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The differential cross sections of elastic proton-proton ðppÞ and proton-antiproton ðpp̄Þ scattering are
studied in a holographic QCD model, considering the strong and Coulomb interaction in the Regge regime.
Based on previous studies of strong interactions described in terms of Pomeron and Reggeon exchange, we
add the contribution of Coulomb interaction described by photon exchange. We present the momentum
transfer dependence of the contribution rates for each component, especially for the Coulomb-nuclear
interference, which refers to the cross term between both interactions. For the adjustable parameters for the
strong interaction, we can adopt the values determined in previous studies, and there are no extra adjustable
parameters that need to be determined for the Coulomb interaction. It is presented that the resulting
differential cross sections are consistent with the data for pp and pp̄ scattering.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is a well-established
theory of the strong interactions, and in principle, all
strong-interaction phenomena should be describable in
terms of the fundamental QCD Lagrangian. In pp and
pp̄ scattering with high center-of-mass energy s and small
momentum transfer t, some practical difficulties were
encountered due to the complexity and nonperturbative
nature in the soft kinematic region (also called the forward
region) [1,2]. The analytical solution of nonperturbative
QCD is a challenging task, and QCD is unable to directly
deduce various hadronic properties. Before the establish-
ment of QCD, there is a time-honored theory, the Regge
theory, which provided a useful framework to analyze the
hadron-hadron scattering cross sections [3–9]. The Regge
theory, which incorporates both Reggeon and Pomeron
contributions, remains a reliable framework for describing
the total cross sections of hadronic scattering. The pp and
pp̄ scattering amplitudes were described by the Reggeon
trajectories and the soft Pomeron [10–13]. The Regge
theory is founded on the complex angular momentum
analysis. The 2þþ glueball with mass is recognized to be

the lightest state on the leading Pomeron trajectory, which
has an intercept slightly greater than 1. The growing trend in
total cross sections relative to the center-of-mass energy

ffiffiffi
s

p
is attributed to Pomeron exchange. On the contrary, the
exchange of the Reggeon trajectories accounts for the
decreasing behavior. For decades, high energy hadron-
hadron scattering has been one of the most important
research topics in the high energy physics since its cross
sections reflect the internal structure of the involved hadrons.
Holographic QCD, a nonperturbative methodology

for QCD, has been established employing the anti-de
Sitter/conformal field theory (AdS=CFT) correspondence
[14–16]. This correspondence, which establishes a con-
nection between a four-dimensional conformal field theory
and a gravitational theory in higher-dimensional AdS
space, provides us with a hopeful way to investigate
strongly coupled quantum field theories. A holographic
QCD model has been utilized to examine the spectrum and
configuration of hadrons [17–29], achieving favorable
outcomes. And, this model has also been employed to
study high energy scattering processes [30–42]. A holo-
graphic QCD model has been proposed, relying on string
theory, to portray the experimental data of elastic pp and
pp̄ scattering cross sections in the Regge regime [43–45].
Scattering amplitudes of hadrons within the Regge regime
can be computed via exchanges involving the lightest
mesons or glueballs. Subsequently, the single particle
propagators are substituted with their Reggeized counter-
parts, which are obtained through comparison with string
scattering amplitudes [43,45,46].
As widely recognized, the electromagnetic effect—soft

photon radiation and Coulomb scattering—is an indivisible
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component of any strong interaction involving charged
hadrons. The strong interaction is conventionally referred
to as “nuclear” or “hadronic,” while the electromagnetic
interaction is commonly known as the “Coulomb” inter-
action. Sometimes these effects obstruct the detection of
strong-interaction phenomena, but sometimes they present
a distinctive source of information on important details of
hadronic amplitudes. The holographic QCD is a theoretical
framework that relates a four-dimensional conformal field
theory to a gravitational theory in the higher dimensional
AdS space. In this theoretical framework, the Coulomb
interaction is not a crucial constituent, but it is important
when the scattering angle is very small (i.e., jtj is very
small). In previous studies, this contribution is of impor-
tance at jtj ≈ 0.002 GeV2 and becomes negligible when
jtj > 0.01 GeV2 [47,48]. Moreover, the combined scatter-
ing amplitude receives a third contribution reflecting the
cross term with both strong and Coulomb exchanges. This
term, along with the intricate nature of the scattering
amplitudes, characterizes the influence of Coulomb-nuclear
interference (CNI) on the differential cross section. The
experimental study of CNI in pp and pp̄ scattering can
reveal the amplitude structure of hadrons [49–57].
Regrettably, the range of scattering angles where such
interference is clearly observable is relatively limited;
nevertheless, analysis of the differential cross section of
this interval can give us some very important information
about the strong interaction.
In this work, we study the elastic pp and pp̄ scattering in

the Regge regime, taking into account both the strong and
Coulomb interaction. This work is an extension of previous
research [46], in which the strong interaction described
by the Pomeron and Reggeon exchangewas considered. The
Pomeron exchange makes a major contribution to the cross
section of the high energy region, and the Reggeon exchange
gives the dominant contribution to cross sections in the lower
energy region. However, the Coulomb interaction contribu-
tion needs to also be considered to describe the data in a very
small momentum transfer jtj interval. In our work, the
Coulomb interaction is described by the pure real photon
exchange QED amplitude, and being affected by the multi-
photon exchange process will result in additional phase
difference αϕ. The Coulomb phase has been studied by
many researchers [58–64]. In the present study the interfer-
ence formulas of R. Cahn [62] were adopted for taking into
account the CNI effects. We explicitly show how both of the
interaction contributions vary with the energy, focusing on
the contribution ratios. It is presented that the resulting
differential cross sections are consistent with the data in a
wide kinematic region for both the pp and pp̄ scattering.
The present paper is structured as follows. The model,

focusing on both interactions is outlined in Sec. II. We
briefly review the formalism developed in the preceding
studies, and present the expressions for the total scattering
amplitude and differential cross sections. In Sec. III, the jtj

dependence of these contributions is shown in detail,
focusing on the contribution ratios. We also show the data
analysis of the differential cross sections. Our conclusion
with the implications of this work is given in Sec. IV.

II. MODEL SETUP

A. Strong interaction amplitude in holographic QCD

In the previous study [46], the contribution of combining
both Pomeron and Reggeon was considered in the Regge
regime, which was described by Reggeized spin-2 glueball
and vector meson, respectively. The strong-interaction
amplitudes can be written in the following form:

FN ¼ Fg þ Fν: ð1Þ
The amplitude of the glueball exchange can be obtained

by combining the proton-glueball-proton vertex [65] and
the massive spin-2 glueball propagator [66], and similarly,
the amplitude of the vector meson exchange is obtained by
combining the proton-vector-proton vertex and the vector
meson propagator [45].
Hence, the strong-interaction amplitude can be written as

FN ¼ −iλ2g
8ðt −m2

gÞ
½2sA2ðtÞðū1γαu3Þðū2γαu4Þ

þ 4A2ðtÞpα
2p

β
1ðū1γαu3Þðū2γβu4Þ�

þ iλ2v
t −m2

v
ημνðū1γμu3Þðū2γνu4Þ; ð2Þ

where t ¼ −ðp3 − p1Þ2, λg is the proton-glueball-proton
coupling constant, λv is the proton-vector-proton coupling
constant, mg is the mass of glueball, and mv is the vector
meson mass. At t → 0, the form factors Að0Þ → 1.
By taking the modulus and the spin averaged sum of

strong-interaction amplitude, the differential cross section
has the following form:

dσN
dt

¼ 1

16πs2
jFNðs; tÞj2

¼ λ4gs2A2ðtÞ
16πjt −m2

gj2
−

λ2gλ
2
vA2ðtÞs

4πjt −m2
gjjt −m2

vj
þ λ4v
4πjt −m2

vj2
:

ð3Þ

Here, the differential cross section only contains the lightest
states; in order to include higher spin states on the Pomeron
and Reggeon trajectories, the Reggeized procedures are
employed [45]. The propagator of the massive spin-2
glueball is to be replaced by

1

t−m2
g
→

�
α0g
2

�
e−

iπαgðtÞ
2

Γ
h
−χg�Γ½1−αgðtÞ

2

i
Γ
h
−χg−1þαgðtÞ

2

i�α0gs
2

�
αgðtÞ−2

; ð4Þ
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where χg ¼ 2α0gmp
2 þ 3

2
αgð0Þ − 3, and the dependence on

χg is introduced. The propagator of the vector meson is to
be replaced by

1

t −m2
v
→ α0v e−

iπαvðtÞ
2 sin

�
παvðtÞ

2

�
ðα0vsÞαvðtÞ−1 Γ½−αvðtÞ�:

ð5Þ

The differential cross section of both the Pomeron and
Reggeon exchange can be obtained by replacing the factors
1

t−m2
v
and 1

t−m2
g
. The invariant amplitude for strong interaction

can be expressed as

FNðs;tÞ¼−sλ2gA2ðtÞe−iπαgðtÞ
2

Γ½−χg�Γ
h
1−αgðtÞ

2

i
Γ
h
αgðtÞ
2
−1−χg

i �
α0gs
2

�
αgðtÞ−1

þ2sλ2vα0ve−
iπαvðtÞ

2 sin

�
παvðtÞ

2

�
ðα0vsÞαvðtÞ−1Γ½−αvðtÞ�:

ð6Þ

In the above equation, there are seven adjustable parameters
in total. Three of these parameters are related to the Pomeron
exchange, i.e., the intercept αgð0Þ, slope α0g and proton-
glueball coupling constant λg. For these adjustable param-
eters to the Pomeron exchange, we use the values given in
previous work [67], αgð0Þ ¼ 1.084, α0g ¼ 0.368 GeV−2, and
λg ¼ 9.59 GeV−1. For the other four adjustable parameters,
the intercept αvð0Þ, slope α0v, pp scattering coupling
constant λppv , and pp̄ scattering coupling constant λpp̄v are
taken from Ref. [46], αvð0Þ ¼ 0.444, α0v ¼ 0.9257 GeV−2,
λppv ¼ 7.742 GeV−1, and λpp̄v ¼ 16.127 GeV−1. In the
domain of strong interaction, similar to previous investiga-
tions [67], we employ the proton gravitational form factors
for AðtÞ calculated from the soft-wall model.

B. Electromagnetic form factor

In this paper we apply the AdS/QCD model to the region
of small momentum transfer 0 ≤ jtj ≤ 0.01 GeV2 in which
the contribution of the Coulomb interaction is not negli-
gible. To the Coulomb interaction, we introduce the
electromagnetic form factor of proton which was derived
from the authors of Ref. [68] by considering a Dirac field
coupled to a vector field in the five-dimensional AdS space
in the AdS/QCD model. We use the results obtained
from the soft-wall model, in which the AdS geometry is
smoothly cut off by a background dilaton field at the
infrared boundary. And the final expression for the form
factor does not bring any adjustable parameter. The metric
of five-dimensional AdS space is expressed as

ds2 ¼ gMNdxMdxN ¼ 1

z2
ðημνdxμdxν − dz2Þ; ð7Þ

where ημν ¼ diagð1;−1;−1;−1Þ, and μ, ν ¼ 0, 1, 2, 3. z is
the fifth coordinate ranging from 0 to∞. The model action
is given by

SF ¼
Z

ddþ1x
ffiffiffi
g

p
e−ΦðzÞ

�
i
2
Ψ̄eNAΓADNΨ

−
i
2
ðDNΨÞ†Γ0eNAΓAΨ − ðM þΦðzÞÞΨ̄Ψ

�
; ð8Þ

where eNA ¼ zδNA is the inverse vielbein, DN ¼ ∂N þ
1
8
ωNAB½ΓA;ΓB� − iVN is the covariant derivative which

ensures the action satisfies gauge invariance and diffeo-
morphism invariance, and M is the mass of the bulk
spinor. The Dirac gamma matrices are defined in such a
way that they satisfy the anticommutative relation
fΓA;ΓBg ¼ 2ηAB. The background dilaton field is given
by ΦðzÞ ¼ κ2z2, and the right and left spinor are defined as
ΨR;L ¼ ð1=2Þð1� γ5ÞΨ. By imposing appropriate boun-
dary conditions, the normalizable wave function can be
expressed as

ψ ðnÞ
L ðzÞ ¼ 1

κα−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γðnþ 1Þ

Γðαþ nþ 1Þ

s
ξαLðαÞ

n ðξÞ;

ψ ðnÞ
R ðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ α

p
κα−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γðnþ 1Þ

Γðαþ nþ 1Þ

s
ξα−ð1=2ÞLðα−1Þ

n ðξÞ; ð9Þ

where α ¼ M þ 1
2
and κ ¼ 0.35 GeV. The correct large

momentum scale for the proton electromagnetic form factor
is given when M ¼ 3

2
. The present investigation solely

focuses on the ground state of the proton.
The electromagnetic current matrix element can be

generally expressed in terms of two independent form
factors,

hp3; s3jJμð0Þjp1; s1i

¼ uðp3; s3Þ
�
f1ðQÞγμ þ f2ðQÞ iσ

μνqν
2mn

�
uðp1; s1Þ; ð10Þ

where q ¼ p3 − p1 and Q2 ¼ −q2. The invariant functions
are given by

C1ðQÞ ¼
Z

dze−Φ
VðQ; zÞ
2z2M

ðψL
2ðzÞ þ ψR

2ðzÞÞ; ð11Þ

C2ðQÞ ¼
Z

dze−Φ
∂zVðQ; zÞ
2z2M−1 ðψL

2ðzÞ − ψR
2ðzÞÞ; ð12Þ

C3ðQÞ ¼
Z

dze−Φ
2mnVðQ; zÞ

z2M−1 ψLðzÞψRðzÞ: ð13Þ
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For the soft-wall model, the bulk-to-boundary propaga-
tor of the vector field is written as [69]

VðQ; zÞ ¼ Γð1þ aÞUða; 0; ξÞ

¼ a
Z

1

0

dxxa−1 exp

�
−

x
1 − x

ξ

�
; ð14Þ

where a ¼ Q2=ð4κ2Þ, and ξ ¼ κ2z2.
The electric and magnetic form factor for the proton can

be obtained by

GEðQÞ ¼ C1ðQÞ þ ηpC2ðQÞ − τηpC3ðQÞ; ð15Þ

GMðQÞ ¼ C1ðQÞ þ ηpC2ðQÞ þ ηpC3ðQÞ; ð16Þ

where ηp ¼ 0.224; τ ¼ Q2

4m2
p
. And the effect of both form

factors can be described by the effective electromagnetic
form factor squared,

G2
effðtÞ ¼

1

1þ τ
½G2

EðtÞ þ τG2
MðtÞ�: ð17Þ

C. Coulomb interaction amplitude

In studies of pp and pp̄ scattering, the Coulomb
interaction becomes exceedingly prominent as the momen-
tum transfer t approaches zero. Typically, the standard way
to represent the whole scattering amplitude was expressible
in the form [58]

Ftot ¼ FN þ eiαϕFC: ð18Þ

The lowest-order one-photon-exchange Coulomb ampli-
tude for pointlike charges is

FCðs; tÞ ¼ ∓ 8παs
jtj ; ð19Þ

where α is the fine structure constant. The negative
(positive) sign corresponds to the scattering of particles
possessing identical (opposing) charges.
In Eq. (18), the amplitudes of strong interaction and

Coulomb interaction are bound mutually with the help of
the additional phase difference αϕðs; tÞ which was the
result of the possibility of multiphoton exchange processes.
The Coulomb phase ϕwas calculated first by Bethe with

the WKB approach in potential theory and derived the
following form [58]:

ϕ ¼ 2 ln ð1.06=jk1jbΘÞ; ð20Þ

where jk1j is the c.m. momentum, b is the range of the
strong-interaction forces, andΘ is the c.m. scattering angle.
Similar results were obtained by these authors [60,61]
using the potential model.

West and Yennie (WY) re-examined the interference
between Coulomb interaction and strong interaction in
terms of Feynman diagrams [59]

ϕW−Y ¼ ∓ ½lnðBjtj=2Þ þ γ þOðBjtjÞ�; ð21Þ

where γ is the Euler constant. The upper (lower) sign
corresponds to the scattering of pp ðp̄pÞ. B is the
t-independent diffractive slope of the strong-interaction
amplitude and is associated with the center of mass energyffiffiffi
s

p
, generally defined as

Bðs; tÞ ¼ lim
t→0

d½ln ðdσN=dtÞ�
dt

: ð22Þ

R. Cahn [62] gives a more precise calculation based on
the above which accounts for the details of the electro-
magnetic form factor under the assumption that jtj → 0,
and obtained a general expression for the phase

ϕCahn ¼ −
�
ln

�
Bjtj
2

�
þ γ þ C

�
; ð23Þ

C ¼ ln

�
1þ 8

BΛ2

�
þ ð4jtj=Λ2Þ ln ð4jtj=Λ2Þ þ 2jtj=Λ2;

ð24Þ

where Λ2 ¼ 0.71 GeV2. In the present work, we will
determine Λ2 by comparing the data with the electromag-
netic form factor which we previously introduced.
The main difference from the result of WY is a shift of

the Coulomb amplitude due to the form factors’ influence
on the phase. Compared with WY, the Coulomb phase
calculated with Cahn’s showed a better fit to the exper-
imental data [70]. Furthermore, as noted in Ref. [71], the
form of the Coulomb phase proposed by WY contradicts
the general properties of analyticity in the t channel. And
from Ref. [57], we can know that the theoretical assump-
tions of the WYmodel were inconsistent with experimental
data. In addition, Nurushev [64] and Kopeliovich [63]
derived the Coulomb phase in a large range of momentum
transfer, and the results were similar to the calculation of
Cahn. Considering the kinematic range of this work, we
choose Cahn’s calculation for the Coulomb phase.
By relating to the strong-interaction amplitude, we give

the trend of t slope B with the center of mass energy
ffiffiffi
s

p
for pp and pp̄ scattering, as shown in Fig. 1. It can be
observed that the t slope B exhibits a consistent increasing
trend, and the difference in t-slope values between pp
scattering and pp̄ scattering is negligible when the energyffiffiffi
s

p
is greater than 100 GeV. According to Ref. [46], it is

evident that the contribution of Reggeon and its cross term
with Pomeron to the differential cross section in strong
interactions can be disregarded when the energy

ffiffiffi
s

p
is

greater than 100 GeV. When the energy
ffiffiffi
s

p
is below
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100 GeV, there are some differences in the B values of pp
and pp̄ scattering due to the varying parameters involved in
the Reggeon exchange.
Following the introduction of the proton electromagnetic

form factor, the Coulomb interaction amplitude can be
written as

FCðs; tÞ ¼ −
8παs
jtj G2

effðtÞ: ð25Þ

Then we obtain the total scattering amplitude that
includes both the Coulomb and strong interaction.

Ftot ¼ −eiαϕ
8παs
jtj G2

effðtÞ

− sλ2gA2ðtÞe−iπαgðtÞ
2

Γ½−χg�Γ
h
1 − αgðtÞ

2

i
Γ
h
αgðtÞ
2

− 1 − χg
i �

α0gs
2

�
αgðtÞ−1

þ sλ2vα0ve−
iπαvðtÞ

2 sin

�
παvðtÞ

2

�
ðα0vsÞαvðtÞ−1Γ½−αvðtÞ�;

ð26Þ

and the total differential cross section is given by

dσtot
dt

¼ 1

16πs2
jFtotðs; tÞj2: ð27Þ

III. NUMERICAL RESULTS

A. Contribution ratios of the Coulomb
and strong interaction

Here we present the t dependence of contributions of
the strong interaction, Coulomb interaction, and the cross
term in the present model. We numerically evaluate the
contribution of these three items to the total differential
cross section for the pp and pp̄ scattering, respectively.
Considering the applicability of our present model and
taking into account the range of Coulomb interaction, we
decide to focus on the kinematic region, where 10 GeV ≤ffiffiffi
s

p
≤ 13 TeV and 0 ≤ jtj ≤ 0.01 GeV2. Focusing on these

kinematic ranges, we display the t dependence of the ratios
for pp scattering in Fig. 2, and the ratios for pp̄ scattering
in Fig. 3. The Coulomb interaction contribution decreases
with jtj, and it is opposite for the strong-interaction
contribution. These trends presented are consistent with
the previous research [47,48]. When the momentum trans-
fer t is very small, the impact parameter b in scattering
becomes larger, and the electromagnetic interaction domi-
nates. As the momentum transfer t gradually increases, the
impact parameter b continuously decreases, and thus the
strong interaction begins to dominate. Owing to the electric
charge of the proton, the contribution of the cross term
occasionally exhibits a negative value. Regardless of
whether the contribution of the cross term is positive or
negative, with the variation of t, there will be either a
maximum or minimum value when the contribution of the
Coulomb and strong interaction are approximately equal. In
the case of pp scattering, as the energy

ffiffiffi
s

p
increases, the

contribution of the cross term undergoes a transition from
positive to negative values while continuously decreasing.
For pp̄ scattering, the trend is precisely opposite to pp
scattering. As the energy

ffiffiffi
s

p
increases, the contribution of

FIG. 2. The contribution ratios for the differential cross section as a function of jtj for pp scattering. The solid, dashed, and dash-dot
curves represent results for the Coulomb interaction, the strong interaction, and the cross term, respectively.

FIG. 1. The t slope of the strong-interaction amplitude as a
function of

ffiffiffi
s

p
for the pp and pp̄ scattering.
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FIG. 3. The contribution ratios for the differential cross section as a function of jtj for pp̄ scattering. The solid, dashed, and dash-dot
curves represent results for the Coulomb interaction, the strong interaction, and the cross term, respectively.

FIG. 4. The total differential cross section of the pp scattering as a function of jtj for 5 GeV <
ffiffiffi
s

p
< 30 GeV. The dashed curves

represent the results of our calculations, and the experimental data are expressed as stars.
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the cross term transitions from negative values to gradually
become positive values, while continuously increasing.

B. Differential cross section

In the preceding section, we obtained the parametrized
form of the differential cross section, derived from the
characterization of the total scattering amplitude. In the
strong interaction section, seven adjustable parameters are
given in the expression for the invariant amplitude, and
there is no additional adjustable parameter in the form
factors and Coulomb interaction amplitude. For these seven
parameters, as previously stated, we use the values obtained
in the previous work [46].
By calculating the contribution to the Coulomb ampli-

tude, the Coulomb contribution and the cross term con-
tribution are almost nonexistent at jtj ¼ 0.05, as shown
in Fig. 2; we use the Λ2 obtained by matching with the
electromagnetic form factor G2

effðtÞ in the range of
0 ≤ jtj ≤ 0.05 GeV2. By utilizing the Scipy package of
Python, one obtains, for both the pp and pp̄ scattering,
Λ2 ¼ 0.69 GeV2.
We present our results of the differential cross section for

pp and pp̄ scattering to demonstrate the correction of
scattering by Coulomb interaction, focusing on the Regge

regime. In the kinematic range being considered, the
Coulomb interactions cannot be neglected in the extremely
small range of jtj, and the cross term between the two
interactions also has a crucial role in the model. By
combining Coulomb with strong interaction, we plot the
differential cross section with fixed center-of-mass energyffiffiffi
s

p
. The experimental data that we are using for the pp

scattering are taken from Refs. [72–80]. The results of pp
scattering for the kinematic range of 10 GeV <

ffiffiffi
s

p
<

30 GeV are shown in Fig. 4. Based on the analysis of
the data, it is evident that our calculations are in alignment
with the overarching trends. The results of pp scattering
for 30 GeV <

ffiffiffi
s

p
< 13 TeV are displayed in Fig. 5. This

figure presented herein encompasses a substantial range forffiffiffi
s

p
. Notably, our model provides an accurate description of

the corresponding data. The experimental data we are using
for the pp̄ scattering are taken from Refs. [73,81]. The
quantity of available data for pp̄ scattering is notably lower
when compared to that of pp scattering. Specifically, at the
GeV scale, our collection of datasets for pp̄ scattering
consists of a mere four instances, and no data have been
gathered at the TeV scale. The results are presented in
Fig. 6. Although the amount of data collected for pp̄
scattering is limited and may lead to some loss of
credibility, it is undeniable that we have still obtained an

FIG. 5. The total differential cross section of the pp scattering as a function of jtj for 30 GeV <
ffiffiffi
s

p
< 13 TeV. The dashed curves

represent results for our calculations, and the experimental data are expressed as stars.
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excellent consistency between our calculated results and
the experimental data.

IV. CONCLUSION

We have investigated the differential cross sections of pp
and pp̄ scattering with the incorporation of Coulomb
interaction, within the framework of holographic QCD.
In our model setup, the strong interactions are considered to
be represented by the exchange of Pomeron and Reggeon
in the Regge regime. The Pomeron and Reggeon exchanges
are described by the Reggeized spin-2 glueball and vector
meson propagators, respectively. By combining the proton-
vector meson and proton-glueball couplings with those
propagators, we have obtained the strong-interaction ampli-
tude. The Coulomb interaction amplitude is represented by
the lowest-order pointlike charge amplitude and takes into
account the influence of the electromagnetic form factor.
According to Bethe [58], the complete amplitude of a
scattering process is typically expressed as a superposition
of two distinct contributions: the Coulomb interaction
amplitude and the strong-interaction amplitude. These
two amplitudes are connected by the coulomb phase factor
that serves to mutually bind them together. We have

adopted the classic Coulomb phase Eq. (23), which has
taken into account the form factor of proton.
There are several parameters in our model, but all of

which can be fixed with the values obtained in previous
works [46]. Apart from these parameters, the introduction
of form factors and Coulomb interactions in the model will
not introduce any additional parameters. As demonstrated
in this work, the total scattering amplitude obtained by
combining strong interaction and Coulomb interaction can
well describe the physical process of pp and pp̄ scattering
which reproduces quite well the data in the interference
region without any additional parameters. The differential
cross section results we provided have been found to be in
excellent agreement with experimental data for both pp
and pp̄ scattering.
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