
Emergent spacetime from a Berry-inspired dynamical gauge field
coupled to electromagnetism

Patrick Copinger 1,* and Pablo Morales 2,3,†

1Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
2Research Division, Araya Inc., Tokyo 107-6019, Japan

3Centre for Complexity Science, Imperial College London, London SW7 2AZ, United Kingdom

(Received 6 December 2022; accepted 28 August 2023; published 20 September 2023; corrected 3 October 2023)

Motivated by the fermionic Berry’s phase in momentum space, we study a local Abelian phase in
momentum space coupled to electromagnetism, for complex scalars in the phase-spaceworldline formalism.
The interaction of both Abelian fields is shown to give rise to a momentum gauge dependent emergent
spacetime. As a concrete example, we further study classical solutions of the Berry-inspired gauge field that
lead to an emergent Newtonian gravity with gravitational potential predicted by coupled Coulomb fields
both in configuration and momentum spaces. Noncommutative aspects of the theory are also provided.
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I. INTRODUCTION

Berry’s phase [1] is a ubiquitous concept in condensed
matter: It underpins the Hall current and conductivity [2],
the anomalous Hall effect [3,4], and spin transport [5], to
name a few. The phase exists in Weyl/Dirac semimetals
at Weyl nodes in quasicrystal momentum space, and gives
rise to the chiral (Adler-Bell-Jackiw [6]) anomaly [7].
A remarkable feature is the classical emergence of the
anomaly in a Louiville theorem for Weyl fermions by the
way of an incompressible phase-space [8]. Remarkable
because, despite the Berry phase’s prevalence, the phase’s
coupling to electromagnetism gives rise to “exotic” [9]
noncanonical–equivalently noncommutative in the quan-
tum picture–d.o.f. in phase-space [10,11], making possible
the anomaly.
Noncommutative theories have been extensively studied;

see, e.g., reviews by [12]. A theory was first formulated by
Snyder in an efforts to combat the UV divergences plaguing
quantum electrodynamics as a natural regularization [13].
Similar encompassing noncommutative theories in momen-
tum space have ensued under doubly, or deformed, special
relativity [14] including those of κ-Minkowski [15], and
Magueijo-Smolin [16]. noncommutative theories can
arise in systems with electrons subject to a strong magnetic
field [17], such as has been applied for the Peierls
substitution [18], and they naturally occur in string
theories [19]. The exotic Galilei symmetry has also been
studied for anyons in [20]. A feature that goes hand-in-hand

with noncommutativity is an emergent spacetime geometry.
This has been conceived for (complex) scalars [21] and
gauge field theories [22] using a Sieberg-Witten map [23],
as well as matrix theories [24]. Furthermore, the connection
to curved momentum space has been put into the more
formal mathematical language of Hopf algebras [25]. It is
thus intuitive that an emergent geometry should be present
in deformed phase-space courtesy of Berry’s phase; indeed
hints to such a relationship were found in [26], where the
fermionic covariant Berry’s phase was likened to a spin
connection.
We explore emergent spacetime geometries from a Berry

phase inspired local momentum phase. By “emergence”
here we mean features of gravity, or a spacetime metric, can
arise (or emerge) without a priori introducing gravitational
d.o.f. Whereas monopoles (magnetic charges) are under-
stood in momentum space from Berry’s phase, locality
makes possible electric charges in momentum space.
By way of a quantum field theory defined in momentum
space the local symmetry was introduced as a “momentum
gauge” in [27], and has since been derived from a Kaluza-
Klein reduction in curved momentum space [28]. In [27]
it was demonstrated through a dynamical version of
Born’s reciprocity theory how a momentum gauge natu-
rally follows; it was furthermore shown how noncommu-
tativity arises. Here we show how the momentum gauge
shares a similar form to the adiabatic Berry phase in
momentum space. Also, we introduce a coupling to
electromagnetism. This is important. For without it in
our first-quantized setting, noncommutativity and the
resulting emergent spacetime cease. Furthermore, we go
on to argue that electric charges in the Berry-inspired gauge
coupled to an electromagnetic charge give rise to a weak
Newtonian gravity with the product of field strengths in
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both configuration and momentum spaces resembling a
Newtonian potential.

II. FERMIONIC BERRY PHASE MOTIVATIONS

Let us motivate our discussion of a dynamical gauge in
momentum space by first introducing its occurrence as an
Abelian Berry’s phase for fermions after employing the
adiabatic theorem. Berry’s phase is easily captured in a
first-quantized setting in phase-space; furthermore a man-
ifestly Lorentz invariant description is desirable. Therefore
we make use of a phase-space worldline construction [29],
(cf., applications to Snyder spacetime in [30]). We review
relevant discussions as outlined in [31]; see also [8,32].
To begin let us write down the (nþ 1)-dimensional
massive fermionic Green’s function for quantum electro-
dynamics using a Minkowski flat-space metric (in Greek
letter indices) with mostly plus signature in Cartesian
coordinates as

Sðxf; xiÞ ¼ i
Z

∞

0

dT
Z

DxDpDAPe
i
ℏ½SFþSA�: ð1Þ

Here the fermionic worldline action reads

SF ¼
Z

1

0

dτ½ẋμpμ þ qAμẋμ − Tð=pþmcÞ�; ð2Þ

with Maxwell action, SA ¼ −ð4μ0cÞ−1
R
d4xFμνFμν, for the

dynamical gauge field [33]. Note that we have excluded the
normalizing determinant factor under the gauge integration
in a “quenched approximation” [34]. The determinant
will not affect our semiclassical picture employed for
scalars below. There is a path-ordering in proper time
acting on the fermionic indices. We have also taken the
liberty of absorbing T into τ, where now the Schwinger
propertime acts a Lagrange multiplier. Note that we have
made use of SI units here and throughout. Finally, one has
for path integral measure boundary conditions, xð0Þ ¼ xi
and xð1Þ ¼ xf.
Berry’s phase manifests from a similarity transform

of the Hamiltonian; in our context this occurs via a
Hamiltonian gauge-transformation of =p → u−1=puþ
iℏu−1u̇ [31], where u may be chosen to take =p diagonal.
Then under the adiabatic theorem level-crossing terms in
u−1u̇ may be neglected, leading to a connection with
nonvanishing curvature; such a process facilitates the
chiral anomaly for Weyl fermions [8]. In a similar way,
on the worldline in (2þ 1)-dimensions off-diagonal terms
may be neglected leading to Abelian Berry’s phases:
diag½ðu−1∂pμuÞ11; ðu−1∂pμuÞ22�; ∂pμ ≔ ∂=∂pμ. Under the adia-
batic theorem, a large separation in eigenvalues is required.
Here, on the worldline, this amounts to a large mass
approximation since the eigenvalues of =p are �

ffiffiffiffiffi
p2

p
¼

�m2 on the mass shell; see [31] for further details.

Note, this differs from the conventional Hamiltonian
leading instead to an energy gap. The Berry phases then
supplement the previous worldline action, Eq. (2), with a
force dependent term; e.g., for the “11” matrix index
element, upon decoupling of the path-ordering, the corre-
sponding Lagrangian would now read

ẋμpμ þ qAμẋμ þ ℏðu−1∂pμuÞ11ṗμ − T½ðu−1=puÞ11 þmc�:
ð3Þ

Note that in the worldline representation, the Lagrangian
after a similarity transformation retains Lorentz invariance.
The introduction of the Berry phase term spoils the
canonical Poisson bracket structure [10,11], giving rise
to noncanonical d.o.f. The conserved phase-space volume
is also augmented [35]. A key feature of the above modified
Lagrangian is the necessity of a Uxð1Þ electromagnetic
coupling [8], for without it one may simply absorb the
Berry phase (after integration by parts) into a coordinate
redefinition as xμ → xμ þ ℏðu−1∂pμuÞ11 rendering physical
contributions from the Berry phase trivial.
Motivated by the appearance of a momentum space

dependent Berry phase, in this work we explore an
extended local Abelian Upð1Þ symmetry in momentum
space, taking for example ðu−1∂pμuÞ11 → Bμ, where now the
momentum gauge connection BμðpÞ may represent an
arbitrary function. We hypothesize the local symmetry
because: (1) The pure gauge transformation should already
present; a gauge transformation, with u∈Upð1Þ, of the
Berry phase will give no observable effects to the accu-
mulated phase. (2) The local momentum gauge symmetry
is already a symmetry for the free theory without electro-
magnetism. This is most simply demonstrated, like above,
with a coordinate shift: xμ → xμ þ bBμ for coupling b.
Nontriviality appears from an interaction with electro-
magnetism.
The introduction of a Upð1Þ local symmetry begs the

question: Why has it not been observed? We argue this
is because it appears, due to its noncommutative nature, as
an emergent spacetime. We clarify this connection by
examining the simplest scenario with a Upð1Þ and Uxð1Þ
interaction, one of two well-separated dissimilar dual-
charged particles, demonstrating the appearance of a
Newtonian potential.

III. COMPLEX SCALARS WITH DYNAMIC
GAUGE IN MOMENTUM SPACE

The simplest physical setting in which a local Upð1Þ
phase in momentum space would have physical effects is
one for a complex scalar coupled to electromagnetism. Let
us denote for Abelian gauge in momentum space, Bμ, a
curvature of Sμν ¼ ∂

p
μBν − ∂

p
νBμ. Now we postulate, based

on the above Berry phase motivations, the most general
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propagator with dynamical and local momentum gauge,
written in a worldline representation for complex scalars as

Gðxf; xiÞ ¼
Z

∞

0

dT
Z

DxDpDADB
ffiffiffiffiffiffiffi
−ω

p
e

i
ℏ½SWþSAþSB�;

ð4Þ

with worldline action given by

SW ¼
Z

1

0

dτ½ẋμpμ þ qAμẋμ þ bBμṗμ − Tðp2 þm2c2Þ�:

ð5Þ

Analogous to SA, we have introduced a similar Maxwell-
like kinetic term for the Berry-inspired gauge given
by SB ¼ −ðc=4sÞ R d4pSμνSμν. We work in (3þ 1)-
dimensions. We have placed a factor of c that arises from
energy, cp0, and in analogy to the vacuum permeability
we have introduced a factor s. The dimension of ½bBμ� is
given as a length. Different qualitatively from Eq. (1),
we have included the factor

ffiffiffiffiffiffiffi
−ω

p
, with ω ≔ detωμν, for

an invariant phase-space measure for the noncanonical
d.o.f. [36,37]—an explicit form for ω will be given later.
We stress that here all indices are flat; we will, however,
explore an emergent metric shortly.
Our aim in this work is to explore the classical and

interacting physics of Eq. (5). While the placement of the
gauge in momentum space is similar to Berry’s phase
in Eq. (3), the importance of integrating over Bμ stems from
the fact that now Bμ [as a classical solution of some
pointlike particle] may be treated as a background field [of
another pointlike particle]. Indeed, writing q

R
dτAμẋμ ¼

c−1
R
d4yjμAμðyÞ, one may find for a pointlike particle an

electromagnetic current given by jμðyÞ ¼ qc
R
dτẋμδ4ðy −

xðτÞÞ that is conserved, ∂μjμ ¼ 0, with charge
R
d3yj0ðyÞ ¼

qc [37]. In the same way, one may find an analogous
current in momentum space from b

R
dτBμṗμ ¼

c
R
d4qjμpBμðqÞ with corresponding charge as

jμpðqÞ ¼ b
c

Z
dτṗμδ4ðq − pðτÞÞ;

Z
d3qj0pðqÞ ¼

b
c
;

ð6Þ

it too is conserved, ∂pμj
μ
p ¼ 0. Such a conserved current in

momentum space was first envisioned in [27]. One may
push the pointlike particle analogy further by considering
the classical solution in momentum space: Like the
inhomogeneous Maxwell equation, i.e., ∂μFμν ¼ −μ0jν,
one has

∂
p
μSμν ¼ −sjνp; ð7Þ

which admits a Coulomb-like solution in momentum
space [27].
It has been established that noncommutative systems

may be interpreted as a curvature in momentum space [25].
However, we would like to explore an emergent curved
space in a conventional coordinate space representation. It
is anticipated this may be achievable by integrating out the
momenta. Since we are interested in augmentations to the
classical picture, we employ a semiclassical technique. In
the absence of a momentum gauge but in curved coordinate
space, such a technique can reproduce the configuration-
space action from its phase-space description [38]. Let
us begin by writing down the equations of motion in xμ

and pμ:

ẋμ ¼ 2Tpμ − bSμνṗν; ṗμ ¼ qFμνẋν: ð8Þ

The above are a Lorentz covariant extension of the common
Berry curvature modified dynamics of a Bloch electron in a
solid, however for arbitrary curvature Sμν. Combining the
two we have

pμ ¼ 1

2T
ωμνẋν ≔

1

2T
ðημν þ SμσFσνÞẋν: ð9Þ

Then taking solutions to the coupled Eq. (8) in pμ as our
classical solution, we may rewrite the worldline action,
Eq. (5), as

SW ¼
Z

1

0

dτ

�
1

4T
ẋμgμνẋν þ qAμẋμ − Tm2c2

�
; ð10Þ

where we have suggestively written

gμν ¼ ½η − ðqbÞ2FS2F þ 2qbF∂pBðηþ qbSFÞ�μν: ð11Þ

In arriving at the above we have neglected surface terms
after an integration by parts, bBμṗμ ¼ −b∂νBμṗνpμ, which
lead to the same equations of motion in Eq. (8). BμðpðxÞÞ
and Sμν are now functions of xμ. Contracted Lorentz indices
are assumed where not explicitly written in matrix form,
i.e., ½FS�μν ¼ Fμ

σSσν. Note also that we do not treat
fluctuations about the classical solutions in this analysis.
Let us treat the small electromagnetic coupling case

keeping terms to OðqÞ in the metric as

gμν ≃ ημν þ 2qbFμ
σ
∂
p
σBν: ð12Þ

Also since − det gμν ≃ 1þ qbημνFνσSσμ, we findffiffiffiffiffiffi−gp ≃
ffiffiffiffiffiffiffi
−ω

p
. Therefore we can now interpret an emergent

curved space system with ðg−1Þμν ≕ gμν, and indices now
represent those in curved space. The action in Eq. (10) can
now be interpreted as the usual curved complex scalar
action to OðqÞ; (note that then qAμẋμ may be treated with
either flat or curved indices). And the invariant phase-space
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volume measure now becomes the conventional invariant
curved space determinant in a sum over paths in coordinate
space [39]. An interesting observation is that ωμν closely
resembles the emergent metric for the Maxwell Lagrangian
in noncommutative spacetime with θμν → Sμν found using
an exact Sieberg-Witten map [22], for usual and constant
noncommutative parameter in ½xμ; xν� ¼ iθμν.
A distinct feature of the induced metric, Eq. (12), is its

gauge in momentum space dependence. Applying a gauge
transformation, Bμ → Bμ þ i ℏb u

−1
∂
p
μu for u ¼ eiϵðpÞ ∈

Upð1Þ to Eq. (12) written symmetrically, we can see that
additions to the metric, qℏf∂pμ∂pσ ϵFσ

ν þ ∂
p
ν ∂

p
σ ϵFσ

μg, resem-
ble additions from a gauge transformation in a linearized
theory in general relativity (GR) as ∂μξν þ ∂νξν for infini-
tesimal diffeomorphism with Killing vector ξμ, or a Lie
derivative in linearized gravity. In this way we see that a
momentum gauge dependence is a natural feature. We next
explore a key example of an induced metric stemming from
the backgrounds of a dual charged particle.

IV. DUAL Uxð1Þ AND Upð1Þ COULOMB
FIELDS AND GRAVITY

In the absence of the Berry-inspired gauge one could
reason the simplest classical interacting scenario involving
point-like particles would be one of a test charged particle
in a Uxð1Þ Coulomb potential. Therefore, let us extend the
classical test particle picture to encompass the new Upð1Þ
charge. In this picture one would have not only the
Coulomb potential, but now also a Coulomb-like potential
in momentum space [27]. We take for the test particle an
arbitrary mass, m, and for the particle generating the
background field, a large mass, M, such that on-shell,
−pμpμ ¼ c2M2, one may take for the energy

p0 ¼ �
�
Mcþ p2

2Mc

�
þOðM−2Þ: ð13Þ

Next, let us consider for the background particle charges of
j0 ¼ cqδ3ðxÞ and additionally j0p ¼ ðb=cÞδ3ðpÞ, whose
field solutions from the inhomogeneous Maxwell equation
and Eq. (7) are respectively

Fi0 ¼ −q
4πϵ0c

x
jxj3 ; Si0 ¼ −sb

4πc
p
jpj3 : ð14Þ

We will also require a gauge selection; we choose a
Coulomb gauge for each:

A0 ¼ q
4πϵ0c

1

jxj ; B0 ¼ sb
4πc

1

jpj : ð15Þ

See Fig. 1(a) for the background setup of a ðþq;þbÞ
charged particle–(let us emphasize however that any �q or
�b charge can be used).

Recall in Eq. (10) to find an emergent metric we
integrated out the momenta. To carry out this procedure,
one needs to evaluate the equations of motion, Eq. (8), for
the background particle, and determine pμðxÞ and hence
also BμðpðxÞÞ. Note that we also make use of the on-shell
equation of motion as dictated by the proper time, T,
integral; according to Eq. (8), one must always have pμpμ

equal to a proper time-independent constant, and classical
solutions will be dominant around the mass-shell criteria,
Eq. (13), for large M. Let us emphasize that although we
are evaluating equations of motion, these are in-essence a
self-interaction of the background particle onto itself. We
also specify initial conditions for the background particle;
we take that the particle was brought in from spatial infinity
at rest such that pð0Þ ¼ rð0Þ−1 ¼ 0.
It is convenient to exploit the symmetry of our setup,

and use a spherical coordinate system (in a coordinate
basis). We use the conventional xμ ¼ ðx0; r sin θ cosϕ;
r sin θ sinϕ; r cos θÞ, and spherical coordinate indices we
write with Latin letters as xa ¼ ðx0; r; θ;ϕÞ. Our trans-
formation matrices read eaμ ¼ ∂axμ and eμa ¼ ∂μxa such
that eμaeaν ¼ δνμ and likewise for contractions in Cartesian
coordinates. Momenta are naturally lowered such that
pa ¼ eaμpμ, and the flat space metric becomes ηab ¼
diagð−1; 1; r2; r2 sin2 θÞ. Then one can write the equations
of motion in Eqs. (8) and (9) in spherical coordinates as

FIG. 1. (a) Dual Upð1Þ and Uxð1Þ background [generating S0i

and F0i fields, Eq. (14), respectively] for particle ofM mass with
sample ðþq;þbÞ charge. Test particle with m mass is located at
phase-space coordinate of jxj and jpj. (b) Semiclassical picture of
the dual background is shown in which pμðxÞ is found; this leads
to S0i going as −jxj. An emergent gravitational potential, Φ,
(shown figuratively as a function of jxj) results from the product
of both Upð1Þ and Uxð1Þ fields given in Eq. (12). We also note
that the original Uxð1Þ potential, A0, (also shown figuratively as a
function of jxj) is unmodified.
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pa ¼ 1
2T ω

abẋb, and ṗa ¼ γbadẋ
dpb þ qFabẋb, where we

have for the connection with zero curvature, γbad ¼
1
2
ηbc½∂dηca þ ∂aηcd − ∂cηad�.
Exploiting the spherical symmetry we can evaluate pðxÞ

for the desired range of applicability. Let us first explicitly
write out

pθ ¼
r2θ̇
2Tρ

; pϕ ¼ r2 sin2 θϕ̇
2Tρ

; ð16Þ

where we have

ρ ¼ 1 −
1

2T
sb2q2

ð4πcÞ2ϵ0
ṙ

jpj3r2 : ð17Þ

The key takeaway here is that even though Sab affects the
magnitude of pθ and pϕ through the ρ factor, like the case
without Sab they are still proportional to θ̇ and ϕ̇. Therefore,
our setup has a similarity to the case of a stationary charged
particle in the presence of a Coulomb potential for r ≫ 0 in
that the particle may only move in the radial direction,
effectively reducing to (1þ 1)-dimensions. Hence we have
that pθ ¼ pϕ ¼ 0, jprj ¼ jpj, and that pr is negative.
The time component of the Lorentz force equation, takes

on a simple form with the selection of the Coulomb gauge
in Eq. (15), namely ṗ0 ¼ −qȦ0. This differential equation
can be readily evaluated using the initial conditions, as well
as Eq. (13), to find that

p2
r ¼

Mq2

2πϵ0r
: ð18Þ

We have used the negative energy expression in Eq. (13),
which is needed for solutions with real momenta.
Using the above arguments, along with the gauge

selection in Eq. (15), one can find that

∂
p
aBb ¼ Sr0 ¼ −

sb
2c

ϵ0r
Mq2

: ð19Þ

Then we can determine that the induced metric, Eq. (12),
becomes

gab ¼ diagð−1þΦ; 1; r2; r2 sin2 ϕÞ; ð20Þ

where we have that

Φ ¼ 1

8πr
sb2

Mc2
: ð21Þ

At this point we can now see the role of s and b, and we
fix their values such that Φ agrees with the Newtonian
potential, or

sb2 ¼ 16πM2G: ð22Þ

We have astonishingly predicted a new long range/low
energy description of gravity, whereby the product of
both Coulomb fields depict a gravitational potential. See
Fig. 1(b) for a depiction of the combined fields living in
coordinate space. The combination of both fields is such
that neither �q nor �b charge dictates the sign of the
potential; q and ϵ0 cancel out and only the combination of
sb2 remains.
The metric given in Eq. (20) before integrating out

momenta was Berry-inspired gauge dependent. A different
choice in Eq. (15) would have resulted in a different
induced metric, e.g., supplying corrections to spatial
components. However, let us again emphasize that ordinary
gauge transformations in GR can accomplish the same
thing; e.g., a synchronous gauge in perturbed gravity would
also lead to corrections to spatial components instead of the
Newtonian picture above [40].
Let us last remark that a full description of a fictitious

large mass particle would be captured through a
Schwarzschild or (to higher resolution) a Reissner–
Nordström metric. However, approximations used for
our purposes, namely keeping terms to OðqÞ in the action
and OðM−2Þ in Eq. (13), indicate a resolution good to
Oðr−1Þ in our induced metric. We leave the derivation of
the Schwarzchild metric as a topic for future work.

V. NONCOMMUTATIVE DESCRIPTION

Let us understand why the addition of a gauge in
momentum space can lead to the long range/low energy
description of gravity; this is due to the underlying
noncommutative structure that emerges. We can readily
show the structure in the first-quantized representation by
investigating the equations of motions in Eq. (8). To do
so, we will consider an enlarged phase-space, described
by variables ξΛ ≔ ðxμ; pνÞ, where capital Greek indices
run over the 8 spacetime indices corresponding to the
ð1þ 3Þ ⊕ ð1þ 3Þ-dimensions. The worldline Lagrangian
corresponding to Eq. (5) may then be written as
LW ¼ aΛξ̇Λ −HðξÞ, where

aΛ ¼
�
pþ qA

bB

�
; HðξÞ ¼ Tðp2 þm2c2Þ: ð23Þ

Then the (Hamilton) equations of motion read

ξ̇Λ ¼ fH; ξΛg ¼ ðΩ−1ÞΛΓ∂ΓH≕ΩΛΓ∂
ΓH: ð24Þ

Correspondingly we have that ΩΛΓξ̇Γ ¼ ∂
ΛH, and ΩΛΓ ¼

∂
ΛaΓ − ∂

ΓaΛ. Here the Poisson brackets read ff; gg ¼
ΩΛΓ∂

Λf∂Γg. One then need only find the inverse of
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ΩΛΓ ¼
�
qF −η
η bS

�
ð25Þ

to show the noncanonical nature. Let us first write the
inverse of ωμν given in Eq. (9) as [31]

ðω−1Þμν ≕ωμν ¼ χ−1ðημν − qbF̃μρS̃
ρ
νÞ; ð26Þ

where χ ¼ 1 − qbISF − ðqbÞ2IF̃FIS̃S, and χ2 ¼ − detωμν.
Here the Lorentz invariants are IF̃F ¼ − 1

4
ð1
2
ϵμναβFμνFαβÞ≔

− 1
4
F̃μνFμν, IS̃S ¼ − 1

4
S̃μνSμν, and ISF ¼ 1

2
SμνFμν. The

above expression follows from Cayley-Hamilton’s theo-
rem, and can be confirmed using

F̃F ¼ IF̃Fη; S̃S ¼ IS̃Sη; SF − F̃ S̃ ¼ −ISFη: ð27Þ

Expressed in terms of ðω−1Þμν the inverse of Eq. (25) can be
readily found as

ΩΛΓ ¼
�
ω−1bS ω−1

−ω−1 qFω−1

�
; ð28Þ

from which one may read off the Poisson brackets as

fxμ; xνg ¼ ðω−1bSÞμν; fpμ; pνg ¼ ðqFω−1Þμν;
fxμ; pνg ¼ ωμν: ð29Þ

We can confirm that the Berry-inspired gauge does indeed
give rise to noncanonical Poisson brackets, and shares a
similar form to the 3-dimensional Poisson brackets found
in [11]. In the absence of the Berry-inspired gauge we see
that the ordinary canonical Poisson brackets are recovered.
The above deformation of the canonical Poisson brackets
are similar to other theories under the umbrella of doubly,
or deformed, special relativity [14] that include for example
Snyder [13], κ-Minkowski [15], and Magueijo-Smolin [16]
spacetimes in that there is momentum dependence in the
noncanonical term. Such theories can be conveniently
encompassed in the form [41] fxμ; xνg ¼ ψμν

ρðpÞxρ,
fpμ; xνg ¼ ΞμνðpÞ, and fpμ; pνg ¼ 0 for arbitrary ψ
and Ξ. A key difference of Eq. (29) to the above is the
coupling to electromagnetism. One may also note that no xμ
proportional term is present in the right side of fxμ; xνg
of Eq. (29).
To understand the noncommutative structure better and

from a second-quantized field perspective let us write down
the corresponding quantum canonical commutation rela-
tion in coordinate space to lowest order in b coupling,
which is ½x̂μ; x̂ν� ¼ iℏbSμνðpÞ, illustrating the noncommu-
tativity via the Berry-inspired gauge field strength, Sμν, as
argued in [27]. Such a relation follows from a “covariant

derivative” [4], but supplementing the coordinates such
that x̂μ ≔ xμ þ bBμðpÞ. A feature is that there are canonical
phase-space variables obeying ½xμ; pν� ¼ iℏημν and
½xμ; xν� ¼ ½pμ; pν� ¼ 0. It is intriguing to depict the func-
tional form of the new covariant derivative’s as it stems
from a simple Upð1Þ phase transformation. Let us consider
simply the gauge AμðxÞ under the rotation, or A0

μ ¼
expðifðpÞÞAμðxÞ expð−ifðpÞÞ, where pμ ¼ −iℏ∂μ is
understood to be an operator. Next, we assume a Fock-
Schwinger gauge expansion for AμðxÞ [42]. Then using the
canonical commutation relations one can determine that the
gauge field under a Upð1Þ rotation acquires the addition
as A0

μ ¼ Aμðxþ ℏ∂pfÞ.

VI. CONCLUSIONS AND OUTLOOK

Motivated by the appearance of a Berry phase in
momentum space that appears ubiquitously in condensed
matter, and has been argued to exist on the worldline for
fermions [31], we study a local and dynamical Abelian
extension of the symmetry. Coupled with electromagnetism
we find a gauge in momentum space and electromagnetic
field strength dependent emergent metric appears from
the resulting noncommutative d.o.f. To further illustrate
the utility of a dynamical gauge in momentum space, we
examine its classical solutions for a pointlike particle that
are Coulomb-like; then coupled with an electromagnetic
Coulomb potential we argue such a dual Coulomb descrip-
tion predicts a Newtonian potential.
We have examined a Upð1Þ gauge in momentum space in

a physically opaque setting for complex scalars, and indeed
the symmetry also exists for fermions. However, for the
case of fermions, one may also argue a local and dynamical
extension of the SO(1,3) symmetry for spinors in momen-
tum space; such a formulation to study a curved momentum
space for fermions has been employed in [43]. Then,
in contrast to the Abelian Upð1Þ group, for SO(1,3) more
complex, and topologically nontrivial, classical solutions
may be present, such as is already the case for Berry’s
phase [31]. Then topological solutions involving a pure
gauge in SO(1,3), (such as are, e.g., the case for instantons,
merons, etc. in SU(2) Yang-Mills theory), would be sup-
pressed by the Planck constant ℏ, as would emergent
geometry, and perhaps help to explain the weakness of
gravity as a quantum phenomena appearing at the classical
level. This is also a subject of future work.
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