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We present a new perspective on bulk reconstruction using Berry phases in the boundary conformal field
theory (CFT). Our parallel transport of modular Hamiltonians is associated to a trajectory in the space of
states, which we obtain from the insertion of a source in the Euclidean path integral. Using a modular
version of the extrapolate dictionary and the equivalence between modular flow in the boundary and the
bulk, we show that the expectation value of the modular Berry curvature on the boundary agrees with an
appropriately defined bulk symplectic form associated to the entanglement wedge. In addition, we derive a
quantum information metric on the space of density matrices from the Berry curvature, which is related to
the canonical energy in the bulk. We also explore the case where a state change reduces to a shape change,
uncovering the coadjoint orbit structure of kinematic space in higher dimensions.
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I. INTRODUCTION

The growing interface between quantum information
theory and gravity has shed new light on many aspects of
quantum gravity; for recent reviews see [1–5]. Within the
realm of holography, it has been fruitful to search for bulk
duals of quantum information theoretic concepts on the
boundary, so as to add new entries to the AdS=CFT
dictionary. Contrasted with earlier results in AdS=CFT,
the quantum information theory-based part of the dictionary
often has a more direct connection to bulk geometry.
In this paper, we continue the approach of deriving new

AdS=CFT dictionary entries from quantum information
theoretic quantities on the boundary side. We will investigate
a particular new quantum information theoretic boundary
quantity, which adapts the Berry parallel transport [6] to
trajectories in the space of global states. Unlike Berry

transport for pure states in quantum mechanics, this parallel
transport transforms operators associated to a spatial sub-
region. This process has been dubbed modular Berry
transport because it relies on entanglement properties of
subregions, specifically on how the modular Hamiltonian is
glued together across different choices of subregion.
Modular Berry transport has been studied in some detail

for trajectories defined over kinematic space [7]—ones
where boundary subregions vary in shape or location
[8,9]. In this case there is a direct bulk geometric dual: The
Berry phase reproduces lengths of bulk curves that can be
reached by extremal surfaces, and the Berry curvature is
related to a bulk curvature. A close cousin of the modular
parallel transport generator was recently shown to act in
three-dimensional bulk geometries as the generator of
ordinary parallel transport, which is described by general
relativity [10].
Our setting here is different from those earlier works.

We consider modular parallel transport along trajectories,
which visit varying global states rather than varying
locations or shapes of boundary subregions. This approach
was initiated in a more restricted setting in [11]. There, we
showed that the curvature associated to a particular state-
changing modular Berry transport could be identified with
an appropriately defined symplectic form associated to an
entanglement wedge. In that case, state deformations were
implemented through the action of a large diffeomorphism,
whose form was dictated by the Virasoro symmetry of a
CFT2. (Berry phases on the Virasoro algebra were likewise
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considered in [12–15].) This setting further revealed a
connection to an auxiliary symplectic geometry derived
from the group theory of the Virasoro algebra: a coadjoint
orbit. The triality between the Berry curvature, the entan-
glement wedge symplectic form, and the Kirillov-Kostant
symplectic form on an appropriate orbit (see also [16] for a
similar triality for bulk duals of complexity) revealed an
interplay between group theory and quantum information
in this case, giving an additional handle on an important
bulk geometric quantity of interest.
Our aim in this paper is to set up Berry transport for a

broad class of state deformations in any dimension. Based
on previous results in two dimensions, one might imagine
this to be a straightforward task. However, the power of
group theory to describe certain state-changing transfor-
mations in two dimensions also presents a limitation in
its generalization. To generalize state-changing Berry
transport to a larger class of state changes including state
changes in higher dimensions, one must invoke a very
different toolkit. In the present work we make use of the
Euclidean path integral to implement state changes (analo-
gously to [17,18] in the case of pure states, or see [19] for a
different version of parallel transport based on the Uhlmann
phase.1) We also use some new (from the perspective of
modular Berry transport) techniques such as modular
Fourier decompositions, the KMS condition from modular
theory, as well as (from the bulk side) the equivalence
between bulk and boundary modular flow and the modular
extrapolate dictionary. These tools have been useful in
proving the ANEC and the quantum null energy condition
[22,23] and in setting the stage for a modular approach
to bulk recontruction [23–25]. Intriguingly, though we
employ very different techniques from group theory,
coadjoint orbits and Chern-Simons theory as utilized
in [11], the end result is similar: The expectation value
of the Berry curvature in the global pure state is equal to the
symplectic form associated to an entanglement wedge.
Using a similar framework, we can also extract from the

full Berry curvature a symmetric quantity. We show that on
the boundary, this describes a metric on the space of density
matrices, often referred to as the quantum Fisher informa-
tion metric (this also goes by other names). In the bulk, we
extract this from the bulk symplectic form by taking a Lie
derivative with respect to the generator of modular flow.
This describes the canonical energy, which has been used
as a tool for deriving the bulk equations of motion from
entanglement entropy [26–28]. In the end, we see that the
modular Berry phase incorporates more information

beyond simply the bulk symplectic form, as is represented
in the triangle in Fig. 1.
Along the way, we can make contact with Berry transport

in the shape-changing case, now generalized to higher
dimensions. We do so in two ways: first, by considering the
specific case of state deformations sourced by the stress
tensor, which incorporates shape changes. Next, we act
with symmetry generators of the higher dimensional
conformal algebra, in a direct generalization of the tech-
niques of [11]. In doing so, we relate the Berry curvature
for the higher-dimensional shape-changing case to the
Kirillov-Kostant symplectic form on a coadjoint orbit.
The full non-Abelian Berry curvature lives on the coset
space that is relevant for the higher dimensional version
of kinematic space, the space of causal diamonds in a
CFT [7,29–34]. The connection to the Kirillov-Kostant
symplectic form relies on the fact that in this case, unlike
for general state transformations, the deformations which
implement parallel transport lie in the symmetry algebra of
the boundary.
Outline: We set the stage in Sec. II by reviewing modular

Berry transport and state preparation using the Euclidean
path integral. After introducing some of the language of
modular flow and modular Fourier decomposition, we
use these tools to derive the modular Berry curvature for
general state deformations. We also introduce a symmetric
derivative of the Berry curvature (see Appendix B for the
quantum information theoretic interpretation). Next, we
extend these quantities into the bulk in Sec. III using the
modular extrapolate dictionary. We show explicitly for
operators sourcing bulk scalar fields that this computes the
bulk symplectic form (see Sec. IVA for a generalization
beyond the scalar case). The symmetric offshoot is related
to the bulk canonical energy. Section IV presents some
explicit examples of the general formalism of the previous
sections. Specifically, we consider in Sec. IVA the case of a
stress tensor source, which in general implements a change
of metric but also includes the shape-changing case.
An explicit bulk computation of the symplectic form for
the shape-changing sub-case is given in Appendix C.

FIG. 1. Modular Berry transport provides a framework that
encodes information about not only the bulk symplectic form, but
also the quantum information metric.

1Excellent summaries of the different types of transport in
quantum mechanical state spaces, including Berry and Uhlmann
transport, are given in [20,21]. Note, however, that those works
assume that the Hilbert space is finite-dimensional. Infinite-
dimensional Hilbert spaces can give rise to subtleties, see for
example [11].
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Finally, in Sec. IV B we explicitly consider the higher-
dimensional shape-changing case by acting with symmetry
generators, and elucidate the connection to coadjoint
orbits. Our conventions for the conformal algebra are
presented in Appendix A.

II. BERRY CURVATURE FOR COHERENT
STATE DEFORMATIONS

First we consider a parallel transport problem purely
defined on the boundary. In Sec. II A, we review modular
Berry transport. This parallel transport problem concerns
modular Hamiltonians, which undergo deformations.
We will subsequently apply this formalism to deformations
that change the global state on the boundary in arbitrary
dimension. In Sec. II B, we review how to construct such
state deformations using coherent states and the Euclidean
path integral, and in Secs. II C and II D we derive new
results for the modular Berry curvature and quantum
information metric for state deformations. Our results make
convenient use of modular eigenstates and a modular
Fourier basis.

A. Modular Berry transport

We begin by reviewing modular Berry transport, which
is the starting point for much of our analysis [8,9]. Consider
a subregion A along a time-slice of a d-dimensional CFT.
Let jΨi be a pure state defined on the whole space. We can
obtain a reduced density matrix associated to A by tracing
over the complement Ā:

ρA ¼ trĀjΨihΨj: ð2:1Þ

Since in this paper we will only be concerned with mixed
states, we henceforth drop the subscript A. Operator ρ
should be understood as the reduced density operator
associated with a subregion, rather than a pure state.
We can define from this a modular Hamiltonian Hmod,

which is related to the density matrix through

ρ ¼ e−Hmod : ð2:2Þ

The modular Hamiltonian, like the reduced density matrix,
depends on the specified subregion A. More generally, there
is an algebra of observables A associated to the region A.
There is also an algebra A0 of “modular zero modes” Qi
which commute with the modular Hamiltonian,

½Qi;Hmod� ¼ 0: ð2:3Þ

Given an operatorOð0Þ associated to the region, the flow by
a modular zero mode

OðsiÞ ¼ V†ðsiÞOð0ÞVðsiÞ; VðsiÞ ¼ e−isiQi ; ð2:4Þ

will leave the expectation value of the operator unchanged. It
will also map the operator to another operator in the same
region, thus leaving the algebra unchanged.
Now, consider a family of modular Hamiltonians

HmodðηÞ that depends on some parameter η. For instance,
η could specify the shape or location of the subregion A as it
is slowly varied [8,9,35]. Another possibility is to fix A but
generate a family of modular Hamiltonians by varying the
global state jΨi, as was considered in two dimensions
in [11]. We can consider a “modular” parallel transport
process by studying the transport of an operator associated
to the subregion as η is varied. Note that ultimately, the
modular Hamiltonian is not well defined in QFT. In this
paper, we will implicitly introduce a small cutoff to have a
well-defined notion of modular Hamiltonian.
Consider diagonalizing the modular Hamiltonian in a

given basis, whose details are unimportant for the rest of the
computation:

Hmod ¼ U†ΔU; ð2:5Þ
where the spectral piece Δ is a diagonal matrix, and U
implements a change of basis. BothU andΔ will in general
depend on η. Taking the derivative with respect to η gives

Ḣmod ¼ ½U̇†U;Hmod� þ U†Δ̇U: ð2:6Þ
Here, the dot is a derivative with respect to η. Notably, this
equation is invariant under the action of a modular zero
mode flow. One can view the modular zero mode action
as a redundancy along the path that an operator is being
transported through. This is analogous to the ordinary
Berry phase redundancy (for the pure state case) in
quantum mechanics. Under a finite displacement in the
parameter space that is closed (i.e., one where η is the same
at the initial and end point), an operator may not return
exactly to itself, but rather to itself up to a flow by a
modular zero mode.
Define a projection P0 that sends an operator in the

algebra of observables to its zero mode component:

P0∶ A → A0: ð2:7Þ
It is straightforward to construct such a projection operator
in finite-dimensional settings, which is canonical given
some choice of inner product for which Hmod is Hermitian.
Subtleties concerning uniqueness of this projection oper-
ator in two dimensions—where the observable algebra is
infinite-dimensional—were discussed in [11]. U̇†U is, up
to an additive zero mode, the generator of parallel transport.
Indeed, the zero mode projection P0ðU̇†UÞ transforms as a
gauge field, so we can think of P0ðU̇†UÞ as a component of
the Berry connection [9]. Said differently, the modular
parallel transport condition reads:

P0ðU̇†UÞ ¼ 0: ð2:8Þ
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We will find it useful to rewrite (2.6) in the form

δHmod − P0ðδHmodÞ ¼ ½X;Hmod�: ð2:9Þ

This uses X to represent U̇†U, which—we emphasize
again—is the generator of parallel transport plus possibly
some zero modes. (It is the parallel transport generator if
P0ðXÞ ¼ 0.) δHmod is understood to denote Ḣmod. We also
rely on having the image and kernel of the adjoint action
½·; Hmod� with respect to the modular Hamiltonian be
disjoint. This is always true, for instance, in the finite
dimensional case of the conformal group that we will
consider in Sec. IV B. This implies that ½X;Hmod� contains
no zero modes so that P0ðδHmodÞ ¼ U†Δ̇U.
Now consider two deformations in different directions in

parameter space, which can be generated by operators X1

and X2. We assume these X1;2 generate parallel transport in
their respective directions, that is P0ðX1Þ ¼ P0ðX2Þ ¼ 0.
The holonomy around an infinitesimal loop in parameter
space is the Berry curvature (see Appendix B of [11]):

F ¼ P0ð½X1; X2�Þ: ð2:10Þ

We will compute this quantity explicitly for state-changing
transformations, with the aim of finding an appropriate
bulk dual.

B. Coherent state deformations

We would like to consider a modular Berry setup where
the variation of η denotes a change of state rather than a
change of shape or location of the subregion. For a CFT in
two dimensions, one particular class of deformations δHmod
that implement state changes involve elements of the
infinite-dimensional Virasoro symmetry algebra. (Due to
certain subtleties, it is necessary to employ a continuous
version of the Virasoro algebra, which is described by
certain nonsmooth vector fields on the circle [11].) For a
CFT in d > 2 dimensions the story will necessarily be
different, since such state-changing transformations no
longer lie in the symmetry algebra soðd; 2Þ.
To generalize the state-changing Berry construction to

accommodate higher-dimensional setups, it will be useful
to introduce the language of Euclidean path integrals.2

Specifically, we assume that the state jΨi is a coherent
state, in the sense that it is prepared by the Euclidean
path integral with a background source λ. We consider
deforming the state through the insertion of some operator
O in the path integral:

δS ¼
Z

ddxδλðxÞOðxÞ: ð2:11Þ

The source δλðxÞ determines the strength of the perturba-
tion. At this point, there is no need to restrict the support of
the source, we take it to be anywhere in the Euclidean
half-plane.
The perturbation (2.11) leads to a change of the density

matrix, and hence of the modular Hamiltonian [22].
Denoting the collective field content of the theory by ϕ,
one can compute matrix elements of the density matrix
(2.1) by gluing the upper and lower Euclidean half plane
along the complement Ā at tE ¼ 0:

hϕAþjρjϕA
−i ¼

1

Z

Z
ϕð0þÞ¼ϕA

þ

ϕð0−Þ¼ϕA
−

½Dϕ�e−S½ϕ�;

where Z≡
Z

½Dϕ�e−S½ϕ�: ð2:12Þ

Here, ϕAþ and ϕA
− denote the value of the field ϕ just above

and below the subregion A respectively, and S½ϕ� is the
Euclidean action of the theory with source λ. One therefore
integrates over the full Euclidean manifold M with a
branch cut at the location of the subregion (see Fig. 2).
We now perturb the state according to (2.11). The new

density matrix ρ0 is given by

hϕAþjρ0jϕA
−i ¼

1

ðZ þ δZÞ
Z

ϕð0þÞ¼ϕA
þ

ϕð0−Þ¼ϕA
−

½Dϕ�e−S½ϕ�−
R

ddxδλðxÞOðxÞ:

ð2:13Þ

FIG. 2. The Euclidean manifold M that is integrated over to
prepare the matrix elements hϕAþjρjϕA

−i of the density matrix. The
two hemispheres are glued along the complement region Ā, while
the boundary conditions at the region A are left open. One can
prepare nontrivial coherent states by introducing nontrivial back-
ground sources λ (which are represented by cats in the figure).

2The Euclidean path integral is also useful for defining a CFT
Berry transport process for pure states, without restricting to a
subregion [17,18]. One goal of our work is to explicitly adapt this
to modular transport for mixed states. For a formal argument
involving the mixed state case and a different variety of parallel
transport, see [19].
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Using the geometric series relation

1

ðZ þ δZÞ ¼
1

Z

�
1 −

δZ
Z

þ…

�
; ð2:14Þ

and expanding the exponential in (2.13), we find that the
change δρ≡ ρ0 − ρ is given by

hϕAþjδρjϕA
−i¼−

1

Z

Z
ϕð0þÞ¼ϕA

þ

ϕð0−Þ¼ϕA
−

½Dϕ�e−S½ϕ�
Z

ddxδλðxÞ∶OðxÞ∶

þ…; ð2:15Þ

where we have introduced the renormalized operator
∶O∶≡O − hOi. From now on we will omit the notation
∶ · ∶, and assume that all operators are background sub-
tracted. Hence, up to first order in the source the density
matrix changes as

δρ ¼ −
Z

ddxρδλðxÞOðxÞ: ð2:16Þ

Recall that the modular Hamiltonian Hmod is related
to ρ by

ρ ¼ e−Hmod : ð2:17Þ

Using the integral representation of the logarithm,

Hmod ¼ − log ρ ¼
Z

∞

0

dβ

�
1

ρþ β
−

1

1þ β

�
; ð2:18Þ

it follows from (2.16) that

δHmod¼−
Z

∞

0

dβ

�
1

ρþβ
δρ

1

ρþβ

�

¼
Z

ddxδλðxÞ
Z

∞

0

dβ

�
ρ

ρþβ
OðxÞ 1

ρþβ

�
: ð2:19Þ

To proceed, it is useful to use a spectral representation for
the density matrix ρ. We consider modular frequency states
jωi, which are eigenstates of the modular Hamiltonian3:

Hmodjωi ¼ ωjωi: ð2:20Þ

When evaluated in this basis, the change in the modular
Hamiltonian takes a relatively simple form. Inserting a
resolution of the identity, one finds

hωjδHmodjω0i ¼
Z

ddxδλðxÞhωjOðxÞjω0i

×
Z

∞

0

dβ

�
e−ω

e−ω þ β

1

e−ω
0 þ β

�
: ð2:21Þ

The integral over β can be performed easily. Indeed, we
find that

Z
∞

0

dβ

�
e−ω

e−ω þ β

1

e−ω
0 þ β

�
¼ ω − ω0

eω−ω
0 − 1

: ð2:22Þ

Plugging this back into (2.21), it follows that

hωjδHmodjω0i¼
Z
ddxδλðxÞnðω−ω0Þðω−ω0ÞhωjOðxÞjω0i;

ð2:23Þ

where here we have introduced the quantity

nðωÞ≡ 1

eω − 1
; ð2:24Þ

which will be convenient later. This gives a relatively
simple expression for the change in modular Hamiltonian
in terms of the matrix elements of the operator O.
Recall that the modular parallel transport problem relies

on defining projection P0 that sends an operator to its
zero mode component. There is an ambiguity in how to
define this projection. A natural choice is to take the
diagonal matrix elements of the operator and multiply by
the eigenstate jωihωj4:

P0ðOÞ≡
Z

dωhωjOjωijωihωj: ð2:25Þ

This procedure defines a diagonal operator, which
commutes with the modular Hamiltonian since Hmod is
diagonal in its own eigenbasis. It is easy to check that the
projection (2.25) satisfies

P0ðHmodÞ ¼ Hmod; P0ð½Hmod; X�Þ ¼ 0: ð2:26Þ

In other words, it is indeed the case that the kernel and
image of the adjoint action ½·; Hmod� with respect to the
modular Hamiltonian are disjoint.

3As the existence of such states is only guaranteed in type I von
Neumann algebras, our analysis presumes that the more realistic
settings of type II algebras (semiclassical gravity) and/or type III
algebras (quantum field theory) do not alter the overall picture.

4Under general circumstances, the integral in (2.25) might
involve a nontrivial density of states. The attendant degeneracies
among states jωi generically arise from additional symmetries,
which commute with Hmod. If so, one can extend Hmod to a
complete set of commuting operators and declare ω to denote the
corresponding complete set of quantum numbers. In this paper
we assume that any degeneracies in the spectrum have been
accounted for in this fashion, and do not include explicit factors
of the density of states.
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We can now use P0 to define the parallel transport
problem. We first subtract off the zero mode part of δHmod,
which is given by the diagonal component of (2.23):

P0ðδHmodÞ ¼
Z

ddxδλðxÞP0ðOðxÞÞ: ð2:27Þ

Using the fact that

hωj½X;Hmod�jω0i ¼ ðω0 − ωÞhωjXjω0i; ð2:28Þ

we recognize that the factor ω − ω0 in (2.23) comes from a
commutator. Indeed, we can choose an X with matrix
elements

hωjXjω0i ¼ −
Z

ddxδλðxÞnðω − ω0ÞhωjOðxÞjω0i: ð2:29Þ

We additionally assume that X is zero mode free,
P0ðXÞ ¼ 0, which also implies P0ðδHmodÞ¼0 by (2.27).
Then, by comparing (2.28) and (2.29) with (2.23), we see
that X satisfies the transport equation

hωjðδHmod − P0ðδHmodÞÞjω0i ¼ hωj½X;Hmod�jω0i: ð2:30Þ

Since X is assumed to be zero mode free, we can identify it
with the generator of parallel transport whose commutators
compute the modular Berry curvature (2.10).

C. Berry curvature

Now that we have computed the matrix elements of
δHmod in the modular eigenstate basis and derived the
generator X of parallel transport, we would like to compute
from this the Berry curvature. Recall that given two
infinitesimal deformations δ1λ; δ2λ and corresponding
zero-mode free parallel transport generators X1, X2, the
Berry curvature is given by

F ¼ P0ð½X1; X2�Þ: ð2:31Þ

To further evaluate this expression it is useful to
decompose the operator O in a “modular Fourier basis,”
where the action of the modular Hamiltonian is simple.
Such a basis was previously used in the context of bulk
reconstruction in [24]. Let us first consider the modular
flow associated to the algebra A and state jΨi, defined
by the operation

O ∈ A → Os ¼ eiHmodsOe−iHmods ∈ A: ð2:32Þ

One can use the modular flow to make a Fourier decom-
position of the form

Oω ¼
Z

∞

−∞
dse−iωsOs; ð2:33Þ

where the operators Oω are labeled by some modular
frequency ω. We can now decompose an operator O in
terms of the modular Fourier basis as

O ¼ 1

2π

Z
dωOω: ð2:34Þ

Note that the operators Oω should always be viewed as
being integrated against some suitable function of the
frequency ω to get finite expectation values. Therefore,
using the modular Fourier basis directly will introduce
some intermediate δ-functions5 in the computation, but the
final answer for the curvature will be finite.
The action of modular flow (2.32) on Oω is particularly

simple. By shifting the integration variable in (2.33)
we find that

eiHmodtOωe−iHmodt ¼ eiωtOω: ð2:36Þ
Plugging this into the formula for the commutator

½Hmod;Oω� ¼ −i
d
dt

����
t¼0

eiHmodtOωe−iHmodt; ð2:37Þ

gives the relation

½Hmod;Oω� ¼ ωOω: ð2:38Þ
We conclude that the operators (2.33) constitute a formal
spectral decomposition of the adjoint action of Hmod.
The matrix elements of Oω in the modular frequency

basis obey

hω0jOωjω00i ¼
Z

∞

−∞
dseiðω0−ω−ω00Þshω0jOjω00i

¼ 2πδðω0 − ω − ω00Þhω0jOjω00i; ð2:39Þ
so they are only nonzero when the frequencies satisfy the
condition ω ¼ ω0 − ω00. This can be used to our advantage.
In particular, one can use (2.39) to show that

Z
dω00fðω00Þhω0jOωjω00i

¼ 2πfðω0 − ωÞhω0jOjω0 − ωi

¼
Z

dω00fðω0 − ω00Þhω0jOω00 jω0 − ωi; ð2:40Þ

5Note that the Fourier zero mode O0 commutes with the
modular Hamiltonian, but it is not the same as applying the zero
mode projection P0ðOÞ. They differ by an infinite normalization
factor coming from the extra δ-function:

O0 ¼ P0ðO0Þ ¼ 2πδð0ÞP0ðOÞ; ð2:35Þ
which reflects the fact thatO0 by itself is in some sense a singular
operator.
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and similarly

Z
dω00fðω00Þhω00jO−ωjω0i ¼

Z
dω00fðω0 − ω00Þhω0 − ωjO−ω00 jω0i ð2:41Þ

for any function f ¼ fðωÞ.
This identity can be used to transform an integral over modular frequency states to an integral over modular

frequency operators. Let us first decompose the operator X1, X2 into modular Fourier modes X1;ω1
; X2;ω2

, and compute the
commutator

hωj½X1;ω1
;X2;ω2

�jω0i¼
Z

ddx
Z

ddx0δ1λðxÞδ2λðx0Þ
Z

dω00hωjOω1
ðxÞjω00ihω00jOω2

ðx0Þjω0inðω−ω00Þnðω00−ω0Þ−ð1↔2Þ:

ð2:42Þ

We have inserted a complete basis of states and used the expression (2.29). Wewill now consider the diagonal part of (2.42).
First note that from (2.39), hωjOω1

ðxÞjω00ihω00jOω2
ðx0Þjωi is proportional to δðω − ω1 − ω00Þδðω00 − ω2 − ωÞ. Thus, it is

only nonzero when ω1 ¼ −ω2. We are therefore allowed to multiply the equation with a term δðω1 þ ω2Þδð0Þ−1. The extra
insertion of δð0Þ will cancel at the end of the computation, when we write the answer in terms of the original operators.
Using the identity (2.40) we find that

Z
dω00nðω − ω00Þnðω00 − ωÞhωjOω1

ðxÞjω00ihω00jOω2
ðx0Þjωi

¼ δðω1 þ ω2Þδð0Þ−1
Z

dω00nð−ω00Þnðω00ÞhωjOω00 ðxÞjω − ω1ihω − ω1jO−ω00 ðx0Þjωi: ð2:43Þ

By integrating over the modular frequencies ω1, ω2 on both sides of the equality using (2.34), and then removing a
resolution of the identity, one obtains

Z
dω00nðω − ω00Þnðω00 − ωÞhωjOðxÞjω00ihω00jOðx0Þjωi ¼ N −1

Z
dω00nð−ω00Þnðω00ÞhωjOω00 ðxÞO−ω00 ðx0Þjωi; ð2:44Þ

where N ≡ ð2πÞ2δð0Þ. Putting this back into the expression for the commutator ½X1; X2�, one finds

hωj½X1; X2�jωi ¼ N −1
Z

ddx
Z

ddx0δ1λðxÞδ2λðx0Þ
Z

dω00nð−ω00Þnðω00Þhωj½Oω00 ðxÞ;O−ω00 ðx0Þ�jωi: ð2:45Þ

Since the operator ½Oω00 ðxÞ;O−ω00 ðx0Þ� is diagonal already, the projection operator P0 leaves it invariant. We conclude that
the Berry curvature (2.10) is given by

F ¼ N −1
Z

ddx
Z

ddx0δ1λðxÞδ2λðx0Þ
Z

dωnð−ωÞnðωÞ½OωðxÞ;O−ωðx0Þ�: ð2:46Þ

This formula is one of the main results of this section, and it provides a useful representation of the curvature associated to
coherent state deformations of the form (2.11).
Note that this modular Berry curvature F is operator-valued, due to the fact that our transport problem is suited to density

matrices, instead of pure states. In fact it is easy to verify that the curvature is a zero mode, i.e., F ∈ A0. By virtue of the
Jacobi identity together with (2.38),

½Hmod; ½Oω;O−ω�� ¼ ½Oω; ½Hmod;O−ω�� − ½O−ω; ½Hmod;Oω�� ¼ 0; ð2:47Þ

which shows that the curvature indeed satisfies ½Hmod; F� ¼ 0. Moreover, the expression (2.46) is anti-symmetric under
interchanging 1 with 2. This can be most easily seen by substituting ωwith −ω in the integral: while the term nð−ωÞnðωÞ is
invariant, the commutator picks up a minus sign.
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We would like to extract a number from this operator-
valued curvature. Although there is no canonical way to do
so,6 a simple and convenient choice is to take the expect-
ation value of the operator F in the original pure state jΨi:

FΨ ≡ hΨjFjΨi ¼ hFi: ð2:48Þ

As we will show in Sec. III, it turns out that (2.48) results in
the correct identification with the bulk symplectic form.
This agreement can be viewed as an argument for why this
choice is the most “physical” one. However, from a
mathematical point of view we stress that this choice is
by no means unique, and the operator F contains more
information.
To proceed in evaluating this expectation value, let us

mention a well-known result for two-point functions of
operators in the global state jΨi, the so-called KMS
condition. (For a pedagogical exposition of the KMS
condition, see for example [36,37].) Roughly speaking,
it says that we can swap operators in a two-point function
provided that we evolve one of them in imaginary modular
time. To be precise, we introduce the Tomita operator SΨ as
an antilinear operator that sends

SΨOjΨi ¼ O†jΨi: ð2:49Þ

The modular operator is now defined by Δ ¼ S†ΨSΨ, and
satisfies ΔjΨi ¼ jΨi. Using the definition (2.49) together
with antilinearity one can verify that

hΨjOO0jΨi ¼ hΨjO0ΔOjΨi; ð2:50Þ
for O;O0 ∈ A. One can represent the modular
operator in terms of the two-sided modular Hamiltonian

Ĥmod ≡Hmod − H̄mod ¼ − log Δ so that the modular flow
(2.32) is given by Os ¼ Δ−isOΔis. Therefore, assuming
that the operators OsðxÞ;Oðx0Þ are in the algebra A
associated to the subregion7 one obtains the condition

hOsðxÞOðx0Þi ¼ hOðx0ÞOsþiðxÞi: ð2:51Þ

The action of modular flow on the Fourier modes Oω

is particularly simple, i.e., see (2.36), so that the KMS
condition (2.51) reads

hOωðxÞOω0 ðx0Þi ¼ e−ωhOω0 ðx0ÞOωðxÞi: ð2:52Þ

By rearranging terms on both sides of the equation one
finds the following identity

hOωðxÞOω0 ðx0Þi ¼ nðωÞh½Oω0 ðx0Þ;OωðxÞ�i; ð2:53Þ
where nðωÞ was defined in (2.24). This relation is very
useful in practice since we can use it to rewrite the
expectation value of a commutator in terms of a two-point
function.
We can now use this to evaluate (2.48). By recognizing

the right-hand side of (2.53) in FΨ, we obtain

FΨ ¼ N −1
Z

ddx
Z

ddx0δ1λðxÞδ2λðx0Þ

×
Z

dωnðωÞhO−ωðxÞOωðx0Þi: ð2:54Þ

One can rewrite the above result by putting one of the two
operators in its original form. Using the definition (2.33)
and the condition ΔjΨi ¼ jΨi one can show that the
modular Fourier modes satisfy the following relation:

hOωðxÞOω0 ðx0Þi ¼
Z

∞

−∞
ds

Z
∞

−∞
ds0e−iðωsþω0s0ÞhΨjOsðxÞOs0 ðx0ÞjΨi

¼
Z

∞

−∞
dse−iωs

Z
∞

−∞
ds0e−iðωþω0Þs0 hΨjeiHmods0OsðxÞOðx0Þe−iHmods0 jΨi

¼
Z

∞

−∞
dse−iωs2πδðωþ ω0ÞhΨjOsðxÞOðx0ÞjΨi ¼ 2πδðωþ ω0ÞhOωðxÞOðx0Þi: ð2:55Þ

Hence, we conclude that the δð0Þ factor drops out of the
final answer, and we obtain

FΨ ¼ 1

2π

Z
ddx

Z
ddx0δ1λðxÞδ2λðx0Þ

×
Z

dωnðωÞhOðxÞOωðx0Þi: ð2:56Þ

This last equation will be useful in finding a bulk
interpretation for the Berry curvature. But first we will

6From a mathematical perspective it corresponds to identifying
a suitable dual space of the algebra of zero modes A0, and
corresponding bilinear pairing. In the case of infinite-dimensional
algebras this is very subtle (see for example [11] where the case
of the Virasoro algebra was discussed).

7To ensure this we need to put a restriction on the support of
the sources in the perturbation (2.16). In the Euclidean picture we
assume that the state is perturbed by changing the sources at the
branch cut only (using some suitable limiting procedure where we
approach it from above and below).
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show that one can also extract from the Berry curvature a
symmetric quantity, which behaves like an information
metric on the space of modular Hamiltonians.

D. Quantum information metric

We can obtain some additional information from F that
will be also useful from the bulk perspective. Specifically, it
is convenient to construct a symmetric quantity from F by
taking one of the perturbations to be of the form ½Hmod; X�.
The quantity

G ¼ P0ð½X1; ½Hmod; X2��Þ ð2:57Þ

is symmetric under exchanging X1 with X2. Using an
additional commutation ½Hmod; ·� to turn the antisymmetric
object P0ð½X1; X2�Þ into a symmetric one follows a well-
known construction, which applies in finite-dimensional
settings [21].
To see how this works, we use the Jacobi identity

reorganized in the form

½X1; ½Hmod; X2�� ¼ ½X2; ½Hmod; X1�� þ ½Hmod; ½X1; X2��:
ð2:58Þ

Since the last term lies in the image of the adjoint action of
Hmod, it is zero-mode free by (2.26), so that

P0ð½Hmod; ½X1; X2��Þ ¼ 0: ð2:59Þ
Therefore, taking the projection on both sides of (2.58)
gives the required relation

P0ð½X1; ½Hmod; X2��Þ ¼ P0ð½X2; ½Hmod; X1��Þ: ð2:60Þ

Using the fact thatOω is an eigenoperator with respect to
the adjoint action of Hmod, (2.38), we pick up an extra
factor of ωwhen evaluating ½Hmod; X2�. Indeed, the formula
for F gets modified to

G ¼ N −1
Z

ddx
Z

ddx0δ1λðxÞδ2λðx0Þ

×
Z

dωnð−ωÞnðωÞω½OωðxÞ;O−ωðx0Þ�: ð2:61Þ

Note that this expression is indeed symmetric under the
replacement of ω with −ω. As we did for FΨ, one can
extract from G a number by taking an expectation value,
GΨ ≡ hΨjGjΨi. Going through a similar set of computa-
tions one obtains

GΨ ¼ 1

2π

Z
ddx

Z
ddx0δ1λðxÞδ2λðx0Þ

×
Z

dωωnðωÞhOðxÞOωðx0Þi: ð2:62Þ

This expression can be rewritten in a form which makes
the relation with quantum information theory manifest.
Namely, one can undo the Fourier transformation (2.33)
and write the integral over modular frequencies in terms
of an integral over modular time. The extra factor of ω
in (2.62) comes in handy, since we can replace ωnðωÞ with
the following integral8:

jωjnðωÞ ¼
Z

∞−iϵ

−∞−iϵ
ds

π

2 sinh2ðπsÞ e
−iωs: ð2:64Þ

Combining (2.62) with (2.64) and applying the inverse of
the Fourier decomposition, (2.33), we find that

GΨ ¼
Z

ddx
Z

ddx0δ1λðxÞδ2λðx0Þ

×
Z

∞−iϵ

−∞−iϵ
ds

π

2 sinh2ðπsÞ hOðxÞOsðx0Þi: ð2:65Þ

This quantity agrees with a well-known quantum informa-
tion theoretic “metric” on the space of mixed states [27,28],
which is obtained from the second variation of the relative
entropy. (See Appendix B for more details.) We therefore
see that the parallel transport problem for modular
Hamiltonians is closely related to a metric on the space
of density matrices. This should be reminiscent of the
similar situation in the case of pure states, where the Berry
phase computes the Fubini-Study metric on the space of
pure states [17,18]. It also provides a natural starting point
for investigations of a bulk interpretation.

III. RELATION TO THE BULK
SYMPLECTIC FORM

We would now like to derive a bulk interpretation of the
modular Berry curvature and information metric. Let us
start out by defining a quantity that generalizes both (2.56)
and (2.62):

HΨ ¼ 1

2π

Z
ddx

Z
ddx0δ1λðxÞδ2λðx0Þ

×
Z

dωF ðωÞhOðxÞOωðx0Þi: ð3:1Þ

HΨ reproduces FΨ for the choice F ðωÞ ¼ nðωÞ, and GΨ
for F ðωÞ ¼ ωnðωÞ.

8This can be derived from an application of the residue formula
(by closing the s-contour in the upper/lower half plane depending
on the sign of ω) and the geometric series relation. In particular,
one uses that the residue at s ¼ ik for k ∈ Z is given by

Ress¼ik
π

sinh2ðπsÞ fðsÞ ¼
f0ðikÞ
π

: ð2:63Þ
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We would like to extend HΨ into the bulk. Let us for
the moment assume that the boundary operator O used to
deform the state in (2.11) is a scalar of conformal
dimension Δþ. By general AdS=CFT principles, the dual
bulk description is some scalar operator Φ localized in a
spacelike slice Σ ¼ ΣA of the entanglement wedge asso-
ciated to the boundary region A (see Fig. 3). Since the
expression (3.1) contains operators of the formOω, we first
need to describe the bulk analogue of the modular Fourier
decomposition. Using the equivalence of bulk and boun-
dary modular flows it is then possible to extend the modular
frequency modes into the bulk [24,38,39]. We will argue
that the two-point function in (3.1) behaves like the
asymptotic flux of some suitably defined symplectic form.
Its bulk extension provides a natural definition for the bulk
symplectic form associated to the entanglement wedge. A
similar approach was used in [39] to find holographic duals
of the α-z relative Rényi divergences, which are certain
generalizations of relative entropy.
Note that while we will focus explicitly on scalar case in

this section, it is straightforward to extend to more general
field deformations. An important generalization to stress
tensor insertions, which in the bulk correspond to pertur-
bations of the geometry, will be treated in Sec. IVA 2.

A. Bulk phase space

To make the computation tractable we will make one
further assumption, namely that we are working in a free
field approximation. We expect this approximation to hold
for a generic bulk quantum theory to leading order in 1=N.
Moreover, we are interested in the symplectic form evalu-
ated at a particular point in phase space, so in principle
it is possible to find bulk variables Φ and Π that linea-
rize the symplectic form. Interactions can be included
perturbatively.
The bulk phase space can now be described explicitly in

terms of the operators ΦðXÞ and canonically conjugate
operators ΠðXÞ for X ∈ Σ. They satisfy the canonical
commutation relations

½ΦðYÞ;ΠðXÞ� ¼ iδðX − YÞ: ð3:2Þ

Let us again now introduce the bulk modular flow
associated to Σ, implemented by some bulk density matrix
ρbulk. Following a similar procedure as in the boundary
CFT one can now decompose the operators Φ into modular
Fourier modes

Φω ¼
Z

∞

−∞
dse−iωsρ−isbulkΦρisbulk; ð3:3Þ

and similarly for Π. Given that the operators fΦðXÞ;
ΠðXÞjX ∈ Σg are a formal basis for AΣ, we can express
the operator (3.3) as the linear combination

ΦωðXÞ ¼
Z
Σ
dY½αωðX; YÞΦðYÞ þ βωðX; YÞΠðYÞ�; ð3:4Þ

with αωðX; YÞ; βωðX; YÞ coefficients in the expansion. By
acting with the commutator on (3.4) and taking the
expectation value in the state ρbulk we find that

αωðX; YÞ ¼ ih½ΠðYÞ;ΦωðXÞ�i

¼ i
nðωÞ hΦωðXÞΠðYÞi; ð3:5Þ

where we have used the KMS condition (2.53) adapted to
the bulk correlation function. Similarly we have,

βωðX; YÞ ¼ −ih½ΦðYÞ;ΦωðXÞ�i ¼ −
i

nðωÞ hΦωðXÞΦðYÞi:

ð3:6Þ

By plugging this into (3.4) one obtains the final result

ΦωðXÞ ¼
i

nðωÞ
Z
Σ
dY½hΦωðXÞΠðYÞiΦðYÞ

− hΦωðXÞΦðYÞiΠðYÞ�: ð3:7Þ

One can also view (3.7) as a Bogoliubov transformation,
which changes the operator basis from Φ, Π to modular
Fourier modes. As mentioned in Sec. II C, the advantage of
using the operators Φω is that in this basis the action of the
(bulk) modular Hamiltonian is relatively simple. Note that
to completely specify the right-hand side of (3.7) requires
some boundary condition at the finite boundary of Σ, i.e.,
at the RT surface (See Fig. 3). We will come back to this

FIG. 3. A depiction of the entanglement wedge Σ ¼ ΣA
(semitransparent yellow) on a fixed time slice. Its boundary
∂ΣA has two components: the region A at the asymptotic
boundary and the Ryu-Takayanagi (RT) surface γA that extends
into the bulk AdS spacetime.
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issue later, and will argue that the behavior of the integrand
near the RT surface is related to the presence of a zero mode
in the Berry transport problem.

B. Modular extrapolate dictionary

Up to this point, we have only used some basic proper-
ties of the bulk operator algebra in a free field approxi-
mation to write (3.7). Let us now invoke the AdS=CFT
dictionary to relate the operator Φω to the corresponding
boundary operatorOω. We denote the holographic direction
of the AdS space by z, so that the bulk coordinate is given
by X ¼ ðz; xÞ. The extrapolate dictionary now states that
the properly regularized version of Φ approaches the
operator O near the asymptotic boundary:

lim
z→0

z−ΔþΦðx; zÞ ¼ OðxÞ: ð3:8Þ

Since we are interested in the modular frequency modes, we
will need to use a version of the extrapolate dictionary that
is suited to this decomposition. A crucial result was given
in [38], where the authors show that the bulk and boundary
modular flows agree to first order in 1=N. This can be used
to derive the so-called modular extrapolate dictionary [24]:

lim
z→0

z−ΔþΦωðx; zÞ ¼ OωðxÞ: ð3:9Þ

We will use (3.9) to extend the operator HΨ into the bulk.
Indeed, we can take the boundary limit on both sides of the
equation in (3.7):

OωðxÞ ¼
i

nðωÞ
Z
Σ
dY½hOωðxÞΠðYÞiΦðYÞ − hOωðxÞΦðYÞiΠðYÞ�: ð3:10Þ

This formula provides a bulk expression for the boundary operator OωðxÞ in terms of some bulk-to-boundary propagators.
Note that (3.10) is nonlocal expression in the bulk, which is a reflection of the nonlocality of the action of the modular flow.We
can now plug (3.10) into (3.1) to obtain

HΨ¼
1

2π

Z
Σ
dY

Z
ddx

Z
ddx0δ1λðxÞδ2λðx0Þ

Z
dωCðωÞ½hOωðx0ÞΠðYÞihOðxÞΦðYÞi−hOωðx0ÞΦðYÞihOðxÞΠðYÞi�: ð3:11Þ

We have collected the additional dependence on the modular
frequency ω in the function CðωÞ. It is given by

CðωÞ≡ iF ðωÞnðωÞ−1: ð3:12Þ

The expression (3.11) takes a very simple form when written
in terms of the bulk fields. Note that the bulk density matrix
ρbulk gets perturbed in a similar way as the boundary density
matrix (2.16). From the coherent state deformation

δρbulk ¼ −
Z

ddxρbulkδλðxÞOðxÞ; ð3:13Þ

we find that the expectation value of the operator Φ in the
perturbed density matrix δρbulk is given by

δϕðYÞ≡ −
Z

ddxδλðxÞhOðxÞΦðYÞi: ð3:14Þ

Note that δϕ is a number, whileΦ is an operator. Using again
that the bulk and boundary modular flows agree we also
obtain the relation

δϕωðYÞ ¼
Z

ddxδλðxÞhOðxÞΦωðYÞi

¼
Z

ddxδλðxÞhO−ωðxÞΦðYÞi: ð3:15Þ

Introducing similar expressions for the canonical conjugate
bulk fields δπ and δπω defined in terms of Π and Πω one
finds that (3.11) simplifies to

HΨ ¼ 1

2π

Z
Σ
dY

Z
dωCðωÞ½δ2π−ωðYÞδ1ϕðYÞ

− δ2ϕ−ωðYÞδ1πðYÞ�: ð3:16Þ

The variations δ1;2 that we introduced in the above expres-
sion correspond to the choice of sources δ1;2λ respectively
in (2.16).

C. Entanglement wedge symplectic form

As a final step we will now perform the integral over
modular frequencies to obtain the bulk symplectic form.
A convenient trick is to first replace the ω-integral by
the action of a suitable differential operator on the bulk
fields [39]. Specifically, starting with the modular Fourier
modes for an arbitrary function f

f−ω ¼
Z

∞

−∞
dseiωsfs; ð3:17Þ

we can apply an integration by parts on a wave packet of
such modular Fourier modes to obtain
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Z
dωCðωÞf−ωðYÞ¼

Z
∞

−∞
ds

Z
dωfsðYÞCð−i∂sÞeiωs

¼2π

Z
∞

−∞
dsðCði∂sÞfsðYÞÞδðsÞ: ð3:18Þ

We thus have

Z
dωCðωÞf−ωðYÞ ¼ 2π

�
ĈfsðYÞ

����
s¼0

; ð3:19Þ

where we have defined a differential operator Ĉ that acts on
the modular time s as Ĉ ¼ Cði∂sÞ.
Now we have all the ingredients necessary to match our

expression for HΨ to a bulk symplectic form. Formally, we
define the entanglement wedge symplectic form in terms
of the field perturbations and corresponding canonical
momenta by

Ωðδ1ϕ; δ2ϕÞ ¼
Z
Σ
dY½δ1ϕðYÞδ2πðYÞ − δ1πðYÞδ2ϕðYÞ�:

ð3:20Þ

Note that Ωðδ1ϕ; δ2ϕÞ is manifestly antisymmetric under
interchanging 1 with 2. Combining (3.16) with (3.19) we
find that

HΨ ¼ Ωðδ1ϕ; Ĉðδ2ϕÞsjs¼0Þ: ð3:21Þ

The modular Berry curvature FΨ in (2.56) is a particular
case of this general relation. Recall that the curvature is
described by FΨ, which is obtained from HΨ by taking the
constant function CðωÞ ¼ i. From (3.12), this corresponds
to the choice F ¼ nðωÞ in HΨ. Then from (3.21), the
modular Berry curvature is exactly proportional to the bulk
symplectic form:

FΨ ¼ iΩðδ1ϕ; δ2ϕÞ: ð3:22Þ

Note that the factor of i comes from the canonical
commutation relations, (3.2). The above equality consti-
tutes the main result of this section. It provides a bulk dual
for the boundary modular Berry curvature.
The modular Berry metric GΨ derived in (2.62) also

arises as an example of HΨ with the function CðωÞ ¼ iω.
In this case, the differential operator acts nontrivially,
as Ĉ ¼ −∂s, which corresponds to the infinitesimal
action of bulk modular flow. We therefore find that
the Berry metric is equal to the bulk symplectic form
with an extra action of the modular flow on one of the
variations:

GΨ ¼ Ωðδ1ϕ;−∂sðδ2ϕÞsjs¼0Þ: ð3:23Þ

The presence of bulk modular flow in (3.23) can be
linked to the extra insertion of the action of the modular
Hamiltonian in defining (2.57). One can also reverse the
logic and argue that the Berry curvature FΨ via (3.22)
provides a natural symplectic form on the space of modular
Hamiltonians that agrees with the bulk symplectic form.
Let us now come back to the contribution from the RT

surface γA in (3.10). The contribution that is localized on
the RT surface is related to the zero mode of the operatorO.
From the bulk perspective this is quite easy to see: the
action of the bulk modular flow leaves the RT surface fixed
so, in particular, operators localized at the RT surface
commute with the modular Hamiltonian, i.e., they corre-
spond to modular zero modes. (See Sec. 4 of [24] for an
explicit expression of the zero mode O0 in terms of an
integral over the RT surface γA in the case thatO is a scalar.)
In our derivation relating the Berry curvature to the bulk
symplectic form, we therefore see that the boundary term
corresponds to the ω ¼ 0 part of the integral over modular
frequencies in (2.56). But this term comes from the zero
mode in the original transport operator X as computed
in (2.29). Therefore, imposing P0ðXÞ ¼ 0 by subtracting the
zero mode from it, and fixing the zero mode ambiguity in
the boundary parallel transport problem, naturally fixes the
ambiguity in the boundary condition for the entanglement
wedge symplectic form to be Dirichlet.

IV. EXPLICIT EXAMPLES

We will now give some explicit examples that illustrate
the formalism we have introduced, but restricted to the
scenarios where our state transformation are suitable for
describing shape transformations. In Sec. IVA, we will
consider the case where the perturbing operator O in the
Euclidean path integral (see Sec. II B) is given by a stress
tensor deformation. Such a deformation will in general
cause a change of the boundary metric, so that it lies in the
class of state-changing transformations. However, for a
particular choice of deformation, namely one generated
by a conformal Killing vector, this instead implements a
change of shape of the entangling surface. From the
bulk perspective, this example also illustrates how the
derivation of the bulk symplectic form given in Sec. III
straightforwardly generalizes beyond scalar operators (see
Appendix C for an explicit evaluation of this symplectic
form in the special case of shape deformations).
In Sec. IV B, we will describe shape deformations in

terms of symmetries rather than using the Euclidean path
integral, which connects to the language of [11]. We will
explain how in the particular case of shape-changing
deformations, the Berry curvature is equal to the symplectic
form on a special geometry known as a coadjoint orbit. This
is reminiscent of the group theoretic structure that was
uncovered in two dimensions [11,40]. However, we empha-
size that the connection to coadjoint orbits will not carry
over in the more general state-changing case.
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A. Stress tensor insertions

We first consider a specific version of (2.16) where we
perturb the state by an insertion of the CFT stress tensor.
This class of transformations includes the special case of a
state transformation that implements a change of shape
of the subregion [22,41,42] but also includes nontrivial
changes to the boundary metric. In the bulk dual, this will
involve perturbations of the gravitational field.
For concreteness, we consider a d-dimensional CFT on

the plane R1;d−1 in some global state jΨi with some ball-
shaped region A in the t ¼ 0 slice. We consider the modular
Hamiltonian associated to some reduced state ρ ¼ ρA that is
obtained by tracing out the complement of the ball-shaped
region A. In general, the modular Hamiltonian is a
complicated nonlocal operator, but in the case that
jΨi ¼ j0i is the vacuum state it has an explicit local
expression. One can write

Hmod ¼
Z
A
dSνξμATμν; ð4:1Þ

where Tμν is the CFT stress tensor and ξA is the vector field
that generates modular flow; in particular, it preserves the
causal diamond DðAÞ of the region A. We would like to
deform the modular Hamiltonian via the action ξ of some
coordinate transformation

xμ ↦ x0μ ¼ xμ þ ξμðxÞ: ð4:2Þ

One can show that the action of ξ is implemented by the
action of some operator on the modular Hamiltonian

δξHmod − P0ðδξHmodÞ ¼ ½X;Hmod�; ð4:3Þ

where X is defined by

X ¼
Z
A
dSνξμTμν: ð4:4Þ

The transport problem (4.3) is in fact a special example of
the coherent state formalism that we discussed in Sec. II,
where we now take O ¼ Tμν and λ ¼ ∂μξν. Before going
into the details, we stress that the equality in (4.3) is
actually quite subtle. A general coordinate transformation ξ
does not leave the metric hμν of the CFT invariant. Instead,
we have

δhμν ¼ Lξhμν ≡ ∂μξν þ ∂νξμ: ð4:5Þ

If ξ is a Killing vector we have δhμν ¼ 0, but in general the
variation is nonzero. The idea is, that for a generic trans-
formation ξ, the change in metric can be traded for a change
in the state of the CFT implemented by some unitary on the
Hilbert space. For this reason, we are able to utilize the
formalism of state-changing transformations developed

earlier in the paper to describe shape changes by restricting
to the particular case where ξμ is a conformal Killing vector.

1. Deforming the boundary metric

We would like to derive the parallel transport equa-
tion, (4.3), for this special case of stress tensor insertions.
The following subsection will review some results derived
in [41], while adapting them to the modular Berry setup.
Under a change of the metric the action of the theory

picks up a piece of the form

δS ∼
Z

ddxδhμνðxÞTμνðxÞ: ð4:6Þ

Hence, we can think of the deformed state as being
obtained from the original state by introducing a source
for the stress tensor. We take (2.23) as a starting point with
the appropriate source and operator. Using a version of the
integral formula (2.64), one can write this as

hωjδHmodjω0i ¼
Z

∞−iϵ

−∞−iϵ
ds

π

2 sinh2ðπsÞ
×
Z

ddxδhμνðxÞhωjρisTμνðxÞρ−isjω0i:

ð4:7Þ

The above formula is true for arbitrary metric deformations.
Let us now specialize to the case where it is generated by a
diffeomorphism:

δhμν ¼ ∂μξν þ ∂νξμ: ð4:8Þ

We split the integral over the Euclidean plane into two
pieces: a tubular neighborhood Rb of width b around the
entangling region ∂A, and its complement R̃. Let us first do
the integral over R̃. It can be localized to an integral over the
boundary ∂R̃ using an integration by parts:

Z
R̃
ddx∂μξνTμν ¼−

Z
R̃
ddxξν∂μTμνþ

Z
∂R̃
dSμξνTμν: ð4:9Þ

By conservation of the stress energy on the support of the
diffeomorphism, only the second term in (4.9) survives.
Let us therefore consider the boundary of R̃ that consist of
three parts ∂R̃ ¼ ∂Rb ∪ ∂R̃þ ∪ ∂R̃−, i.e., the boundary of
the tubular neighborhood, and the region just above and
below the branch cut at A. We first consider the term
coming from the branch cut:

δHmodjcut ¼
Z

∞−iϵ

−∞−iϵ
ds

π

2sinh2ðπsÞ
�Z

∂R̃þ
−
Z
∂R̃−

�
dSμξνT

μν
−s:

ð4:10Þ
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Here the modular-evolved stress tensor is defined according
to (2.32) by Tμν

−s ¼ ρisTμνρ−is. To perform the integral over
the branch cut we note that the value of the stress tensor
above and below the branch cut are related by modular
evolution in Euclidean time. (Recall that Euclidean modu-
lar evolution acts geometrically by circular flow around the
branch points.) Therefore, we can change the integration
region from ∂R̃− to ∂R̃þ by applying a substitution s →
sþ i − 2iϵ in the integral over s. Hence, it follows that:

δHmodjcut¼
Z

∞

−∞
ds

�
π

2sinh2ðπðsþ iϵÞÞ−
π

2sinh2ðπðs− iϵÞÞ
�

×
Z
∂R̃þ

dSμξνT
μν
s : ð4:11Þ

Since the contour now only encloses the pole at zero,
the integral over s now precisely picks up the double pole
at s ¼ 0. From (2.63) we find that the residue at s ¼ 0 is
given by

1

2π

d
ds

����
s¼0

Tμν
s ¼ i

2π
½Hmod; Tμν�: ð4:12Þ

In the limit b → 0, the region ∂R̃þ becomes equal to the
subregion A, so we conclude that:

δHmodjcut ¼ −
Z
A
dSμξν½Hmod; Tμν�: ð4:13Þ

This already reproduces the result (4.3). For a detailed
derivation of the corner term contribution from ∂Rb,
see [41]. For our purposes, we will neglect this term since
it is unaffected by a shift in modular time (which is how
the modular Hamiltonian acts close to the boundary of the
subregion). Thus, it will commute with the modular
Hamiltonian and therefore only contributes to the zero
mode piece P0ðδHmodÞ in the modular transport problem,
and will not affect the Berry curvature.

2. Gravitational bulk symplectic form

Since the stress tensor perturbations on the boundary are
related to perturbations of the bulk geometry, we will
compute the gravitational bulk symplectic form explicitly,
and compare it to the result obtained from the Berry
curvature. A standard way to compute the bulk symplectic
form is using the covariant phase space formalism [43–46].
This starts from the general action

S ¼
Z

L; ð4:14Þ

where L is the Lagrangian density which is a (dþ 1)-form
on spacetime. We follow standard conventions and denote
the exterior derivative on field space by δ, and the exterior
derivative on spacetime by d.

We write the variation of the Lagrangian as

δL ¼ Eδφþ dΘ; ð4:15Þ
where φ denotes the collection of dynamical fields of the
theory, and E are the equations of motion (which vanish on-
shell). The boundary term Θ is a one-form on field space
and a d-form on spacetime. Its variation ω≡ δΘ is a two-
form on field space that can be integrated to give a
symplectic form:

Ω ¼
Z
Σ
ω: ð4:16Þ

The d-dimensional surface Σ is usually taken to be a
complete Cauchy surface of the bulk spacetime. In our
case, we will be interested in the situation where Σ
only covers part of the Cauchy slice that corresponds to
the entanglement wedge of some boundary subregion
(see Fig. 4).
Let us now consider the case of pure Einstein gravity

with Lagrangian

L ¼ 1

16πG
ðR − 2ΛÞϵ; ð4:17Þ

where ϵ is the (dþ 1)-dimensional volume form. We will
take gαβ to be the bulk metric. It is straightforward to show
that Θ takes the form Θ ¼ θ · ϵ with

θα ¼
1

16πG
gβγð∇γδgαβ −∇αδgβγÞ: ð4:18Þ

FIG. 4. The location of the entanglement wedge Σ (gray) in
the ball-shaped Euclidean bulk geometry that is used to prepare
the state ρbulk. The boundary of Σ consists of the subregion A
on the boundary of the ball, and the RT surface that extends
through the bulk.
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Let us now compute the pullback of θ to the surface Σ.
Denoting by na the unit normal vector to Σ, and ϵΣ the
associated volume form, one finds that

nαθα ¼
1

16πG

�
nρgβσ − nσδβρ

�
δΓρ

σβ

¼ 1

16πG

�
nργβσ − nσδβρ

�
δΓρ

σβ; ð4:19Þ

where we have introduced the induced metric γαβ ¼
gαβ − nαnβ on Σ. Then the pullback of Θ to Σ can be
written in terms of the extrinsic curvature as [46,47]

ΘjΣ ¼ nαθαϵΣ

¼ δ

�
−

1

8πG
KϵΣ

�
−

1

16πG

�
Kαβ −Kγαβ

�
δγαβϵΣþdC:

ð4:20Þ

The term C ¼ c · ϵΣ is given by

cα ¼ −
1

16πG
γαβnρδgβρ; ð4:21Þ

and vanishes if we impose Dirichlet boundary conditions.
In that case, we can express (4.20) in terms of the quantities

παβ ≡ −
1

16πG
ðKαβ − KγαβÞ; l≡ 1

8πG
KϵΣ: ð4:22Þ

Indeed, we have

ΘjΣ ¼ παβδγαβϵΣ − δl: ð4:23Þ

The fields παβ will play the role of the canonical momenta
associated to the induced metric. Finally, taking another
variation of (4.23) one finds that

δΘjΣ ¼ ðδπαβ ∧ δγαβÞϵΣ: ð4:24Þ

This leads to the final expression for the bulk symplectic
form in Darboux form:

Ωðδ1g; δ2gÞ ¼
Z
Σ
dX½δ1παβδ2γαβ − δ2π

αβδ1γαβ�: ð4:25Þ

The boundary quantity (3.1) that comes from the Berry
transport problem in the case of stress tensor deformations
is given by

HΨ ¼ 1

2π

Z
dωF ðωÞ

Z
ddx

×
Z

ddx0δ1λμνðxÞδ2λστðx0ÞhTμνðxÞTστ
ω ðx0Þi; ð4:26Þ

where δλμνðxÞ is generated by a change of boundary metric
as in (4.6). Let us now compare (4.25) to the Berry
curvature. The computation is very similar to that of the
scalar field, with the difference that some extra indices
appear. We denote the bulk operator corresponding to the
induced metric γαβ by Γαβ, and its canonical conjugate
operator by Παβ. The commutation relations are analogous
to the scalar field case [39]:

½ΓαβðXÞ;ΠστðYÞ� ¼
i
2
ðδασδβτ þ δατδβσÞδðX − YÞ: ð4:27Þ

As before, we can define the modular Fourier modes Γω
αβ

associated to the operator Γαβ, and expand in terms of
Γαβ;Παβ. Similarly to before, the coefficients can be written
in terms of two-point functions using the KMS condition.
Applying a version of the modular extrapolate dictionary
(3.9) that is suited to metric perturbations one finds that

Tμν
ω ðxÞ ¼ i

nðωÞ
Z
Σ
dX½hTμν

ω ðxÞΓαβðXÞiΠαβðXÞ − hTμν
ω ðxÞΠαβðXÞiΓαβðXÞ�: ð4:28Þ

Plugging (4.28) into (4.26) we find that

HΨ ¼ 1

2π

Z
Σ
dX

Z
dωCðωÞ

Z
ddx

Z
ddx0δ1λμνðxÞδ2λστðx0Þ

× ½hTμνðxÞΠαβðXÞihTστ
ω ðx0ÞΓαβðXÞi − hTμνðxÞΓαβðXÞihTστ

ω ðx0ÞΠαβðXÞi�: ð4:29Þ

Similarly to the scalar field case, one can now write the above expression in terms of the metric perturbations and canonical
momenta by evaluating the relevant operator in the perturbed state. For example, we have an identity of the form

δγαβ−ω ¼ −
Z

ddxδλμνðxÞhTμν
ω ðxÞΓαβi: ð4:30Þ
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Using this together with similar expressions for the
perturbations δγαβ; δπαβ; δπ

αβ
−ω, one can write

HΨ ¼ 1

2π

Z
Σ
dX

Z
dωCðωÞ½δ1παβðXÞδ2γαβ−ωðXÞ

− δ1γαβðXÞδ2παβ−ωðXÞ�: ð4:31Þ

Applying (3.19) to remove the integral over frequencies
one finds that

HΨ ¼
Z
Σ
dX½δ1παβĈðδ2γαβÞsjs¼0 − δ1γαβĈðδ2παβÞsjs¼0�;

ð4:32Þ

where the insertion of the operator Ĉ is defined in (3.19). In
the case of the Berry curvature FΨ where CðωÞ ¼ i is the
constant function, this explicitly agrees with the gravita-
tional bulk symplectic form (4.25).
For the symmetric quantity (2.57), which results from

taking CðωÞ ¼ iω to no longer be constant, one finds that

GΨ ¼ Ωðδ1g;Lξδ2gÞ; ð4:33Þ

where the bulk modular flow associated to the vacuum state
acts via the Lie derivative Lξ. This quantity is also known
as the canonical energy [27,39,48]. From the boundary
definition, it is obvious that (2.57) defines a symmetric
quantity. To see from the bulk perspective that (4.33) is
symmetric under the interchange of 1 and 2, one can use the
product rule and Cartan’s magic formula to write

Ωðδ1g;Lξδ2gÞ − ΩðLξδ1g; δ2gÞ ¼
Z
Σ
LξδΘ ¼

Z
Σ
dðiξδΘÞ:

ð4:34Þ

At the last equality we have also used that the symplectic
potential ω ¼ δΘ is closed, i.e., dω ¼ 0. Now we can use
Stokes’ theorem to localize the integral in (4.34) to the
boundary ∂Σ, which consists of the RT surface and the
asymptotic boundary. Using the fact that the diffeomor-
phism ξ is an asymptotic Killing vector which vanishes
at the RT surface as well, we find that the boundary
terms vanish:

Ωðδ1g;Lξδ2gÞ − ΩðLξδ1g; δ2gÞ ¼
Z
∂Σ
iξδΘ ¼ 0: ð4:35Þ

This confirms that the canonical energy is symmetric,
following our derivation of (4.33).

B. Symmetry transformations

We will now study the case where the diffeomorphisms
that implement the deformation explicitly lie in the

conformal group. This is the direct higher-dimensional
generalization of the shape-changing setup that was
considered in [8,9] and reviewed in [11] for the case of
AdS3=CFT2. In particular, we will show that the resulting
geometric space has the structure of a coadjoint orbit of
the conformal group. Notably, the specific state-changing
transformations that were considered in [11] are not part
of the symmetry algebra of CFTd when d > 2, which is
finite-dimensional. This is to be contrasted with the
situation in d ¼ 2, where the symmetry algebra is the
infinite-dimensional Virasoro algebra.

1. Berry curvature

Let us consider a CFTd in the vacuum state. The modular
Hamiltonian associated to a spherical region A of radius R
is an element the conformal algebra, soð2; dÞ. For example,
using planar coordinates ðt; x⃗Þ for the boundary CFT, and
choosing a sphere of midpoint x⃗0 and radius R in the t ¼ 0
slice, Hmod is generated by the conformal Killing vector
that preserves a diamond, which is given by [32]

Hmod¼
π

R
½ðR2− jx−x0j2− t2Þ∂t−2tðxi−xi0Þ∂i�: ð4:36Þ

Using the conventions of Appendix A, we can write this
operator in terms of the conformal group generators as

Hmod ¼
π

R
½−ðR2 − jx⃗0j2ÞP0 − 2xi0M0i − C0�: ð4:37Þ

A crucial ingredient in the computation of the
modular Berry curvature is the parallel transportation
equation. We will start by changing the modular
Hamiltonian by acting with an element in the symmetry
group X ∈ soð2; dÞ:

δHmod − P0ðδHmodÞ ¼ ½X;Hmod�: ð4:38Þ

These shape-changing variations change the spherical
region without modifying the global state of the CFT.9

Recall that (4.38) is a special example of (4.3) where
we take the diffeomorphisms to be conformal Killing
vectors.
Clearly, not all generators X in (4.38) lead to a change

of the modular Hamiltonian. The ones which satisfy
δHmod ¼ 0, are the modular zero modes, and are formally
defined as elements Q ∈ soð2; dÞ which commute with the
modular Hamiltonian:

½Q;Hmod� ¼ 0: ð4:39Þ

9Of course, as explained in Sec. IVA, one can equivalently
think of them in terms of a procedure where we keep the
subregion fixed, but change the global state by insertion of a
stress tensor operator in the Euclidean path integral.
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This is precisely the definition of the stabilizer subalgebra
h≡ stabðHmodÞ. In the case that Hmod is given by (4.37) a
suitable basis for the space of zero modes can be given by

Qi ¼
1

2R
½−ðR2 þ jx⃗0j2ÞPi − 2x0iDþ 2xj0Mij

þ 2x0ix
j
0Pj þ Ci�; ð4:40Þ

Qij ¼ Mij þ x0iPj − x0jPi; ð4:41Þ

where i;j¼1;…;d−1. Indeed, using the conformal alge-
bra one can explicitly check that

½Qi;Hmod� ¼ ½Qij; Hmod� ¼ 0: ð4:42Þ

The first class of zero modes in (4.40) correspond to
“boosts” (directed in the ith direction of the x⃗ plane) that
preserve the causal diamond associated to the spherical
region on the boundary. The second class of zero
modes, (4.41), rotate the spherical region while leaving
the diamond invariant. The algebra of the zero modes is
given by:

½Qi;Qj� ¼ Qij; ½Qi;Qjk� ¼ Qkδij −Qjδik: ð4:43Þ

Together with the modular Hamiltonian itself, the zero
mode space A0 can therefore be identified with the
subalgebra

h ¼ soð1; 1Þ × soð1; d − 1Þ: ð4:44Þ

Note that the space of zero modes has a non-Abelian
component soð1; d − 1Þ.
The general structure of the modular Berry transport can

now be described as follows: The space of modular
Hamiltonians that we consider is locally given by the
variations (4.38) and therefore parametrized by X ∈ g=h.
Exponentiating, we conclude that the parameter space is
given by the coset space

OHmod
≡ SOð2; dÞ

SOð1; 1Þ × SOð1; d − 1Þ : ð4:45Þ

This is nothing other than the coset space describing the
space of causal diamonds in a d-dimensional CFT, known
as kinematic space [7,30–32].
The action of the symmetry group on parameter space is

through conjugation and the subgroup of zero modes
satisfies

VHmodV−1 ¼ Hmod ð4:46Þ

for V ∈ H. A path in the coset space (4.45) can be
identified with a one-parameter family of modular

Hamiltonians. One can think of this as describing a fiber
bundle10

G → G=H; ð4:48Þ

which geometrizes the zero mode ambiguity in (4.46)
by associating to each modular Hamiltonian in the param-
eter space a fiber of zero modes that projects to the same
element (see Fig. 5).
On an abstract level, the modular Berry connection now

corresponds to a one-form on G that takes values in the
non-Abelian zero mode space. Similarly, the Berry curva-
ture F takes the general form

F ¼ FHmodHmod þ
X
Q

FQQ; ð4:49Þ

where the sum over Q indicates a sum over a suitable basis
of zero modes (excluding Hmod itself). Hence, F ∈ h takes
values in a non-Abelian zero mode space, and satisfies
½Hmod; F� ¼ 0. One can compute the Berry curvature

FIG. 5. A parallel transport problem. The Berry curvature is
associated to the principal H-bundle defined by G → G=H with
fibers that are isomorphic to H. A closed curve of modular
Hamiltonians HmodðλÞ in the base space G=H is parallel lifted
(using the Berry connection) to a nonclosed curve in the groupG.
The endpoints of the curve differ by an element in the zero mode
space H.

10This defines a principal H-bundle in the following sense.
There is an action of H on G through left-action:

U → VU; ð4:47Þ
which is compatible with the projection G → G=H, and the
isomorphism g ≅ g=h ⊕ h implies that the group G is locally
isomorphic to the trivial principal H-bundle.
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associated to two transformations X1, X2 from the
general formula

F ¼ P0ð½X1; X2�Þ: ð4:50Þ
The map P0∶ g → h denotes the zero mode projector, that
extracts the component of the commutator in these direc-
tions. Explicitly, decomposing an arbitrary operator X as

X ¼ αHmod þ
X
Q

αQQþ ½Hmod; Y�; ð4:51Þ

the projection operator will extract the parts with coeffi-
cients α and αQ.
Given the non-Abelian structure of the zero mode

space (4.44), one needs to decompose the projector P0

into subprojectors that extract each of the coefficients
in (4.51) separately. In general, without introducing more
structure, there is no unique procedure for doing this. In
fact, one can simply redefine the operatorsQ that constitute
the zero mode basis to get a new set of coefficients αQ
in (4.51). However, at this point we can use the fact that we
are working with a finite-dimensional Lie algebra and
introduce the notion of inner product h·; ·i on the zero mode
space. By choosing an orthonormal basis of zero modes,
one can easily distinguish between them. A natural choice
of inner product on the Lie algebra soð2; dÞ is the Cartan-
Killing form given by

hX; Yi≡ 1

2
trðXYÞ; ð4:52Þ

where the trace is taken in the fundamental representation.
Let us now choose a linearly independent set of zero
mode generators Qa which are orthonormal with respect to
the metric:

hQa;Qbi ¼ δab: ð4:53Þ

Such an orthonormal basis can, for example, be
obtained using the Gram-Schmidt procedure. Moreover,
we require that hHmod; Qai ¼ 0. One can use the metric and
corresponding orthonormal basis to extract the coefficients
from the operator X. For example, we can define the
projection PHmod

0 on the Hmod-component of the operator
through

PHmod
0 ðXÞ≡ c−1Hmod

hHmod; Xi ¼ α; ð4:54Þ

where the normalization is such that cHmod
¼ hHmod; Hmodi.

One can check that (4.54) indeed satisfies the properties
that we usually associate with a projection

PHmod
0 ðHmodÞ¼1; PHmod

0 ðQaÞ¼0; PHmod
0 ð½Hmod;Y�Þ¼0;

ð4:55Þ

by using the orthogonality of zero modes. Moreover, the
last equality in (4.55) can be proved using the cyclicity of
the trace

trðHmod½Hmod; Y�Þ ¼ 0: ð4:56Þ

Using this explicit form of the subprojector, we can
compute the curvature component of (4.49) in the direction
Hmod via the formula

FHmod ¼ PHmod
0 ð½X1; X2�Þ: ð4:57Þ

The non-Abelian part of the curvature F can be extracted
in a similar fashion. To this end, we construct the
subprojection operators onto the other zero modes

PQa
0 ðXÞ≡ c−1Qa

hQa; Xi ¼ αQa
; ð4:58Þ

and a different normalization cQa
¼ hQa;Qai. In particu-

lar, the curvature component in the Qa-direction is given
by FQa ¼ PQa

0 ð½X1; X2�Þ. This gives a concrete prescrip-
tion for computing all the components of the modular
Berry curvature in the case of shape-changing trans-
formations. We will now show that the numbers that we
extract from the operator F can be computed from a
symplectic form on certain coadjoint orbits of the
conformal group.

2. Relation to coadjoint orbits

Recall that the parameter space (4.45) of the modular
Hamiltonian associated to shape-changing transformations
is given by

OHmod
¼ SOð2; dÞ

SOð1; 1Þ × SOð1; d − 1Þ : ð4:59Þ

We will now observe that this has the structure of a
geometry known as a coadjoint orbit.
Consider our algebra g ¼ soð2; dÞ. It admits a bilinear

pairing h·; ·i given by (A3) between elements of soð2; dÞ.
Since the pairing is nondegenerate, the algebra and dual
space g� (the space of linear maps on the algebra) are
isomorphic. A coadjoint orbit is properly defined in
terms of an orbit through the dual space, but due to this
isomorphism it suffices to consider orbits of the algebra
under a particular action: the adjoint action given by the Lie
commutator. Such orbits form symplectic manifolds, and
admit a symplectic form known as the Kirillov-Kostant
symplectic form [49,50].
To define the Kirillov-Kostant symplectic form, let us

first consider the Maurer-Cartan form

Θ ¼ U−1dU; ð4:60Þ
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on the group U ∈ SOð2; dÞ. Using the dual pairing the
Kirillov-Kostant symplectic form is defined as

ω≡ hHmod;Θ ∧ Θi: ð4:61Þ

To show that ω defines a symplectic form we use the
Maurer-Cartan equation:

dΘþ Θ ∧ Θ ¼ 0: ð4:62Þ

Indeed, from (4.62) it immediately follows that
dðΘ ∧ ΘÞ ¼ 0 which shows that dω ¼ 0. Hence, ω indeed
defines a closed form on the group. Moreover, one can
check from the definition (4.60) that

Θ ∧ ΘðX1; X2Þ ¼ ½X1; X2�; ð4:63Þ

so that the Kirillov-Kostant form can also be written as

ωðX1; X2Þ ¼ hHmod; ½X1; X2�i: ð4:64Þ

Due to the presence of zero modes, (4.64) has degen-
eracies when defined on the full group. The fact that ω
descends to a symplectic form on the parameter space
OHmod

follows from the observation:

trðHmod½X1; X2�Þ ¼ −trð½X1; Hmod�X2Þ ¼ 0; ð4:65Þ

whenever X1 ∈ stabðHmodÞ. Because the stabilizer of the
modular Hamiltonian is precisely given by the subgroup
H ¼ SOð1; 1Þ × SOð1; d − 1Þ, this shows that ω defines a
symplectic form on the coadjoint orbit. Note that (4.64)
agrees with the formula (4.57) for FHmod up to a normali-
zation constant. Thus, we find that the Abelian part of the
modular Berry curvature equals the Kirillov-Kostant sym-
plectic form on kinematic space. This result was anticipated
for the case d ¼ 2 in [11], and we have now established it
here in full generality.
For the non-Abelian part of the curvature, the situation is

slightly different, in the sense that

FQa ¼ 0 ð4:66Þ

on the stabilizer stabðQaÞ, which consists of elements that
commute with the zero modeQa. Of course,Hmod is such a
stabilizing element (by definition of Qa), but in general
stabðHmodÞ ≠ stabðQiÞ. Therefore, the non-Abelian com-
ponents of the curvature do not descend a two-form on
OHmod

, but on a different coadjoint orbit OQa
. Of course,

this coadjoint orbit has the same global structure as (4.59)
(from a mathematical perspective there is nothing special
about the zero mode Hmod compared to the other Qa), but
the explicit parametrization in terms of conformal group
generators will be different. The rest of the arguments that
were given above still go through, so that we can identify

the Qa-component of the shape-changing Berry curvature
with the Kirillov-Kostant symplectic form on OQa

.

3. Low-dimensional examples

Let us now work out some low-dimensional examples,
and use the parallel transport formalism to compute the
modular Berry curvature by changing the shape of the
entangling region. The results will agree with the Crofton
formula for computing lengths of geodesics in the bulk [7].
(For the higher-dimensional case, see [51].)
We first restrict to the case of a CFT2 on the plane.

The entangling region on the boundary is an interval
(specified by its midpoint x0 and radius R), with modular
Hamiltonian (4.37) given by

Hmod ¼
π

R
½−ðR2 − x20ÞP0 − 2x0M01 − C0�: ð4:67Þ

For the unit-interval centered at the origin ðx0; RÞ ¼ ð0; 1Þ
this expression reduces to Hmod ¼ −π½P0 þ C0�. A repre-
sentation of the corresponding vector field is provided in
Fig. 6 (left panel). Note that it preserves the causal diamond
associated to the interval. The case d ¼ 2 allows for one
additional zero mode in (4.40), which we denote by Q, and
is given by

Q ¼ 1

2R
½−ðR2 − x20ÞP1 − 2x0Dþ C1�: ð4:68Þ

Again, for ðx0; RÞ ¼ ð0; 1Þ we have Q ¼ 1
2
½−P1 þ C1�. It

amounts to a spatial “boost” that fixes the entangling
surface at x ¼ x0 � R, see Fig. 6 (right panel).
The Berry transport problem involves a modification

of the entangling region by some generators of the
conformal group. Given our parametrization of the modular
Hamiltonian (4.67) in terms of the midpoint x0 and radius R
a natural choice of shape-changing transformations are
translations and widenings of the interval. In these cases,
the parallel transport equation in (4.38) becomes

∂x0Hmod¼½Sδx0 ;Hmod�; ∂RHmod¼½SδR;Hmod�: ð4:69Þ

FIG. 6. Left: The action of Hmod on the causal diamond. Right:
The action of Q on the causal diamond.
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The operators that implement the changes in shape are
denote by Sδx0 and SδR respectively. Using the commuta-
tion relations in Appendix A, it is easy to see that the
parallel transport operator for translations is

Sδx0 ¼ P1: ð4:70Þ

Similarly, one can show that

SδR ¼ −
1

R
ðx0P1 −DÞ: ð4:71Þ

Let us now study the relevant subprojection operators PHmod
0

and PQ
0 . The modular Berry curvature associated to this

parallel transport problem is given by

FHmod ¼ 0; FQ ¼ PQ
0 ð½Sδx0 ;SδR�Þ ¼

1

R2
: ð4:72Þ

Note that it is proportional to the zero mode Q, and for this
reason naturally lives on the kinematic space of boundary
intervals in CFT2:

OQ ¼ SOð2; 2Þ
SOð1; 1Þ × SOð1; 1Þ : ð4:73Þ

The associated ðx0; RÞ-component of the Kirillov-Kostant
symplectic form is now given by

ωQ ¼ 1

R2
dx0 ∧ dR: ð4:74Þ

We can rewrite (4.74) in a more familiar form by using a
cylindrical coordinate θ on the boundary time slice via the
identification x ¼ tan ðθ=2Þ. In particular, identifying

R ¼ tan ðα=2Þ; ð4:75Þ

where the parameter α measures the opening angle of the
boundary subregion, the symplectic form (4.74) at x0 ¼ 0
becomes

ωQ ¼ 1

4 sin2ðα=2Þ dθ ∧ dα: ð4:76Þ

This result agrees with the well-known Crofton formula for
RT surfaces on the hyperbolic disk [7], which is identified
with the t ¼ 0 time slice of AdS3. In particular, it can be
used to compute lengths of curves in the bulk.
Note that the full symplectic form on OQ also includes

information about shape-changes that, for example, tilt
the interval, and take it away from the fixed time slice.
To access this information one would need to compute
the components of the curvature associated to these

deformations as well. For now we will restrict to changes
implemented by Sδx0 and SδR as in (4.72), that act within a
single time slice.
Let us also consider the case of CFT3, where we take the

boundary region to be a disk on the ðx1; x2Þ-plane with
radius R. According to (4.37) the modular Hamiltonian
associated to this spherical region is given by:

Hmod ¼
π

R
½−ðR2 − ðx10Þ2 − ðx20Þ2ÞP0

− 2ðx10M01 þ x20M02Þ − C0�: ð4:77Þ

For the unit-circle this again reduces to the simple expres-
sion Hmod ¼ −π½P0 þ C0�. There are three distinct zero
modes, as can be seen from (4.40) and (4.41):

Q1 ¼
1

2R
½−ðR2 þ ðx20Þ2 − ðx10Þ2ÞP1 − 2x10Dþ 2x20M12

þ 2x10x
2
0P2 þ C1�; ð4:78Þ

Q2 ¼
1

2R
½−ðR2 þ ðx10Þ2 − ðx20Þ2ÞP2 − 2x20D

− 2x10M12 þ 2x20x
1
0P1 þ C2�; ð4:79Þ

Q3 ≡Q12 ¼ M12 þ x10P2 − x20P1; ð4:80Þ

which constitute a non-Abelian soð1; 2Þ algebra:

½Q1;Q2�¼Q3; ½Q1;Q3�¼Q2; ½Q2;Q3�¼−Q1: ð4:81Þ

These correspond to two ‘spatial’ boosts and one rotation
that preserve the spherical entangling region jx⃗ − x⃗0j ¼ R.
The Berry transport equations (4.69) are unchanged, except
that we now have two translations indicated by Sδxj

0
, with

j ¼ 1, 2. These are given by:

Sδx1
0
¼ P1; Sδx2

0
¼ P2; SδR ¼ 1

R
ðD− x10P1 − x20P2Þ:

ð4:82Þ

Now we can compute the commutator associated to a
change of center position and a change of radius to be

½Sδxj
0
;SδR� ¼ −

1

R
Pj: ð4:83Þ

Hence, we find that the component of the Berry curvature
in the Hmod-direction vanishes:

FHmod ¼ PHmod
0 ð½Sδxj

0
;SδR�Þ ¼ −

1

R
PHmod
0 ðPjÞ ¼ 0: ð4:84Þ
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The component in theQi-direction will be nonzero. Indeed,
the curvature is given by

FQi ¼ −
1

R
PQi
0 ðPjÞ ¼ δij

1

R2
; for i ¼ 1; 2; ð4:85Þ

and FQ3 ¼ 0. Note that the nonzero component of the
curvature depends on the direction of the translation: Acting
with Sδxj

0
leads to FQj ≠ 0. Similarly by setting the center to

x⃗0 ¼ 0, the relevant component of the symplectic form in
the ðxi0; RÞ-direction is again given by:

ωQi
¼ 1

R2
dxi0 ∧ dR: ð4:86Þ

V. DISCUSSION

We have considered modular parallel transport involving
a change of state in holography in general dimensions. The
resulting modular Berry curvature, which is operator-
valued, contains information about both the bulk symplec-
tic form as well as the quantum Fisher information metric
and its bulk dual, the canonical energy. We additionally
treated shape-changing modular transport in higher dimen-
sions, which is a special case of the state-changing trans-
formations, and in this case provided a connection to the
geometry of coadjoint orbits.
One could interpret the current work as a continuation

of [11], where the modular Berry phase is studied in the
specific example of AdS3=CFT2, extended to a larger class
of state deformations and to the higher-dimensional setting.
Of course, that setting is rather special in the sense that
certain properties of AdS3 gravity and two-dimensional
CFTs do not generalize to higher dimensions. For example,
the state-changing transformations that were considered
in [11] are not part of the symmetry algebra of CFTd when
d > 2. In higher dimensions, the finite-dimensional con-
formal group only contains shape-changing transforma-
tions. This is to be contrasted with CFT2, where we have
the full infinite-dimensional Virasoro algebra at our dis-
posal. To set up a nontrivial transport problem in higher
dimensions we had to introduce a more general formalism
of coherent state deformations that are not restricted to act
within the symmetry algebra. Another important difference
arises in the bulk computation: While AdS3 has a topo-
logical Chern-Simons theory description that makes the
computation of the symplectic form somewhat tractable, no
such simplification happens in general Einstein-Hilbert
gravity. In the present work, we instead use the covariant
phase space formalism directly in the metric formalism to
find an expression for the bulk symplectic form. However,
as we have shown here, the relation between the Berry
phase and symplectic form persists even in this more
general setting.

We should also discuss our results in light of previous
work on the role of Berry phases in the AdS=CFT
correspondence. A notable example involves [17,18] where
an interesting connection between the Berry phase and bulk
symplectic form is established. Their computation involves
the space of coherent pure states that are prepared via the
Euclidean path integral by turning on sources. The corre-
sponding Berry phase is shown to agree with the bulk
symplectic form associated to the full Cauchy slice. Our
approach involves a similar setup with the important
difference that our computations work for deformations
of density matrices associated to general subregions in the
CFT. The corresponding bulk dual is now the symplectic
form supported on the entanglement wedge. In that sense,
our work provides a natural extension of these previous
results to CFT subregions, and places the Berry phase/bulk
symplectic form duality on a more general footing. Another
approach is to consider other geometric phases in AdS/CFT
and their relations to wormholes. This has been recently
studied in [15,52].
To associate a geometric phase to deformations of density

matrices we used the construction of the modular Berry
phase. It is built upon the idea that there is a zero mode
ambiguity in the choice of basis frame for the modular
Hamiltonian. There is a slightly different version of the
parallel transport problem due to Uhlmann that relies on the
idea of parallel purifications [53,54]. The resultingUhlmann
holonomy is closely related to, but not exactly the same as
the modular Berry curvature. One difference is that the
Uhlmann equations are written in terms of the change of
density matrix itself while the modular Berry curvature
makes use of the change of the modular Hamiltonian as
a starting point. There is a nontrivial transformation,
cf. (2.19), that relates both perspectives. More importantly,
the zero mode projection that is crucial in defining modular
Berry transport is absent in the Uhlmann case. While the
Uhlmann holonomy is also related to a distance measure on
the space ofmixed states, i.e., the fidelity, our results indicate
that the modular Berry phase is instead related to the
quantum Fisher information metric on the space of mixed
states. To understand this more deeply would be useful for
many reasons. For example, the Uhlmann holonomy was
used by [19] to make a claim that is similar in spirit to ours:
that there is a direct connection between the geometric phase
and some bulk entanglement wedge symplectic form.
The fact that the metric and the symplectic form are

related in a simple way through (3.23) suggests an under-
lying geometric structure. In fact, the relation immediately
brings to mind the situation for a Kähler manifold where the
symplectic form and metric are related by an extra insertion
of the (almost) complex structure. This is familiar from the
usual Berry phase in finite-dimensional quantum mechan-
ics, where the space of pure states takes the form of a
complex projective space, which does indeed exhibit a
natural Kähler structure. It is well known that in this case
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the Berry curvature is closely related to the Fubini-Study
metric. However, in the case of mixed states we have found
that to go from the modular Berry curvature to the quantum
Fisher information metric requires an extra action of the
modular Hamiltonian. This procedure does not seem to
have a natural interpretation as an almost complex struc-
ture: Importantly, it does not square to minus one when
acting on general tangent vectors. Only in special cases (for
example, when we are acting purely with shape-changing
transformations) do we expect that the presence of such
underlying geometric structure can be made precise.
Nevertheless it would be interesting to understand these
observations better.
Likewise, one might ask whether this generalized sym-

plectic structure defines a natural Hilbert space through
geometric quantization. In the shape-changing case, recall
that the Berry curvature could be related to the Kirillov-
Kostant symplectic form on a special symplectic geometry
known as a coadjoint orbit. By the “orbit method,” which
is a version of geometric quantization, such symplectic
manifolds can be equated with a particular representation
of the group which defines the coadjoint orbit through
quotienting [49]. In this more general setting involving
state-changes, it would be interesting to learn if similar
relations persist, and what one can learn from them about
the Hilbert space for quantum gravity.
Recently, the role of operator algebra techniques has

gained some renewed interest in the context of holography
and black hole physics. In particular, it was argued that the
large N limit of the boundary CFT (in the specific setting of
the eternal black hole) should be a type III1 von Neumann
algebra [55,56]. Type III von Neumann algebras are rather
complicated in the sense that many quantities that we like
to use in quantum mechanics (e.g., density matrices, von
Neumann entropies) are not well defined. It is therefore
natural to ask how our computations depend on details
of the underlying operator algebra. Crucially, entropy
differences (e.g., the relative entropy) are well-defined in
type III von Neumann algebras. Since the final answer for
the Berry curvature is related to the quantum Fisher
information metric, which can be written in terms of the
relative entropy, it is certainly possible that there exists
some suitable continuum limit of our computations. One
idea is to define a version of the Berry phase problem in
terms of the algebra of observables without any reference to
an underlying state deformation. It would be interesting
to study further the Berry phase in connection with the
emergent type III1 structure.
A related question involves the possibility of including

spectral deformations in the parallel transport problem.11

Naïvely, in our setup there does not seem to be any
nontrivial contribution to the curvature from transforma-
tions that act purely within the diagonal part of the modular

Hamiltonian. This can be seen most easily from the parallel
transport equation (2.30). If we diagonalize the modular
Hamiltonian via some unitary U it follows that

Hmod ¼ UΔU†; P0ðδHmodÞ ¼ UδΔU†: ð5:1Þ
The zero mode piece of δHmod therefore consists of the
changes in the modular spectrum, and it is precisely this
term that is subtracted in defining the modular transport
operator. Perhaps it is possible to modify the setup in such a
way as to keep track of the spectral deformations as well,
and include their effect in some generalized curvature.
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APPENDIX A: CONFORMAL ALGEBRA

We will review here some facts about the d-dimensional
conformal algebra, which will set our conventions through-
out the paper.
The conformal generators are

D ¼ −xμ∂μ; Pμ ¼ −∂μ;

Cμ ¼ x2∂μ − 2xμxρ∂ρ; Mμν ¼ xμ∂ν − xν∂μ: ðA1Þ
The resulting commutation relations are given by

½D;Pμ� ¼ Pμ; ½D;Cμ� ¼ −Cμ;

½Cμ; Pν� ¼ 2ðημνD −MμνÞ;
½Mμν; Pρ� ¼ −ημρPν þ ηνρPμ;

½Mμν; Cρ� ¼ −ημρCν þ ηνρCμ;

½Mμν;Mσρ� ¼ −ημσMνρ þ ηνσMμρ − ηνρMμσ þ ημρMνσ:

ðA2Þ
Note that we have written μ ¼ ð0; iÞ, where i ¼ 1;…; d − 1
is some spatial index.11We thank Erik Verlinde for making this suggestion.
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The bilinear product on the conformal algebra is
given by

hX; Yi≡ 1

2
trðXYÞ; X; Y ∈ soð2; dÞ; ðA3Þ

where the trace is taken in the fundamental representation.
In terms of the above generators the inner product is
normalized such that nonzero entries are given by:

hD;Di ¼ hM0i;M0ii ¼ −hMij;Miji ¼ 1;

hP0; C0i ¼ −hPi; Cii ¼ 2: ðA4Þ

APPENDIX B: RELATIVE ENTROPY AND
QUANTUM FISHER INFORMATION

In this appendix we review the derivation of a metric on
the space of density matrices from the second variation of
the relative entropy [27,28]. The relative entropy between
two states σ and ρ is given by:

SðσjjρÞ≡ trðσ log σÞ − trðσ log ρÞ: ðB1Þ

Let us view σ as obtained from ρ by some small perturba-
tion:

σ ¼ ρþ εδρþOðε2Þ; ðB2Þ

where ε is some small parameter. Then, the second derivative
with respect to this parameter can be expressed as:

d2

dε2
SðσjjρÞ ¼ tr

�
δρ

d
dε

logðρþ εδρÞ
�
: ðB3Þ

To compute the derivative we use the following integral
representation for the logarithm of an operator:

logðρþ εδρÞ ¼ −
Z

∞

0

ds
s
ðe−sðρþεδρÞ − e−sÞ: ðB4Þ

One can now take the derivative by using the relation

d
dε

eAþεB ¼
Z

1

0

dxeAxBeð1−xÞA; ðB5Þ

for two operators A and B. Using (B4) it now follows that

d2

dε2
SðσjjρÞ ¼

Z
1

0

dx
Z

∞

0

ds trðδρe−xsρδρe−ð1−xÞsρÞ: ðB6Þ

We can now evaluate the trace in the eigenbasis of the
modular Hamiltonian associated to the state ρ:

ρjωi ¼ e−ωjωi: ðB7Þ

We can write this as:

d2

dε2
SðσjjρÞ ¼

Z
1

0

dx
Z

∞

0

ds
Z

dω
Z

dω0jhωjδρjω0ij2e−sxðe−ω−e−ω0 Þe−se−ω0

¼
Z

dω
Z

dω0jhωjδρjω0ij2eωðω − ω0Þnðω − ω0Þ: ðB8Þ

Using again the sinh-formula (2.64) to replace the integral
over frequencies by an integral over modular time, and
removing the explicit jωi basis we find that this expression is
equivalent to

δð2ÞSðσjjρÞ ¼
Z

∞−iϵ

−∞−iϵ
ds

π

2 sinh2ðπsÞ trðρ
−1δρρ−isδρρisÞ:

ðB9Þ

This is an expression for the second-order variation of the
relative entropy. We will now define a metric on the space
of quantum states starting from the above expression. The
second derivative of the relative entropy (B9) is a quadratic
function in the state perturbations δρ, so we can upgrade it to
a bilinear form by taking two (possibly) different variations
δ1ρ; δ2ρ on the right-hand side. Plugging in the expressions
for δρ in terms of the operators O using (2.16) we find that

δ1δ2SðσjjρÞ ¼
Z

ddx
Z

ddx0δ1λðxÞδ2λðx0Þ

×
Z

∞−iϵ

−∞−iϵ
ds

π

2 sinh2ðπsÞ hOðxÞOsðx0Þi;

ðB10Þ

where the expectation value is taken in the reference state ρ.
This is also known as the quantum Fisher information
metric [27,28]. This expression agrees with the ‘metric’ GΨ
associated to the modular Berry curvature (2.65). We have
therefore established our identification.

APPENDIX C: AN EXPLICIT BULK
COMPUTATION

In this appendix we will give a short computation of the
bulk dual of the shape-changing Berry transport problem.
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This is a special example of the computation that was done
for more general diffeomorphisms in Sec. IVA. The first
part of the computation closely follows Sec. 3.2 of [57].

1. Gravitational symplectic form
for shape deformations

We start from the gravitational symplectic form asso-
ciated to the entanglement wedge:

Ωðδ1g; δ2gÞ ¼
Z
Σ
ω: ðC1Þ

We would like to evaluate this expression on metric
perturbations that correspond to conformal Killing vector
fields on the boundary, i.e., are in the conformal algebra
soð2; dÞ. Given a solution ξ to the conformal Killing
equation

∂μξν þ ∂νξμ ¼
2

d
hμν∂αξα; ðC2Þ

one can construct a bulk vector field ζ that leaves the
boundary metric invariant δζh ¼ 0. We assume that the
asymptotic AdSdþ1 bulk metric g is in Fefferman-Graham
(FG) gauge so that we can write

ds2 ¼ dρ2

4ρ2
þ γμνðρ; xÞdxμdxν ðC3Þ

near the asymptotic boundary ρ → 0. The boundary metric
ds2h can be extracted from

γμνðρ; xÞ ∼ ρ−1hμνðxÞ þOðρ0Þ;
ds2h ¼ dt2 þ dr2 þ r2dΩ2

d−2: ðC4Þ

The conformal factor that arises in the boundary metric
δh can be reabsorbed by introducing a nontrivial
ρ-dependence in the vector field ζ. We use ζ to perturb
the bulk metric. It turns out that ω in (C1) becomes exact
in spacetime, i.e., iζω ¼ dX , where X is a one-form on
field space and a (d − 1)-form on spacetime. There is an
expression for χ of the form X ¼ χ · ϵ, where [57]

χμν ¼ 1

16πG

�
ð∇αδgαν þ∇νδ ln gÞξμ þ∇νδgμαξα

−∇αξ
μδgαν −

1

2
∇νξμδ ln g

�
− ðμ ↔ νÞ; ðC5Þ

and δ ln g≡ gμνδgμν. Using Stokes’ theorem we can now
write the symplectic form as a boundary integral

iξΩ ¼
Z
Σ
dX ¼

Z
∂Σ
X ; ðC6Þ

over ∂Σ. The boundary of the entanglement wedge consists
of two components (see Fig. 3): the asymptotic boundary
region A and the RT surface γA

∂Σ ¼ γA ∪ A: ðC7Þ

Following the general discussion, we will only consider the
contribution coming from the asymptotic boundary. Given
the geometry in (C3), the symplectic form associated to the
entanglement wedge now becomes

iξΩ ¼
Z
A
dd−1x

ffiffiffi
g

p
χρt; ðC8Þ

where the integration is over subregion A at ρ ¼ t ¼ 0,
and χρt is a component of (C5). We can further simplify
the expression for χρt. The covariant derivative only acts
nontrivially on δg in the ρ-direction: we can replace
∇μ ¼ 4ρ2δμρ∂ρ when acting on δg at ρ ¼ 0. Moreover,
we can also use that ∂ρδgμρjρ¼0 ¼ ∂ρδgμρjρ¼0 ¼ 0, since
these components are fixed by the asymptotic form of the
metric (C3). Then, the component χρt simplifies to

χρt ¼ −
1

16πG
ð∇ρδ ln gξt þ∇ρδgμtξμÞ

¼ −
ρ2

4πG
ðgμν∂ρδgμνξt − ∂ρδgμνgνtξμÞ; ðC9Þ

where we have used that δgμν ¼ −gμλgνσδgλσ . We can
rewrite this in terms of the expectation value of the stress
tensor at the boundary

T μν ≡ 1

4G
ðKμν − KgμνÞ; ðC10Þ

where the extrinsic curvature is given by Kμν ¼ −ρ∂ρgμν
and K ¼ gμνKμν. The holographic relation is given by
T μν ¼ hΨjTμνjΨi. One finds that12

δT tν ¼
1

4G
ð−ρ∂ρδgtν þ ρgμσ∂ρδgμσgtνÞ: ðC12Þ

This can be used to rewrite (C9) as

χρt ¼ −
ρ2

4πG
γttðgμσ∂ρδgμσξt − ∂ρδgνtξνÞ

¼ −
ρ

π

ffiffiffiffiffi
γtt

p
δTtνntξν: ðC13Þ

12One can use the following variations

δKμν ¼ −ρ∂ρδgμν; δK ¼ −ρgμν∂ρδgμν: ðC11Þ
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Here, we have introduced the normal vector n to the
t ¼ 0 time slice with component nt ¼

ffiffiffiffiffi
γtt

p
. Decompo-

sing the metric (C3) according to
ffiffiffi
g

p ¼ ð2ρÞ−1 ffiffiffi
γ

p ¼
ð2ρÞ−1 ffiffiffiffiffi

γtt
p ffiffiffiffiffiffiffiffiffiffiffi

γðd−1Þ
p

, where the (d − 1)-dimensional metric
γðd−1Þ is defined on the t ¼ 0 time slice which contains the
spatial components of γ. Combining this with (C13), we
obtain the expression:

ωðδζ1g; δζ2gÞ ¼ −
1

2π

Z
A
dSμξν1δξ2T μν;

where dSμ ¼ nμ
ffiffiffiffiffiffiffiffiffiffiffi
γðd−1Þ

q
dd−1x; ðC14Þ

in terms of the variation of the stress tensor profile δξT μν.
To further simplify the expression we use that for ξ is a
conformal Killing vector one has the following stress tensor
transformation law13:

δξT μν ¼ ξσ∂σT μν þ ð∂σξσÞT μν − ð∂σξμÞT σν þ ð∂νξσÞT μσ:

ðC15Þ

Before using (C15) we first rewrite the symplectic form as

ωðδζ1g; δζ2gÞ ¼ −
1

2π

Z
Ã
ddxð∂μξ1νÞδξ2T μν; ðC16Þ

where we have introduced a region Ã in the boundary
CFT with ∂Ã ¼ A, and used subsequently Stokes’ theorem
and the conservation equation ∂νðδξT μνÞ ¼ 0. Plugging
in (C15) we find that

ω ¼ −
1

2π

�Z
B̃
ddxð∂μξ1νÞð−ð∂σξμ2ÞT σν þ ð∂νξ2σÞT μσÞ

þ
Z
B̃
ddxð∂μξ1νÞ∂σðξσ2T μνÞ

	
: ðC17Þ

The integrand of the first integral in (C17) can be rewritten
in terms of the commutator

½ξ1; ξ2�ν ¼ ξ1σ∂
σξ2ν − ξ2σ∂

σξ1ν; ðC18Þ

using the fact that

ð∂μξ1νÞð−ð∂σξμ2ÞT σν þ ð∂νξ2σÞT μσÞ ¼ −∂μð½ξ1; ξ2�νÞT μν:

ðC19Þ

Here, we have relabeled indices and used that ∂μ∂σξνT μν¼0

(see (C35) for a derivation). The second integral in (C17) is
zero. To see this, one can write

ð∂μξ1νÞ∂σðξσ2T μνÞ ¼ 1

2
ð∂μξ1ν þ ∂νξ1μÞ∂σðξσ2T μνÞ

¼ 1

d
ð∂αξαÞ∂σðξσ2Tμ

μÞ ¼ 0; ðC20Þ

using the conformal Killing equation and the tracelessness
of the stress tensor. Combining the above we find the final
result for the symplectic form to be14:

ωðδζ1g; δζ2gÞ ¼
1

2π

Z
A
dSμ½ξ1; ξ2�νT μν: ðC23Þ

This result involving the commutator of vector fields indeed
resembles the structure of the (Hmod-component of the)
Berry curvature (4.57), when we evaluate it in the original
state jΨi.

2. Stress tensor transformation law

Let us for completeness derive the stress tensor trans-
formation law that was used in (C15). We start from the
most general ansatz consistent with linearity of δξT and
dimensional analysis:

δξT μν ¼ c1ξσ∂σT μν þ c2ð∂σξσÞT μν þ c3ð∂σξμÞT σν

þ c4ð∂νξσÞT μσ þ c5ξσ∂μT σν þ c6ð∂σξνÞT μσ

þ c7ð∂μξσÞT σν þ c8ξσ∂νT μσ: ðC24Þ

We want to further constrain (C24) using symmetry,
tracelessness and conservation of δξT μν. Recall that the
conformal Killing equation is

∂μξν þ ∂νξμ ¼
2

d
ημν∂σξ

σ: ðC25Þ

This can be used to write the terms multiplying the
coefficients c6, c7 in terms of those involving c2, c3 and c4.
We have

ð∂σξνÞT μσ ¼ −ð∂νξσÞT μσ þ 2

d
ð∂σξσÞT μν; ðC26Þ

ð∂μξσÞT σν ¼ −ð∂σξμÞT σν þ 2

d
ð∂σξσÞT μν: ðC27Þ

14Of course, in hindsight we could have expected this result. If
we introduce the following functions

fξ ≡
Z
B
dSμξνT μν ðC21Þ

on phase space, (C20) is simply the familiar statement that the
symplectic form computes the (classical) Poisson bracket via

ωðξ1; ξ2Þ ¼ ffξ1 ; fξ2g ¼ −f½ξ1;ξ2�: ðC22Þ

13This formula holds for d ≥ 3. In the case of two dimensions
there is also the possibility of a central charge term. For the
derivation, see Appendix C 2.
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Therefore, these terms can be removed from the ansatz (C24).
Moreover, imposing that δξT μν is symmetric under inter-
change of μ and ν gives

c3 ¼ −c4; c5 ¼ c8: ðC28Þ

Indeed, for the first equation one can use that

ð∂νξσÞT μσ − ð∂σξμÞT σν ¼ ð∂μξσÞT νσ − ð∂σξνÞT σμ; ðC29Þ

by subtracting (C26) from (C27), and flipping μwith ν. In this
way, we have reduced the ansatz to

δξT μν ¼ c1ξσ∂σT μν þ c2ð∂σξσÞT μν

þ c3ðð∂σξμÞT σν − ð∂νξσÞT μσÞ
þ c5ðξσ∂μT σν þ ξσ∂

νT μσÞ: ðC30Þ

Let us now impose conservation, using that ∂μT μσ ¼ 0. We
will need the following identity:

∂μ∂
νξσ ¼

1

d
ðδνσ∂μ∂αξα þ δσμ∂

ν
∂αξ

α − δνμ∂σ∂αξ
αÞ: ðC31Þ

This can be derived by acting with another derivative on the
conformal Killing equation (C25), and taking three different
permutations:

∂μ∂
νξσ þ ∂

ν
∂σξμ ¼

2

d
ð∂ν∂αξαÞδμσ; ðC32Þ

∂μ∂
νξσ þ ∂μ∂σξ

ν ¼ 2

d
ð∂μ∂αξαÞδνσ; ðC33Þ

∂σ∂
νξμ þ ∂μ∂σξ

ν ¼ 2

d
ð∂σ∂αξαÞδνμ: ðC34Þ

Adding (C32) and (C33) and subtracting (C31) leads to
(C31). In particular, (C31) can be used to show that

∂μ∂
νξσT μσ ¼ 0: ðC35Þ

We can use this equation to write

∂μδξT μν ¼ ðc1 þ c3Þð∂μξσÞ∂σT μν þ ðc2 þ c3Þð∂μ∂σξσÞT μν

þ c5ðð∂μξσÞ∂μT σν þ ξσ∂μ∂
μT σν þ ð∂μξσÞ∂νT μσÞ:

ðC36Þ

From this we see that the coefficients are further constrained
to satisfy

c1 ¼ −c3 ¼ c2; c5 ¼ 0: ðC37Þ

Hence, we find the transformation law

δξT μν¼c1ðξσ∂σT μνþð∂σξσÞT μν−ð∂σξμÞT σνþð∂νξσÞT μσÞ;
ðC38Þ

which is automatically traceless. The overall normalization
c1 ¼ 1 is fixed by requiring, for example, that a translation
ξσ ¼ δσσ acts via a derivative

δξT μν ¼ ∂σT μν: ðC39Þ

This proves the stress tensor transformation law (C15):

δξT μν ¼ ξσ∂σT μν þ ð∂σξσÞT μν − ð∂σξμÞT σν þ ð∂νξσÞT μσ:

ðC40Þ
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