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We construct new solutions of a Uð1Þ gauged Skyrme-Maxwell model of topological degrees Q ≤ 5,
which represent skyrmions coupled to magnetic fluxes. It is found that, generically, in the strong coupling
limit, coupling to the magnetic field results in transformation of the configuration to the toroidally shaped
skyrmions bounded to the local magnetic flux.
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I. INTRODUCTION

The celebrated Skyrme model [1,2] serves as a prototype
of a (3þ 1)-dimensional nonlinear field theory supporting
topological solitons. This model possesses a wide variety
of applications in several areas of physics (for a review,
see [3–6]). It has been suggested [7,8] that the model
may be of relevance for a low energy description of QCD,
as the solitons are interpreted as nucleons and nuclei
with the identification of the topological charge with the
baryon number.
In its simplest form, the Skyrme model contains only

three free parameters that set the length and energy scales
and the mass of the scalar excitations, respectively. It
successfully reproduces a number of qualitative features of
nuclei in surprising accord with experiment [5,9]. However,
the standard version of the Skyrme model is plagued with
problems of prediction of binding energies for baryons and
formation of cluster structures of nuclei.
Various modifications of the Skyrme model were con-

sidered over the last two decades to improve the situation.
Among them are modifications of the potential [10–17],
extended theories that incorporate scalar and vector mesons
[18–25], and holographic models [26–28] inspired by the
Atiyah-Manton construction of skyrmions [29,30]. It has
been also suggested to include in the Lagrangian of the
theory higher-order terms with additional couplings [31–
37] or modify the Skyrme model to the form that supports
self-duality equations [38–40].

The usual pionmass potential of the Skyrmemodel breaks
the symmetry to the SUð2Þ subgroup. This global symmetry
can be gauged; inclusion of the Maxwell term leads to the
Uð1Þ gauged Skyrme model that has been proposed in
[41,42]. This approach is similar to the construction of the
topological solitons in the Uð1Þ gauged Oð3Þ sigma model
in (2þ 1) dimensions [43–45], in the planar Skyrme-
Maxwell model [46–48], and its modifications [49–53].
Static soliton solutions of the Faddeev-Skyrme-Maxwell
theory in 3þ 1 dimensions were discussed in [54,55]. In the
context of the Skyrme model, such a modification was
originally motivated by construction of a semiclassical
model of interaction between a monopole and nucleons,
the so-called Callan-Rubakov effect of the baryon decay
catalysis [56,57]. Notably, extended Skyrme-Maxwell
theory also can be derived in a holographic model via an
expansion of a Yang-Mills field of calorons [58].
In [41,59] it was shown that coupling to the electro-

magnetic field significantly affects properties of the
Skyrme field, even in the sector of topological degree
1. In particular, it violates the spherical symmetry of
the configuration of topological degree 1 and induces a
magnetic moment of the skyrmion. A gauged skyrmion
possesses an electric charge and carries a magnetic flux.
The existence of such solutions relies on the presence of
the potential, and the electrostatic potential is restricted
from above by the value of the pion mass [59]. However,
electrically neutral solutions coupled to a magnetic flux
exist in the limit of zero potential for arbitrary values of
the gauge coupling.
The purpose of the current paper is to extend this

analysis by analyzing how coupling to the magnetic flux
affects the geometrical shape and energy of the static
multisoliton solutions of the Uð1Þ gauged Skyrme model
of topological degrees Q ¼ 1–5.
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This paper is organized as follows. In Sec. II, we
introduce the model and define the topological charge of
the gauged skyrmions. In Sec. III, we define the para-
metrization of the fields to be used in finding the numerical
solutions and introduce reduced axially symmetric Ansätze.
In Sec. IV, we present our full 3D numerical scheme and
discuss the numerical results. Finally, in Sec. V, we present
our conclusions and further remarks.

II. THE MODEL

The Lagrangian density of the (3þ 1)-dimensional,
Uð1Þ gauged massive Skyrme-Maxwell model is defined
as [41,42,59,60]

L ¼ −
1

4
F μνF μν þ f2π

2
Dμϕ

aDμϕa

−
1

4a20
½ðDμϕ

aDμϕaÞ2 − ðDμϕ
aDνϕ

aÞðDμϕbDνϕbÞ�

−m2
πð1 − ϕ0Þ: ð1Þ

Here we employ the Oð4Þ sigma model representation of
the Skyrme field as an S3-valued field ϕa ¼ ðϕ0;ϕkÞ
subject to the constraint ϕa · ϕa ¼ 1. In the context of
application of the Skyrme model to nuclear physics, the
component ϕ0 has the interpretation as a scalar meson,
while the isotriplet ϕk, k ¼ 1, 2, 3 corresponds to the pions.
Note that the inclusion of the potential term is necessary to
stabilize the model both with respect to isorotations [61,62]
and coupling to the electromagnetic field [59].
The electromagnetic field strength tensor is F μν ¼

∂μAν − ∂νAμ, a ¼ 0;…; 3 and the covariant derivative of
scalar field ϕa is defined in terms of the four-potential Aμ

as [41,42]

Dμϕα ¼ ∂μϕα−eAμεαβϕβ; DμϕA ¼ ∂μϕA;

α;β¼ 1;2; A¼ 0;3: ð2Þ
The physical vacuum corresponds to Dμϕα ¼ 0, F μν ¼ 0

and ϕ0 ¼ 1;ϕk ¼ 0.
In natural units the Skyrme constant a0 is dimensionless,

while thepiondecay constantfπ and the pionmass parameter
mπ are of dimension of mass. Two of these parameters may
be scaled away by introducing the energy and length scales
fπ=ð4a0Þ and 2=ða0fπÞ, respectively. The rescaled pion
mass parameter ism ¼ 2mπ=ða0fπÞ and the gauge coupling
becomes g≡ e=a0. Then the rescaled Lagrangian of the
Skyrme-Maxwell model can be written as

L ¼ −
1

2
FμνFμν þDμϕ

aDμϕa −
1

2
ðDμϕ

aDμϕaÞ2

þ 1

2
ðDμϕ

aDνϕ
aÞðDμϕbDνϕbÞ

− 2m2ð1 − ϕ0Þ; ð3Þ

where

Dμϕα ¼ ∂μϕα − gAμεαβϕβ; DμϕA ¼ ∂μϕA;

α; β ¼ 1; 2; A ¼ 0; 3: ð4Þ

The Skyrme-Maxwell model (3) is invariant with respect to
the local Uð1Þ gauge transformations

ϕ1 þ iϕ2 → e−igαðϕ1 þ iϕ2Þ; Aμ → Aμ þ ∂μα; ð5Þ

where α is any real function of coordinates. We will fix the
gauge setting A0ð∞Þ ¼ 0.
The model (3) has a conserved, integer-valued topologi-

cal charge, the degree of the map S3 ↦ S3, which can be
written as

QT ¼
Z

d3xqðr⃗Þ

¼ −
1

12π2

Z
d3xεabcdεijkϕa

∂iϕ
b
∂jϕ

c
∂kϕ

d: ð6Þ

However, such a quantity is not invariant with respect the
Uð1Þ gauge transformations (5). Let us introduce the
quantity

Qg ¼ −
1

24π2

Z
d3xεijkTrðDiUU−1DjUU−1DkUU−1Þ;

ð7Þ

where U ¼ ϕ01þ iϕiτi is the Skyrme field, DiU ¼ ∂iU−
igAi½Qc;U�, Qc ¼ diagð2

3
;− 1

3
Þ is the charge matrix,

and τi are the Pauli matrices. The quantity (7) can be
obtained from the usual topological charge via replacing
the partial derivatives by the covariant derivatives [41,59].
The Uð1Þ gauge covariant generalization of the usual
topological charge (6) associated with Skyrme-Maxwell
theory (3) and the gauge transformation (5) is defined
by subtracting the magnetic contribution Qmag ¼R
d3x ig

32π2
ðεijkFjkÞTrðfτ3; ∂iUgU−1Þ from (7), i.e.,

Q≡Qg −Qmag ¼
Z

d3xqþ
Z

d3x∂iΛi; ð8Þ

where the surface term depends on the boundary conditions
imposed on the fields [41,58],

Λi ¼ −
g
4π2

εijkAjðϕ3∂kϕ0 − ϕ0∂kϕ3Þ: ð9Þ

In the Abelian Skyrme-Maxwell model (3), the flux of Λi is
vanishing, thus Q ¼ QT [41,59].
The stress-energy tensor that follows from (1) is

Tμν ¼ Tμν
ðMÞ þ Tμν

ðSÞ; ð10Þ
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where the electromagnetic contribution is

Tμν
ðMÞ ¼ −2FμσFν

σ þ
ημν

2
FαβFαβ; ð11Þ

and the stress-energy tensor of the Uð1) gauged
skyrmions is

Tμν
ðSÞ ¼ 2½DμϕaDνϕa− ðD½μϕaDα�ϕbÞðD½νϕaDα�ϕbÞ�

−ημν
�
ðDαϕaÞ2−

1

2
ðD½αϕaDβ�ϕbÞ2−2m2ð1−ϕ0Þ

�
:

ð12Þ

For stationary solutions in the static gauge, the
Lagrangian and Hamiltonian of the Skyrme-Maxwell
model can be written, respectively, as

Lstatic ¼ −H1 þH2; Hstatic ¼ H1 þH2; ð13Þ

where H1 and H2 are non-negative terms given by

H1 ¼
1

2
jFijj2þjDiϕaj2þ

1

2
jD½iϕaDj�ϕbj2þ2m2ð1−ϕ0Þ;

H2 ¼ j∂iA0j2þg2A2
0M

2
ϕ; with

M2
ϕ≡

�
ð1þj∂iϕAj2Þjϕαj2þ

1

4
j∂iðjϕAj2Þj2

�
; ð14Þ

where j∂iA0j2 ¼ ∂iA0∂iA0, and so on. Clearly, the term H2

yields the Gauss law. Imposing the Coulomb gauge
∂iAi ¼ 0, we can write the static Maxwell equations of
the system

∂
2
jA0 ¼ g2M2

ϕA0;

∂
2
jAi ¼ −gεαβϕβ½ð1þDjϕaDjϕaÞDiϕα

− ðDjϕaDjϕαÞDiϕa�: ð15Þ

III. Uð1Þ GAUGED SKYRMIONS

Hereafter, we consider the case of vanishing electrostatic
potential A0ðr⃗Þ ¼ 0, so the Gauss law is satisfied trivially.
Consequently, the electric charge vanishes and H2 ¼ 0.
The total static energy of the gauged skyrmions can be
written as

E ¼ E2 þ E4 þ E0 þ Eem; ð16Þ

where

E2 ¼
1

12π2

Z
d3xjDiϕaj2;

E4 ¼
1

12π2

Z
d3x

1

2
jD½iϕaDj�ϕaj2;

E0 ¼
1

12π2

Z
d3x2m2ð1 − ϕ0Þ;

Eem ¼ 1

12π2

Z
d3x

1

2
jFijj2; ð17Þ

and we make use of the standard normalization of the
energy functional by the factor 12π2.
The critical points of the total energy functional (16)

should satisfy the arguments of Derrick’s theorem [63].
Under a scale transformation xi → x0i ¼ λxi, the scalar
fields ϕa and the four-potential transform as ϕa → ϕa

and Aμ → A0
μðx⃗0Þ ¼ λ−1Aμðx⃗Þ. Thus,

EðλÞ ¼ λ−1E2 þ λðE4 þ EemÞ þ λ−3E0; ð18Þ
and

∂
2
λEðλ ¼ 1Þ ¼ 2½E2 þ 6E0� ≥ 0:

The corresponding virial identity follows from the con-
dition ∂λEðλ ¼ 1Þ ¼ 0, it gives E2 þ 3E0 ¼ E4 þ Eem,
which can also can be obtained from (12) using the von
Laue stability condition

R
d3xTi

i ¼ 0 [64,65].
There is a variety of classical multisoliton solutions of the

usual Skyrme model constructed numerically over last three
decades, see [3,4]. As the electromagnetic interaction is
decoupled, the basic unit charge skyrmion represents a
spherically symmetric hedgehog [1,2]. Skyrmions of higher
topological degrees may possess much more complicated
symmetries; the shape of the multisoliton configuration
strongly depends on the particular choice of the potential and
corresponding character of asymptotic decay of the fields.
Coupling to the electromagnetic field yields an additional
interaction: our full 3D numerical simulations confirmed
thatUð1Þ gauged skyrmions of topological degreesQ ¼ 1, 2
are axially symmetric [41,59]. These skyrmions can be
constructed using a general reduced Ansatz [42,61,66,67],

ϕ1þ iϕ2¼ψ1ðr;θÞeinφ; ϕ3 ¼ψ2ðr;θÞ; ϕ0¼ψ3ðr;θÞ;
ð19Þ

where n is an integer that counts the winding of the unit
vector field ψ⃗ ¼ ðψ1;ψ2;ψ3Þ, jψ j2 ¼ 1 in the equatorial
plane. In a more general case, the topological charge of the
axially symmetric skyrmions is given by the product of two
integers,Q ¼ mn, wheren is the phasewindingnumber (19)
and m is a number of twists along the toroidal fundamental
cycle of the torus; see, e.g., [68,69]. For all solutions we are
discussing here, the number of twists m ¼ 1, so Q ¼ n
[42,61,66]. Note that the Ansatz (19) also can be used to
construct saddle point solutions of the Skyrmemodel, which
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represent chains of interpolating skyrmion-antiskyrmions of
topological degree �n [66,68].
Since in the present study we do not consider electrically

charged skyrmions, the gauge field is parametrized by the
magnetic potential solely,

A≡ Aμdxμ ¼ Aφðr; θÞdφ: ð20Þ
All four functions that parametrize the axially symmetric
Ansätze (19) and (20) depend on the radial variable r and
the polar angle θ. Within this Ansatz, the Skyrme-Maxwell
static Lagrangian (13), normalized by the factor 12π2, and
the energy (16) become

L ¼ −
1

6π

Z
dθdrr2 sin θ½F þ L2 þ L4 þ 2m2ð1 − ψ3Þ�;

E ¼ −L; ð21Þ
where

F ≡ 1

r2 sin2 θ

�
A2
φ;r þ

A2
φ;θ

r2

�
;

L2 ≡ ψ2
a;r þ

ψ2
a;θ

r2
þ ψ2

1

ðnþ gAφÞ2
r2 sin2 θ

; ð22Þ

L4 ≡ 1

r2
½ðψ3;θψ2;r − ψ2;θψ3;rÞ2 þ ðψ2;θψ1;r − ψ1;θψ2;rÞ2

þ ðψ3;θψ1;r − ψ1;θψ3;rÞ2�

þ ψ2
1

ðnþ gAφÞ2
r2 sin2 θ

�
ψ2
a;r þ

ψ2
a;θ

r2

�
: ð23Þ

Here a comma denotes partial differentiation, i.e., Aφ;r≡
∂Aφ

∂r , etc. The corresponding static field equations can be
obtained from the variation of the effective Lagrangian (21)
with respect to the functions parametrizing the Ansätze (19)
and (20).
It was pointed out [66] that the solutions of the Skyrme

model constructed via the reduced Ansatz (19) have certain
similarity with hopfions in the Faddeev-Skyrme model
[70–72]. Furthermore, in the Uð1Þ gauged Skyrme model,
time-dependent gauge transformations (5) are associated
with isorotations of the scalar field [42]. Hence, one of the
components of the pion triplet can be set to zero, effectively
truncating the model to the Uð1Þ gauged Faddeev-Skyrme-
Maxwell theory [54,55]. However, there still is topological
difference between such configurations and axially sym-
metric hopfions classified by π3ðS2Þ. Below, we will see
that numerical simulations clearly confirm the distinct
distribution of the fields of the axially symmetric hopfions
and the Uð1Þ gauged skyrmions.

IV. NUMERICAL SCHEME

To find stationary points of the energy functional (16),
we use a suitable combination of the gradient descendent

method, implemented for solving the system of Euler-
Lagrange equations for the scalar field, and the Newton-
Raphson method for solving the Maxwell equation for the
magnetic potential. Generally, we do not impose any
restrictions of symmetry; however, in order to check the
consistency of our numerical calculations, in case of
the axially symmetric solitons with topological charges
Q ¼ 1, 2, we compare the results of full 3D simulations
with reduced solutions of the truncated system (21).
Most of our simulations are performed on cubic grids of

ð121Þ3 points with a lattice spacing Δx ¼ 0.1 and adaptive
step size. We impose Dirichlet boundary conditions ϕa ¼
ð1; 0; 0; 0Þ on the boundary of the cube and make use of a
fourth-order finite difference scheme. The boundary con-
ditions on the magnetic potential are Aϕð0Þ ¼ Aϕð∞Þ ¼ 0.
To avoid local minima of the energy functional (16) for all
charges from 1 to 5, we accept only results that provide the
same global minimizer of E for different initial guesses
generated by the rational map approximation, the product
Ansatz, and the axially symmetric Ansätze (19) and (20).1

We also check the results of our fully three-dimensional
numerical simulations with those obtained by solving the
reduced two-dimensional system of equations for axially
symmetric solutions of degrees 1 and 2. In the latter case,
we put the system on a square domain with 702 points and
map the infinite interval of the variable r onto the compact
radial coordinate x ¼ r

2þr ∈ ½0∶1�.
The gradient flows of the scalar field ELϕa

and the gauge
field ELAa

are

ELϕa
≡ 1

2

�
δLstatic

δϕa
− ϕa

X3
b¼0

ϕb
δLstatic

δϕb

�
; ð24Þ

ELAi
≡ ∂

2
jAi þ gεαβϕβ½ð1þDjϕaDjϕaÞDiϕα

− ðDjϕaDjϕαÞDiϕa�; ELA0
≡ 0; ð25Þ

respectively. Energy minima of the system correspond to
ELϕa

¼ 0; ELAi
¼ 0; the accuracy check of our simula-

tions is to evaluate the root-mean-square deviation of the
Euler-Lagrange gradients

ΔE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X4
a¼0

ðjELϕa
j2 þ jELAa

j2Þ
vuut ; ð26Þ

1The rational map is a powerful Ansatz to constructing a very
symmetric initial field configuration that leads to the global
energy minimizer for the Skyrme model. However, in our
simulations, for Q ¼ 4 and g > 0, these initial settings did not
lead to the global minimizer, which can be obtained by starting
with four Q ¼ 1 skyrmions or two Q ¼ 2 skyrmions combined
through the product Ansatz.
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FIG. 1. Isosurfaces of the total energy density distributions of the gauged skyrmions withQ ¼ 1 (top row) andQ ¼ 2 (bottom row) are
displayed for some values of g for E ¼ 0.08. In each row, all of the solutions are plotted at the same scale.

FIG. 2. Distribution of the magnetic field B⃗ in the x–z plane is displayed for the axially symmetric gauged skyrmions of topological
degrees 1 (left) and 2 (right) for g ¼ 0.5. The length of the plotted vectors is proportional to the magnitude of B⃗=

ffiffiffiffi
B

p
, where B≡ jB⃗j. The

translucent blue surface is a level set of constant total energy density for E ¼ 0.1.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0  0.5  1  1.5  2

E/Qn

g
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.5  1  1.5  2

Eem/Qn

g

2D sim. for Q=1
3D sim. for Q=1
2D sim. for Q=2
3D sim. for Q=2

FIG. 3. The total energy E and the electromagnetic energy Eem of the axially symmetric skyrmions withQ ¼ 1, 2, per unit charge. The
curves and the dots correspond to the results obtained using reduced axially symmetric Ansätze (19) and (20) and with fully three-
dimensional numerical simulations, respectively.
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where N is the number of points of the lattice. Typically,
for our numerically determined minima on a cubic
lattice, we obtain ΔE ∼ 10−8.2 As a further check of our
numerics, we calculate numerically the topological charge
Qn through (6) and compare it to its true integer value Q,
j1 −Qn=Qj ∼ 3 × 10−4. We also checked that the virial
relation is satisfied within 1%–2% accuracy. In the case of
the 2D simulations, the errors are reduced further by an
order of magnitude.

V. NUMERICAL RESULTS

First, we considered axially symmetric gauged sky-
rmions with topological charges Q ¼ 1, 2. As the gauge
coupling gradually increases from g ¼ 0, the energy of the
configuration decreases3 since the local magnetic flux is
formed in the equatorial plane and core of the soliton
shrinks; see Figs. 1 and 2. The position of the circular flux
is associated with a minimum of the magnetic potential Aφ.
The electromagnetic energy is initially increasing, however,
its contribution starts to decrease as g becomes larger than
g ∼ 1, see Fig. 3. The total magnetic flux of the

configuration is zero, and it is coupled to the skyrmion
providing its magnetic moment.
As the coupling becomes stronger, the magnetic poten-

tial develops a plateau in the equatorial plane, where
gAφ þ n ∼ 0. Here the integer n is to the winding number
of the unit vector field ψ⃗ (19). This corresponds to a string
of magnetic flux through the center of the configuration.
The flux is nontopologically quantized in units of 2π and
carries n quanta. It is known that such a situation is
common for all Uð1Þ gauged solitons, like hopfions in

FIG. 4. Isosurfaces of the total energy density of the gauged skyrmion of degree Q ¼ 3 for some set of values of g at E ¼ 0.08. The
bottom row displays the side view of these skyrmions. In each row, all of the solutions are plotted at the same scale.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.5  1  1.5  2

ΔE

g

Q=2
Q=3
Q=4
Q=5

FIG. 5. The binding energy per topological charge unitΔEðgÞ≡
EQ¼1ðgÞ − EQðgÞ=Q of the skyrmions with Q ¼ 2–5. The values
of the energies are shown in the lines plotted in Figs. 3 and 9.

2The accuracy for nontoroidal Q ¼ 4 gauged skyrmions
(g ¼ 0.1;…; 0.6) decreases to ΔE < 6 × 10−5. In addition, in
such a case the maximum values of the modulus of the gradients
(24) over all the lattice points satisfies max jELaj < 8 × 10−4 and
max jELAa

j < 10−7.
3However, the binding energy of the gauged skyrmions per

unit charge increases [41].
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FIG. 6. Isosurfaces of the total energy density of the gauged skyrmion of degree Q ¼ 4 for some set of values of g at E ¼ 0.08. The
bottom row displays the side view of these skyrmions. In each row, all of the solutions are plotted at the same scale.

FIG. 7. Isosurfaces of the total energy density of the gauged skyrmion of degree Q ¼ 5 for some set of values of g at E ¼ 0.08. The
bottom row displays the side view of these skyrmions. In each row, all of the solutions are plotted at the same scale.
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the Faddeev-Skyrme-Maxwell model [54], gauged planar
skyrmions [46–48], and gauged Oð3Þ lumps [43].
Turning now to solitons of higher degrees, we consider

gauged skyrmions with Q ¼ 3–5. In the ungauged limit,
the Q ¼ 3 skyrmion has tetrahedral symmetry; coupling to
the magnetic flux breaks it down. Figure 4 displays the
corresponding isosurfaces of the total energy densities for
the gauged skyrmions for some set of values of the gauge
coupling g up to g ¼ 8. Clearly, the geometrical shape of
theQ ¼ 3 soliton varies from a regular tetrahedron at g ¼ 0

to a torus at g ≤ 0.6. Note that at g ≈ 0.5 the energy density
distribution of a gauged skyrmion takes the shape of a bent
torus, which is exactly the shape of the ground state hopfion
with topological charge 3. As said above, there is an evident
similarity between the axially symmetric solution of the
Skyrme-Maxwell theory and hopfions; the curve of posi-
tions of minima of the component ϕ0 correspond to the
position curve of the hopfion. Interestingly, this similarity
also persists for the charge 3 gauged solitons, which do not
possess axial symmetry.

FIG. 8. Distributions of the magnetic field B⃗ in the x–z plane (left) and in the x–y plane (right) for the gauged skyrmions of topological
degrees 3–5 for g ¼ 0.5. The length of the plotted vectors is proportional to the magnitude of B⃗=

ffiffiffiffi
B

p
, where B≡ jB⃗j. The translucent

blue surface is a level set of constant total energy density for E ¼ 0.1.
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Considering the binding energy of the gauged sky-
rmions, we confirm confirm earlier results that the binding
energy of the gauged skyrmions per unit charge increases
[41]. Figure 5 displays the binding energy of the Q ¼ 2–5
gauged skyrmions vs gauge coupling g. Evidently, it moves
further from the topological bound as Q increases.
Physically, the transformation of a skyrmion from a

configuration with discrete symmetry to the toroidal state
corresponds to a phase transition induced by the axially
symmetric magnetic field. This effect is similar to tran-
sitions to toroidal skyrmions in the Skyrme model with
symmetry breaking potential [69].
The distribution of the magnetic field of the Q ¼ 3

configuration is different from the case of axially sym-
metric skyrmions, see Fig. 8. In the decoupled limit g ¼ 0,
the total energy density distribution is tetrahedrally sym-
metric, and appearance of the magnetic flux that encircles
the skyrmion breaks this symmetry. The total magnetic flux
is zero, and the four lumps at the vertices of the tetrahedron
are bounded to local magnetic fluxes, as displayed in Fig. 8.
As the gauge coupling increases, these local fluxes move
toward the center of the configuration, and they merge into
a single return flux penetrating the center of the gauged
Q ¼ 3 skyrmion as g ≥ 0.6.
Numerical simulations show that qualitatively the same

pattern appears for the gauged skyrmions of higher degrees,
see Figs. 6, 7, and 9. The usualQ ¼ 4 skyrmion for g ¼ 0 is
octahedrally symmetric; the ungaugedQ ¼ 5 configuration
can be approximately described by a bounded system of
4þ 1 skyrmions.
As the gauge coupling increases, the contribution of the

electromagnetic energy is increasing at first, and it is
maximal as g ∼ 1; see Fig. 9. This effect is related to
deformations of the skyrmions and formation of mag-
netic flux.

The structure of the magnetic field follows the pattern
above: in the weak coupling regime, there is a circular
magnetic flux tube, which encircles the skyrmions of
degrees 3–5. This flux is linked to the four return local
fluxes, as seen in the right column of Fig. 8, where the
circular magnetic field crosses the isosurface of total energy
density of E ¼ 0.1. Further increase of the gauge coupling
drives the skyrmions toward an axially symmetric solution
bounded with a toroidal magnetic field with a flux along the
symmetry z axis of the configuration, and the circular
magnetic flux orthogonal to the x–z plane, analogously to
what can be seen for Q ¼ 2 on the right plot in Fig. 2. The
transformation to the toroidal Q ¼ 4 and Q ¼ 5 skyrmions
takes place around g ¼ 0.7 and g ¼ 0.8, respectively.
Clearly, the behavior of the magnetic field is more complex
for non-axially-symmetric gauge skyrmions, and its mag-
nitude tends to be stronger inside the core of the skyrmion.
Figure 8 displays the magnitude and direction of the
magnetic field for g ¼ 0.5.
In Fig. 10 we illustrate transition to toroidal gauged

skyrmions. Here, we visualize the field configurations by
plotting isosurfaces of the field components ϕ0 ¼ −0.9,
ϕ3 ¼ �0.9, and jΦj ¼ 0.9, where Φ≡ ϕ1 þ iϕ2, for
some set of values of the gauge coupling g. The coloring
scheme displays the phase of the component Φ. This
also allows us to compare the toroidal skyrmions with
hopfions, the tubelike isosurface ϕ0 ¼ −0.9 can be set
into correspondence with the position curve of the
soliton, and it is defined as the set of points where the
field ϕ0 is as far as possible from the boundary vacuum
value ϕ0 ¼ 1.
Recall that the topological charge of the toroidal sky-

rmions (6) is given by the product of two integers,Q ¼ mn,
were n is the phase winding number and m is a number of
twists along the fundamental cycle of the torus.
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FIG. 9. The total energy E and the electromagnetic energy Eem of the skyrmions with Q ¼ 3–5, per unit charge. The dots correspond
to the values obtained through fully three-dimensional numerical simulations; the curves are plotted using cubic interpolation and the
data of the fully three-dimensional simulations for g ≤ 0.5, 0.6, 0.7 for, respectively, Q ¼ 3, 4, 5, and the results obtained inside the
axially symmetric Ansatz for g ≥ 0.6, 0.7, 0.8, respectively.
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However, the solutions of the gauged Skyrme model in
the strong coupling limit are different from the conven-
tional axially symmetric hopfion classified by the Hopf
invariant [72,73]. The field components of the toroidal
gauged skyrmions displayed in Fig. 10 do not form linked
or knotted loops.

VI. CONCLUSIONS

The objective of this work is to extend further previous
analysis of the solution of the Uð1Þ gauged Skyrme model
[41,42,59] by considering the solutions with topological
charges up to Q ¼ 5 coupled to the magnetic field. The
gauged skyrmions are topologically stable and they carry a
local magnetic flux that induces magnetic moment of the
configuration.
We show that the backreaction of the magnetic field

strongly affects the usual structure of multisoliton solu-
tions, in particular, the discrete symmetry of ungauged
skyrmions becomes broken due to the presence of a circular

magnetic flux. The transformation to the toroidal sky-
rmions is observed in the strong coupling regime for all
configurations we studied. A similar pattern was also
observed for conventional skyrmions in the model with
symmetry breaking potential [69].
The work here should be taken further by considering the

electrically charged configurations with topological charge
Q > 1; the pattern of evolution of corresponding Q ¼ 1

gauged skyrmion was discussed in our previous work [59].
It might be also interesting to consider gauged skyrmions in
a model with a symmetry breaking potential. We hope we
can address these issues in our future work.
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FIG. 10. Isosurfaces of the field components ϕ0 ¼ −0.9;ϕ3 ¼ �0.9, and jΦj ¼ 0.9, where Φ≡ ϕ1 þ iϕ2, of the Q ¼ 3, 4, 5 gauged
skyrmions for some values of g. The orientation in isospace is visualized using the field coloring scheme for the argument
argðΦÞ∈ ½0; 2πÞ.
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