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We present a covariant quantization scheme for the so-called “partially massless” graviton field in de
Sitter spacetime. Our approach is founded on the principles of the de Sitter group representation theory (in
the sense given by Wigner), the Wightman-Gärding axioms for gauge-invariant fields (Gupta-Bleuler
scheme), and the essential analyticity prerequisites in the complexified pseudo-Riemannian manifold. To
implement the quantization process effectively, we adopt coordinate-independent (global) de Sitter plane
waves. These plane waves, defined in the appropriate tube domains of complex de Sitter spacetime, serve as
the de Sitter counterparts to the standard Minkowskian plane waves. By employing these analytical plane
waves, we enable a spectral analysis of the corresponding two-point function that closely resembles the
Fourier analysis typically employed in the flat Minkowskian case. Within this framework, we present the
Wightman two-point function for the partially massless graviton field, which satisfies the essential criteria
of locality, covariance, and normal analyticity. Furthermore, we provide insights into the underlying Hilbert
space structure and the corresponding unsmeared field operator. A direct consequence of this quantization
construction confirms the widely accepted notion of light-cone propagation for the de Sitter partially
massless graviton field.
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I. INTRODUCTION

A. Motivation

This paper is part of a series of papers/books (see
Refs. [1,2] and references therein) that attempts to develop
a consistent formulation of elementary systems in the
global structure of de Sitter (dS) and anti-dS (AdS)

spacetimes, in the Wigner sense [3,4], as associated with
unitary irreducible representations (UIRs) of the dS and
AdS relativity groups, respectively1; (A)dS relativity versus
Einstein-Poincaré relativity. The motivation for this
attempt, if we restrict our attention merely to the dS case
which is of interest in the present study, is rooted in part in
the key role that is played by the dS geometry in the

*gazeau@apc.in2p3.fr
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1To get the gist, let P denote the physical systems whose global and local symmetries of their classical phase spaces are, respectively,

determined by a Lie group G and its Lie algebra g. (This is the case, for instance, for “free” elementary systems living in dS and AdS
spacetimes.) Then, the following statements hold:

(i) The phase-space reading of P’s can be realized by the orbits under the coadjoint action of G in the dual linear space to g
(traditionally, symbolized by g� in the literature). Such orbits, known as coadjoint orbits, are symplectic manifolds. Moreover,
each coadjoint orbit carries a natural G-invariant (Liouville) measure and also, as a homogeneous space, is homeomorphic to an
even-dimensional group cosetG=Gs, whereGs, being a (closed) subgroup ofG, stabilizes some orbit point. For more details, see
Refs. [5,6].

(ii) Coadjoint orbits, possessing very rich analytic structures, also underlie (projective) Hilbert spaces carrying UIRs of the
respective symmetry group G. (Here, a comprehensive program of quantization of functions (or distributions) by considering all
references of covariant integral quantization (see, for instance, Refs. [7–11]) can be taken into account.) In the sense that was
initially put forward by Wigner [3,4] in the context of Einstein-Poincaré relativity and then developed by others [12–17] to
Galilean, dS, and AdS systems, the (projective) Hilbert spaces identify (in some restricted sense) quantum (“one-particle”) state
spaces in the respective quantum-mechanical reading of P’s. The invariant parameters characterizing the (projective) UIRs then
identify the basic quantum numbers characterizing the respective quantum states of P’s. Remarkably, by construction, this
quantization scheme guarantees a “smooth” transition from classical to the quantum reading of the physical systems P.

For a more detailed discussion, focusing on the dS and AdS cases, readers are referred to Refs. [1,2] and references therein.
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inflationary cosmological scenarii,2 in part in the desire to
establish possible mechanisms for late-time cosmology,3

and in part in the need for a dS analogue of the so-called
AdS=CFT correspondence (the dS=CFT correspondence).
Yet, the underlying motivation behind this attempt stems
from a more fundamental consideration/concern that we
now elaborate on.
First, it is important to note that both the field theoretical

reading and the phenomenological treatment of an elemen-
tary system, on the interpretation level in particular, rely
heavily on the notions of energy, momentum, mass, and
spin. The existence of such notions in turn is due to
invariance principles—specifically the principle of invari-
ance under the Poincaré group, that is, the group of motions
of flat Minkowski spacetime. As such, in flat Minkowski
spacetime, the rest massm and the spin s of an (Einsteinian)
elementary system are characterized by the two invariants
that label the respective UIR of the Poincaré group (see
Refs. [3,4] and also footnote 1).
In a curved spacetime, however, any interpretation of

relativity with respect to the Poincaré group is physically
irrelevant. Besides this, curved spacetimes, in general (with
the exception of the dS and AdS cases), admit no nontrivial
groups of motion. It follows that there is no literal or unique
way to extend the aforesaid physical notions to curved
spacetimes as well (again, the dS and AdS are exceptions).
As a matter of fact, while mathematically the important
differential equations (Klein-Gordon and Dirac) can be
easily generalized to forms that possess general covariance
in curved spacetimes, the resulting formulations in the
sense given in the previous paragraph cannot be interpreted
in terms of physical elementary systems. To be frank, the
modern theories of elementary systems are not primarily
studies in differential equations [16].
Nevertheless, in the sense given by Fronsdal [16], “A

physical theory that treats spacetime as Minkowskian flat
must be obtainable as a well-defined limit of a more general
physical theory, for which the assumption of flatness is not
essential”; the dS and AdS spacetimes are well suited for
generalizations of the notions of elementary systems.
Actually, the dS and AdS spacetimes of respectively
negative and positive constant curvatures constitute a
particular family of curved spacetimes which, like their
common null-curvature limit flat Minkowski spacetime,
admit continuous groups of motion of maximal symmetry,
respectively, SO0ð1; 4Þ and SO0ð2; 3Þ, or any of their
covering groups. As such, the Poincaré group—the

relativity group of flat Minkowski spacetime—can be
realized by a contraction limit of either the dS or the
AdS relativity group.

B. Methodology

From now on, we particularly focus on the dS case which
is of interest in the present study (for an overview of the
AdS case, see Refs. [1,2]).
On the representation level, UIRs of the dS group fall

basically into three distinguished series, respectively
known as principal, complementary, and discrete series
[20–24]. The Poincaré massive UIRs can be totally realized
by the null-curvature contraction limit of the dS principal
series UIRs [25,26]. In this sense, the latter are usually
called dS (strictly) massive UIRs. Note that the spin4-s
fields associated with the dS (strictly) massive UIRs,
admitting no gauge invariance, possess 2sþ 1 degrees
of freedom. The situation for the realization of the massless
UIRs of the Poincaré group through the dS UIRs is more
subtle since among the dS UIRs there is no UIR compa-
rable to the Poincaré massless infinite-spin UIRs.
Nevertheless, a particular member of the dS scalar com-
plementary series UIRs along with the dS higher-spin
(s > 0) discrete series UIRs lying at the lower end of this
series form a set of the dS UIRs with a unique extension to
the conformal group [SO0ð2; 4Þ] UIRs in such a way that
this extension is precisely equivalent to the conformal
extension of the massless UIRs of the Poincaré group
[27,28]. This remarkable feature in a well-defined way
allows us to distinguish the Poincaré massless UIRs with
respect to the aforementioned set of the dS UIRs. In this
sense, the representations belonging to the latter set are
usually called the dS (strictly) massless UIRs. For the spin-
sð>0Þ fields associated with the dS (strictly) massless
UIRs, due to the gauge-invariant properties, the degrees of
freedom reduce to 2, namely, the 2 modes of helicities �s,
while the propagation of these modes is confined to the
light cone [29,30]. On the other hand, the massless scalar

2According to the inflationary cosmological scenarii, our
Universe experienced a dS phase in the very early epochs of
its life [18].

3Recent astrophysical data coming from type Ia supernovae
[19] show that the expansion of our Universe is accelerating and
point towards a small but nonvanishing positive cosmological
constant. In other words, our Universe might presently be in a dS
phase, which tends towards a pure dS spacetime.

4The dS UIRs are generally labeled by two invariant param-
eters of the mass (energy) scale and the spin meaning. While the
above arguments more or less give us a clue as to how the mass
scale is raised in dS relativity, the existence of the spin notion in
dS relativity needs some clarifications. To get the gist, we point
out that the Poincaré contraction limit of the dS group is carried
out with respect to the Lorentz subgroup SO0ð1; 3Þ [or its
universal covering SLð2; CÞ]. This technically means that the
Lie algebra of the Lorentz subgroup, admitting the rotations
algebra suð2Þ as its closed subalgebra, remains unchanged
during the contraction process. In other words, the dS group
shares the same Lorentz subgroup SO0ð1; 3Þ [or SLð2; CÞ] and,
consequently, the same rotations subgroup SO(3) [or its covering
SU(2)], with the Poincaré one. This is actually the very point that
gives sense to the notion of spin in dS relativity, strictly speaking,
in those dS UIRsmeaningful from the Minkowskian point of view,
because it stems from the same SO(3) [or SU(2)] subgroup that
the notion of spin in Einstein-Poincaré relativity does. For more
details, see Ref. [1].
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field is commonly known as the conformally coupled scalar
field.5 Note that all other dS UIRs (not being the (strictly)
massive or massless ones) either have a nonphysical
Poincaré contraction limit or do not have such a limit at all.
Here, we must underline that the last sentence given

above by no means implies that the remaining part of the dS
UIRs with no Minkowskian counterpart is physically
irrelevant. On the contrary, it is perfectly legitimate to
study all the dS UIRs in a consistent context, on both the
mathematical (group representation) and the physical (field
quantization) sides. For instance, among those dS UIRs
with no Minkowskian interpretation, there is a particular
class of UIRs that are of interest in the present study, known
as partially massless UIRs. The latter are identified with
those dS higher-spin (s > 3=2) discrete series UIRs, which
are not (strictly) massless, and are not “contiguous” to the
principal series [31] (see also Ref. [1]). The fields asso-
ciated with these representations (say partially massless
fields [32–38]), due to a novel gauge invariance which was
first noticed by Deser et al. in the case of spin-2 fields (see
Ref. [32]), possess degrees of freedom less than the 2sþ 1
of their respective (strictly) massive fields and more than
the 2 of the (strictly) massless ones. Note that the naming
convention “partially massless” originates from the light-
cone propagation properties of these fields [37].
In this paper, we particularly study the dS partially

massless spin-2 (say partially massless graviton) field and
its covariant quantum field theory (QFT) reading in the
above group theoretical context. We show that this field in
the Wigner sense is associated with the discrete series UIR
Π�

2;1 (in the Dixmier notations [23]). Strictly speaking, due
to the combined occurrences of gauge invariance and
indefinite metric, the complete, nondegenerate, and dS-
invariant space of the respective quantum states is defined
according to an indecomposable representation of the dS
group admitting Π�

2;1 as its central part. We employ the
Wightman and Gärding axiomatic machinery for gauge
invariant fields (Gupta-Bleuler scheme) to construct the
respective QFT formulation [39]; the formalism of Gupta-
Bleuler triplet underlies the indecomposable group repre-
sentation structure and also allows for an explicit descrip-
tion of the gauge degree of freedom. However, as we now
explain, this robust mathematical framework is not yet
sufficiently completed to provide us with a consistent QFT
formulation of the theory.
As soon as one steps on the path outlined above, one

encounters the very problem of the absence of a true
spectral condition, which, regardless of what machinery of
QFT is employed, plagues QFT in dS spacetime. As a
matter of fact, while generally in the context of dS QFT, it is

rather straightforward to carry over the requirements of
covariance and locality (microcausality) from the
Minkowskian case, there is no literal or unique dS analogue
of the ordinary spectral condition of “positivity of the
energy”. To be more precise, there is no dS definition of the
“energy” concept at all. Technically, this critical problem is
rooted in the absence of a canonical choice of a time
coordinate in dS spacetime; no matter which dS group
generator is considered, the corresponding Killing vector
field, though perhaps timelike in some area of dS space-
time, is spacelike in some other area. In the absence of a
true spectral condition, a canonical choice of time coor-
dinate based upon which one can distinguish positive and
negative frequency modes (or in other words, distinguish a
unique vacuum state), many inequivalent QFT formulations
arise for any single dS field model. Therefore, besides the
aforesaid symmetry considerations and the well-known
Wightman and Gärding axioms, our QFT reading of
elementary systems living in dS spacetime still needs to
be supplemented by a criterion—the dS counterpart of the
ordinary spectral condition.
Of course, here, one must notice that if attention is

merely restricted to dS QFTon the free-field level, there is a
way out through the Hadamard condition to get rid of the
absence of a true spectral condition and to single out a
specific vacuum state in the context of dS QFT. The
Hadamard condition, which is actually a manifestation
of the aforementioned Fronsdal principle, postulates that
two-point functions of linear fields, for instance,
Klein-Gordon fields, on a wide class of spacetimes with
bifurcate Killing horizons, including dS spacetime, at short
distances (in a tangent plane) should asymptotically meet
their Minkowskian counterparts (see Refs. [40–42] and
references therein). The distinguished vacuum state for dS
linear fields through the Hadamard condition exactly
coincides with the vacuum state known in the literature
under the name of Euclidean [43] or Bunch-Davies [44].
Nevertheless, if one desires to step beyond the free-field
level and deal with general interacting fields, the too-
special character of the Hadamard condition (which makes
it applicable only on the free-field level) compels one to
look for another explanation of the existence of distin-
guished vacuum states in the dS global structure.
In 1990s and in view of the above considerations, a

remarkable elegant idea has been put forward by Bros et al.
in their seminal works [45,46].6 The idea, in a one-line
description, lies in an appropriate adaptation of some
familiar concepts of complex Minkowski spacetime to
the complex dS one, strictly speaking, the adaptation of
the very point that the analytic continuation properties
of the QFT in the complexified Minkowski spacetime are
directly linked to the energy content—specifically, to the5It is important to note that, in the above sense, the so-called dS

“massless minimally coupled” scalar field, associated with a
specific scalar discrete series, is not actually a massless field,
contrary to its name.

6We also refer to Refs. [47–57] and references therein for
closely related discussions.
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spectral condition of the respective model. On this basis,
the authors have argued that all ambiguities for dS QFTs in
selecting preferred vacuum states can be lifted such that,
despite the thermal features of the selected vacuum states
(in the sense of the Gibbons-Hawking temperature
[40,43]), they exactly meet their Minkowskian counterparts
at the null-curvature limit.7 This adaptation is technically
performed through a genuine global dS-Fourier type
calculus realized in terms of dS plane waves. The latter,
being introduced in their relevant tube domains, play an
analogous role to plane waves in Minkowski spacetime.
They are independent of any choice of coordinates, are well
adapted to the representations of the dS group, and allow
the yielded dS QFT to recover, in a very suggestive way, its
flat Minkowskian counterpart under vanishing curvature (if
such a limit exists). In this context, Bros et al. [45,46] have
shown that, for instance, on the first level of complexity,
namely, the free-field level of dS QFTs, the usual spectral
condition is replaced by a certain geometric Kubo-Martin-
Schwinger condition [58,59], equivalent to a precise
thermal characterization of the respective Euclidean/
Bunch-Davies vacuum states.
Considering all the above, the dS group representation

theory in the Wigner sense and the Wightman and Gärding
axiomatic approach equipped with analyticity prerequisites
in the complexified dS spacetime constitute the basis of our
model in the QFT formulation of elementary systems—
particularly, in this paper, the partially massless graviton
living in dS spacetime.
Yet, a universal substitute for the concept of mass in dS

relativity is a topic that is left open. To fulfill this legitimate
demand, we take into account the Garidi mass formula [31].
The latter, being defined in terms of the invariant param-
eters labeling the UIRs of the dS group, provides us with a
consistent and univocal definition of the mass concept in dS
relativity, which precisely gives sense to notions such as dS
“massive” and “massless” fields according to their flat
Minkowskian twins. It also has the advantage that it
includes comprehensively all the mass formulas already
introduced in the dS context (for more details, see
Refs. [1,31]).

C. Limitations of analyticity-based
quantization in dS fields

It is crucial to emphasize that the quantization approach,
based on the earlier-discussed analyticity requirement,
encounters limitations when applied to specific dS fields.
Notably, this limitation affects scalar fields linked to the
scalar discrete series representations, as well as the dS
graviton field associated with the discrete massless spin-2

representation. Each of these fields exhibits a distinctive
form of gauge invariance that becomes anomalous at the
quantum level. This gauge anomaly renders the theory
inconsistent and necessitates resolution at all costs. A direct
consequence of this inconsistency is the absence of assured
dS-invariant Euclidean/Bunch-Davies vacuum states for
these specific fields.
Addressing the aforementioned anomaly requires depart-

ing from the established framework and embracing an
alternative approach grounded in a Krein structure
(endowed with an indefinite inner product), rather than
the conventional Hilbertian one; the Krein QFT construc-
tion versus the Hilbertian one. This alternative approach
remarkably guarantees that the theory possesses all the
properties one might expect from a free field in dS
spacetime with high symmetry, namely, the positivity of
the norm of all physical states, adherence to causality, (full)
covariance, and positivity of the energy operator in all
physical states. (For a deeper grasp of these concepts,
extending beyond the scope of this paper, we direct readers
to references such as Refs. [60–67] and also [68,69].)
Important remark: This framework bears the potential to

offer new insights into comprehending the dS swampland
conjecture [70] from an alternative perspective distinct
from the conventional Hilbertian approach. The essence of
the dS swampland conjecture revolves around the idea that
in a unified theory of quantum gravity, the viability of
stable dS vacua, especially those pertinent to inflationary
scenarios, could be restricted or even elusive.

D. Layout

To achieve our goal, the rest of this paper is organized as
follows. In Sec. II, employing dS ambient space formalism,
we present the dS machinery, geometry, group, and
representation. In Sec. III, we introduce the corresponding
gauge-invariant field equation in terms of the dS quadratic
Casimir operator. We reveal the presence of the Gupta-
Bleuler structure, which carries the indecomposable struc-
ture of the unitary representation of the dS group relevant to
our problem. Additionally, we provide a general solution to
the field equation along with its interpretation in terms of
dS plane waves. In Sec. IV, we establish the corresponding
Wightman two-point function Wαβα0β0 ðx; x0Þ that satisfies
the fundamental requirements of the field equation, namely,
locality, covariance, and normal analyticity. The property of
normal analyticity allows us to interpret Wαβα0β0 ðx; x0Þ as
the boundary value of an analytic two-point function
Wαβα0β0 ðz; z0Þ from the (relevant) tube domains. The ana-
lytic kernel Wαβα0β0 ðz; z0Þ is defined in terms of dS waves
within their respective tubular domains. Subsequently, we
explicitly establish the Hilbert space structure and derive
the field operator KðfÞ. Furthermore, we provide a coor-
dinate-independent formulation for the unsmeared field
operator KðxÞ. We finally summarize our results in Sec. V.
This paper is supplemented with two appendices.

7Note that, in this context, the importance of the Hadamard
condition retrieves in another sense. The Hadamard condition
guarantees that two-point functions are the boundary values of
analytic functions “from the good side” (the so-called iϵ-rule.)
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Appendix A provides a brief introduction to dS plane
waves, while Appendix B establishes a relationship
between our construction and the maximally symmetric
bitensors introduced in Ref. [71].

E. Convention

All over this article (unless noted otherwise), we take
into account the units c ¼ 1 ¼ ℏ, c and ℏ being the speed
of light and the Planck constant, respectively.

II. dS GEOMETRY AND RELATIVITY

In this section, following the lines sketched in Ref. [1],
we briefly review a set of definitions, notations, and group-
theoretical materials relevant to the description of the
1þ 3-dimensional dS geometry and wave equations of
elementary systems living on it.

A. dS manifold and its causal structure

Topologically, dS spacetime is R1 × S3, while R1 is a
timelike direction. Geometrically, this spacetime is a
globally hyperbolic spacetime of constant radius of curva-
ture R. The dS hyperboloid can be conveniently described
by its embedding in a 1þ 4-dimensional Minkowski
spacetime R5 (by the abusive identification R1þ4 ≡R5) as

MR ≡ fx ¼ ðx0;…; x4Þ∈R5;

ðxÞ2 ≡ x · x ¼ ηαβxαxβ ¼ −R2g; ð1Þ

where the indices α and β take the values 0, 1, 2, 3, 4, xαs
are the respective Cartesian coordinates, and ηαβ ¼
diagð1;−1;−1;−1;−1Þ is the ambient Minkowski metric.
From a cosmological point of view, the constant radius R
may be identified with R ¼ H−1, where H, being the
Hubble constant, gives the expansion rate of the spatial
parts of dS spacetime.
The global causal ordering of dS spacetime is induced by

that of ambient Minkowski spacetime; let

Vþ ≡ fx∈R5; ðxÞ2 ¼ x · x ≥ 0; x0 > 0g: ð2Þ

(For latter use, also let V̊þ ≡ fx∈R5; ðxÞ2 > 0; x0 > 0g
denote the interior of Vþ.) An “event” x0 ∈MR is said to be
future connected to another one x∈MR (for the sake of
simplicity, we symbolically write x0 ≥ x), if x0 − x∈Vþ,
namely, ðx0 − xÞ2 ≥ 0 (or equivalently,8 x · x0 ≤ −R2), with
ðx00 − x0Þ > 0. In this sense, the future and past cones of an
event x∈MR, denoted respectively by ΣþðxÞ and Σ−ðxÞ,
are

ΣþðxÞ ¼ fx0 ∈MR; x0 ≥ xÞg;
Σ−ðxÞ ¼ fx0 ∈MR; x0 ≤ xÞg; ð3Þ

and the respective “light-cone” ∂ΣðxÞ, as the boundary set
of ΣþðxÞ ∪ Σ−ðxÞ, is

∂ΣðxÞ ¼ fx0 ∈MR; ðx0 − xÞ2 ¼ 0

ðor equivalently; x · x0 ¼ −R2Þg: ð4Þ

Two events x; x0 ∈MR are recognized as “spacelike sepa-
rated” or “in acausal relation,” if x0 ∉ ΣþðxÞ ∪ Σ−ðxÞ,
namely, if ðx0 − xÞ2 < 0 (or equivalently, x · x0 > −R2).

B. Computation in ambient notations

According to ambient space notations, dS fields are
identified with symmetric (spinor-)tensor fields ΨðrÞ

α1…αnðxÞ
on the dS manifold (x∈MR), such that the indices
α1;…; αn take the values 0,1,2,3,4 and r the values
nþ 1=2, n being the tensorial rank.9 These fields as
functions of R5 are assumed to be homogeneous with
some arbitrarily given degree of homogeneity l:

x · ∂ΨðrÞ
α1…αnðxÞ

�
≡xα

∂

∂xα

�
¼ lΨðrÞ

α1…αnðxÞ; ð5Þ

where, for the sake of simplicity, the degree of homo-
geneity l is usually set to 0. (On this basis, for instance, by
employing the identities that will be given in the Sec. II D 1,
one can simply check that the d’Alembertian operator
□R ≡∇μ∇μ defined onMR (where ∇μ, with μ ¼ 0, 1, 2, 3,
stands for the covariant derivative in local (intrinsic)
coordinates) meets its twin □5 ≡ ∂

2 on R5.)
The fields are also assumed to be transitive with respect

to all indices α1;…; αn:

xαiΨðrÞ
α1…αi…αnðxÞ ¼ ðx · ΨÞðr−1Þα1…ᾰi…αn

ðxÞ ¼ 0; ð6Þ

where by ᾰi we mean this index is omitted. Clearly, the
transversality requirement (concisely, say x ·ΨðrÞðxÞ ¼ 0)

assures that the field ΨðrÞ
α1…αnðxÞ lies in the dS tangent

spacetime.
Here, in view of the importance of the transversality

requirement, the symmetric, “transverse projector” θαβ ¼
ηαβ þ R−2xαxβ (θαβxα ¼ 0 ¼ θαβxβ) is put forward; this
operator is, in fact, the transverse form of the dS metric in
ambient space formalism (we will clarify this important
point in Sec. II D 1). Technically, θαβ is used to construct
transverse entities, like the transverse derivative

8Note that ðx0 − xÞ2 ¼ −2ðR2 þ x · x0Þ, for x; x0 ∈MR.

9Here, for the sake of simplicity, we have ignored the spinorial
index labeling the four spinorial components. From now on, we
will also drop the tensorial indices, whenever it is possible, to
simplify the notations.
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∂α ¼ θαβ∂
β ¼ ∂α þ R−2xαx · ∂.

10 For a general (spinor-)

tensor field ΨðrÞ
α1…αnðxÞ, dedicating to each tensorial index

a specific transverse projector, as

�Yn
i¼1

θβiαi

�
ΨðrÞ

β1…βn
ðxÞ≡ ðT ΨÞðrÞα1…αnðxÞ; ð7Þ

guarantees the transversality of the field in each tensorial
index. Note that the degree of homogeneity of θαβ, with
respect to the R5-variables xα, is zero, and hence, the above
instruction does not alter the degree of homogeneity of
the field.

C. dS relativity group and its representations

The dS relativity group SO0ð1; 4Þ [or its universal
covering Sp(2,2)] is the ten-parameter group of all linear
transformations in the ambient Minkowski spacetime R5,
which leave invariant the quadratic form ðxÞ2 ¼ ηαβxαxβ,
enjoy the determinant unity, and finally preserve the
direction of the “time” variable x0. A familiar realization
of the associated Lie algebra is obtained by the linear span
of the following (ten) Killing vectors:

Kαβ ¼ xα∂β − xβ∂α; Kαβ ¼ −Kβα: ð8Þ

On the representation (quantum) level, in the Hilbert
space of the symmetric, square integrable,11 (spinor-)
tensors ΨðrÞ

α1…αnðxÞ on MR, the Killing vectors Kαβ are
represented by (essentially) self-adjoint operators

LðrÞ
αβ ¼ Mαβ þ SðnÞαβ þ S

ð1
2
Þ

αβ , where the orbital part reads as:

Mαβ ¼ −iðxα∂β − xβ∂αÞ ¼ −iðxα∂β − xβ∂αÞ; ð9Þ

the action of the spinorial part SðnÞαβ on the tensorial indices is

SðnÞαβ Ψ
ðrÞ
α1…αn ¼−i

Xn
i¼1

ðηααiΨðrÞ
α1…ðαi↦βÞ…αn

−ðα⇌βÞÞ; ð10Þ

and finally the spinorial part S
ð1
2
Þ

αβ acts on the spinorial

indices by S
ð1
2
Þ

αβ ¼ − i
4
½γα; γβ�, where γαs stand for the five

4 × 4-matrices generating the Clifford algebra (see

Ref. [1]). The self-adjoint operators LðrÞ
αβ obey the standard

commutation relations of the dS Lie algebra:

½LðrÞ
αβ ; L

ðrÞ
γδ � ¼ −iðηαγLðrÞ

βδ þ ηβδL
ðrÞ
αγ − ηαδL

ðrÞ
βγ − ηβγL

ðrÞ
αδ Þ:

Note that the operators LðrÞ
αβ are intrinsically defined on the

dS hyperboloid ðxÞ2 ¼ −R2 since we have ½LðrÞ
αβ ; ðxÞ2� ¼ 0.

In this group theoretical construction, there are two
Casimir operators,

quadratic∶ Qð1Þ
r ¼ −

1

2
LðrÞ
αβL

ðrÞαβ;

quartic∶ Qð2Þ
r ¼ −WðrÞ

α WðrÞα; ð11Þ

where the dS counterpart of the Pauli-Lubanski operator

WðrÞ
α ¼ − 1

8
EαβδρσLðrÞβδLðrÞρσ, in which Eαβδρσ refers to the

five-dimensional totally antisymmetric Levi-Civita symbol.
These two Casimir operators are also intrinsically defined

on the dS hyperboloid ðxÞ2 ¼ −R2 as LðrÞ
αβ s do since

½Qð1;2Þ
r ; ðxÞ2� ¼ 0. Moreover, they commute with all gen-

erator representatives LðrÞ
αβ and hence act like constants on

all states in a certain dS UIR:

Qð1;2Þ
r ΨðrÞ ¼ hQð1;2Þ

r iΨðrÞ; ð12Þ

where the respective eigenvalues hQð1;2Þ
r i, in the Dixmier

notations [23], are determined in terms of a pair of
parameters Δðp; qÞ, with p∈N=2 and q∈C, as

hQð1Þ
r i ¼ ð−pðpþ 1Þ − ðqþ 1Þðq − 2ÞÞ; ð13Þ

hQð2Þ
r i ¼ ð−pðpþ 1Þqðq − 1ÞÞ: ð14Þ

Therefore, the spectral values assumed by the Casimir
operators (say, the allowed values of p and q) can be
utilized to classify UIRs of the dS group. These UIRs, as
already pointed out, fall basically into three distinguished
series as we explain below (see Refs. [22,23]).

1. Principal series representations

Principal series representations Ups
s;ν are characterized by

Δðp ¼ s; q ¼ 1
2
þ iνÞ, where the parameter p ¼ s pos-

sesses a spin meaning. Here, two different cases must be
distinguished:

(i) The integer spin representations, with ν∈R and
s ¼ 0; 1; 2;….

(ii) The half-integer spin representations, with
ν∈R − f0g and s ¼ 1

2
; 3
2
; 5
2
;….

Let us incorporate the parameters c (the speed of light)
and ℏ (the Planck constant) without setting them to unity. In
this context, we take from Ref. [1] the relation between the
representation parameter ν and the Poincaré-Minkowski
mass m:

10We note in passing that the transverse derivative ∂ verifies the
identities ∂αxβ ¼ θαβ and ∂αðxÞ2 ¼ 0. The latter reveals that ∂
commutes with ðxÞ2, and hence, it is intrinsically defined on the
dS manifold ðxÞ2 ¼ −R2.

11With respect to some invariant inner product of Klein-
Gordon type or else.
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ν ¼ mcR
ℏ

−
�
s −

1

2

�
2
�

ℏ
2mcR

þO
�

1

c2R2

��
: ð15Þ

This approximation formula will be given its full meaning
in Sec. II E below. Then, the Poincaré contraction limit of
the above representations (denoted below by “→”) is
technically performed when ν and R tend to infinity (while
m ¼ ℏν=cR remains intact) [25,26]:

Ups
s;ν !

R→∞;ν→∞
ℏν=cR¼m

P>
s;m ⊕ P<

s;m; ð16Þ

where P≷
s;m, respectively, refer to the positive/negative

energy Wigner UIRs of the Poincaré group, with spin s
and mass m. As already mentioned, the dS principal UIRs
are recognized as dS massive representations, in the
above sense.
Note that the above breaking of the irreducibility of the

dS principal (massive) UIRs into a direct sum of two
Poincaré massive ones possessing positive and negative
energies can be cured either by taking into account a proper
choice of the dS (global) modes (say dS plane waves),
being properly defined in their (relevant) analyticity tube
domains [26], or by considering the Poincaré contraction of
the representations in terms of a causality dS semigroup
[72]. Then, we have

Ups
s;ν !

R→∞;ν→∞
ℏν=cR¼m

P>
s;m: ð17Þ

2. Complementary series representations

Complementary series representations Ucs
s;ν are charac-

terized by Δðp ¼ s; q ¼ 1
2
þ νÞ, where, again, the param-

eter p ¼ s has a spin meaning. Here also, two distinguished
cases come to the forefront:

(i) The scalar representation Ucs
0;ν, with ν∈R and

0 < jνj < 3
2
and

(ii) The spinorial representation Ucs
s;ν, with ν∈R and

0 < jνj < 1
2
, while s ¼ 1; 2; 3;….

The onlymeaningful representation of the complementary
seriesUIRs from thepoint of viewof aMinkowskianobserver
is the scalar representationUcs

s¼0;ν¼1
2

(Δðp¼0;q¼1Þ); it has
a unique extension (denoted below by “↪”) to the UIR
C>1;0;0 of the conformal group SO0ð2; 4Þ,12 while this
extension is equivalent to the conformal extension of the

Poincaré massless scalar UIRs P≷
0;0 (respectively, with

positive/negative energy) [27,28]:

C>1;0;0 C>1;0;0 ↩ P>
0;0

Ucs
0;1

2

↪ ⊕ !
R→∞

⊕ ⊕

C<−1;0;0 C<−1;0;0 ↩ P<
0;0:

ð18Þ

In the above sense, the scalar representation Ucs
0;1

2

is called

massless.

3. Discrete series representations

Discrete series representations Π�
p;q are characterized by

Δðp; qÞ, where, for the symmetric cases Π�
p¼s;q¼s, the

parameter p ¼ s (with s > 0) has a spin (helicity) meaning;
as a matter of fact, the superscript “�” stands for the
helicities �s. Here, we have to distinguish between

(i) The nonsquare-integrable scalar case Πp;0, with
p ¼ 1; 2;… and

(ii) The spinorial cases Π�
p;q, with p ¼ 1

2
; 1; 3

2
;… and

q ¼ p; p − 1;…; 1 or 1
2
(q > 0); the representations

characterized by q ¼ 1
2
, namely Π�

p;1
2

, are not square

integrable.
In the case of the discrete series UIRs, the meaningful

representations from the Minkowskian point of view are the
aforementioned symmetric cases Π�

p¼s;q¼s (with s > 0)
lying at the lower limit of this series; they have a unique
extension to the conformal group UIRs, while this exten-
sion is equivalent to the conformal extension of the
massless spin (s > 0) UIRs of the Poincaré group [27,28]:

C>sþ1;0;s C>sþ1;0;s ↩ P>
−s;0

Πþ
s;s ↪ ⊕ !

R→∞
⊕ ⊕

C<−s−1;0;s C<−s−1;0;s ↩ P<
−s;0;

ð19Þ

C>sþ1;s;0 C>sþ1;s;0 ↩ P>
s;0

Π−
s;s ↪ ⊕ !

R→∞
⊕ ⊕

C<−s−1;s;0 C<−s−1;s;0 ↩ P<
s;0:

ð20Þ

In the above sense, the UIRs Π�
s;s (with s > 0) are called

massless.
Important remark: For all three series of the dS UIRs, the

respective Casimir eigenvalues do not alter by letting
q ↦ ð1 − qÞ. In other words, the representations given
by the pairs Δðp; qÞ and Δðp; 1 − qÞ share the same
Casimir eigenvalues. By definition, such representations
are recognized as Weyl equivalent representations.

D. dS field equations

As briefly pointed out in the Introduction section,
(projective) Hilbert spaces carrying the dS UIRs (in some

12Note that conformal invariance technically entails the dis-
crete series representations (and their lower end) of the (universal
covering of the) conformal group or its double covering group
SO0ð2; 4Þ or its fourth covering group SUð2; 2Þ. Here, the
respective conformal UIRs are characterized by C≷E0;jl;jr

, with
the parameter E0 denoting the positive/negative conformal energy
and ðjl; jrÞ∈N=2 × N=2 labeling the UIRs of SUð2Þ × SUð2Þ.
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restricted sense) identify the quantum (“one-particle”) state
spaces of the respective elementary systems living in
dS spacetime. Such (projective) Hilbert spaces are densely
generated by the square integrable,13 (spinor-)tensors

ΨðrÞ
α1…αnðxÞ on MR. In practice, for a given dS UIR, the

common dense subspace (of the respective Hilbert space)
carrying the UIR is generated by the eigenfunctions of the

dS Casimir operators Qð1;2Þ
r for the assumed eigenvalues

hQð1;2Þ
r i, namely,

ðQð1;2Þ
r − hQð1;2Þ

r iÞΨðrÞ
α1…αnðxÞ ¼ 0: ð21Þ

The corresponding “wave (field) equation” is then identi-

fied with that of the quadratic Casimir operator Qð1Þ
r ,14

ðQð1Þ
r − hQð1Þ

r iÞΨðrÞ
α1…αnðxÞ ¼ 0: ð22Þ

Now, for later use, let us give the explicit form of the
field equation associated with a rank-2 tensor field, say,

Ψð2Þ
αβ ≡Kαβ, in terms of the ambient space notations. The

explicit form of the quadratic Casimir operator Qð1Þ
2 ,

acting on the space generated by the rank-2 tensors Kαβ,
reads as [1]

Qð1Þ
2 Kαβ ¼ ðQð1Þ

0 − 6ÞKαβ − 2S∂x ·Kαβ

þ 2Sx∂ ·Kαβ þ 2ηαβK0; ð23Þ

where Qð1Þ
0 ¼ − 1

2
MαβMαβ ¼ −R2

∂
2, the symmetrizer

operator S acts as SðζαωβÞ ¼ ζαωβ þ ζβωα, and finally
K0 ≡ ηαβKαβ denotes the trace of the field. Now, in the
ambient space notations, the explicit form of the respective
field equation can be achieved by substituting Eq. (23) into
(22). But, once one proceeds with this substitution, due to

the form ofQð1Þ
2 in the ambient notations (given above), one

encounters some invariant subspaces in the space of
solutions to the field equation, which must be eliminated
if one desires to be left with the space that merely carries
the respective dS UIR. Accordingly, the requirements of
homogeneity (reading here as x · ∂K ¼ 0) and transversal-
ity (x ·K ¼ 0) intrinsic to a field in the ambient space
notations must be supplemented by the divergenceless
requirement (∂ ·K ¼ 0); note that the transversality and
divergenceless requirements together entail K0 ¼ 0. The
explicit form of the field equation for a rank-2 tensor field
Kαβ then reads as follows:

ðQð1Þ
2 þpðpþ 1Þþ ðqþ 1Þðq− 2ÞÞKαβ

¼ ðQð1Þ
0 −6þpðpþ 1Þþ ðqþ 1Þðq− 2ÞÞKαβ ¼ 0; ð24Þ

with the particular permissible values that the parameters p
and q can take for the three series of dS UIRs. Of course,
we will show in the sequel that the above field equation, in
the presence of the gauge invariance property of the dS
partially massless graviton field, is too restrictive and just
determines the physical solutions. It actually needs to be
modified in such a way that it involves the gauge solutions
as well.
We would also like to provide the explicit expression of

the field equation governing a scalar field Ψð0Þ ≡ ϕ. Two
cases arise for scalar fields: the scalar principal and
complementary series determined by p ¼ 0 and the scalar
discrete series given by q ¼ 0. The field equation given
below holds for both cases:

ðQð1Þ
0 þ τðτ þ 3ÞÞϕðxÞ ¼ 0; ð25Þ

where the scalar principal series is characterized by the
unifying complex parameter τ, which takes the values τ ¼
−q − 1 ¼ −3=2 − iν with ν∈R, the scalar complementary
series by the values τ ¼ −q − 1 ¼ −3=2 − ν with ν∈R
and 0 < jνj < 3=2, and finally the scalar discrete series by
the values τ ¼ p − 1 or τ ¼ −p − 2, with p ¼ 1; 2;….
Note that, according to Ref. [1], the solution to the given
field equation is only valid for values of τ where ReðτÞ < 0.
Therefore, for the scalar discrete series, we must exclude
the values of τ ¼ p − 1.
Note that, from now on, we simplify our notations by

dropping the superscript “(1)” from Qð1Þ
r (Qr ≡Qð1Þ

r ).

1. Link to intrinsic coordinates

Here, it would be useful to provide the link between the
intrinsic and ambient coordinates. For the sake of simplic-
ity, we just bring the relations which are relevant to the
context of the present study, i.e., to a rank-2 tensor field and
its field equation; similar relations hold for other (spinor-)
tensor fields.
The corresponding intrinsic field hμνðXÞ is locally

characterized by KαβðxÞ as

hμνðXÞ ¼ xα;μxβ ;νKαβðxðXÞÞ; ð26Þ

where xα;μ ¼ ∂xα=∂Xμ and Xμs, with μ ¼ 0, 1, 2, 3, stand
for the four local spacetime coordinates on MR. The
respective dS metric is achieved by inducing the natural
ambient Minkowski (R5) metric on MR:

ds2 ¼ ηαβdxαdxβjðxÞ2¼−R2 ¼ gμνdXμdXν: ð27Þ

Note that the only symmetric and transverse tensor which is
linked to the dS metric, in view of Eq. (26), is θαβ;

13Again, with respect to some invariant inner product of
Klein-Gordon type or else [in our case, for instance, with respect
to the inner product (61)].

14The equation involving the quartic Casimir operator Qð2Þ
r ,

possessing higher derivatives, naturally entails “ghost” solutions.
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gμν ¼ xα;μxβ ;νθαβ. The transformation of the covariant
derivatives is also given by

∇ρ∇λhμν ¼ xγ ;ρxσ ;λxα;μxβ ;νðT ∂γÞðT ∂σÞKαβ: ð28Þ

Then, the d’Alembertian operator reads

□Rϕ ¼ gμν∇μ∇νϕ ¼ gμνxα;μxβ ;νð∂α∂β − R−2xβ∂αÞϕ
¼ θαβð∂α∂β − R−2xβ∂αÞϕ ¼ ∂

2ϕ;

where ϕ is a scalar field in dS spacetime. Note that,
considering the definitions subsequent to Eq. (23), we
have Q0 ¼ −R2

□R.

E. Garidi mass and energy at rest in dS

Let, once again, the speed of light c and the Planck
constant ℏ be no longer normalized to unity.
We here adopt the definition of mass in dS relativity

proposed by Garidi [31]:

M2 ¼ ℏ2

c2R2
ðhQri − hQp¼q¼s

r iÞ; ð29Þ

where: (1) the dS radius of curvature is given by
R ¼ ffiffiffiffiffiffiffiffiffi

3=Λ
p ¼ c=H, where Λ represents the (positive)

cosmological constant and H the Hubble constant,
(2) hQri refers to the eigenvalues (13) of the dS quadratic
Casimir operator corresponding to the dS UIR indexed by
the pair Δðp; qÞ, and (3) hQp¼q¼s

r i refers to the eigenvalues
corresponding to the dS discrete (massless) UIRs Π�

s;s:

hQp¼q¼s
r i ¼ −2ðs2 − 1Þ; ð30Þ

which, for s ¼ 0, is also equal to the value 2 of the Casimir
operator for the conformally massless scalar UIR in the
complementary series.
Accordingly, the Garidi mass is zero for all (confor-

mally) massless dS UIRs and is nonzero for all other UIRs.
Precisely, from the point of view of a Minkowskian
observer, the Garidi mass definition (29) is meaningful for:

(i) The entire set of principal (massive) UIRs Ups
s;ν, with

s∈N=2 and ν∈R,
(ii) The scalar complementary (massless) UIR Ucs

0;1
2

, and
(iii) The discrete (massless) UIRs Π�

s;s, with s > 0, lying
at the lower limit of this series.

The fact that the lowest values of hQri occur at p ¼ q ¼ s
guarantees the non-negativity of the Garidi mass definition
(M2 ≥ 0) for such representations. Moreover, for a given
dS principal (massive) UIR Ups

s;ν, the (positive) Garidi mass
M is given by

M ¼ ℏ
Rc

�
ν2 þ

�
s −

1

2

�
2
�
1=2

; ð31Þ

and, in the null-curvature limit, consistently converges to the
Minkowski mass m of the respective Poincaré massive UIR.
In the case of a dS UIR with no meaningful

Minkowskian interpretation, it is important to note that
the Garidi mass formula (29) can still be applied, but
without invoking a Minkowskian interpretation.
Particularly, in the case of the complementary series,
(31) explicitly reads as follows:

M ¼ ℏ
Rc

��
s −

1

2

�
2

− ν2
�
1=2

: ð32Þ

This definition is valid within the interval 0 < jνj < js − 1
2
j.

Consequently, it does not extend to cover all scalar
complementary representations (with 0 < jνj < 3

2
).

Instead, its validity is confined to the range of
0 < jνj < 1

2
. Furthermore, it is evident that this definition

does not account for the scenario where s ¼ 1
2
.

In the case of the dS partially massless graviton field,
which is of particular interest in the present study, and
which (in a shortcut) corresponds to the discrete UIR Π�

2;1
(Δðp ¼ 2; q ¼ 1Þ), the Garidi mass formula yields
M2 ¼ 2H2 ¼ 2Λ=3. This outcome coincides precisely
with the result previously reported by others [32–38].
Again, it is worth highlighting the advantage of the
Garidi mass formula, as it comprehensively encompasses
all the previously introduced mass formulas within the dS
context. For a comprehensive review of various mathemati-
cal/physical aspects of the Garidi mass formula (29),
readers are referred to Ref. [1].
The Garidi massM within dS spacetime is anticipated to

remain inherently invariant, regardless of the surrounding
spacetime geometry. This leads to the absence of distinction
between inertial and gravitational mass within the classical
theory framework, reflecting a direct embodiment of the
equivalence principle. Since for dS massive representations
M→Λ→0 m and for dS massless representationsM ¼ 0 the
natural expectation arises that M is the proper mass m of
the considered elementary system.
In the framework of Minkowski spacetime, the rest

energy (Erest) of an elementary system precisely corre-
sponds to its proper mass (m) (up to the c2 factor).
However, this alignment unravels within the domain of
dS spacetime [1,31,73]. Specifically, the concept of rest
energy (Erest) within dS space encounters intricacy due to
the inherent uncertainty arising from the definition of time.
However, in the case of the principal series with ν ≥ 0 a
consistent definition can be established from (31) as

Erest ≡ ℏcν
R

¼
�
m2c4 −

ℏ2c2

R2

�
s −

1

2

�
2
�
1=2

ð33Þ

in dS relativity [1]. The two concepts of energy at rest and
proper mass, which are distinct for s ≠ 1

2
, merge at the limit,

as one should expect.
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Moreover, for all cases where the Garidi mass cannot be
identified with a “universal” proper mass, for instance, as it
is the case for the partially massless fields studied in this
paper, it is still allowed to consider the invariant quantity
Mc2 as a kind of “energy at rest”, being equal to a “dS
proper mass”.

F. A brief discussion: Lifetime of a dS particle

Referring to Ref. [74], it is worth noting a substantial
observation within the discussed group theoretical con-
struction. Interestingly, this observation points towards a
potential connection with the distance conjecture within the
context of string theory [75].
In Ref. [74], the authors have focused their investigation

on the dS scalar representations. They have introduced an
alternate definition of mass for the examined representa-
tions, distinct from the Garidi mass. This particular mass
parameter is just proportional to ν ≥ 0 and is denoted here
as M to differentiate it from the Garidi mass M. In this
context, they have demonstrated that the tensor product of
two principal UIRs with masses M1 and M2 undergoes
decomposition into a direct integral of representations
whose masses M do not adhere to the “subadditivity
condition” M ≥ M1 þM2. This observation underscores
that the dS symmetry does not hinder a particle with mass
in the principal series from undergoing decay, leading to the
creation of heavier particle pairs as an example; this
phenomenon implies the absence of a mass gap within
this range. Interestingly, the lifetime of such a particle
remains unchanged regardless of its velocity, especially
when that lifetime is comparable to the dS radius.
The authors have also demonstrated that, in contrast, the

tensor product of two complementary representations
encompasses an additional finite sum of discrete terms
within the complementary series itself (with, at most, one
term in dimension four). This underscores a form of particle
stability. The novelty here is that a particle of this nature
cannot undergo disintegration unless the masses of the
resultant decay products possess specific quantized values.
However, as it is apparent from the relation (32), one should
be aware thatM decreases from 1

2
to 0 as jνj increases from

0 to 1
2
.

For a comprehensive exploration within this context,
extending beyond the confines of the present study, we
direct readers to Ref. [74] and the references cited therein.

III. PARTIALLY MASSLESS GRAVITON FIELD
EQUATION AND THE SPACE OF SOLUTIONS

A. Field equation

1. Gauge-invariant field equation

We are now in a position to study the partially massless
spin-2 (say partially massless graviton) field in the context
of dS relativity. As we will show in the sequel, this field is

associated with the discrete series UIR Π�
2;1, characterized

by Δðp ¼ 2; q ¼ 1Þ, for which we have hQ2i ¼ −4.
Therefore, the corresponding field equation should be as
follows:

ðQ2 þ 4ÞK ¼ 0; ð34Þ

while x · ∂K ¼ 0, x ·K ¼ 0, and ∂ ·K ¼ ∂ ·K ¼ 0
15 (con-

sequently, K0 ¼ 0).
To establish a general solution to the above field

equation, we begin with producing a recurrence formula
that presents the rank-2 tensor field Kαβ in terms of lower
rank tensors (scalar and vectors). This process technically
involves operators that are expected to obey commutation/

intertwining rules with Lð2Þ
αβ s andQ2. The contraction of the

transverse projector θ with a constant polarization five-
vector Z, namely, Sθ · Z≡ SZ̄, is, for instance, an ingre-
dient part of such a recurrence formula since it allows for
defining an operator which makes a symmetric transverse
rank-2 tensor field K from a transverse rank-1 tensor field
K̃. The following commutation relation holds between Q2

and SZ̄ K̃:

Q2SZ̄ K̃ ¼ SZ̄ðQ1 − 4ÞK̃ − 2R−2D2ðZ · xÞK̃ þ 4θZ · K̃;

ð35Þ

where D2 ¼ SðD1 − xÞ, with D1 ¼ R2
∂. (Note that, with

reference to the mathematical materials/notations given in
Ref. [1], the constant polarization five-vector Z ¼ Zα

carries the five-dimensional (nonunitary) representation
ðn1 ¼ 0; n2 ¼ 1Þ of the dS group. It then follows that
the expression SZ̄ K̃ is the key piece in reducing the tensor
product ðn1 ¼ 0; n2 ¼ 1Þ ⊗ Δðp ¼ 2 − 1; q ¼ 1Þ.) In
view of the commutation relation (35), we now encounter
two new elements D2 and θ, which, respectively, make a
symmetric transverse rank-2 tensor field K from a rank-1
transverse tensor field K (as D2K) and a rank-0 tensor field
ϕ (as θϕ). The commutation relations betweenQ2 andD2K
and, of course θϕ, respectively, read

Q2D2K ¼ D2Q1K; ð36Þ

Q2θϕ ¼ θQ0ϕ: ð37Þ

The three independent elements SZ̄ K̃, D2K, and θϕ thus
form a closed family under the action of Q2. Then, the
symmetric transverse rank-2 tensor field K can be
expressed in a dS-invariant way in terms of K̃, K, and ϕ as

K ¼ SZ̄ K̃þD2K þ θϕ: ð38Þ

15Note that generally, for a transitiveK, we have ∂ ·K ¼ ∂ ·K.
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In the recurrence formula, the transversality of K
(x ·K ¼ 0) is guaranteed by the transversality of the
rank-1 tensor fields K̃ and K (x · K̃ ¼ 0 ¼ x · K). The
tensor field (38) is also supposed to verify the requirements
of homogeneity and divergencelessness. Moreover, as a
byproduct of these requirements, it needs to be traceless,
that is, K0 ¼ 2ðZ · K̃ þD1 · K þ 2ϕÞ ¼ 0. On the other
hand, the tensor field (38) has to verify the field equa-
tion (34), which implies that its ingredients K̃, K, and ϕ
have to, respectively, verify

Q1K̃ ¼ 0; ð39Þ

ðQ1 þ 4ÞK − 2R−2ðZ · xÞK̃ ¼ 0; ð40Þ

ðQ0 þ 4Þϕþ 4ðZ · K̃Þ ¼ 0: ð41Þ

Note that, to get the above equations, we have used the
identities (35)–(37).
The crucial observation to make in this context is that the

recurrence formula (38) must have a group-theoretical
interpretation. In this sense, let us delve more deeply into
the recurrence formula (38). Technically, it displays the
reduction, through the leading term SZ̄ K̃, of the tensor
product ðn1 ¼ 0; n2 ¼ 1Þ ⊗ Δðp ¼ 2 − 1; q ¼ 1Þ which
contains the UIR Π�

2;1. Accordingly, K̃, verifying
Q1K̃ ¼ 0, has to obey the divergenceless condition ∂ · K̃ ¼
∂ · K̃ ¼ 0 to be a carrier state for the UIR Π�

1;1, charac-
terized by Δðp ¼ 1; q ¼ 1Þ. But, once one imposes such a
condition on K̃, the solution to Q1K̃ ¼ 0 leads to a
singularity of the type 1=hQ1i, where hQ1i, being the
quadratic Casimir eigenvalue associated with the UIR Π�

1;1,
is equal to zero (see Ref. [54] for the details). To get rid of
this singularity, the divergenceless condition on K̃
(∂ · K̃ ¼ 0) must be relaxed. In other words, one must
solve the field equation Q1K̃ ¼ 0 in a larger space, which
includes one more degree of freedom due to the ∂ · K̃ ≠ 0

types of solutions. Consequently, the equation Q1K̃ ¼ 0

turns into a gauge-invariant one, Q1K̃ þD1∂ · K̃ ¼ 0, in
such a way that K̃ ↦ K̃ þD1ϕ̃g is a solution to the field
equation for any scalar field ϕ̃g as far as K̃ is. Then, there
are three main types of solutions for K̃, namely, gauge
solutions, physical solutions which are divergenceless, and
solutions that are not divergenceless. After the gauge-fixing
procedure, the explicit form of the solution reads as
follows [54]:

K̃ ¼ ¯̃Z ϕ̃−
λ̃

2ð1 − λ̃ÞD1ðR−2ðZ̃ · xÞϕ̃þ Z̃ · ∂̄ ϕ̃Þ

þ 2 − 3λ̃

1 − λ̃
R−2D1Q−1

0 ðZ̃ · xÞϕ̃þD1ϕ̃g; ð42Þ

where Z̃ denotes another constant polarization five-vector,
ϕ̃ the dS massless conformally coupled scalar field obeying
the equation

ðQ0 − 2Þϕ̃ ¼ 0; ð43Þ

and corresponding to the scalar complementary (massless)
UIR Ucs

0;1
2

, and finally, λ̃ð≠1Þ the gauge-fixing parameter.

Note that: (1) After the gauge fixing procedure (for λ̃ ≠ 1),
the gauge field ϕ̃g is determined by the equationQ0ϕ̃g ¼ 0,
which means that ϕ̃g is the minimally coupled scalar field
corresponding to the scalar discrete UIR Π1;0. (2) The term
distinguished above by drawing a double line below is
responsible for the appearance of logarithmic divergences
in the field solutions which implies reverberation inside the
light cone. Accordingly, contrary to the Minkowskian flat
case, the “minimal” (or optimal) choice of λ̃ is not zero. It is
clearly λ̃ ¼ 2

3
, which eliminates the logarithmic divergent

term. (3) The solution (42), instead of the UIR Π�
1;1, carries

an indecomposable representation of the dS group con-
taining Π�

1;1 as its central (physical) part. (4) The physical
part of the solution (42), carrying the representation Π�

1;1, is
obtained by imposing the divergenceless condition
(∂ · K̃ ¼ 0) on (42) and eliminating the gauge solution
D1ϕ̃g:

∂ · K̃ ¼ ∂ · ¯̃Z ϕ̃þ λ̃

2ð1 − λ̃ÞQ0ðR−2ðZ̃ · xÞϕ̃þ Z̃ · ∂̄ ϕ̃Þ

−
2 − 3λ̃

1 − λ̃
R−2ðZ̃ · xÞϕ̃

¼ 1

1 − λ̃

�
ð2þ τÞR−2ðZ̃ · xÞ þ τ

Z̃ · ξ
x · ξ

�
ϕ̃; ð44Þ

where, above, we have invoked the scalar plane wave (see
Appendix A) solutions to Eq. (43):

ϕ̃ðxÞ ¼
�
x · ξ
R

�
τ

; τ ¼ −1;−2; ð45Þ

where x and ξ, respectively, live inMR and in the null-cone
C in R5:

C ¼ fξ∈R5; ðξÞ2 ≡ ξ · ξ ¼ ηαβξ
αξβ ¼ 0g: ð46Þ

It is evident from Eq. (44) that the solutions satisfying the
divergencelessness condition are not determined by a
particular choice of λ̃ (for λ̃ ≠ 1). Hence, one has the
freedom to select the specific value λ̃ ¼ 2

3
. Importantly, the

solutions fulfilling the divergencelessness requirement are
characterized by the following conditions:

COVARIANT QUANTIZATION OF THE PARTIALLY MASSLESS … PHYS. REV. D 108, 065012 (2023)

065012-11



τ ¼ −2 and Z̃ · ξ ¼ 0: ð47Þ

Therefore, taking into account the above conditions and
substituting the solutions (45) into (42), the plane-wave
reading of the physical part of the solution is obtained as

K̃≡ K̃ðx;ξ; Z̃Þ¼ 2

�
¯̃Z−

Z̃ ·x
x ·ξ

ξ̄

��
x ·ξ
R

�
−2

≡2εðx;ξ; Z̃Þ
�
x ·ξ
R

�
−2
; ∂ · K̃¼ 0: ð48Þ

One notices that ξ · εðx; ξ; Z̃Þ ¼ ξ̄ · εðx; ξ; Z̃Þ ¼ 0, as
ξ · Z̃ ¼ 0. (For more details, readers are referred to
Ref. [54].)
Systematically (as it will be accurately clarified in the

sequel), having the above scenario for the vector field K̃
entails the traceless (K0 ≠ 0) and the divergenceless
(∂ ·K ≠ 0) conditions being relaxed from the very begin-
ning in the case of the tensor field K. Of course, to restrict
the relaxed degrees of freedom to 1, we also impose

∂2 ·K ¼ 1

2
∂K0; ð49Þ

where “∂2·” is called the generalized divergence on
the dS hyperboloid and technically defined as
∂2 ·K ¼ ∂ ·K − R−2xK0 − 1

2
∂K0. The field equation (34)

then turns into the following gauge-invariant one:

ðQ2 þ 4ÞKþD2∂2 ·K − θK0 ¼ 0; ð50Þ

such that

K ↦ KþD2D1ϕg − 2R2θϕg ð51Þ

represents a solution to the field equation as far as K does
(ϕg being an arbitrary dS scalar field). The latter point can
be easily checked by using the identities (36), (37), and

∂2 · θϕg ¼ −R−2D1ϕg; ð52Þ

Q1D1ϕg ¼ D1Q0ϕg; ð53Þ

∂2 ·D2D1ϕg ¼ −ðQ1 þ 6ÞD1ϕg ¼ −D1ðQ0 þ 6Þϕg: ð54Þ

Now, we introduce a gauge fixing parameter λ. The field
equation then reads

ðQ2 þ 4ÞKþ λD2∂2 ·K − λθK0 ¼ 0; ð55Þ

while we have in mind the constraint (49).

2. Precision on the field equation (55)

Substituting the generic solution (38) into (55), we get
three counterparts of Eqs. (39)–(41), respectively,

Q1K̃ þ λD1∂ · K̃ ¼ 0; ð56Þ
which is exactly the equation that we have already expected
for the transitive vector field K̃, and

ðQ1 þ 4ÞK ¼ 2R−2ðZ · xÞK̃ þ λZ̄ð∂ · K̃Þ − 1

2
λ∂K0; ð57Þ

ðQ0 þ 4Þϕ ¼ −4ðZ · K̃Þ − 2λðZ · xÞ∂ · K̃ þ λK0; ð58Þ

whereTZ · ∂ K̃≡Z · ∂ K̃ −R−2xðZ · K̃Þ. Note that to obtain
the above equations, besides the identities given so far, we
have also used

∂2 · SZ̄ K̃ ¼ TZ · ∂ K̃þZ̄∂ · K̃ − ∂ðZ · K̃Þ þ 5R−2ðZ · xÞK̃;

ð59Þ
and also,

TZ · ∂ K̃þZ̄∂ · K̃ − ∂ðZ · K̃Þ þ 5R−2ðZ · xÞK̃

− ðQ1 þ 6ÞK − ∂ϕ ¼ 1

2
∂K0: ð60Þ

The latter equation is actually obtained by substituting the
generic solution (38) into the constraint (49) (recall
that K0 ¼ 2Z · K̃ þ 2D1 · K þ 4ϕ).
Here, we would like to point out that the above

equations, as already expected, are invariant under the
transformations K ↦ K þD1ϕg and ϕ ↦ ϕ − 2R2ϕg,
issued from the gauge transformation (51), such that,
if λ ¼ 1, then the scalar field ϕg remains arbitrary
(except for the restrictions imposed by ordinary differ-
entiability prerequisites); if λ ≠ 1, then ϕg is restricted by
ðQ0 þ 4Þϕg ¼ 0.

B. The Gupta-Bleuler triplet

“The appearance of [the Gupta-Bleuler] triplet seems
to be universal in gauge theories, and crucial for quantiza-
tion” [76].
The formalism presented above is noteworthy in that it

enables us to establish the Gupta-Bleuler triplet for the dS
partially massless graviton field, analogous to that for the
electromagnetic field in Minkowski spacetime. To do so,
first, considering the field equation (55) on one hand, and
on the other hand, the mathematical materials given in
Ref. [77], we put forward the corresponding dS-invariant
bilinear form (inner product) on the space of solutions:

hK1;K2i¼ iR2

Z
S3;ρ¼0

½ðK1Þ� · ·∂ρK2

−2λðð∂ρxÞ ·ðK1Þ�Þ ·ð∂ ·K2Þ−ð1�⇋2Þ�dΩ; ð61Þ
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where K1 and K2 stand for two modes in the space of
solutions and dΩ for the invariant measure on S3. Note that,
above, we have employed a system of bounded global
intrinsic coordinates (Xμ) well suited for describing a
bounded copy of dS spacetime, that is, S3 × ð− π

2
; π
2
Þ.

This coordinate system, which is known in the literature
under the name of conformal coordinates, is characterized by

x ¼ ðx0 ¼ R tan ρ; Rðcos ρÞ−1uÞ; ð62Þ

where − π
2
< ρ < π

2
and u∈S3. For the modes that obey the

divergenceless and/or traceless condition [recall the con-
straint (49)], the above bilinear form becomes λ independent
and of Klein-Gordon type:

hK1;K2i ¼ iR2

Z
S3;ρ¼0

½ðK1Þ� · ·∂ρK2 − ð1�⇋2Þ�dΩ: ð63Þ

We now elaborate on the Gupta-Bleuler triplet
Vg ⊂ V ⊂ Vλ, which carries the dS indecomposable group
representation structure corresponding to our problem:

(i) Vλ is the space of all square-integrable [according to
(61)] solutions to the field equation (55). In Vλ, the
inner product is indefinite. This means that Vλ

includes negative norm solutions as well.
(ii) V is the space of the divergenceless and/or traceless

solutions [recall the constraint (49)]. It forms a
closed subspace of Vλ and, according to the field
equation (55), is clearly λ independent. Of course,
one must notice that the invariant subspace V is not
invariantly complemented in Vλ. The inner product
in V is semidefinite.

(iii) Vg is the space of the gauge solutions of the form
Kg ¼ D2D1ϕg − 2R2θϕg. It forms a closed null-
norm16 subspace of V. Of course, again, the invariant
subspace Vg is not invariantly complemented in V.

Below, we delve more deeply into the characteristics of
the states belonging to the subspace Vg and the quotient
spaces V=Vg and Vλ=V. We also make explicit the
indecomposable group representation structure that is
carried by the Gupta-Bleuler triplet Vg ⊂ V ⊂ Vλ.

1. Gauge states space: Vg

Considering the gauge solutions of the form
K ¼ Kg ≡D2D1ϕg − 2R2θϕg, the field equation (55)
reduces to

ð1 − λÞðD2D1 − 2R2θÞðQ0 þ 4Þϕg ¼ 0: ð64Þ

It follows that:

(i) If λ ¼ 1, then the scalar field ϕg remains arbitrary
with, of course, mild differentiability prerequisites.
The gauge states space Vg is then characterize by the
symmetric transverse rank-2 tensors of the form
Kg ¼ D2D1ϕg − 2R2θϕg, with an arbitrary differ-
entiable scalar field ϕg.

(ii) If λ ≠ 1, then the scalar field ϕg is restricted by
the equation ðQ0 þ 4Þϕg ¼ 0 (possibly up to
the addition of a specific solution to the inhomo-
geneous equation ðQ0 þ 4Þϕg ¼ ψg, such that
ðD2D1 − 2R2θÞψg ¼ 0). Moreover, since

Lð2Þ
αβKg ¼ Lð2Þ

αβ ðD2D1ϕg − 2R2θϕgÞ
¼ D2L

ð1Þ
αβD1ϕg − 2R2θMαβϕg

¼ D2D1Mαβϕg − 2R2θMαβϕg

¼ ðD2D1 − 2R2θÞMαβϕg; ð65Þ

the gauge solutions Kg do not carry any spin; Kgs are
entirely characterized by their scalar content ϕg cor-
responding to the scalar discrete UIR Πp¼2;q¼0 (since
we have ðQ0 þ 4Þϕg ¼ 0). It is also useful to point out
that the trace of the gauge solutions reads as

K0
g ¼ −2R2ðQ0 þ 4Þϕg: ð66Þ

Therefore, as far as λ ≠ 1 and, consequently, ϕg is
restricted by ðQ0 þ 4Þϕg ¼ 0, the gauge solutions are
tracelessness. In this context, one can simply show that
the gauge solutions are also divergencelessness:

∂2 ·Kg ¼ −D1ðQ0 þ 4Þϕg ¼ 0: ð67Þ

2. Physical states space (central part): V=Vg

The physical state space is λ independent. It consists of
the solutions K ¼ Kphys, which are defined up to the gauge
solutions Kg and obtained by imposing the divergenceless
and/or traceless condition on the field equation (55):

ðQ2 þ 4ÞKphys ¼ 0: ð68Þ

The dS group acts on physical states space V=Vg by the
UIR Π�

2;1. In the sequel, we will show that these modes
propagate on the light cone.

3. Scalar states space (pure-trace part): Vλ=V

First, we merge the field equation (55) with the con-
straint (49), which yields

ðQ2 þ 4ÞKþ 1

2
λD2∂K0 − λθK0 ¼ 0: ð69Þ16Every member of the gauge subspace Vg is orthogonal to all

members of V including itself.
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Then, the scalar states (or the pure-trace part)17 can be
achieved in two steps: first, by setting K ¼ Kpt ≡ 1

4
θK0 in

the yielded equation:

1

4
θðQ0 þ 4ÞK0 þ 1

2
λD2∂K0 − λθK0 ¼ 0; ð70Þ

and subsequently, by taking the trace of it:

ð1 − λÞðQ0 þ 4ÞK0 ¼ 0: ð71Þ
Here, again, two distinguished cases appear:

(i) If λ ¼ 1, thenK0 remains unrestricted (except for the
restrictions imposed by ordinary differentiability
prerequisites). Then, one naturally loses the ability
to restrain the space Vλ.

(ii) If λ ≠ 1, then K0 is restricted by ðQ0 þ 4ÞK0 ¼ 0,
which implies that K0 also corresponds to the scalar
discrete UIR Πp¼2;q¼0.

4. Indecomposable group representation structure

The indecomposable group representation structure,
carried by the above Gupta-Bleuler triplet, associated with
the dS partially massless graviton field, then reads

Π2;0|{z}
Vλ=V

⤏ Π�
2;1|{z}

V=Vg

⤏ Π2;0|{z}
Vg

; ð72Þ

where the arrows stand for the leaks under the dS group
action. Note that the UIRs Π�

2;1 and Π2;0 share the same
Casimir eigenvalue, and hence, they are Weyl equivalent.18

C. Field equation solutions and de Sitter waves

1. Field equation solutions

We now solve the field equation (55), for λ ≠ 1, with the
constraint (49). For the sake of simplicity, we merely
restrict our attention to the physical sector of the vector
field K̃ [see Eq. (48)], which is free of singularities, and
realized by imposing the divergenceless condition
(∂ · K̃ ¼ 0) on (42) and eliminating the respective gauge
solution D1ϕ̃g. Then, we get the simplest forms of
Eqs. (56)–(58), respectively, as

Q1K̃ ¼ 0; ð73Þ

ðQ1 þ 4ÞK ¼ 2R−2ðZ · xÞK̃ −
1

2
λ∂K0; ð74Þ

ðQ0 þ 4Þϕ ¼ −4ðZ · K̃Þ þ λK0: ð75Þ

Important remark: Certainly, it should be noted that the
imposition of the condition ∂ · K̃ ¼ 0 does not change the
underlying physics of the problem, in the sense that:
(1) When comparing the aforementioned set of equations
with its previous form, the imposition of ∂ · K̃ ¼ 0 merely
confines the nonphysical (dependent on λ) components of
the equations, consequently, merely affecting the nonphysi-
cal (dependent on λ) part of the corresponding solution.
(2) This simplified set of equations, similar to its previous
version, remains unchanged under the transformations
K ↦ K þD1ϕg and ϕ ↦ ϕ − 2R2ϕg, issued from the
gauge transformation (51), such that again: if λ ¼ 1, then
the scalar field ϕg remains arbitrary (except for the
restrictions imposed by ordinary differentiability prerequi-
sites); if λ ≠ 1, then ϕg is restricted by ðQ0 þ 4Þϕg ¼ 0.
Therefore, the imposition of ∂ · K̃ ¼ 0 does not change the
gauge-invariant property of the theory, as well.
We begin with Eq. (75), based upon which we have

ϕ ¼ ðQ0 þ 4Þ−1ð−4ðZ · K̃Þ þ λK0Þ

¼ −
2

3
ðZ · K̃Þ þ λðQ0 þ 4Þ−1K0: ð76Þ

This result can be verified by utilizing the identity

ðQ0 þ 4ÞðZ · K̃Þ ¼ 6ðZ · K̃Þ; ð77Þ

which is obtained by using Eq. (73) along with the identity

Q1K̃ ¼ ðQ0 − 2ÞK̃ þ 2x∂ · K̃ − 2∂x · K̃; ð78Þ

while we have in mind that x · K̃ ¼ 0 ¼ ∂ · K̃. Note that the
last term in (76) bears a logarithmic singularity since
ðQ0 þ 4ÞK0 ¼ 0 (see Eq. (71) and its subsequent
arguments).
Now, we deal with Eq. (74). Let S be a three-

dimensional space spanned by linear combinations of the
following set of three basic functions:

S∋ ½s1;s2;s3� ¼ s1R−2ðZ ·xÞK̃þ s2TðZ ·∂ÞK̃þ s3∂ðZ · K̃Þ:
ð79Þ

This space is invariant under the action of ðQ1 þ 4Þ:

ðQ1 þ 4ÞR−2ðZ · xÞK̃ ¼ ½0;−2; 0�; ð80Þ

ðQ1 þ 4ÞTðZ · ∂ÞK̃ ¼ ½4; 6; 2�; ð81Þ

ðQ1 þ 4Þ∂ðZ · K̃Þ ¼ ½0; 0; 6�: ð82Þ

Note that to get the above equations, besides Eqs. (73) and
(78), we have also used the following identities:

17Recall that, due to the constraint (49), the relaxed degrees of
freedom reduce to 1. This is the fact that assures us that the
exterior part of the Gupta-Bleuler triplet (i.e., Vλ=V) is merely
characterized by the pure-trace solutions.

18In general, a necessary condition for combining different
representations to construct an indecomposable group represen-
tation structure is that they are Weyl equivalent.
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xðQ0 − 2Þ ¼ ðQ0 þ 2Þxþ 2R2
∂; ð83Þ

∂ðQ0 − 2Þ ¼ðQ0 − 8Þ∂ − 2R−2ðQ0 þ 4Þx: ð84Þ

On the other hand, ∂K0 itself forms an invariant one-
dimensional space under the action of ðQ1 þ 4Þ such that
ðQ1 þ 4Þ∂K0 ¼ 0 (which is a byproduct of Eq. (71) and its
subsequent arguments).
With these three and one-dimensional spaces in mind,

which remain invariant under the ðQ1 þ 4Þ action, we
rewrite Eq. (74) as

ðQ1 þ 4ÞK ¼ ½2; 0; 0� − 1

2
λ∂K0: ð85Þ

The general solution to (85) can be divided into two sectors:

K ¼ ½s1; s2; s3� −
1

2
λðQ1 þ 4Þ−1∂K0; ð86Þ

such that the first sector is obtained by the following
system: 0

B@ 0 4 0

−2 6 0

0 2 6

1
CA
0
B@ s1

s2
s3

1
CA ¼

0
B@ 2

0

0

1
CA; ð87Þ

which yields

K ¼
�
3

2
;
1

2
;−

1

6

�
−
1

2
λðQ1 þ 4Þ−1∂K0; ð88Þ

where the last term bears a logarithmic singularity.
Accordingly, a general solution to the field equation (55),

with the constraint (49), can be expressed as follows, after
making straightforward adjustments:

K ¼ −
2

3
θðZ · K̃Þ þ SZ̄ K̃þ 3

2
D2R−2ðZ · xÞK̃

þ 1

2
D2TðZ · ∂ÞK̃ −

1

6
D2∂ðZ · K̃Þ

−
λ

2
R−2ðD2ðQ1 þ 4Þ−1D1K0 − 2R2θðQ0 þ 4Þ−1K0Þ:

ð89Þ

It should be noted that the gauge solution Kg ¼ D2D1ϕg −
2R2θϕg is coupled to the λ-dependent part of the solution
[given in the last line of Eq. (89)]. Furthermore, given the
aforementioned solution, it is evident that the optimal
choice for the gauge-fixing parameter is λ ¼ 0, which
effectively removes all singular terms. Consequently, from
now on, we will proceed with this optimal selection of the
gauge-fixing parameter.

At this point, we are required to present the interpretation
of the solution (89) in terms of a plane wave. To aid our
reasoning, let us begin by revisiting the plane-wave
explanation of the transitive and divergenceless vector field
K̃, as outlined in Eq. (48). Following that, it is worth
recalling,

K̃ðxÞ ¼ 2εðx; ξ; Z̃κÞ
�
x · ξ
R

�
−2

¼ 2

�
¯̃Zκ −

Z̃κ · x
x · ξ

ξ̄

��
x · ξ
R

�
−2
: ð90Þ

Note that when choosing constant five-vectors, such as Z̃α,
they are commonly labeled with κ ¼ 0, 1, 2, 3.19 These

vectors then can be denoted as Z̃ðκÞ
α or, for the sake of

convenience in expressions, as Z̃κ
α. Now, let us impose the

following conditions on Z̃κ
α:

Z̃κ · Z̃κ0 ¼ ηκκ
0
; ð91Þ

X3
κ¼1

Z̃κ
αZ̃κ

β ¼ −ηαβ; ð92Þ

X3
κ¼1

Z̃κ
4Z̃

κ
μ ¼ 0; ð93Þ

for all κ; κ0 ¼ 0, 1, 2, 3. Subsequently, it is evident that the
characteristics of the dS polarization vector
εðx; ξ; Z̃κÞ≡ εκðx; ξÞ, bear a striking resemblance to the
Minkowskian scenario (for the latter, see Ref. [78])20:

X3
κ¼1

εκαðx; ξÞεκβðx; ξÞ ¼ −
�
θαβ −

ξ̄αξ̄β
ðx · ξ=RÞ2

�
; ð94Þ

εκðx; ξÞ · εκ0 ðx; ξÞ ¼ Z̃κ · εκ
0 ðx; ξÞ

¼ εκðx; ξÞ · εκ0 ðx0; ξÞ
¼ Z̃κ · Z̃κ0

¼ ηκκ
0
: ð95Þ

It follows from Eqs. (89) and (90) that the solution to the
field equation (55), with the constraint (49), takes the form

19This actually arises from the fact that despite being expressed
as five-component vectors, objects in dS spacetime possess only
four independent components.

20Note that although ξ · ξ ¼ 0, the products ξ · ξ̄ and ξ̄ · ξ̄ are
not equal to zero. Specifically, we have ξ · ξ̄ ¼ ξ̄ · ξ̄ ¼ ðx·ξR Þ2.
Similarly, while Z̃ · ξ ¼ 0, the dot products Z̃ · ξ̄, ¯̃Z · ξ, and ¯̃Z · ξ̄
are not zero. In particular, they can be expressed as
Z̃ · ξ̄ ¼ ¯̃Z · ξ ¼ ¯̃Z · ξ̄ ¼ 1

R2 ðZ̃ · xÞðx · ξÞ.
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KðxÞ ¼ Dðx; ∂;Z; Z̃Þ
�
x · ξ
R

�
−2
; ð96Þ

where the operator Dðx; ξ;Z; Z̃Þ, for λ ¼ 0, is given by

Dðx; ∂;Z; Z̃Þ ¼ 2

�
−
2

3
θðZ·Þ þ SZ̄ þ 3

2
D2R−2ðZ · xÞ

þ 1

2
D2TðZ · ∂Þ − 1

6
D2∂ðZ·Þ

�
εðx; ξ; Z̃Þ;

ð97Þ
where, for simplicity, we have again excluded the super-
script “κ”. Subsequently, expressing this solution in the
following form becomes a matter of straightforward cal-
culations:

KαβðxÞ ¼ a0Eαβðx; ξ;Z; Z̃Þ
�
x · ξ
R

�
−2
; ð98Þ

with a0 ¼ 6c0, where c0 is a normalization constant, and
Eαβðx; ξ;Z; Z̃Þ represents the corresponding polarization
tensor. Here, we consider an explicit realization of the
latter, which is attained through the following procedure.
By imposing the conditions stated in (91)–(93), we

have managed to partially remove the freedom arising
from the introduction of constant vector Z̃ in our solution.
We now proceed with a similar procedure to determine the
value of Z. Accordingly, if we select Z to be equal to Z̃ and
refer to both as Z hereafter, the polarization tensor
Eαβðx; ξ;Z; Z̃Þ≡ Eαβðx; ξ;ZÞ adopts a straightforward
expression such that, using Eq. (97) as a starting point,
we get

Eαβðx; ξ;ZÞ≡ Eκκ0
αβ ðx; ξÞ

¼ 1

2

�
Sεκαðx; ξÞεκ0β ðx; ξÞ

−
2

3

�
θαβ −

ξ̄αξ̄β
ðx · ξ=RÞ2

�
εκðx; ξÞ · εκ0 ðx; ξÞ

�
;

ð99Þ
where, again, εðx; ξ; Z̃κÞ≡ εκðx; ξÞ. Considering the iden-
tities given (94) and (95), one can also rewrite the above
result as follows:

Eκκ0
αβ ðx; ξÞ ¼

1

2

�
Sεκαðx; ξÞεκ0β ðx; ξÞ

þ 2

3
ηκκ

0 X3
ρ¼1

εραðx; ξÞερβðx; ξÞ
�
: ð100Þ

Here are a few aspects to consider regarding the provided
dS tensor wave Kαβ.
First: Evidently, from Eq. (99), or equivalently (100), we

obtain ηαβEαβðx; ξ;ZÞ≡ E0ðx; ξ;ZÞ ¼ 0. This means that

when the gauge-fixing parameter λ is set to zero, we are
effectively constrained to the traceless and/or divergence-
less part of the solution living in the subspace V. On the
other hand, exploring the “dot product” of the provided
polarization tensor with ξ or ξ̄ uncovers another intriguing
characteristic of the obtained polarization:

ξ · E ¼ ξ̄ · E ¼ 0: ð101Þ

The crucial point to note here is that the transversality
conditions given in (101) are valid only for the physical
part of the solution residing in the quotient space V=Vg,
rather than the entire solution belonging to V, which
includes both the physical and the gauge parts. (To grasp
the concept, one can simply substitute the plane-
wave representation of ϕg ¼ ðx · ξ=RÞ−4, taking into
account that ðQ0 þ 4Þðx · ξ=RÞ−4 ¼ 0, into the gauge
solution Kg ¼ D2D1ϕg − 2R2θϕg. Additionally, one needs
to consider the points mentioned in footnote 20.) It is also
easy to check that the tensor polarization verifies the
following identity:

Eκκ0 ðx; ξÞ · ·Eκ00κ000 ðx; ξÞ ¼ Eκκ0 ðx0; ξÞ · ·Eκ00κ000 ðx; ξÞ
¼ ηκκ

00
ηκ

0κ000 þ ηκκ
0
ηκ

00κ000 : ð102Þ

Second: The dS tensor wave KαβðxÞ exhibits a homo-
geneity property with the degree of τ ¼ −2 when consid-
ered on both the null-cone C and the dS submanifold MR

ð⊂ R5Þ, which is defined by the condition x · x ¼ −R2,
where R remains constant. This arises from the homo-
geneity property of the scalar plane wave ðx · ξ=RÞ−2 (see
Appendix A) and the fact that

εκðx; aξÞ ¼ εκðx; ξÞ; and εκðax; ξÞ ¼ εκðx; ξÞ; ð103Þ

which is evident from the definition of εκðx; ξÞ:

εκðx; ξÞ ¼
�
Z̄κ −

Zκ · x
x · ξ

ξ̄

�
¼

�
Zκ −

Zκ · x
x · ξ

ξ

�
: ð104Þ

Third: Within this framework, it becomes feasible to
develop the covariant quantization of the massless partially
graviton field by virtue of the closure of KαβðxÞ under the
dS group action:

ðUðgÞKÞαβðxÞ ¼ gγαgδβKγδðg−1xÞ

¼ gγαgδβa0Eγδðg−1x; ξ;ZÞ
�
g−1x · ξ

R

�−2

¼ a0Eαβðx; gξ; gZÞ
�
x · gξ
R

�
−2
: ð105Þ

This can be easily demonstrated as the vector polarization
meets the following condition:
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εαðg−1x; ξ;ZÞ ¼
�
Zα −

Z · g−1x
g−1x · ξ

ξα

�

¼
�
Zα −

gZ · x
x · gξ

ξα

�
¼ ðg−1Þγαεγðx; gξ; gZÞ: ð106Þ

Fourth: The final point to be discussed here is that the
wave KαβðxÞ, as a function on MR, is only locally defined
on connected open subsets ofMR (refer to Appendix A). To
ensure a global definition of this solution, as elucidated in
Appendix A, an analytical continuation becomes crucial.
Consequently, we define the dS tensor wave Kαβðx; ξÞ as
the boundary value of the analytic continuation of the

solution (98) to the forward-tube T þ; for z∈ T þ ¼
fR5 þ iV̊þg ∩ MðCÞ

R and ξ∈Cþ, the following holds:

Kαβðz; ξÞ ¼ a0Eκκ0
αβ ðz; ξÞ

�
z · ξ
R

�
−2
: ð107Þ

Then, the corresponding boundary value (in the distribu-
tion sense) of the above-complexified waves yields a
single-valued global plane-wave reading of the solution
(98) as

bvKαβðz; ξÞ≡Kαβðx; ξÞ

¼ a0Eκκ0
αβ ðx; ξÞ

�ðxþ iyÞ · ξ
R

�
−2
����
ξ∈Cþ;y∈ V̊þ;y→0

:

ð108Þ

For the explicit form of the latter term see Appendix A.

IV. TWO-POINT FUNCTION
AND QUANTUM FIELD

In this section, we continue with the quantization of the
partially massless graviton field in dS spacetime, building
upon the concrete quantization procedure that was pre-
viously presented and discussed for scalar fields in the
earlier works by Bros et al. [45,46], and subsequently
extended by other authors [52–57,60–67] to higher spin
fields.

A. Two-point function

In this study, our focus lies on the free field part of the
theory, where all truncated correlation functions vanish.
Consequently, the complete characterization of the respec-
tive QFT is entirely captured by the corresponding
Wightman two-point function Wαβα0β0 ðx; x0Þ, where
α; β; α0; β0 ¼ 0; 1;…; 4. The two-point function must meet
the following criteria:

(i) Indefinite sesquilinear form:Z
MR×MR

f�αβðxÞWαβα0β0 ðx; x0Þfα0β0 ðx0ÞdμðxÞdμðx0Þ;

ð109Þ
where fαβ stands for a test function in the space of
functionsC∞ with compact support inMR and dμðxÞ
for the invariant measure on MR.

(ii) Covariance:

ðg−1Þγαðg−1ÞδβWγδγ0δ0 ðgx; gx0Þgγ
0
α0g

δ0
β0 ¼ Wαβα0β0 ðx; x0Þ;

ð110Þ
for all g∈ SO0ð1; 4Þ.

(iii) Locality:

Wαβα0β0 ðx; x0Þ ¼ Wα0β0αβðx0; xÞ; ð111Þ

if x and x0 are spacelike separated (x · x0 > −R2).
(iv) Index symmetrizer:

Wαβα0β0 ðx; x0Þ ¼ Wαββ0α0 ðx; x0Þ
¼ Wβαα0β0 ðx; x0Þ: ð112Þ

(v) Transversality:

xαWαβα0β0 ðx; x0Þ ¼ 0 ¼ x0α0Wαβα0β0 ðx; x0Þ: ð113Þ

(vi) Normal analyticity: The Wightman two-point func-
tion Wαβα0β0 ðx; x0Þ is the boundary value (in the
sense of distribution) of a functionWαβα0β0 ðz; z0Þ that
is analytic in the tuboid domain [45,46]:

T þð2Þ ¼ fðz; z0Þ; z∈ T −; z0 ∈ T þg; ð114Þ

where, again, T � are, respectively, the forward and

backward tubes of MðCÞ
R , respectively, defined by

T � ¼ fR5 þ iV̊�g ∩ MðCÞ
R ; ð115Þ

and the domains V̊� ≡ fy∈R5; ðyÞ2 > 0; y0 ≷ 0g
originate from the causal structure of MR.

Based on the previously mentioned condition of normal
analyticity, we can derive the following conclusions
[45,46]: (1) The function Wαβα0β0 ðz; z0Þ exhibits maximal
analyticity, allowing for its analytic continuation to the “cut
domain”:

Δ ¼ fðz; z0Þ∈MðCÞ
R ×MðCÞ

R ; ðz − z0Þ2 < 0g: ð116Þ

(2) The “permuted Wightman two-point function”
Wα0β0αβðx0; xÞ corresponds to the boundary value of
Wαβα0β0 ðz; z0Þ from the domain
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T −ð2Þ ¼ fðz; z0Þ; z∈ T þ; z0 ∈ T −g; ð117Þ

defined on MðCÞ
R ×MðCÞ

R . Notably, the permuted two-point
function fulfills all the aforementioned requirements,
as well.
After fulfilling the aforementioned requirements, the

reconstruction theorem [79] permits the construction of
the corresponding QFT. Based on this, our current objective
is to locate a doubled tensor-valued analytic function of the
variable ðz; z0Þ that demonstrates the mentioned properties.
The explicit definition of the analytic two-point function

Wαβα0β0 ðz; z0Þ can be derived from the provided solution
(98), using the following class of integral representations:

Wαβα0β0 ðz; z0Þ ¼ a20

Z
γ

�
z · ξ
R

�
−2
�
z0 · ξ
R

�
−2

×
X3
κ;κ0¼1

Eκκ0
αβ ðz; ξÞE�κκ0

α0β0 ðz0�; ξÞdμγðξÞ; ð118Þ

where the integration takes place over any orbital basis γ of
the future null-cone Cþ ≡ fξ∈R5; ðξÞ2 ¼ 0; ξ0 > 0g, dμγ
denotes the intrinsic Cþ invariant measure on γ and is
derived from the Lebesgue measure of R5, and the
normalization factor a0 is determined, subsequently, by
applying the local Hadamard condition.

In order to determine whether the aforementioned con-
ditions are satisfied by the analytic two-point function
Wαβα0β0 ðz; z0Þ, we should express the latter in a more explicit
form. To accomplish this, we initiate with the analytic
continuation of the polarization tensor (99), and present it
as follows:

Eκκ0
αβ ðz;ξÞ¼

1

2

�
Sεκαðz;ξÞεκ0β ðz;ξÞ−

4

9
ηκκ

0
�
θαβ−

D2αD1β

8R2

��
;

ð119Þ

where we have used the fact that

X3
κ¼1

εκαðz; ξÞεκβðz; ξÞ
�
z · ξ
R

�
−2

¼ −
�
θαβ −

ξ̄αξ̄β
ðz · ξ=RÞ2

��
z · ξ
R

�
−2

¼ −
2

3

�
θαβ −

D2αD1β

8R2

��
z · ξ
R

�
−2
: ð120Þ

Then, by substituting the expression (119) into (118), we
simply develop the two-point function and obtain the
following result:

Wαβα0β0 ðz; z0Þ ¼
a20
4

Z
γ
SS0

�X3
κ¼1

εκαðz; ξÞε�κα0 ðz0�; ξÞ
��X3

κ0¼1

εκ
0
β ðz; ξÞε�κ

0
β0 ðz0�; ξÞ

��
z · ξ
R

�
−2
�
z0 · ξ
R

�
−2
dμγðξÞ

−
16

3

�
θαβ −

D2αD1β

8R2

��
θ0α0β0 −

D0
2α0D

0
1β0

8R2

�
c20

Z
γ

�
z · ξ
R

�
−2
�
z0 · ξ
R

�
−2
dμγðξÞ: ð121Þ

(Note that the primed operators only act on the primed
coordinates, and similarly, the unprimed operators only act
on the unprimed coordinates; then, for instance, we have
D2αD0

2α0 ¼ D0
2α0D2α.) On the other hand, from the identity,

X3
κ¼1

εκαðz; ξÞε�κα0 ðz0�; ξÞ ¼ −θα · θ0α0 þ
ðθα · z0Þξ̄α0
ðz0 · ξÞ þ ðθ0α0 · zÞξ̄α

ðz · ξÞ

þ R2Zξ̄αξ̄α0

ðz · ξÞðz0 · ξÞ ; ð122Þ

in which Z ≡ −z · z0=R2 is a dS-invariant length (see
Appendix B), and also from the relation,

R−2D2αε
κ0
β

�
z · ξ
R

�
−2

¼ −3Sξ̄α
ðz · ξÞ ε

κ0
β

�
z · ξ
R

�
−2
; ð123Þ

we can rewrite the analytic two-point function (121) in the
following form:

Wðz; z0Þ ¼ Δðz; z0ÞW̃1ðz; z0Þ þ Θðz; z0ÞW̃0ðz; z0Þ; ð124Þ

where the differential operators Δðz; z0Þ and Θðz; z0Þ,
respectively, read as

Δðz; z0Þ ¼ −
9

4

�
SS0θ · θ0 þ SR−2ðθ · z0ÞD0

2

3

þS0R−2ðθ0 · zÞD2

3
−
R−2ZD2D0

2

9

�
; ð125Þ

Θðz; z0Þ ¼ −
16

3

�
θ −

D2D1

8R2

��
θ0 −

D0
2D

0
1

8R2

�
; ð126Þ

and the vector and scalar analytic two-point functions
denoted, respectively, by W̃1ðz; z0Þ and W̃0ðz; z0Þ, are
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W̃1ðz; z0Þ ¼ 4c0

Z
γ

X3
κ¼1

εκðz; ξÞε�κðz0�; ξÞ
�
z · ξ
R

�
−2
�
z0 · ξ
R

�
−2
dμγðξÞ

¼ −4
�
θ · θ0 þ R−2ðθ · z0ÞD0

1

2
þ R−2ðθ0 · zÞD1

2
−
R−2ZD1D0

1

4

�
W̃0ðz; z0Þ; ð127Þ

W̃0ðz; z0Þ ¼ c0

Z
γ

�
z · ξ
R

�
−2
�
z0 · ξ
R

�
−2
dμγðξÞ: ð128Þ

Consequently, the analytic tensor two-point function can
be expressed in terms of the scalar analytic two-point
function as

Wαβα0β0 ðz; z0Þ ¼ Dαβα0β0 ðz; z0ÞW̃0ðz; z0Þ: ð129Þ
Note that the integral representation (127) of the scalar

analytic two-point function for well-chosen points
z; z0 ∈ T þð2Þ in the domain determined by ðz − z0Þ2 < 0,
for instance, z ¼ ð−iR coshφ;−iR sinhφ; 0; 0; 0Þ and
z0 ¼ ðiR; 0; 0; 0; 0Þ (with φ ≥ 0), yields [1,45,46]

W̃0ðz; z0Þ ¼
−1

8π2R2

1

1 − Zðz; z0Þ ; ð130Þ

where the Hadamard condition has been used to establish a
fixed value for the normalization factor c0.
Eventually, taking the boundary value of the analytic

two-point function (129) yields the corresponding
Wightman two-point function:

Wαβα0β0 ðx; x0Þ ¼ bvWαβα0β0 ðz; z0Þ
¼ Dαβα0β0 ðx; x0ÞðbvW̃0ðz; z0ÞÞ; ð131Þ

with [1,45,46]

W̃0ðx; x0Þ ¼ bvW̃0ðz; z0Þ

¼ −1
8π2R2

�
P

1

1 − Zðx; x0Þ

− iπϵðx0 − x00Þδð1 − Zðx; x0ÞÞ
�
; ð132Þ

where P stands for the principal part and ϵðx0 − x00Þ ¼
1; 0;−1 for ðx0 − x00Þ >;¼, or < 0, respectively. Note that
the above expression corresponds precisely to the two-point
function of the conformally coupled scalar field as pre-
sented in Ref. [80].
Here, it must be underlined that the derived kernel

satisfies, through its construction, the previously mentioned
conditions of indefinite sesquilinearity, covariance,21

locality,22 index symmetrization, transversality, and normal
analyticity.23 These conditions are essential for obtaining a
Wightman two-point function. It is also crucial to
emphasize that the existence of a Wightman two-point
function is a fundamental requirement in dS axiomatic QFT
(see Ref. [1]).

B. Quantum field

By having a comprehensive understanding of the
Wightman two-point function Wαβα0β0 ðx; x0Þ, we can effec-
tively employ the QFT formalism. It is expected that the
tensor field K̂αβðxÞ will serve as an operator-valued dis-
tribution on the spacetime manifold MR, operating within
the framework of a Hilbert space H. In a more technical
sense, we establish the definition of a vector-valued
distribution, taking values in the space generated by the
modes Kαβðx; ξÞ ¼ bvKαβðz; ξÞ, for any test function
fαβ ∈DðMRÞ, as follows:

x ↦ pαβðfÞðxÞ ¼
Z
MR

Wαβα0β0 ðx; x0Þfα0β0 ðx0Þdμðx0Þ

¼
X
κκ0

Z
γ
Kκκ0

ξ ðfÞKκκ0
αβ ðx; ξÞdμγðξÞ; ð133Þ

21The covariance property arises from the group action on the
dS modes (105) and the fact that the integral (118) remains
unaffected by the chosen orbital basis (for the latter property, see
Refs. [1,46]).

22To demonstrate the fulfillment of the locality requirement,
one needs to utilize the identity Wαβα0β0 ðz; z0Þ ¼ W�

α0β0αβðz0�; z�Þ,
which can be easily checked through the integral representation
(118), and the relation W�

α0β0αβðz0�; z�Þ ¼ Wα0β0αβðz0; zÞ, which
holds for spacelike separated points z, z0 (obeying ðz − z0Þ2 < 0).
The latter relation is easy to be checked once we recall that the
two-point function (129), for ðz − z0Þ2 < 0, takes the form,

Wαβα0β0 ðz; z0Þ ¼ Dαβα0β0 ðz; z0Þ
�

−1
8π2R2

1

1 − Zðz; z0Þ
�
;

where, by construction, Dðz; z0Þ ¼ D�ðz�; z�0Þ and, of course,
trivially Zðz;z0Þ ¼Z�ðz�;z�0Þ. Therefore, for points ðz− z0Þ2 < 0,
we have

Wαβα0β0 ðz; z0Þ ¼ W�
α0β0αβðz0�; z�Þ ¼ Wα0β0αβðz0; zÞ:

Lastly, it should be observed that the spacelike separated pair
ðx; x0Þ resides within the same orbit of the complex dS group as
the pairs ðz; z0Þ and ðz0�; z�Þ. Consequently, the locality condition
(111) is satisfied.

23The analytic characteristics of the tensor Wightman two-
point function are derived from the representation of the dS tensor
waves given in Eq. (108).
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where Kκκ0
ξ ðfÞ refers to the smeared form of the

modes:

Kκκ0
ξ ðfÞ ¼

Z
MR

K�κκ0
αβ ðx; ξÞfαβðxÞdμðxÞ: ð134Þ

The space generated by the pðfÞ’s is endowed with the
indefinite invariant inner product:

hpðfÞ; pðgÞi ¼
Z
MR×MR

f�αβðxÞWαβα0β0 ðx; x0Þ

× gα
0β0 ðx0ÞdμðxÞdμðx0Þ: ð135Þ

Then, the field, in the customary manner, is defined
through the operator-valued distribution:

K̂ðfÞ ¼ aðpðfÞÞ þ a†ðpðfÞÞ; ð136Þ

where the operators aðKκκ0 ðξÞÞ, denoted as aκκ
0 ðξÞ, and

a†ðKκκ0 ðξÞÞ, denoted as a†κκ0 ðξÞ are, respectively, antilinear
and linear in their respective arguments. On this basis, one
obtains

K̂ðfÞ ¼
X
κκ0

Z
γ
ðK�κκ0

ξ ðfÞaκκ0 ðξÞ

þKκκ0
ξ ðfÞa†κκ0 ðξÞÞdμγðξÞ: ð137Þ

The unsmeared operator is

K̂αβðxÞ ¼
X
κκ0

Z
γ
ðKκκ0

αβ ðx; ξÞaκκ
0 ðξÞ

þK�κκ0
αβ ðfÞa†κκ0 ðξÞÞdμγðξÞ; ð138Þ

where aκκ
0 ðξÞ fulfills the canonical commutation relations

and is defined as follows:

aκκ
0 ðξÞj0i ¼ 0: ð139Þ

Note that the measure, denoted by dμγðξÞ, exhibits the
property of homogeneity as dμγðlξÞ ¼ l3dμγðξÞ.
Additionally, when considering Kκκ0

αβ ðx;lξÞ, it satisfies

the homogeneity condition given by l−2Kκκ0
αβ ðx; ξÞ.

Then,

aκκ
0 ðlξÞ≡aðKκκ0 ðlξÞÞ¼ aðl−2Kκκ0 ðξÞÞ¼l−2aκκ

0 ðξÞ:
ð140Þ

Moreover, one should notice that the integral representation
(138) remains invariant regardless of the orbital basis γ,
as elaborated in Refs. [1,46]. Then, considering the

hyperbolic type submanifold denoted as γ4, which is
defined as follows24:

γ4 ¼ fξ∈Cþ; ξ4 ¼ 1g ∪ fξ∈Cþ; ξ4 ¼ −1g; ð141Þ

the measure explicitly reads as dμγ4ðξÞ ¼ d3ξ⃗=ξ0, and
consequently, the representation of the canonical commu-
tation relations as

½aκκ0 ðξÞ; a†κ00κ000 ðξ0Þ� ¼ ðηκκ00ηκ0κ000 þ ηκκ
0
ηκ

00κ000 Þξ0δðξ⃗ − ξ⃗0Þ:
ð142Þ

The field commutation relations are

½K̂αβðxÞ; K̂α0β0 ðx0Þ� ¼ 2i ImhpαβðxÞ; pα0β0 ðx0Þi
¼ 2i ImWαβα0β0 ðx; x0Þ
¼ 2iDαβα0β0ImW̃0ðx; x0Þ; ð143Þ

where we have used Eq. (129) while, following the relation
(132), we have

ImW̃0ðx; x0Þ ¼
1

8πR2
ϵðx0 − x00Þδð1 − Zðx; x0ÞÞ: ð144Þ

Finally, we have the commutator:

iGαβα0β0 ðx; x0Þ ¼ ½K̂αβðxÞ; K̂α0β0 ðx0Þ�

¼ i
4πR2

Dαβα0β0ϵðx0 − x00Þδð1 − Zðx; x0ÞÞ:
ð145Þ

Important remark: It is worth noting that the right-hand
side of the above equation clearly demonstrates the light-
cone propagation of the dS partially massless graviton field.

24It is worth noting that the parametrization (141) for ξ exhibits
an intriguing connection with the Poincaré massive UIRs. The
null-vector ξ∈Cþ can actually be interpreted in terms of the four-
momenta ðk0; k⃗Þ of a Minkowskian particle with mass m, as
expressed below:

ξ�ð∈ γ4Þ ¼
�
k0

m
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗ · k⃗
m2

þ 1

s
;
k⃗
m
;�1

�
:

This parametrization allows us to satisfy the condition
ðk0Þ2 − k⃗ · k⃗ ¼ m2, which corresponds to the mass-shell equa-
tion. This link between ξ� and the four-momenta enables a
meaningful connection between the parametrization and the
concept of particle mass [1].
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V. CONCLUSION AND OUTLOOK

Over the past four decades, there has been a remarkable
proliferation of diverse and sometimes conflicting
approaches to dS physics. From the vantage point of the
mathematical physics community, dS spacetime holds a
privileged status as the unique maximally symmetric
solution to the Einstein equation with a positive cosmo-
logical constant. It encompasses a group of motions
characterized by ten essential parameters and facilitates
the identification of conventional observables like mass and
spin. This unique process of identification owes its fea-
sibility to the essence of the dS group, which smoothly
transforms into the Poincaré group through a procedure
known as the contraction procedure. As a result, dS
spacetime stands as an invaluable laboratory for construct-
ing a coherent formulation of elementary systems, in the
sense defined by Wigner, intricately connected with the
UIRs of the relativity group. In the realm of this captivating
framework, one is fundamentally engaged with the entirety
of dS spacetime’s global structure. (For a more compre-
hensive understanding of this approach, see Ref. [1] and the
cited references therein.)
From the perspective of cosmological physics, dS

spacetime is not merely a theoretical solution but a dynamic
model capable of describing the Universe’s late-time
evolution under the influence of dark energy. Equally
significant is its role in portraying the inflationary epoch
during the early moments of the Universe. In this context,
in contrast to the former approach to dS physics, the
concept of symmetry breaking assumes a pivotal role
within the framework of dS physics, strictly speaking,
the inflationary scenario. Within the inflationary model,
symmetry breaking is frequently associated with the
behavior of a scalar field known as the “inflaton”.
Initially existing in a symmetric state, this field undergoes
a phase transition as the Universe expands and cools during
inflation, resulting in the breaking of its symmetry and
giving rise to the particles and forces we observe in the
Universe. In this landscape, researchers often operate
within a coordinate system—frequently the dS flat space-
time coordinates—that may not encompass the entirety of
dS spacetime’s global structure. (We refer readers for more
details to Refs. [81–90], for instance.)
The present study should be recognized as an endeavor

within the former perspective. Its primary objective is to
present a coherent formulation of elementary systems—
specifically the partially massless graviton field—within dS
spacetime.
Pursuing this aim, we have successfully quantized the

partially massless graviton field in dS spacetime, associated
with the discrete series UIR Π�

2;1, by applying various
established techniques from previous studies. These
include utilizing the ambient space formalism, constructing
appropriate modes, ensuring dS covariance and Gupta-
Bleuler triplets, constructing the Wightman two-point

function, and ultimately achieving covariant quantization
of the field. One immediate consequence of this construc-
tion validates the widely accepted notion regarding the
light-cone propagation behavior of the partially massless
graviton field in dS spacetime.
Our calculations have uncovered the presence of two

distinct types of logarithmic singularities inherent to the
theory. It is imperative to emphasize that these singularities
manifest exclusively within the nonphysical domain of the
theory, thus carrying no impact on the underlying physics
of the problem.
Given this context, a logical sequence urges us to

investigate the theory’s stability. This pursuit can be
realized through the lens of first-order perturbation theory
within the framework of an interacting QFT. To be precise,
this progression involves a meticulous examination of
whether the partially massless graviton, as described by
the theory, undergoes decay in a dS spacetime. Technically
speaking, this endeavor mandates a comprehensive explo-
ration of the decomposition of the tensor product associated
with the relevant UIRs, as outlined in Ref. [74] (see
Sec. II F). This task, indeed, entails intricate mathematical
calculations at its core, constituting a substantial avenue for
future exploration.
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APPENDIX A: PLANE-WAVE TYPE SOLUTIONS

As mentioned earlier, the QFT construction outlined in
this paper relies technically on dS plane waves, which have
a global definition on the dS hyperboloid MR. In this
appendix, we provide a concise overview of this concept,
focusing on dS scalar waves to avoid unnecessary technical
intricacies while preserving the fundamental concepts.
When examining the scalar wave equation(s) (25) within

the specific allowable ranges for the unified complex
parameter τ, a continuous set of simple solutions, com-
monly known as dS plane waves, becomes prominent.
These waves explicitly read as [45,46]

ϕðxÞ ¼
�
x · ξ
R

�
τ

; ðA1Þ

where x and ξ, respectively, live inMR and in the null-cone
C in R5:
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C ¼ fξ∈R5; ðξÞ2 ≡ ξ · ξ ¼ ηαβξ
αξβ ¼ 0g: ðA2Þ

Here, without delving into mathematical intricacies, we
outline a couple of crucial points regarding the dS waves.
First: The dS plane waves (A1) on the null-cone C can

be completely determined by their values on a well-chosen
curve, referred to as the orbital basis γ ⊂ C. This is because
these waves, as functions of ξ, are homogeneous with the
degree of homogeneity τ. (It is worth noting that the dS
plane waves are also homogeneous with the homogeneity
degree τ on the dS hyperboloid MR ⊂ R5, which is
characterized as a (pseudo-)sphere with x · x ¼ −R2 (where
R is a constant). But, as functions of R5, while they remain
homogeneous, their degree of homogeneity becomes zero
since, in this case, R must be treated as a function of x,
i.e., RðxÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffi
−x · x

p
.)

Second: The dS waves, when viewed as functions
on MR, exhibit multivaluedness and are only locally
defined on connected open subsets of MR. The reason
for their multivaluedness is that the expression x · ξ can
give rise to negative values. They have local definitions
because they exhibit singularity on certain lower-
dimensional subsets of MR, such as the spatial
boundaries x0 ¼ �x4 ⇔ ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2 ¼ R2. To
elaborate, recalling ReðτÞ < 0 [see subsequent discussion
to Eq. (25)], one may associate the boundaries with
ξ ¼ ðξ0 ¼ �ξ4; 0; 0; 0; ξ4Þ∈C, where x · ξ ¼ 0.
Third: By treating the dS waves as distributions, how-

ever, a single-valued global definition can be attained
[45,46]. This involves considering them as the boundary
values (in the distribution sense) of the analytic continu-
ations of solutions to the respective field equation, to
appropriate domains within the complexified dS manifold:

MðCÞ
R ≡ fz ¼ xþ iy∈C5; ðzÞ2 ¼ ηαβzαzβ ¼ −R2g; ðA3Þ

where C5 refers to the ambient complex Minkowski
spacetime. The minimal domains of analyticity required
to obtain a single-valued global definition of the waves are

found to be the “forward” and “backward tubes” of MðCÞ
R ,

respectively defined by [45,46]

T � ¼ fR5 þ iV̊�g ∩ MðCÞ
R ; ðA4Þ

where, as mentioned earlier, the domains V̊� ≡
fy∈R5; ðyÞ2 > 0; y0 ≷ 0g originate from the causal struc-
ture of MR. As such, as far as ξ is restricted to the future
null-cone Cþ ≡ fξ∈R5; ðξÞ2 ¼ 0; ξ0 > 0g, the imaginary
part of the resulting complexified waves ðz · ξ=RÞτ con-
sistently maintains a specific sign, and moreover, z · ξ ≠ 0.
The former property ensures the single-valued determina-
tion of ðz · ξ=RÞτ as follows:�

z · ξ
R

�
τ

¼ exp

�
τ

�
i arg

�
z · ξ
R

�
þ log

���� z · ξR
����
��

; ðA5Þ

where argðz · ξ=RÞ∈ � − π; π½.
Then, taking the boundary value (in the distribution

sense) of the above-complexified waves, we obtain the
single-valued global plane-wave reading of the general
solution (A1):�
x · ξ
R

�
τ

¼ bv

�
z · ξ
R

�
τ

¼
�ðxþ iyÞ · ξ

R

�
τ
����
ξ∈Cþ;y∈ V̊þ;y→0

;

ðA6Þ

where the last term, which symbolically represents the
boundary values (in the distribution sense) of analytic
continuation to the forward-tube T þ of the scalar waves
(A1), explicitly reads

ϕþ
τ;ξðfÞ ¼

Z
MR

c

�ðxþ iyÞ · ξ
R

�
τ
����
ξ∈Cþ;y∈ V̊þ;y→0

fðxÞdμðxÞ

¼
Z
MR

�
c

�
ϑ

�
x · ξ
R

�
þ ϑ

�
−
x · ξ
R

�
eþiπτ

����� x · ξR
����τ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡ϕþ

τ;ξðxÞ

fðxÞdμðxÞ; τ ¼ −1;−2; ðA7Þ

where, in this “Fourier transform”, fðxÞ belongs toDðMRÞ,
which is the space of infinitely differentiable functions with
compact support on MR, dμðxÞ refers to the invariant
measure on MR, ϑ to the Heaviside function, and c to a
real-valued constant that is determined by applying the
local Hadamard condition to the corresponding two-point
function.
Lastly, the fourth and final point to consider: The dS

plane waves are not square integrable with respect to the

Klein-Gordon inner product or else. However, they serve as
generating functions for physically meaningful dS entities,
such as square-integrable eigenfunctions of the dS
quadratic Casimir operator. (Recall that these square-
integrable eigenfunctions give rise to (projective) Hilbert
spaces carrying the dS UIRs.) In this sense, within
dS relativity, the aforementioned plane waves exhibit
similarities to the conventional waves in Minkowskian or
Galilean quantum mechanics, which, by superimposing
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non-square-integrable plane waves, one can construct
physical wave functions (wave packets) in a similar
manner.
For a comprehensive review of the above content,

readers are referred to Ref. [1].

APPENDIX B: TWO-POINT FUNCTION FROM
MAXIMALLY SYMMETRIC BITENORS IN

AMBIENT SPACE

In this appendix, we establish a connection between our
construction and the maximally symmetric bitensors25 that
were introduced by Allen and Jacobson in Ref. [71].
Let σðx; x0Þ denote the (pseudo-)distance on MR, that is,

the distance along the geodesic that links the two points/
events x; x0 ∈MR. (It is important to note that if there is no
geodesic connecting x and x0, then the geodesic distance is
determined by a unique analytic extension.) Technically,
σðx; x0Þ is implicitly given for timelike separated points
x; x0 ∈MR by [46]

cosh

�
σðx; x0Þ

R

�
¼ −

x · x0

R2
≡ Z; ðB1Þ

and for spacelike separated points x; x0 ∈MR, such that
jx · x0j < R2, by [46]

cos

�
σðx; x0Þ

R

�
¼ −

x · x0

R2
≡ Z: ðB2Þ

Any maximally symmetric bitensor living in dS space-
time, with respect to the lines sketched in Ref. [71] by Allen
and Jacobson, can be expressed as a sum of products of the
following three basic tensors:

nμ ¼ ∇μσðx; x0Þ; nμ0 ¼ ∇μ0σðx; x0Þ;
gμν0 ¼ −c−1ðZÞ∇μnν0 þ nμnν0 ; ðB3Þ

where cðZÞ ¼ 1=R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p
, such that the expansion

coefficients are characterized in terms of the geodesic
distance σðx; x0Þ. In this context, a dS rank-2 two-point
function takes the form,

Wμνμ0ν0 ¼ A1ðσÞgμνg0μ0ν0 þA2ðσÞgμμ0g0νν0
þA3ðσÞðgμνnμ0nν0 þ g0μ0ν0nμnνÞ
þA4ðσÞgμμ0nνnν0 þA5ðσÞnμnνnμ0nν0 : ðB4Þ

In terms of the ambient space notations employed in this
paper, the three basic bitensors nμ, nμ0 , and gμν0 , respec-
tively, correspond to

∂ασðx; x0Þ; ∂0β0σðx; x0Þ; θα · θ0β0 : ðB5Þ

To verify this, one just needs to take into account the
restriction to the hyperboloid described by Eq. (26):

(i) When Z ¼ cosðσ=RÞ:

nμ ¼ xα;μ∂ασðx; x0Þ ¼ cðZÞxα;μðx0 · θαÞ; ðB6Þ

nν0 ¼ x0β0 ;ν0∂0β0σðx; x0Þ ¼ cðZÞx0β0 ;ν0 ðx · θ0β0 Þ; ðB7Þ

∇μnν0 ¼ xα;μx0β
0
;ν0θ

ϱ
αθ0γ

0
β0∂ϱ∂

0
γ0σðx; x0Þ

¼ cðZÞ½xα;μx0β0 ;ν0 ðθα · θ0β0 Þ − nμnν0Z�; ðB8Þ

where we recall from Sec. II D that xα;μ ¼ ∂xα=∂Xμ

and x0β0 ;ν0 ¼ ∂x0β0=∂X0ν0 .
(ii) When Z ¼ coshðσ=RÞ, cðZÞ, nμ, and nν0 are multi-

plied by i. As such, for both cases, we have

gμν0 þ ðZ − 1Þnμnν0 ¼ xα;μx0β
0
;ν0 ðθα · θ0β0 Þ: ðB9Þ
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[13] J. M. Lévy-Leblond, J. Math. Phys. (N.Y.) 4, 776 (1963).
[14] J. Voisin, J. Math. Phys. (N.Y.) 6, 1519 (1965); 6, 1822

(1965).
[15] F. Gürsey and T. D. Lee, Proc. Natl. Acad. Sci. U.S.A. 49.2,

179 (1963).
[16] C. Fronsdal, Rev. Mod. Phys. 37, 221 (1965).
[17] C. Fronsdal, Phys. Rev. D 10, 589 (1974).
[18] A. Linde, Particle Physics and In ationary Cosmology

(Harwood Academic Publishers, Chur, 1990).
[19] S. Perlmutter et al., Astrophys. J. 483, 565 (1997); B.

Schmidt et al., Astrophys. J. 507, 46 (1998); A. J. Riess
et al., Astron. J. 116, 1009 (1998).

[20] L. H. Thomas, Ann. Math. 42, 113 (1941).
[21] T. D. Newton, Ann. Math. 51, 730 (1950).
[22] R. Takahashi, Bull. Soc. Math. Fr. 91, 289 (1963).
[23] J. Dixmier, Bull. Soc. Math. Fr. 89, 9 (1961).
[24] C. Martin, Ann. l‘IHP Phys. Théor. 20, 4 (1974).
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