated perturbatively in the dimen-
sionless parameter αAdS=ðτAdSÞ2. It was reproduced from
the CFT computation in [47] by

ZCFT ¼ Trðe−βAdSHþ2πiαAdSW0Þ ð5:5Þ

up to the order in (5.4). In the gravity side, the partition
function can be mapped to the one for dS black hole by
changing the parameters as

c → icðgÞ; τAdS → iτ; αAdS ¼ τ̄AdSμAdS → α; ð5:6Þ

as in (4.23), see also Appendix D 1. Thus we have

ln ZdSBHðτ; αÞ ¼
iπcðgÞ

12τ

�
1 −

4

3

α2

τ4
þ 400

27

λ2 − 7

λ2 − 4

α4

τ8

−
1600

27

5λ4 − 85λ2 þ 377

ðλ2 − 4Þ2
α6

τ12
þ � � �

�
ð5:7Þ

as in (D21). In order to obtain the gravity partition function,
we have to multiply by a factor two, since we need to
consider the square of wave functional of universe as in
(1.13). We also need to multiply the anti-holomorphic part
as well. Putting [see (2.25) and (2.26)]

τ ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8GNE

p ; ð5:8Þ

the leading order in α becomes π
6
cðgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8GNE

p
by

combining the antiholomorphic part. It reproduces
SGH=2, where SGH is (1.5) with (2.37). In the rest of this
subsection, we will derive this from its dual CFT.
We would like to extend the CFT analysis in [47] for

AdS3 to that for dS3. As argued above, the map from AdS3
to dS3 is not so difficult in the gravity side. What we have to
do is just inserting −1 and/or i in a proper way. However, it
does not look straightforward in the dual CFT side. In the
AdS=CFT correspondence, the dual CFT is supposed to
live on the spatial boundary of AdS3 black hole. The
boundary of Euclidean BTZ black hole is given by a torus,
thus the dual CFT is living on a torus. In the dS=CFT
correspondence, the dual CFT is supposed to live on the
future or past infinity. The geometry of the boundary is
given by a cylinder as we saw in Sec. II A. Therefore, it
seems impossible to directly map the result for AdS3 to that
for dS3 as in the gravity analysis. However, we are only
interested in thermodynamic quantities, which are obtained
in the high temperature limit. We shall show that the
difference between torus and cylinder amplitudes disap-
pears at the high temperature limit.
In Sec. II B, we have reproduced the gravity partition

function from the two-point function of heavy operators in
Liouville field theory. The heavy operators create conical
defects on S2 as explained around (2.47), thus the same
quantity can be computed as the partition function on S2

with two conical defects as shown in Appendix E 1. The
discussion was done for the pure gravity (or Liouville field
theory), but it can be extended for the Prokushkin-Vasiliev
theory (or the ’t Hooft limit of Toda field theory) as argued
in Appendix E 2. We compute the CFT partition function in
the expansion of α, thus the insertions of spin-3 current can
be treated perturbatively. Therefore, we can compute the
partition function on S2 with two conical defects and also
with the deformation of spin-3 currents. As mentioned
before, the Toda field theory has the symmetry under the
combination of the Weyl transformation and the shift of
fields. Utilizing it, we can transform S2 with two conical
defects to a cylinder with coordinates ðσ0; σ1Þ satisfying

σ0 ∼ σ0 þ β; 0 ≤ σ1 ≤ L: ð5:9Þ
Here we have introduced an infrared cutoff L, which takes a
very large value. Applying again the Weyl transformation
and the shift of fields, we may set

σ0 ∼ σ0 þ 2πβ̃; β̃ ¼ β

L
; 0 ≤ σ1 ≤ 2π: ð5:10Þ

We need to redefine another parameter α. Since the
parameter has conformal dimension −2, we have to rescale
α̃ ¼ ð2π=LÞ2α.
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Now the computation reduces to that of CFT partition function on the cylinder as

ZCFT ¼ Trrðe−β̃Hþ2πiα̃W0Þ; ð5:11Þ

where r denote a representation. We expand the partition function in the parameter α̃, thus we compute the cylinder
amplitude of the form at order α̃n

TrrðWn
0e

−β̃HÞ ¼ 1

ð2πiÞn
I

dz1
z1

� � �
I

dzn
zn

FrððW; z1Þ;…; ðW; znÞ; τ̃Þ ð5:12Þ

with z ¼ σ0 þ iσ1 and τ̃ ¼ iβ=ð2πLÞ. Here we use the notation in (2.12) of [47] as

Frðða1; z1Þ; � � � ðan; znÞ; τ̃Þ ¼ zh11 � � � zhnn TrrðVða1; z1Þ � � �Vðan; znÞq̃L0− c
24Þ ð5:13Þ

with hj as the conformal weight of aj and q̃ ¼ expð2πiτ̃Þ. Moreover, we set

Vða; zÞ ¼
X
m∈Z

amz−m−h: ð5:14Þ

Performing the S-transformation, we obtain

ð2πiÞnTrrðWn
0e

−βHÞ ∼ τ2n
Z

q

1

dz̃1
z̃1

� � �
Z

q

1

dz̃n
z̃n

h0jVðW; z̃1Þ � � �VðW; z̃nÞq̂L0− c
24j0i: ð5:15Þ

Since L is a large number acting as an IR regulator, τ̂ ¼ −1=τ̃ ¼ iL=β is now very large. Therefore, the dominant
contribution comes from the amplitude where the in and out states are given by the identity one as above.
With very large τ̂, we can also use the fact that the dominant contribution comes from the primary state j0i among the

descendant states represented by jfkngi as

h0jVðW; z̃1Þ � � �VðW; z̃nÞq̂L0− c
24j0i ≃

X
fkng

hfkngjVðW; z̃1Þ � � �VðW; z̃nÞq̂L0− c
24jfkngi

≡ Tr0ðVðW; z̃1Þ � � �VðW; z̃nÞq̂L0− c
24Þ: ð5:16Þ

Here the sum is over all descendants labeled by fkng. In this way, we can relate the cylinder amplitude to the torus one at the
large τ limit. Borrowing the result from [47], the CFT partition function can be obtained as

2π

L
ln ZCFTðτ̃; α̃Þ ¼

iπcðgÞ

6τ̃

�
1 −

4

3

α̃2

τ̃4
þ 400

27

λ2 − 7

λ2 − 4

α̃4

τ̃8
−
1600

27

5λ4 − 85λ2 þ 377

ðλ2 − 4Þ2
α̃6

τ̃12
þ � � �

�
: ð5:17Þ

The prefactor is set such that the partition function without
higher-spin charge should be invariant under the Weyl
transformation and the shift of fields. The above expression
reproduces the gravity computation (5.7).

B. Two-point functions of boundary operators

In this subsection, we examine the two-point functions of
scalar operators in the dual CFTs, which correspond to the
boundary-to-boundary two-point functions of bulk scalar
fields. We first focus on the case without any higher-spin
charges and then move to the case with higher-spin charges.
We start from the BTZ black hole, whose metric may be

expressed as in (2.7). For simplicity we set lAdS ¼ 1 here.

There are two disconnected boundaries at r ¼ �∞. If the
CFT operators are inserted in the same boundary, then the
two-point function is [78]

hŌ1ðt;ϕÞO1ð0; 0Þi ¼
X∞
n¼−∞

½− coshðrþtÞ

þ cosh rþðϕþ 2πnÞ�−2h; ð5:18Þ

where h denotes the conformal dimension of O and
the subscript in O1;2 denotes the two boundaries. The
two-point function exhibits a light-like singularity at
t ¼ ϕþ 2πn. If two CFT operators are inserted in different
boundaries, then the two-point function is [79]
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hŌ1ðt;ϕÞO2ð0; 0Þi

¼
X∞
n¼−∞

½coshðrþtÞ þ cosh rþðϕþ 2πnÞ�−2h: ð5:19Þ

There are no singularities in the two-point function. This is
related to the fact that the two boundaries are separated by
the horizon in the bulk. The two-point function may
explore the insider of horizon, but it does not show any
divergences associated with black hole singularity as
explained in [79,80].
Let us move to the dS3 black hole with the metric (1.3).

The metric can be used for the region with rþ < r, but the
role of time and space is exchanges as r ↔ t. There are
boundaries at the past and future infinities ðjrj → ∞Þ. We
again consider the two-point functions of CFT operator
dual to a bulk scalar operator.14 If CFT operators are
inserted only in the future (or past) infinity, then the
two-point function is

hŌ1ðt;ϕÞO1ð0; 0Þi

¼
X∞
n¼−∞

½− coshðrþtÞ þ cos rþðϕþ 2πnÞ�−2h; ð5:20Þ

see (D32). Since the CFT is defined on a Euclidean space,
there is only a singularity at the equal point t ¼ ϕþ
2πn ¼ 0. If two CFT operators are inserted in different
boundaries, then the two-point function is

hŌ1ðt;ϕÞO2ð0; 0Þi

¼
X∞
n¼−∞

½coshðrþtÞ þ cos rþðϕþ 2πnÞ�−2h; ð5:21Þ

see (D33). There is a singularity at t ¼ 0 and
ϕþ 2πn ¼ π=rþ. This should be the same lightlike singu-
larity, which was observed for pure de Sitter case in [23].
The two-point function does not have any divergences
associated with black hole (conical deficit) singularities.
This may be explained along the line of [80].
Up to now, we have considered a scalar propagation with

generic mass on BTZ or dS3 black holes. In the following,
we focus on the case with the Vasiliev theory. The theory
includes two complex scalar fields, whose dual operators
O� have the conformal dimensions Δ� ¼ 2h� ¼ 1� λ.
We first consider the case of BTZ black hole. It is
convenient to rewrite the two-point function of CFT
operator in (5.18) and (5.19) as

hŌ�
1 ðz; z̄ÞO�

1 ð0; 0Þið0Þ ¼
ðτ̂ ˆ̄τÞ2h�

ð4 sin τ̂z
2
sin ˆ̄τ z̄

2
Þ2h� ; ð5:22Þ

hŌ�
1 ðz; z̄ÞO�

2 ð0; 0Þið0Þ ¼
ðτ̂ ˆ̄τÞ2h�

ð4 cos τ̂z
2
cos ˆ̄τ z̄

2
Þ2h� : ð5:23Þ

Here we set z ¼ ϕþ itE; z̄ ¼ ϕ − itE and neglect the sum
over n ≠ 0 terms since it is not important in the current
analysis. Furthermore, we set

τ̂ ¼ −
1

τ
; ˆ̄τ ¼ −

1

τ̄
ð5:24Þ

with τ ¼ τ̄ as the moduli parameter of boundary torus. In
the Lorentzian section with z ¼ ϕþ t and z̄ ¼ ϕ − t, we
see the lightlike singularity at ϕ� t ¼ 0 in (5.22) but no
singularity in (5.23). In order to move to dS3 black hole, we
just need to replace the parameters as

τ̂ → i
2π

L
τ̂; ˆ̄τ → i

2π

L
ˆ̄τ; z →

L
2π

z; z̄ →
L
2π

z̄:

ð5:25Þ

Note here that we set z ¼ ϕþ it; z̄ ¼ ϕ − it. Thus we find
a singularity at ϕ ¼ t ¼ 0 in (5.22) and a light-like
singularity at t ¼ 0;ϕ ¼ π=jτ̂j in (5.23) as men-
tioned above.
We would like to deform the background by inserting

spin-3 charge with the deformation parameter α as in the
previous subsection. In perturbative expansion with respect
to α, the two-point function after the deformation was
obtained in [48,49]. If CFT operators are inserted in the
same boundary, then the two-point function is

hŌ�
1 ðz; z̄ÞO�

1 ð0; 0ÞiðαÞ
hŌ�

1 ðz; z̄ÞO�
1 ð0; 0Þið0Þ

¼ 1þ αw�
τ2

−3 sinðτ̂zÞ þ ðτ̂z − ˆ̄τ z̄Þð2þ cosðτ̂zÞÞ
2 sin2 τ̂z

2

þOðα2Þ

ð5:26Þ

with w� ¼ ð1� λÞð2� λÞ=6. Thus the deformation only
change the singularity structure from z−2h to z−2h−2. If two
CFT operators inserted in different boundaries, then the
two-point function is

hŌ�
1 ðz; z̄ÞO�

2 ð0; 0ÞiðαÞ
hŌ�

1 ðz; z̄ÞO�
2 ð0; 0Þið0Þ

¼ 1þ αw�
τ2

− sinðτ̂zÞ þ ðτ̂z − ˆ̄τ z̄Þð2 − cosðτ̂zÞÞ
2 cos2 τ̂z

2

þOðα2Þ;

ð5:27Þ

which does not produce any new singularity. As discussed
above, in order to move to the case with positive cosmo-
logical constant, we just need to replace the parameters
α → ð2π=LÞ2α together with the parameter changes in14It is interesting to see the relation to a recent work [81].
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(5.25). Therefore, we conclude that the deformation
changes the singularity structure from z−2h to z−2h−2 for
the both types of two-point functions (5.22) and (5.23).

VI. CONCLUSION AND DISCUSSION

In this paper, we examined solutions of Chern-Simons
(higher-spin) gravity corresponding to dS3 (higher-spin)
black holes both from the bulk theory and dual CFT. Some
parts of results were presented in a previous letter [11], and
here the details of their derivations were explained and the
analysis was extended in several directions.
We first focused on the simplest case with pure gravity.

The gravity theory is described by SLð2;CÞ Chern-Simons
gauge theory and we found a family of solutions obtained
by large gauge transformations labeled by winding number
n. Its CFT dual description is given by Liouville field
theory as proposed in [6–9]. We examined the saddle points
of Liouville two-point function by following [42] and
found that the saddle points of Chern-Simons gravity are
realized by n ¼ 0;−1. We also examined Chern-Simons
solutions dual to Liouville multipoint functions. Generic
solutions are expected to correspond to Wilson line net-
works on S3 as in Fig. 1. The solutions are labeled by
monodromies along the deficit lines. From the detailed
analysis of Liouville multipoint functions, we determined
the monodromies realized in the gravity theory and found
that two saddles contribute to the semiclassical limit of
correlators. There are special geometries corresponding to
two Wilson loops on S3 as analyzed in [6,7]. We found that
their entropy can be described by the monodromy matrix of
four-point functions. From the analysis of Wilson loops in
Chern-Simons gauge theory as in [51], it is natural to guess
that all geometries can be described by combining these
approaches in the dual CFT. In any case, it is an important
open problem to classify all the possible saddles of Chern-
Simons gravity and describe all of them in terms of
dual CFT.
We also extended the analysis to the higher-spin gravity

on dS3 described by SLðN;CÞ Chern-Simons gauge theory.
As in the pure gravity case, we classified the solutions by
large gauge transformations or equivalently monodromy
matrix defined in (2.27). We then examined two-point
functions in the dual CFT, i.e., slðNÞ Toda field theory as in
the Liouville case. We found out that the allowed saddles of
Chern-Simons higher-spin gravity are given by the solu-
tions labeled by (4.62). We also examined the properties of
higher-spin dS3 black holes in Prokushkin-Vasiliev theory
from the propagation of bulk scalar field. In particular, we
found a lightlike singularity in the two-point function
between two boundaries at past and future infinities. It
should be important to analyze gravity solutions dual to
correlation functions of s heavy operators in slðNÞ Toda
field theory as was done in Sec. III for Liouville field
theory. We can evaluate the action of the Chern-Simons
theory for the configuration in Fig. 1. Near the defect lines,

we may put the gauge field configuration as in (4.34). For
one insertion of defect line, the value of action is shifted by

π

3
cðgÞ

ðρ − ηðiÞ;ΛðiÞÞ
ðρ; ρÞ : ð6:1Þ

Adding the topological contribution with bulk winding
numbers, the total contribution is

π

3
cðgÞ

½ðρ;Λð0ÞÞ −PiðηðiÞ;ΛðiÞÞ�
ðρ; ρÞ : ð6:2Þ

It is an important problem to determine the set of possibleΛ
from dual Toda field theory.
There are several open problems to be pursued. Among

them, we would like to consider the followings in near
future. Firstly, we have examined only the semiclassical
contributions to the Gibbons-Hawking entropy, however
there are also perturbative corrections in 1=cðgÞ. These are
expected to be asymptotic series, and it is important to see
the relation to other saddles realized in Chern-Simons
gravity.15 In the dual CFT, we can obtain exact expressions,
so it should be possible to analyze for all orders in 1=cðgÞ.
Furthermore, we would like to extend the analysis to more
generic cases. It should be possible to include nonzero
rotations and/or Maxwell fields. It is also interesting to
consider higher dimensional holography, e.g., dS4=CFT3

by [21]. It is also nice if we can find the relation to
superstring theory, see the series of previous works [83,84]
and [85–87] for the attempts to relate stringy and higher-
spin holographic dualities on AdS3.
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APPENDIX A: CHERN-SIMONS GRAVITY
ON ðAÞdS3

In this appendix, we explain in some details about the
Chern-Simons descriptions of gravity theory on AdS3 and
dS3 by following [12–14]. Related works may be found in,
e.g., [88,89]. We consider complex Chern-Simons gauge
theory with the action

S ¼ t
2
SCS½A� þ

t̃
2
SCS½Ã�;

SCS½A� ¼
1

4π

Z
tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
: ðA1Þ

We set the gauge group as G ¼ SLð2;CÞ (but it is easy
to generalize to the case with G ¼ SLðN;CÞ). Let us first
set Ã ¼ Ā with Ā as a complex conjugate of A. Moreover,
we set

t ¼ nþ is; t̃ ¼ n − is ðA2Þ

with n∈Z and s∈R. Then the action can be written as

S ¼ −s Im SCS þ nReSCS: ðA3Þ

The quantum theory is given by a path integral of expðiSÞ
over A; Ã. When the real slice of SLð2;CÞ is SU(2), then
Re SCS is gauge invariant modulo 2π if the trace, tr, is
properly normalized. Thus the gauge invariance of expðiSÞ
requires n∈Z. However, there is no such constraint for
Im SCS, thus we can use any real s (or any complex s after
analytic continuation). It is convenient to use A ¼ Aþ iB,
whereA, B take in some real forms of slð2;CÞ. The action
is rewritten as

S ¼ n
4π

Z
tr

�
A ∧ dA − B ∧ dB

þ 2

3
A ∧ A ∧ A − 2A ∧ B ∧ B

�

−
s
2π

Z
tr

�
A ∧ dB þ 2A ∧ A ∧ B −

2

3
B ∧ B ∧ B

�
:

ðA4Þ

Let us consider the cases with positive and negative
cosmological constants [13]. We first consider (2þ 1)-
dimensional gravity in a Lorentzian space-time with
positive cosmological constant. In this case, we set s∈R
and Ã as the complex conjugate of A without taking its
transposition. This implies that our real slice is
A;B∈ slð2;RÞ. A and B are identified with spin con-
nection ω and vielbein e, respectively. The case with
nonzero n may lead to additional gravitational Chern-
Simons theory [12], but we set n ¼ 0 for our purpose.
A vacuum solution is given by dS3. We then consider

three-dimensional gravity in an Euclidean space-time with
negative cosmological constant. In this case, we set s ¼
−2ik with real k and Ã as the complex conjugate of A with
taking its transposition. This implies that our real slice is
A; iB∈ suð2Þ. A vacuum solution is given by AdS3.
In previous works [6–9], we construct Chern-Simons

gravity in a Lorentzian space-time with positive cosmo-
logical constant by performing an analytic continuation as
k → is=2 with s real. However, as indicated above, this is
not enough. For AdS3, we assign Ã ¼ A† by combining the
simple complex conjugate and the transposition. However,
for dS3, we set Ã ¼ A� by the simple complex conjugate
together with k → is=2. Therefore, the simple change of
variable from k → is=2 is not enough. For instance, in the
case of dS3, A and Ã and related by a simple complex
conjugation, the central charge of dual energy momentum
tensor would be c ¼ 3is and c̄ ¼ −3is for holomorphic
and antiholomorphic sector, respectively, with large s.
However, for AdS3, the central charge of dual energy
momentum tensor is c ¼ c̄ ¼ 6k both for holomorphic
and antiholomorphic sector with large k. This implies that
naive analytic continuation of k → is=2 leads to
c ¼ c̄ ¼ 3is. Therefore, in order to map the energy-
momentum tensor in the antiholomorphic part of CFT
and the Chern-Simons gauge field Ã, we need to perform a
field redefinition of one of them, see, e.g., the end of
Sec. 2.4 of [52].
Here we would like to mention the cases where A and Ã

are independent with each other. We may write A ¼ Aþ B
and Ã ¼ A − B. Then the action (A1) becomes

S ¼ n
4π

Z
tr
�
A ∧ dAþ B ∧ dB

þ 2

3
A ∧ A ∧ Aþ 2A ∧ B ∧ B

�

þ is
2π

Z
tr

�
A ∧ dB þ 2A ∧ A ∧ B þ 2

3
B ∧ B ∧ B

�
:

ðA5Þ

Setting n ¼ 0, the action can be identified with Einstein-
Hilbert action in the first order formulation, whereA, B are
spin-connection ω, vielbein e, respectively. Let us first set
A;B∈ suð2Þ, then the gravity theory describes three-
dimensional Euclidean space with positive cosmological
constant. Avacuum solution is given by Euclidean dS3, i.e.,
S3. In order to describe the Hartle-Hawking universe, then
we use Ã ¼ A� for T ≥ 0 with global time T and
A; Ã∈ suð2Þ independent with each other for T < 0. Let
us next set A;B∈ slð2;RÞ with s → −2ik ðk∈RÞ. In this
case, the gravity theory describes (2þ 1)-dimensional
Lorentzian space-time with a negative cosmological con-
stant. A vacuum solution is given by Lorentzian AdS3.
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APPENDIX B: SEMICLASSICAL LIMIT
OF ϒb FUNCTION

Here we summarize the properties of the Upsilon
function ϒbðxÞ, especially on the asymptotic behavior in
the semiclassical limit. The basic properties of the Upsilon
function are summarized for real b in, e.g. Appendix A of
[42]. Since our interests include an imaginary central
charge, we extend to the case with complex b. See also
[61] for more detailed discussions on analytic continuation
of the Upsilon function.
The Upsilon function ϒbðxÞ is defined as the unique

solution to the recursion relations

ϒbðxþ bÞ ¼ γðbxÞb1−2bxϒbðxÞ;

ϒb

�
xþ 1

b

�
¼ γ

�
x
b

�
b

2x
b−1ϒbðxÞ; ðB1Þ

where γðxÞ is defined by (2.51). When Reb > 0, there
exists an integral form of the ϒb function:

log ϒbðxÞ ¼
Z

∞

0

dt
t

2
6664
�
Q
2
− x

�
2

e−t −
sinh2ððQ

2
− xÞ t

2
Þ

sinh tb
2
sinh t

2b

3
7775;

0< Rex < ReQ; ðB2Þ

where Q ¼ bþ 1=b. By using the defining recursion
relations (B1), we can extend the range of x to the whole
complex plane.
For applications to CFT, it is useful to introduce the

central charge c ¼ 1þ 6Q2 ∈C. Note that we can express
it as c ¼ 13þ 6ðb2 þ b−2Þ. For any c ∉ ð−∞; 1�, we can
choose the branch of b-plane such that it satisfies Reb > 0.
Therefore we can define ϒbðxÞ in the way described above
for any CFTs that has the central charge c ∉ ð−∞; 1�. On
the other hand, for c∈ ð−∞; 1�, b should be purely
imaginary. Therefore the integral form (B2) cannot be
defined. In order to consider CFTs that have c∈ ð−∞; 1�,
we have to use another function ϒ̂bðxÞ defined by the
modified recursion relations [55]

ϒ̂bðxþ bÞ ¼ γðbxÞðibÞ1−2bxϒ̂bðxÞ;

ϒ̂b

�
xþ 1

b

�
¼ γ

�
x
b

�
ðibÞ2xb−1ϒ̂bðxÞ: ðB3Þ

For example, to discuss so-called timelike Liouville theory
[54] we have to use ϒ̂bðxÞ since it has negative central
charge. The function ϒ̂bðxÞ can be defined for Im b < 0,
equally c ∉ ½25;∞Þ. Therefore we can use either ϒbðxÞ or
ϒ̂bðxÞ for CFTs with c ∉ ð−∞; 1� ∪ ½25;∞Þ. Because the
theory of our interest has imaginary c, henceforth we will

discuss only the unhatted Upsilon function ϒbðxÞ by
promising we always take a branch Re b > 0.
Let us discuss the semiclassical limits b → 0 of ϒbðxÞ

assuming that x scales as x ¼ η=b. For simplicity, we
restrict ourselves to real η,16 which is the situation we are
interested in. We first consider x ¼ η

b þ b
2
, keeping η fixed

under b → 0. When 0 < η < 1, we find

b2 logϒb

�
η

b
þ b

2

�

¼ −
�
η −

1

2

�
2

log bþ
Z

∞

0

dt
t

��
η −

1

2

�
2

e−t

−
2

t

sinh2ððη − 1=2Þ t
2
Þ

sinh t
2

�
þOðb4Þ: ðB4Þ

If we define:

FðηÞ≡
Z

∞

0

dt
t

��
η −

1

2

�
2

e−t −
2

t

sinh2ððη − 1=2Þ t
2
Þ

sinh t
2

�

ðB5Þ

and use the integral representation (B2) together with an
identity

log x ¼
Z

∞

0

dt
t
ðe−t − e−xtÞ; Re x > 0: ðB6Þ

We find the asymptotic formula for ϒb:

ϒb

�
η

b

�
¼ exp

�
1

b2
½−ðη − 1=2Þ2 log b

þ FðηÞ þOðb log bÞ�
�
: ðB7Þ

Here we again emphasize that this formula is applicable for
any b with Reb > 0, equally c ∉ ð−∞; 1�, but only for
0 < η < 1. We can obtain the asymptotic formula for other
ranges of η by applying the recursion relations (B1). For
example, let us consider −1 < η < 0, and use inversely the
second equation in (B1),

ϒb

�
η

b
þ b

2

�
¼ b1−

2η

b2

γð ηb2Þ
ϒb

�
ηþ 1

b
þ b

2

�
; ðB8Þ

16When both b and η are imaginary, the condition 0 < Reη< 1
does not imply 0 < Reðη=bÞ < ReQ. We then would need some
additional condition for Im η.
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we obtain:

ϒb

�
η

b

�
¼ b1−

2η

b2

γð ηb2Þ
exp

�
1

b2
½−ðηþ 1=2Þ2 logb

þ Fðηþ 1Þ þOðb log bÞ�
�
: ðB9Þ

APPENDIX C: SL(3) CHERN-SIMONS GRAVITY

In Sec. IVA, we examined black hole solutions with
higher-spin charges of SL(3) Chern-Simons gravity with

negative/positive cosmological constant. In this appendix,
we summarize the technical details of the bulk analysis for
the higher-spin black holes.

1. Higher-spin AdS3 black holes

We start by examining black hole solutions with higher-
spin charges of SL(3) Chern-Simons gravity with nega-
tive cosmological constant. In [43], the configuration of
gauge fields corresponding to the black hole solutions
was obtained as in (4.4) in the form of (2.4). From the
gauge field configuration, the metric can be read
off from (2.6) as

l−2
AdSds

2 ¼ dρ2 −
��

2μAdSe2ρ þ πWAdS

k
e−2ρ −

8π2μAdSðLAdSÞ2
k2

e−2ρ
�

2

þ
�
eρ −

2πLAdS

k
e−ρ þ 4πμAdSWAdS

k
e−ρ
�

2
�
dt2

þ
��

2μAdSe2ρ þ πWAdS

k
e−2ρ þ 8π2μAdSðLAdSÞ2

k2
e−2ρ

�
2

þ
�
eρ þ 2πLAdS

k
e−ρ þ 4πμAdSWAdS

k
e−ρ
�

2

þ 64π2ðμAdSÞ2ðLAdSÞ2
3k2

�
dϕ2: ðC1Þ

In [43], they proposed the conditions of black hole as (i), (ii), and (iii) given above (4.7). The authors of [73] have found a
good gauge transformation and shown that the condition (i) is satisfied. We review this transformation below.
We consider the connection with the gauge transformation (4.17). Then the metric and spin-3 field may take the form

ds2 ¼ grrðrÞdr2 þ gttðrÞdt2 þ gϕϕðrÞdϕ2;

φαβγdxαdxβdxγ ¼ φϕrrðrÞdϕdr2 þ φϕttðrÞdϕdt2 þ φϕϕϕðrÞdϕ3; ðC2Þ

where r ¼ ρ − ρþ and ρ ¼ ρþ are the event horizons, we also set expð2ρþÞ ¼ 2πLAdS=k. In order to satisfy the condition
(i), we demand

β ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2grrð0Þ
−g00ttð0Þ

s
¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2φϕrrð0Þ
−φ00

ϕttð0Þ

s
; ðC3Þ

and the metric components enjoy the following symmetries:

grrð−rÞ ¼ grrðrÞ; gttð−rÞ ¼ gttðrÞ; gϕϕð−rÞ ¼ gϕϕðrÞ;
φϕrrð−rÞ ¼ φϕrrðrÞ; φϕttð−rÞ ¼ φϕttðrÞ; φϕϕϕð−rÞ ¼ φϕϕϕðrÞ: ðC4Þ

Then the transformed metric becomes (4.18) with

at ¼ ðC − 1Þ2ð4γAdS −
ffiffiffiffi
C

p
Þ2; aϕ ¼ ðC − 1Þ2ð4γAdS þ

ffiffiffiffi
C

p
Þ2;

bt ¼ 16ðγAdSÞ2ðC − 2ÞðC2 − 2Cþ 2Þ − 8γAdS
ffiffiffiffi
C

p
ð2C2 − 6Cþ 5Þ þ Cð3C − 4Þ;

bϕ ¼ 16ðγAdSÞ2ðC − 2ÞðC2 − 2Cþ 2Þ þ 8γAdS
ffiffiffiffi
C

p
ð2C2 − 6Cþ 5Þ þ Cð3C − 4Þ: ðC5Þ
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2. Higher-spin dS3 black holes

We then move to the black hole solutions with higher-spin charges of SL(3) Chern-Simons gravity with positive
cosmological constant. We consider the configuration of gauge fields in the form of (2.17).We here use a nonrotating solution

a ¼
�
L1 þ

2πL
κ

L−1 þ i
πW
2κ

W−2

�
dzþ iμ

�
W2 þ

4πL
κ

W0 þ
4π2L2

κ2
W−2 − i

4πW
κ

L−1

�
dz̄;

ā ¼
�
L−1 þ

2πL
κ

L1 − i
πW
2κ

W2

�
dz̄ − iμ

�
W−2 þ

4πL
κ

W0 þ
4π2L2

κ2
W2 þ i

4πW
κ

L1

�
dz; ðC6Þ

with z ¼ itþ ϕ; z̄ ¼ −ðit − ϕÞ, then we have (4.22)

e−ðπi=2ÞL0aeðπi=2ÞL0 ¼ i

�
L1 −

2πL
κ

L−1 −
πW
2κ

W−2

�
dz − iμ

�
W2 −

4πL
κ

W0 þ
4π2L2

κ
W−2 þ

4πW
κ

L−1

�
dz̄: ðC7Þ

The metric after changing ρ̃ → iθ is

l−2ds2 ¼ dθ2 þ
��

2μe2iθ þ πW
κ

e−2iθ −
8π2μL2

κ2
e−2iθ

�
2

þ
�
eiθ −

2πL
κ

e−iθ þ 4πμW
κ

e−iθ
�

2
�
dt2

þ
��

2μe2iθ þ πW
κ

e−2iθ þ 8π2μL2

κ2
e−2iθ

�
2

þ
�
eiθ þ 2πL

κ
e−iθ þ 4πμW

κ
e−iθ

�
2

þ 64π2μ2L2

3κ2

�
dϕ2: ðC8Þ

Let us consider the condition (i) for dS3 black hole case. We again consider the connection with the gauge transformation
gðθ̃Þ∈SLð3;RÞ, where θ̃ ¼ θ − θþ and expð2iθþÞ ¼ 2πL=κ. Then the metric and spin-3 field may take the form

ds2 ¼ gθ̃ θ̃ðθ̃Þdθ̃2 þ gttðθ̃Þdt2 þ gϕϕðθ̃Þdϕ2;

φαβγdxαdxβdxγ ¼ φϕθ̃ θ̃ðθ̃Þdϕdr2 þ φϕttðθ̃Þdϕdt2 þ φϕϕϕðθ̃Þdϕ3: ðC9Þ

In order to satisfy the condition (i), we also demand

β ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gθ̃ θ̃ð0Þ
−g00ttð0Þ

s
¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2φϕθ̃ θ̃ð0Þ
−φ00

ϕttð0Þ

s
; ðC10Þ

and

gθ̃ θ̃ð−θ̃Þ ¼ gθ̃ θ̃ðθ̃Þ; gttð−θ̃Þ ¼ gttðθ̃Þ; gϕϕð−θ̃Þ ¼ gϕϕðθ̃Þ;
φϕθ̃ θ̃ð−θ̃Þ ¼ φϕθ̃ θ̃ðθ̃Þ; φϕttð−θ̃Þ ¼ φϕttðθ̃Þ; φϕϕϕð−θ̃Þ ¼ φϕϕϕðθ̃Þ: ðC11Þ

Then the transformed metric becomes

gθ̃ θ̃ ¼
ðC − 2ÞðC − 3Þ

ðC − 2 − cos2ðθ̃ÞÞ2 ;

gtt ¼ −
�
8πL
κ

��
C − 3

C2

� ðat þ btcos2ðθ̃ÞÞsin2ðθ̃Þ
ðC − 2 − cos2ðθ̃ÞÞ2 ;

gϕϕ ¼ −
�
8πL
κ

��
C − 3

C2

� ðaϕ þ bϕcos2ðθ̃ÞÞsin2ðθ̃Þ
ðC − 2 − cos2ðθ̃ÞÞ2 þ

�
8πL
κ

��
1þ 16

3
γ2 þ 12γζ

�
ðC12Þ

with

at ¼ ðC − 1Þ2ð4γ −
ffiffiffiffi
C

p
Þ2; aϕ ¼ ðC − 1Þ2ð4γ þ

ffiffiffiffi
C

p
Þ2;

bt ¼ 16γ2ðC − 2ÞðC2 − 2Cþ 2Þ − 8γ
ffiffiffiffi
C

p
ð2C2 − 6Cþ 5Þ þ Cð3C − 4Þ;

bϕ ¼ 16γ2ðC − 2ÞðC2 − 2Cþ 2Þ þ 8γ
ffiffiffiffi
C

p
ð2C2 − 6Cþ 5Þ þ Cð3C − 4Þ: ðC13Þ

CHEN, HIKIDA, TAKI, and UETOKO PHYS. REV. D 108, 066005 (2023)

066005-32



APPENDIX D: PROKUSHKIN-VASILIEV
THEORY

In Sec. V, we have examined black hole solutions with
higher-spin charges in the Prokushkin-Vasiliev theory [30].
We have computed the gravity partition function of the
black hole solution and evaluated two-point functions of
bulk scalar field on the black hole background. In the main
context, we presented the analysis mainly from the dual
CFT as it is rather nontrivial. In this appendix, we explain
its bulk counterparts, which may be obtained quite straight-
forwardly by analytically continuing the analysis done in
[46,48] for the case of AdS3.

1. Higher-spin black holes

As usual, we start by reviewing the known results for
AdS3 case. The massless sector of the Prokushkin-Vasiliev
theory can be described by Chern-Simons gauge theory
with the action (2.1), but the gauge algebra is given by an
infinite dimensional one denoted by hs½λ�. The generators
of the algebra are Vs

m with s ≥ 0; jmj < s, and the com-
mutation relations may be written as

½Vs
m; Vt

n� ¼
X
u

gstu ðm; n; λÞVsþt−u
mþn ; ðD1Þ

see also (5.3). The explicit expression of the structure
constants may be found in [76,77]. It is also convenient to
define the lone star product

Vs
m⋆Vt

n ¼
1

2

X
u

gstu ðm; n; λÞVsþt−u
mþn : ðD2Þ

The black hole solutions of the Chern-Simons gravity
with negative cosmological constant were obtained in [46].
We consider the gauge configuration of the form (4.2) with
(4.3). The gauge configuration corresponding to the BTZ
black hole is given by [see (2.9)]

az ¼ V2
1 −

2πLAdS

k
V2
−1; az̄ ¼ 0: ðD3Þ

On the other hand, the ansatz for the gauge configuration
with higher spin charges is considered as

az ¼ V2
1 −

2πLAdS

k
V2
−1 − NðλÞ πW

AdS

2k
V3
−2 þ JAdS;

az̄ ¼ −μAdSNðλÞ
�
az⋆az −

2πLAdS

3k
ðλ2 − 1Þ

�
: ðD4Þ

Here we use

NðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
20

λ2 − 4

r
ðD5Þ

and

JAdS ¼ Jð4ÞAdSV
4
−3 þ Jð5ÞAdSV

5
−4 þ � � � ; ðD6Þ

where JðsÞAdS are spin-s charges. We can check that the gauge
configuration solves the equations of motion ½az; az̄� ¼ 0.
As in the SL(3) case, we require that the eigenvalues of

holonomy matrix are the same as that of the BTZ black
hole. Since the holonomy matrix is computed as in (4.12),
we have

ΩBTZ ¼ iβAdS
�
V2
1 −

2πLAdS

k
V2
−1

�
ðD7Þ

for the BTZ black hole and

Ω ¼ iβAdSaz − 2παAdSNðλÞ
�
az⋆az −

2πLAdS

3k
ðλ2 − 1Þ

�
ðD8Þ

for the ansatz of higher-spin black hole. We thus consider
the holonomy constraints

trðΩnÞ ¼ trðΩn
BTZÞ; n ¼ 2; 3;…: ðD9Þ

We treat the effect of spin-3 charge perturbatively. This
means that we solve the constraints perturbatively in αAdS.
Then we can express charges LAdS, WAdS in terms of
parameters k and τAdS. Integrating an equation in (4.11), we
arrive at the expression of the partition function in (5.4).
Let us turn to the case with positive cosmological

constant. We use the gauge configuration of the form
(2.17). For the black hole without higher-spin charges, the
gauge configuration is [see (2.20)]

az ¼ V2
1 þ

2πL
κ

V2
−1; az̄ ¼ 0: ðD10Þ

For the black hole with higher-spin charges, we use the
ansatz

az ¼ V2
1 þ

2πL
κ

V2
−1 þ iNðλÞ πW

2k
V3
−2 þ J;

az̄ ¼ μNðλÞ
�
az⋆az þ

2πL
3κ

ðλ2 − 1Þ
�
: ðD11Þ

Here NðλÞ is given in (D5) and

J ¼ Jð4ÞV4
−3 þ Jð5ÞV5

−4 þ � � � : ðD12Þ

We can check that this ansatz reduces to (4.22) with the SL
(3) case. The holonomy matrices become
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ΩdSBH ¼ β

�
V2
1 þ

2πL
κ

V2
−1

�
ðD13Þ

for the black hole without higher-spin charges and

Ω ¼ βaz þ 2παNðλÞ
�
az⋆az þ

2πL
3κ

ðλ2 − 1Þ
�

ðD14Þ

for the black hole with higher-spin charges. Here we also
use the same constructions as the negative cosmological
constant case:

trðΩnÞ ¼ trðΩn
dSBHÞ; n ¼ 2; 3; � � � ðD15Þ

The lower even-n traces are

trðΩ2
dSBHÞ ¼ −8π2;

trðΩ4
dSBHÞ ¼

8π4

5
ð3λ2 − 7Þ;

trðΩ6
dSBHÞ ¼ −

8π6

7
ð3λ4 − 18λ2 þ 31Þ; ðD16Þ

and all odd-n traces vanish. Solving the constraint
equations (D16) perturbatively in α, we obtain the follow-
ing solutions:

L ¼ −
κ

8πτ2
þ 5κ

6πτ6
α2 −

50κ

3πτ10
λ2 − 7

λ2 − 4
α4 þ 2600κ

27πτ14
5λ4 − 85λ2 þ 377

ðλ2 − 4Þ2 α6

−
68000κ

81πτ18
20λ6 − 600λ4 þ 6387λ2 − 23357

ðλ2 − 4Þ3 α8 þ � � � ;

W ¼ −
κ

3πτ5
αþ 200κ

27πτ9
λ2 − 7

λ2 − 4
α3 −

400κ

9πτ13
5λ4 − 85λ2 þ 377

ðλ2 − 4Þ2 α5

þ 32000κ

81πτ17
20λ6 − 600λ4 þ 6387λ2 − 23357

ðλ2 − 4Þ3 α7 þ � � � : ðD17Þ

In addition, we find

Jð4Þ ¼ 35

9τ8
1

λ2 − 4
α2 −

700

9τ12
2λ2 − 21

ðλ2 − 4Þ2 α
4 þ 2800

9τ16
20λ4 − 480λ2 þ 3189

ðλ2 − 4Þ3 α6 þ � � � ;

Jð5Þ ¼ 100
ffiffiffi
5

p

9τ11
1

ðλ2 − 4Þ3=2 α
3 −

400
ffiffiffi
5

p

27τ15
44λ2 − 635

ðλ2 − 4Þ5=2 α
5 þ � � � ;

Jð6Þ ¼ 14300

81τ14
1

ðλ2 − 4Þ2 α
4 þ � � � : ðD18Þ

Note that we have the relations

LAdS

k
¼ −

L
κ
;

WAdS

k
¼ −i

W
κ
; Jð4ÞAdS ¼ Jð4Þ; Jð5ÞAdS ¼ iJð5Þ; Jð6ÞAdS ¼ −Jð6Þ; ðD19Þ

which imply that

JðsÞAdS ¼ eðπi=2ÞsJðsÞ: ðD20Þ

Integrating an equation in (4.11), we arrive at

lnZðτ; αÞ ¼ iπκ
2τ

�
1 −

4

3

α2

τ4
þ 400

27

λ2 − 7

λ2 − 4

α4

τ8
−
1600

27

5λ4 − 85λ2 þ 377

ðλ2 − 4Þ2
α6

τ12

þ 32000

81

20λ6 − 600λ4 þ 6387λ2 − 23357

ðλ2 − 4Þ3
α8

τ16

�
þ � � � ðD21Þ

as in (5.7).
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2. Two-point functions

In this subsection, we study the two-point functions in
higher-spin black holes on dS3 by extending the argument
in AdS3 [48]. We again start by reviewing the known results
in the case of AdS3. In the Prokushkin-Vasiliev theory, the
master field C, which contains the bulk scalar field, satisfies
the linearized equation

dCþ A⋆C − C⋆Ā ¼ 0; ðD22Þ

where A is the gauge field of hs½λ� Chern-Simons theory.
The scalar field can be obtained by Tr½C�, which satisfies a
Klein-Gordon equation, see also [90]. According to [48],
we may derive the scalar propagator by

G�ðρ;x; 0Þ ¼ � λ

π
eð1�λÞρTr½e−Λρ⋆c�⋆eΛ̄ρ �; ðD23Þ

where þ and − denote the standard and alternate quantiza-
tion conditions, respectively. Here c� is the master field in
the trivial gauge with A ¼ 0. The master field C� can be
obtained by gauge transformation as

C� ¼ g−1⋆c�⋆ḡ: ðD24Þ

Moreover, Λρ; Λ̄ρ are defined as

Λρ ¼ e−ρV
2
0⋆ðaμxμÞ⋆eρV2

0 ; Λ̄ρ ¼ eρV
2
0⋆ðāμxμÞ⋆e−ρV2

0

ðD25Þ
with gauge solutions a; ā.
At λ ¼ 1=2, the lone star product is known to reduce to

the Moyal product. Let us introduce generators yα (α ¼ 1,
2), which satisfy ½yα; yβ�� ¼ 2iϵαβ. For the function of yα,
the Moyal product acts as the differential form

ðf � gÞðyÞ ¼ exp

�
iϵαβ

∂

∂yα

∂

∂y0β

�
fðyÞgðy0Þ

����
y¼y0

; ðD26Þ

where ϵαβ is the antisymmetric tensor ϵ12 ¼ 1. In terms of
yα, we can rewrite the hs½λ� generators

Vs
m ¼

�
−i
4

�
s−1

ysþm−1
1 ys−m−1

2 : ðD27Þ

The authors of [48] has nicely shown that we may obtain
the scalar propagator for all backgrounds with following c�

c− ¼ e−iy1y2 ; cþ ¼
�
1

2i

�
y1 � e−iy1y2 � y2; ðD28Þ

and the propagator becomes

G�ðρ;x; 0Þ ¼ � 1

2π
eð1�1

2
ÞρTr½e−Λρ � c� � eΛ̄ρ �: ðD29Þ

Using the solution (2.9), it leads to the correct AdS3 result.
Besides, for general value of λ, we should use c� as the
highest weight state of hs½λ�.
Let us extend this calculation for dS3 black holes. We use

the gauge configuration (4.4) and the solution (2.20) for the
case of pure dS3 and define Λρ̃ and Λ̄ρ̃ as

Λρ̃ ¼ e−ρ̃V
2
0 �
�
i

�
V2
1 −

2πL
κ

V2
−1

�
z

�
� eρ̃V2

0 ;

Λ̄ρ̃ ¼ eρ̃V
2
0 �
�
i

�
V2
−1 −

2πL
κ

V2
1

�
z̄

�
� e−ρ̃V2

0 ; ðD30Þ

see (2.16). It leads to the scalar bulk-boundary propagator
at λ ¼ 1=2 as

G�ðρ̃;x;0Þ

¼ � 1

2π
eð1�1

2
Þρ̃Tr½e−Λρ̃ � c� � eΛ̄ρ̃ �

¼ � 1

2π

�
e−ρ̃

e−2ρ̃ coshð z
2τÞcoshð z̄2τ̄Þ− 4ττ̄ sinhð z

2τÞ sinhð z̄2τ̄Þ
�

1�1
2

:

ðD31Þ
At ρ̃ → ∞, the two-point function can be read off as [see
(5.20)]

G�ðr;x; 0Þ ∼ ½− coshðrþtÞ þ cosðrþϕÞ�−ð1�1
2
Þ; ðD32Þ

where z ¼ itþ ϕ. At ρ̃ → −∞, we also obtain the behavior
of different boundaries as [see (5.21)]

G�ðr;x; 0Þ ∼ ½coshðrþtÞ þ cosðrþϕÞ�−ð1�1
2
Þ: ðD33Þ

Let us turn to the case with higher-spin charges. We use the
solution (D11) as

e−ðπi=2ÞV2
0aeðπi=2ÞV2

0 ¼ iaz − iμNðλÞ
�
az⋆az −

2πL
3k

ðλ2 − 1Þ
�
dz̄;

az ¼ V2
1 −

2πL
κ

V2
−1 − NðλÞ πW

2κ
V3
−2 þ Jð4ÞV4

−3 þ Jð5ÞV5
−4 þ � � � : ðD34Þ

Here we focus on the first order α correction of G�. Note that the charges (D17) and (D18) are

L ¼ −
κ

8πτ2
þOðα2Þ; W ¼ −

κ

3πτ5
αþOðα3Þ; JðsÞ ¼ Oðαs−2Þ: ðD35Þ
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We also expand the propagator in α as

G� ¼ Gð0Þ
� þ

X∞
n¼1

GðnÞ
� ; ðD36Þ

where Gð0Þ
� is the result without any higher-spin charges in

(D31). Through complicated computation, it leads to the
ratio of the scalar propagators at ρ̃ → þ∞ as

Gð1Þ
− jρ̃→þ∞

Gð0Þ
− jρ̃→þ∞

∼
α

16τ2
3 sin iz

τ þ ð2þ cos iz
τ Þðiz̄τ̄ − iz

τ Þ
sin2 iz

2τ

; ðD37Þ

and at ρ̃ → −∞ as:

Gð1Þ
− jρ̃→−∞

Gð0Þ
− jρ̃→−∞

∼
α

16τ2
sin iz

τ þ ð2 − cos iz
τ Þðiz̄τ̄ − iz

τ Þ
cos2 iz

2τ

: ðD38Þ

APPENDIX E: SOME CFT CALCULATIONS

In the main context, we have analyzed partition function
on S2 in the presence of two heavy operators. Due to the
symmetry under the combination of Weyl transformation
and shift of fields, we can compute the same quantity as a
partition function without any insertions of operators but on
a locally S2 with two conical deficits as explained in the
next subsection. Here we focus on the leading contribution
to the Gibbons-Hawking entropy. For the purpose, we use
the Liouville description. However, if the vertex operator is
of the form Vα with α ∝ ρ, then the same analysis applies to
the Toda case as shown in Sec. E 2.

1. Partition function of CFT on conical defect

The metric of S2 is given by

ds2 ¼ 4dzdz̄
j1þ zz̄j2 ¼

4ðdr2 þ r2dϕ2Þ
ð1þ r2Þ2 ðE1Þ

with z ¼ reiϕ and z̄ ¼ re−iϕ. Performing a coordinate
transformation r ¼ 1= tanðθ=2Þ, we find

ds2 ¼ dθ2 þ sin2 θdϕ2: ðE2Þ

The partition function is evaluated in (4.9) of [7] as

jZCFTj2 ∼ e
π
3
cðgÞ : ðE3Þ

Let us introduce the conical deficits at θ ¼ 0, π=2
with the deficit angle 4πηð0 ≤ η ≤ 1=2Þ. Performing
a coordinate transformation as z ¼ r1−2ηeið1−2ηÞϕ and
z̄ ¼ r1−2ηe−ið1−2ηÞϕ, the metric becomes

ds2 ¼ 4dzdz̄
j1þ zz̄j2 ¼

4ð1 − 2ηÞ2ðdr2 þ r2dϕ2Þ
r4ηð1þ r2−4ηÞ2 : ðE4Þ

Applying another coordinate transformation as
r1−2η ¼ 1= tanðθ=2Þ, then we find

ds2 ¼ dθ2 þ ð1 − 2ηÞ2 sin2 θdϕ2: ðE5Þ

The metric indeed has conical deficits at θ ¼ 0, π=2 with
the deficit angle 4πη. The period of ϕ is now 2πð1 − 2ηÞ,
which makes the volume to be ð1 − 2ηÞ times that of S2.
From the computation in [7], we can see that the leading
contribution to the entropy is proportional to the volume,
i.e.,

jZCFTj2 ∼ e
π
3
cðgÞð1−2ηÞ: ðE6Þ

Using the relation (2.42), we reproduce exp SGH with (1.5).

2. A two-point function of ’t Hooft limit CFT

In the main context, we deal with slðNÞ Toda field
theory with finite N, which can be used to compute
correlation functions of the coset (1.7) with finite N as
shown in [35]. However, we also need to consider the coset
(1.7) at the ’t Hooft limit, where N; k → ∞ but λ in (1.9)
finite. In order to obtain the expressions at the ’t Hooft
limit, we utilize the triality relation in [33]. Namely, we
obtain the expressions in terms of N, c and then replace N
by �λ. The relation to parameter b is

b ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

λ

N

r
: ðE7Þ

In particular, we have

ðbþ b−1Þ2 ∼ −
λ2

N2
∼ −

Nλ2

12ðρ; ρÞ þOðN0Þ: ðE8Þ

Here we compute the two-point function

hVαðz1ÞVα� ðz2Þi ðE9Þ

with α ¼ ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8GNE

p ÞQ. The background charge Q
is given in (4.40). If α is proportional to the Weyl vector ρ,
then the operator does not carry any higher-spin charges.
Therefore, the operator is dual to dS3 black hole without
any higher-spin charges. In this case, the two-point function
(4.60) becomes simplified as

jhVαðz1ÞVα� ðz2Þij2 ∼ e
π
3
cðgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8GNE

p
: ðE10Þ

We thus reproduced the leading order expression of
expðSGHÞ with (1.5).
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APPENDIX F: WILSON LINES IN DE
SITTER GRAVITY

In this appendix, we extend the calculation of holo-
graphic entanglement entropy using Wilson line in [72,91]
to our dS3 higher-spin gravity. See also [6,7,92–96] for
related works.

1. Entanglement entropy from open Wilson lines

Let us introduce the Wilson line operator with two
boundary states jUii; jUfi [72,91]

WðCijÞ ¼ hUfjP exp

�Z
C
A

�
P exp

�Z
C
Ā

�
jUii; ðF1Þ

where P is the path ordering. Denoting a world line field on
s∈ ½si; sf� by UðsÞ, the expectation value of Wilson line
(F1) is given by

WðCijÞ ¼
Z

DUDP expð−IðU;PÞÞ; ðF2Þ

where P is a canonical momentum conjugate to U. The
action IðU;PÞ describes an auxiliary system, which lives
on the Wilson line. It is explicitly given by

IðU;PÞ ¼
Z

sf

si

dsðtr½PU−1DsU� þ ΣðsÞðtr½P2� − c2ÞÞ

ðF3Þ

in the case of a SL(2)-valued U. Here c2 is the quadratic
Casimir and the covariant derivative Ds is defined by

DsU ¼ dU
ds

þ AsU −UĀs; As ≡ Aμ
dxμ

ds
: ðF4Þ

Note that the action (F3) is invariant under a local gauge
transformation

UðsÞ → LðsÞUðsÞRðsÞ; PðsÞ → R−1ðsÞPðsÞRðsÞ: ðF5Þ

The equations of motion from IðU;PÞ are given by

U−1DsU þ 2ΣP ¼ 0;
dP
ds

þ ½Ās; P� ¼ 0; tr½P2� ¼ c2:

ðF6Þ

A trivial solution for A ¼ Ā ¼ 0 is

PðsÞ ¼ P0; UðsÞ ¼ U0ðsÞ≡ u0 exp ð−2vðsÞP0Þ;
dv
ds

¼ Σ; ðF7Þ

where P0 and u0 are constant elements. Moreover, (F6)
leads to the on-shell action

IðU;PÞon-shell ¼ −2c2
Z

sf

si

dsΣðsÞ ¼ −2c2Δv; ðF8Þ

whereΔv ¼ vðsfÞ − vðsiÞ. The authors of [72] showed that
this on-shell action with boundary conditions UðsiÞ ¼
UðsfÞ ¼ 1 leads to the holographic entanglement entropy
with (2.9) and setting

ffiffiffiffiffiffiffi
2c2

p ¼ c=6. In the following, we
consider our case of dS3.
In the pure dS3, we can write the solution (2.17) in the

following pure gauge form:

A ¼ LdL−1; Ā ¼ R−1dR; ðF9Þ

where L and R given by

L ¼ e−iθL0e−iL1xþ ; R ¼ e−iL−1x−e−iθL0 : ðF10Þ

The actual solution can be found by acting gauge trans-
formation to a trivial solution as

UðsiÞ ¼ LðsiÞðu0e−2vðsiÞP0ÞRðsiÞ;
UðsfÞ ¼ LðsfÞðu0e−2vðsfÞP0ÞRðsfÞ: ðF11Þ

Eliminating u0 with boundary conditions UðsiÞ ¼
UðsfÞ ¼ 1, we obtain

e−2ΔvP0 ¼ RðsiÞLðsiÞðRðsfÞLðsfÞÞ−1: ðF12Þ

To evaluate Δv, we take the trace of (F12) for the
fundamental representation of SL(2). Then we obtain

IðU;PÞon-shell ¼
ffiffiffiffiffiffiffi
2c2

p
cosh−1

�
1 −

ðΔtÞ2 þ ðΔϕÞ2
2

e2iθ0
�
;

ðF13Þ

where we set θðsfÞ ¼ θðsiÞ ¼ θ0; Δt ¼ tðsfÞ − tðsiÞ;
Δϕ ¼ ϕðsfÞ − ϕðsiÞ with x� ¼ it� ϕ. For eiθ0Δϕ ¼
ϵ−1Δϕ ≫ 1 and Δt ¼ 0, we obtain

SEE ¼ IðU;PÞon-shell ¼ i
cðgÞ

3
log

�
Δϕ
ϵ

�
þ πcðgÞ

6
; ðF14Þ

where we set
ffiffiffiffiffiffiffi
2c2

p ¼ c=6 ¼ icðgÞ=6. This reproduces the
results in [7]. As argued in [94,96], this quantity should be
interpreted as an generalization of entanglement entropy,
called pseudo entropy [97], which takes complex-valued.
In the dS3 black holes, let us consider the solution (2.20)
and define the following L and R
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L ¼ e−iθL0e−iðL1−2πL
κ L−1Þxþ ; R ¼ e−iðL−1−2πL̄

κ L1Þx−e−iθL0 :

ðF15Þ

In the same steps as above, we obtain

SEE ¼ i
cðgÞ

6
log

 
κ

2π
ffiffiffiffiffiffiffi
LL̄

p 1

ϵ2
sin

� ffiffiffiffiffiffiffiffiffi
2πL
κ

r
Δϕ
�

× sin

 ffiffiffiffiffiffiffiffiffi
2πL̄
κ

s
Δϕ

!!
þ πcðgÞ

6
ðF16Þ

for ϵ−1Δϕ ≫ 1. If we setL ¼ L̄ and define β ¼ π
ffiffiffiffiffiffi
κ

2πL

p
, the

result (F16) becomes

SEE ¼ i
cðgÞ

3
log

�
β

πϵ
sin

�
πΔϕ
β

��
þ πcðgÞ

6
: ðF17Þ

Let us move to the higher-spin dS3 black holes.
According to [72], the evaluation of Wilson line for SL(3)-
valued U is given by the action

IðU;PÞ ¼
Z

sf

si

dsðtr½PU−1DsU� þ Σ2ðsÞðtr½P2� − c2Þ

þ Σ3ðsÞðtr½P3� − c3ÞÞ; ðF18Þ

where we define

tr½P2�≡ PaPbδab; δab ¼
1

2
tr½TaTb�;

tr½P3�≡ PaPbPchabc; habc ¼ tr½TðaTbTcÞ�; ðF19Þ

with Ta as the generators of slð3Þ. The equations of motion
are given by

U−1DsU þ 2Σ2Pþ 3Σ3P × P ¼ 0;
dP
ds

þ ½Ās; P� ¼ 0;

tr½P2� ¼ c2; tr½P3� ¼ c3 ðF20Þ

with the definition P × P ¼ habcTaPbPc. These equations
of motion lead to the on-shell action

IðU;PÞon-shell ¼ −2c2Δv2 − 3Δv3: ðF21Þ

We again start from a trivial solution

U0ðsÞ ¼ u0 exp ð−2vðsÞP0 − 3v3ðsÞP0 × P0Þ;
dvi
ds

¼ Σi

ðF22Þ

and use the nonrotating solution (4.22) as

L ¼ e−iθL0e−iðaþxþþa−x−Þ; R ¼ eiðā−x−þāþxþÞe−iθL0 :

ðF23Þ

Here L, R take values in SL(3). We consider the case of
c2 ≠ 0, c3 ¼ 0 in order to evaluate the entanglement
entropy. Using the same steps as above, see also
[72,98], for ϵ−1Δϕ ≫ 1 and Δt ¼ 0, we obtain the follow-
ing first spin-3 correction at μ → 0

SEE ¼ i
cðgÞ

3
log

�
β

πϵ
sin

�
πΔϕ
β

��
þ πcðgÞ

6

þ i
cðgÞ

18

4π2μ2

β2
sin−4

�
πΔϕ
β

��
sin2
�
πΔϕ
β

��
1þ 5 cos

�
πΔϕ
β

��

−
4πΔϕ
β

sin

�
2πΔϕ
β

��
1þ 2 cos

�
2πΔϕ
β

��
þ 6

�
2πΔϕ
β

�
2

cos

�
2πΔϕ
β

��
þ � � � : ðF24Þ

Here we use the relation in terms of a dimensionless parameter C in (4.30);

W ¼ 4ðC − 1Þ
C3=2 L

ffiffiffiffiffiffiffiffiffi
2πL
κ

r
; μ ¼ 3

ffiffiffiffi
C

p

4ð2C − 3Þ
ffiffiffiffiffiffiffiffiffi
κ

2πL

r
;

μ

β
¼ 3

4π

ðC − 3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C − 3

p

ð2C − 3Þ2 : ðF25Þ

2. Thermal entropy from Wilson loops

Let us consider theWilson loop and evaluate the thermal entropy. The expectation value ofWilson loop is given by [72,91]

WðCÞ ¼ tr

�
P exp

�I
C
A

�
P exp

�I
C
Ā

��
¼
Z

DUDP expð−IðU;PÞÞ; ðF26Þ

CHEN, HIKIDA, TAKI, and UETOKO PHYS. REV. D 108, 066005 (2023)

066005-38



where we take the trace for the representation of the gauge
group. The action IðU;PÞ is same as (F3) with the path
xμðsiÞ ¼ xμðsfÞ and the boundary condition for UðsÞ is

UðsiÞ ¼ UðsfÞ; PðsiÞ ¼ PðsfÞ: ðF27Þ

With this condition, as in the Sec. F 1, we evaluate Δv from

LðsiÞðu0e−2vðsiÞP0ÞRðsiÞ ¼ LðsfÞðu0e−2vðsfÞP0ÞRðsfÞ:
ðF28Þ

Note that, from xμðsiÞ ¼ xμðsfÞ, we have

L−1ðsfÞLðsiÞ ¼ e
H

dϕaϕ ¼ e−2πaϕ ; ðF29Þ

RðsiÞR−1ðsfÞ ¼ e−
H

dϕāϕ ¼ e−2πāϕ ; ðF30Þ

where we only consider the holonomy along the ϕ-cycle.
Thus we obtain the on-shell action

IðU;PÞon-shell ¼ −2c2Δv ¼ 2π
ffiffiffiffiffiffiffi
2c2

p
trfððΛϕ − Λ̄ϕÞJ0Þ;

ðF31Þ

where Λϕ and Λ̄ϕ are the diagonal matrix of the eigenvalues
of aϕ and āϕ. Moreover, trf means that we take the trace for
the fundamental representation.
Let us examine explicit examples. In the case of dS3

black holes, the thermal entropy of BTZ black holes is
evaluated as

S ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffi
2πκL

p
þ 2π

ffiffiffiffiffiffiffiffiffiffiffi
2πκL̄

p
: ðF32Þ

Here the diagonal matrix is

Λϕ ¼ diag

�
i

ffiffiffiffiffiffiffiffiffi
2πL
κ

r
;−i

ffiffiffiffiffiffiffiffiffi
2πL
κ

r �
; ðF33Þ

which comes from the solution (2.20). Let us now turn to
the case of the higher-spin black hole. The thermal entropy
is evaluated as

S ¼ 4π
ffiffiffiffiffiffiffiffiffiffiffi
2πκL

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3

4C

q
1 − 3

2C

: ðF34Þ

The diagonal matrix is

Λϕ ¼ 2i

ffiffiffiffiffiffiffiffiffi
2πL
κ

r
diag

�
3þ Cð−2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3þ 4C
p Þffiffiffiffi

C
p ð−3þ 2CÞ ;

2ffiffiffiffi
C

p ;

3 − Cð2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ 4C

p Þffiffiffiffi
C

p ð−3þ 2CÞ

�
; ðF35Þ

which comes from the solution (4.22). Here we have
used the relation (F25). Note here that the result (F34) is
the dS3 counterpart of AdS3 one computed with the bulk
Hamiltonian [99,100]. On the other hand, the result (4.31)
is the dS3 counterpart of AdS3 one by using the boundary
stress tensor [43]. According to [100], in the presence of the
chemical potential μ, these results disagree, see also [72].
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