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Very compact stars seem to be forbidden in general relativity. While Buchdahl’s theorem sets an upper
bound on compactness, further no-go results rely on the existence of two light rings, the inner of which has
been associated to gravitational instabilities. However, little is known about the role of quantum fields in
these strong gravity regimes. Here, we consider the particularly simple model of a constant density star and
we work in the probe approximation where the backreaction is ignored. We show that the trapping of modes
inside the star leads the renormalized stress tensor of conformal field theories to diverge faster than the
classical source in the Buchdahl limit. This leads to the violation of the null energy condition around
the inner light ring. The backreaction of quantum fields in this regime therefore cannot be ignored. This
happens as the star’s surface approaches the Buchdahl radius 9GM=4 rather than the Schwarzschild radius.
The results are independent of the details of the interactions, but contain an ambiguity associated to the
renormalization scheme.

DOI: 10.1103/PhysRevD.108.065006

I. COMPACT RELATIVISTIC STARS

The general relativistic prediction of the existence of
compact objects, such as white dwarfs and neutron stars,
has been confirmed by many observations. Their macro-
scopic properties follow from the Tolman-Oppenheimer-
Volkoff equation. However, quantum theory is essential in
understanding the physics of these stars, as it provides
the ultimate reason for their existence, namely, Fermi’s
exclusion principle.
The question regarding the maximum mass of such

compact object is crucial: it is the main criterion used to
discriminate between what we suspect is a neutron star
or a black hole. Well-known upper limits were set by
Chandrasekhar [1] and Rhoades-Ruffini [2]. A more
generic result, which is independent of the equation of
state of the matter, was established by Buchdahl [3] and
gives an upper bound on compactness in GR. Consider an
isotropic perfect fluid star, with stress tensor

Tμ
ν ¼ diagð−ρ; p; p; pÞ; ð1Þ

on a static, spherically symmetric metric

ds2 ¼ −fðrÞdt2 þ hðrÞdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð2Þ

Assuming in addition that ρ > 0, ∂rρ ≤ 0 and that
Einstein’s equations hold, the requirement that the metric
is everywhere regular leads to

R ≥ 9GM=4; ð3Þ

where R is the radius of the star and M is its mass. The
saturation of the bound is known as the Buchdahl limit.
Notice one can also formulate this bound in a coordinate-
independent way.
A particularly simple solution that manifestly saturates

Buchdahl’s second assumption is the constant-density star
or “Schwarzschild interior metric.” These configurations
have uniform density ρ ¼ 3M=4πR3 throughout the star,
and as is well known they can saturate the Buchdahl
limit (3). Although they are unrealistic models of an
astrophysical object, they are the standard example when
studying the TOV equations.
The metric for this equation of state takes the form (2),

with

fðrÞ ¼
 
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2GM
R

r
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2GMr2

R3

r !
2

; ð4Þ

hðrÞ ¼
�
1 −

2GMr2

R3

�−1
; ð5Þ

and is matched to the usual exterior Schwarzschild vacuum
solution at the sphere’s surface.
The simplicity of these solutions make them an excellent

setup to test quantum field theory (QFT) in the strong
gravity regime. A final motivation to consider this metric
is that it is conformally (Weyl) flat. In fact, the uniform
density metric above is the unique solution to Einstein’s
equations coupled to a static perfect fluid that is confor-
mally flat [4,5]. This will allow us to obtain explicit analytic
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results. We will thus work with this spacetime, and com-
ment about the generality of our results later on.

II. WAVE EQUATION

In order to understand the behavior of quantum fields
in this spacetime, let us begin by first considering the
propagation of classical waves in it. The wave equation for
the uniform density background was first discussed by
Chandrasekhar and Ferrari [6]. For simplicity we take a
massless scalar Φ using the usual decomposition

Φ ¼
X

fωlm; fωlmðxÞ ¼
uðrÞ
r

Ylmðθ;ϕÞe−iωt: ð6Þ

The wave equation□Φ ¼ 0 can be recast in a Schrödinger-
like form:

−∂2r�uþ Vðr�Þu ¼ ω2u; ð7Þ

where we defined the tortoise coordinate r� via

dr�
dr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrÞ=fðrÞ

p
: ð8Þ

The potential Vðr�Þ takes the form

V ¼ 1

r
∂
2
r�rþ

lðlþ 1Þ
r2

f ð9Þ

and is plotted in Fig. 1 for l ¼ 1 and various values
of R=ðGMÞ. The potential at r > R corresponds to the
Schwarzschild vacuum metric and vanishes at infinity. It
connects to the interior of the star with a discontinuous step.
As we can see from Fig. 1, when R > 9GM=4, the

tortoise coordinate has a finite minimum possible value
(dashed lines) corresponding to the center of the star,
because the factor h=f is always regular around r ¼ 0.

Moreover, Vðr�Þ reaches a local minimum greater than zero
and then increases towards the surface.
When R → 9GM=4, however, one has h=f ∼ r−2 and

therefore the domain of r� becomes infinite on both sides,
while Vðr�Þ vanishes at the center of the star. This closely
resembles the situation for black holes, but in that case it is
the horizon that is mapped to r� → −∞. If the star is
sufficiently close to the Buchdahl limit, then the field
modes can thus be trapped inside it, leading to a spectrum
of quasibound states whose magnitudes are amplified close
to the origin.
These properties of the effective potential, together with

the behavior of the tortoise coordinate, suggests that upon
quantization the renormalized stress tensor can become
important in the Buchdahl limit. The rest of our analysis
will be done in a more generic way that depends less on the
specific theory considered.

III. QFT IN CURVED SPACETIME

QFT in curved spacetime has seen significant progress in
the last half century. In the semiclassical approximation,
gravity is still treated classically and one considers
some quantum fields as another dynamical source to
Einstein’s equations,

Rμν −
1

2
gμνR ¼ 8πG

�
Tμν þ hT̂μνi

�
: ð10Þ

We shall denote by T̂μν the operator of the QFT to
distinguish it from the classical source (1).
However, most work in this field has focused on either

cosmology or black holes. Here, we will study the role it
plays for astrophysical compact stars. The question we will
address in this work is whether there exists some generic
feature of QFT, independent of the details of the nuclear
interactions and the quantum states involved, that becomes
important for very compact stars, in the regime of strong
gravitational fields. We will show that there is indeed such
an effect.
We shall focus on the effects of conformally coupled

fields where the computation is easier, taking it as a toy
model for more generic scenarios. We work in 3þ 1
dimensions, but the generalization to even higher dimen-
sions is straightforward. The nonconformal case will be
treated elsewhere.
As is well known, conformally coupled classical matter

has a vanishing trace of its stress tensor. However, its
quantum counterpart develops a trace anomaly. In 3þ 1
dimensions, the vacuum expectation value of the trace of
the renormalized stress tensor for quantum fields propa-
gating in a curved spacetime is

hT̂μ
μi ¼

1

ð4πÞ2 ½cF − aG − d□R�; ð11Þ

FIG. 1. Potential (for l ¼ 1) given in (9), for R=ðGMÞ ¼ 9=4
(blue), 2.3 (orange), and 2.4 (green). The dashed lines mark the
values of r� corresponding to the center of the star in the two
latter cases. A discontinuous jump at the star’s surface matches it
to the exterior vacuum Schwarzschild solution.
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where R is the Ricci scalar, F is the square of the Weyl
tensor, and G is the Gauss-Bonnet invariant. Amongst the
three real coefficients, c > 0 and a > 0 are well understood
and characterize the particular theory in question. On the
other hand, d is not determined by the bare Lagrangian as it
depends on the renormalization scheme, and is closely
related to the quadratic corrections to the gravity action as
we review below. As such, it should be fixed by experi-
ments. For now we will leave d as a fixed but undetermined
constant and proceed with the calculation.
If additionally the metric is conformally flat—as is the

case for the constant-density star—then all components of
the renormalized stress tensor are fixed [7]:

hT̂μνi¼−
a

ð4πÞ2
�
gμν
�
R2

2
−RαβRαβ

�
þ2RμλRν

λ−
4

3
RRμν

�

þ d
ð4πÞ2

�
1

12
gμνðR2−4R;λ

;λÞ−
1

3
ðRRμν−R;μ;νÞ

�
:

ð12Þ

The quantum state chosen for (12) is the vacuum, but this
will not play an important role. A state with finite temper-
ature or with a fixed number of particles would only add
an extra contribution (independent of the curvature) that
remains finite in the Buchdahl limit. The vacuum stress
tensor for the interior of the uniform density star is therefore
given by (12). We now proceed to evaluate it and examine
its properties.

IV. QUANTUM FIELDS IN THE
BUCHDAHL LIMIT

In this section, we describe the main features of the
quantum stress tensor (12) evaluated on the Schwarzschild
interior metric. In particular, we wish to understand its
behavior as we approach the Buchdahl limit

R ¼ ð9=4þ ϵÞGM; ϵ → 0: ð13Þ

We will report the results to leading orders in ϵ.
The Buchdahl limit (13) is a finite distance above

the black hole compactness corresponding to R ¼ 2GM.
Nevertheless, this regime is no less extreme: the Ricci
scalar R of the background metric at the center diverges in
this limit as

Rð0Þ ¼ −
3

R2ϵ
þOð1Þ: ð14Þ

Correspondingly, the central density and pressure of the
classical uniform density star solution behave as

ρð0Þ ¼ 1

3πGR2
þOðϵÞ; ð15Þ

pð0Þ ¼ 1

8πGR2ϵ
þOð1Þ: ð16Þ

Let us contrast this behavior with its quantum counter-
part (12). For generic ϵ, this takes the form

hT̂μ
νi ¼ diagð−hρ̂i; hp̂ri; hp̂θi; hp̂θiÞ; ð17Þ

with hp̂ri ≠ hp̂θi. The radial dependence of the compo-
nents are illustrated in Fig. 2. In the limit ϵ → 0, their
central values scale as

hρ̂ð0Þi ¼ 9d
ð8πR2ϵÞ2 þ

d
6ðπR2Þ2ϵþOð1Þ; ð18Þ

hp̂rð0Þi ¼ hp̂θð0Þi ¼ −
3d

ð8πR2ϵÞ2 þ
2a − d
ð3πR2Þ2ϵþOð1Þ:

ð19Þ

We emphasize that the pressures match only at the center,
and not elsewhere. Moreover, notice that the leading order
of hρ̂i and hp̂i have opposite signs. There is no contribution
from c because the Weyl tensor vanishes.
By comparing (15) and (16) with (18) and (19), we see

that the components of the renormalized stress tensor scale
with higher powers of ϵ than the classical contributions,
and therefore cannot be ignored in the Buchdahl limit.
Furthermore, notice that the leading divergence of the
quantum terms depends only on d: in this regime the
quantum effects are dominated by the scheme-dependent
terms proportional to d, and not by c or a.
The backreaction of quantum effects cannot be neglected

if they become of the same order as the classical ones.
By comparing the classical and quantum central pressures
(16) and (19), this crossover happens at ϵ ∼ jdjðlP=RÞ2,
which corresponds to a pressure p ∼ jdj−1l−4

P and central
curvature R ∼ −jdj−1l−2

P , where lP is the Planck length.

FIG. 2. Radial profile of the three components of hT̂μ
νi, for

a ¼ d ¼ 1=360, ϵ ¼ 0.003, in units whereGM ¼ 1. The location
of the inner light ring is depicted by the dashed line.
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If d ≪ 1, then this corresponds to sub-Planckian lengths
and therefore we cannot trust our semiclassical analysis.
Instead, if d ≫ 1, then the QFT effects cannot be neglected
in this regime. For this specific equation of state, a different,
earlier crossover is found if the energy densities are
compared instead. However, the impact of the constant
energy density on the metric is negligible compared to that
of the diverging central pressure in the Buchdahl limit.
We will not address the problem of full backreaction in

this work. Nevertheless, some general features of a linear-
ized approximation provide useful insight. Consider the
trace of the semiclassical equations (10),

−R ¼ 8πGð−ρþ 3p − hρ̂i þ hp̂ri þ 2hp̂θiÞ; ð20Þ

evaluated at the origin, as we approach the Buchdahl limit.
In the absence of the quantum corrections, the right-hand
side of (20) diverges as ϵ−1 as shown in (14). However, as
we see from (18) and (19), the quantum contributions of the
last three terms scale as −dϵ−2.
If d < 0, then the quantum terms on the right side of (20)

grow without bound with the same sign as the classical
ones. This suggests a runaway: as the curvature increases,
so do quantum effects, which increase the curvature further
and so on. Conversely, if d > 0, then the quantum con-
tributions to the trace have the opposite sign, which
decreases the curvature. This suggests the possible exist-
ence of a backreacted solution, but only for d > 0. Such
an equilibrium would require a small but finite ϵ of the
order discussed above, so the surface of such an object
would lie very close the Buchdahl radius, and far from the
Schwarzschild radius.

V. ROLE OF THE LIGHT RING

Light rings (photon spheres) play a key role in our
analysis. These are defined as regions where null geodesics
form circles, and they always come in pairs due to
topological arguments [8]. For 9GM=4 < R ≤ 3GM, the
above metric develops two light rings located at

rext ¼ 3GM; rint ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3

GM
4R − 9GM
R − 2GM

r
: ð21Þ

The outer ring rext, also present for black holes, corre-
sponds to the usual photon sphere outside the surface of the
star and is unstable: photons crossing it either escape to
infinity or spiral inwards. It has been probed by recent
observations [9–11].
The inner ring rint lies in the interior and is a stable

attractor of null geodesics, meaning that massless fields
remain trapped around it. Notice that it shrinks to the
origin in the Buchdahl limit. As illustrated in Fig. 2, the
magnitude of the quantum stress tensor (12) is maximum at
the center and falls steeply around the inner light ring.
Indeed, in the Buchdahl limit the inner light ring sets the

location at which the field values have dropped roughly by
one order of magnitude, i.e.,

hρ̂ðrintÞi
hρ̂ð0Þi ∼ 0.1 ð22Þ

and similarly for the pressures. This shows that the region
inside the inner photon sphere is where the quantum fields
have most support, which is the quantum analog to the
classical trapping of modes discussed above using the wave
equation. The crossover when the classical and quantum
pressures become comparable corresponds to an inner light
ring of radius r ∼

ffiffiffiffiffiffijdjp
lP.

The inner photon sphere plays yet another important
role: it is the location where the null energy condition
(NEC) is violated. Given a null vector kμ, one defines an
operator by contracting the (total) stress tensor with it

NEC ¼ ðTμν þ hT̂μνiÞkμkν; ð23Þ

where we have included both the classical and quantum
contributions. For classical matter, one expects NEC ≥ 0,
while it is well known that quantum fields can violate this.
In the star’s interior, but far from the inner light ring, the

NEC will be positive, since quantum effects there are
negligible. In order to investigate the behavior of the NEC
in the vicinity of the inner photon sphere as we approach
the Buchdahl bound, we choose the null vector as
kμ ¼ ð1; kr; 0; 0Þ. We then compute (23) inside the star,
in the limit ϵ → 0, keeping fixed the ratio r=rint. This yields

NECðrÞ ¼ 2d
27π2G4R4

r2int − r2

r2int þ r2
þOðϵÞ: ð24Þ

This is effectively “tracking” the NEC in the region
around the inner photon sphere as the configuration
approaches the Buchdahl bound, since rint → 0 in this
limit. The NEC clearly changes sign at the light ring and is
thus violated. Notice that the classical contribution is
subdominant in this limit and is contained in the subleading
orders. On the other hand, choosing kμ along the ðt;ϕÞ
plane does not lead to a violation.
The analysis above posits an interesting question.

Stable light rings have been recently associated with
gravitational instabilities [12,13], which would rule out
ultracompact objects [8]. However, we have shown here
that it is precisely this feature that enhances the quantum
effects there, leading to the violation of energy conditions
and to significant backreaction. Exploring this interaction
at the nonlinear level is an interesting direction.

VI. COMMENTS ON BUCHDAHL’S THEOREM

Buchdahl’s theorem relies on several assumptions as
stated in the introduction. Our results show that QFT in
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curved spacetime violates two of these assumptions,
namely isotropy of the matter and the effective equations
of motion.
As we have seen in (12) and is illustrated in Fig. 2, the

renormalized vacuum stress tensor of the quantum fields is
not isotropic, thus violating one of the assumptions of
Buchdahl’s theorem. Anisotropic versions of Buchdahl’s
bound exist but they require extra assumptions [14–18].
These typically take the form of energy conditions, with the
strength of the bound depending on the strength of the
conditions. Here, we have shown that quantum fields
violate energy conditions in the probe approximation.
We leave it for future work to examine whether the
equations including backreaction violate the assumptions
leading to these generalized theorems.
Second, close to the compactness bound the relevant

equations of motion to solve are (10), rather than the
classical Einstein equations. These differ by the presence of
the quantum source which, as we have shown, becomes the
dominant term in the Buchdahl limit. This contribution
depends explicitly on the curvature tensors, and therefore
the differential equations to solve are of a different nature
than the purely classical ones.
This last feature has an alternative description in terms

of quadratic gravity. For our specific background, we have
shown that among the terms that determine hT̂μνi in (11)
and (12), only those controlled by d diverge faster than the
classical Tμν as ϵ → 0. The ones associated with a diverge
with the same power as the classical terms, but they come
with a coefficient that is very small for astrophysical
objects. Now, as anticipated, d is a scheme-dependent
parameter that can be generated by adding the counterterm
− d

12ð4πÞ2 R
2 to the Lagrangian. This means that our results

can also be interpreted as coming from quadratic correc-
tions to Einstein’s gravity. The Weyl flatness of the
background, then, is not essential to find the leading
terms of hT̂μνi.
This two-faced interpretation is akin to Starobinsky’s

inflation [19], initially formulated in terms of the back-
reaction of quantum fields, then as R2 gravity (in the
Jordan frame) or Einstein gravity coupled to a scalar field
(in the Einstein frame). In the latter picture, the stability of
the scalar field requires the condition d > 0, the same we
found and discussed earlier.
It is worth noticing that Buchdahl’s theorem holds in a

local form as r
GmðrÞ ≥

9
4
, where the radius and mass of the

star are replaced by an arbitrary coordinate radius r and
the Misner-Sharp mass mðrÞ ¼ 4π

R
r
0 drr

2ρ contained
within it, provided the assumptions are met inside that
sphere. For example, the star could consist of an incom-
pressible dense core surrounded by an external crust
obeying a softer equation of state. Our results also apply
to this generalized scenario.

Interesting recent work has also considered quantum
fields in the Buchdahl limit [20–22] in the approximation of
a two-dimensional reduction. This corresponds to the
s-wave (l ¼ 0) sector, and leaves the stress tensor unde-
termined up to an arbitrary function. Our results differ from
theirs in that (12) fully captures the (3þ 1)-dimensional
features, leaving no functional freedom. For other appli-
cations of similar techniques see [23–25].

VII. SUMMARY

We have investigated the universal behavior of QFT in
the interior of very compact stars. A useful arena to probe
this is the strong gravity regime close to Buchdahl’s limit
that, classically, sets an upper bound on the compactness of
static, spherically symmetric spheres in general relativity.
As a proxy for this, we have worked with the constant-
density Schwarzschild interior solution.
Motivated by the trapping of classical waves in this

metric close to Buchdahl’s limit, we have studied quantum
fields propagating on this background in the approximation
of no backreaction. Exploiting the conformal flatness of
this solution, we have evaluated the full renormalized stress
tensor (12) for conformal field theories. This depends on
two coefficients a and d, the latter of which is not fixed by
the theory in question.
The vacuum renormalized stress tensor (17) is not

isotropic, since the radial and angular pressures are differ-
ent. The sign of the energy density is opposite to that of the
pressures. Its components acquire their maximum magni-
tude at the origin, and fall steeply around the inner light
ring, as shown in (22).
As we approach the Buchdahl limit, the d term of the

renormalized stress tensor (18) and (19) diverges faster than
the classical source (15) and (16), meaning that quantum
fields respond stronger to changes in compactness than
their classical counterpart. The crossover when classical
and quantum contributions are of the same order happens
when the curvature radius is ∼

ffiffiffiffiffiffijdjp
lP. The radial null

energy condition—including both classical and quantum
contributions—changes sign at the inner photon sphere as
shown in (24), and is thus violated inside the star. Whether
the scales involved are Planckian or not depends on the
value of d. If d ≪ 1, then we cannot trust our semiclassical
analysis. On the other hand, if d ≫ 1, the effects of the QFT
cannot be ignored in this regime.
We emphasize that the enhancement of quantum

effects discussed here happens as the surface of the star
approaches the Buchdahl radius 9GM=4 instead of 2GM.
Moreover, the effect of the quantum fields is localized in
a small region around the center—the inner light ring—
and not the surface. This is different from ultracompact
objects close to the Schwarzschild radius. There, the
renormalized stress tensor in the Boulware vacuum is
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well known to diverge at the surface as the star
approaches the black hole limit [26].
The isotropy assumption used in Buchdahl’s theorem is

violated by vacuum quantum fields. Whether the conditions
leading to the anisotropic generalizations of this bound
hold or not requires further investigation.
We have not attempted to solve the semiclassical

equations (10) here. Nevertheless, our results suggests that
if d > 0, quantum fields act by decreasing the curvature,
suggesting that a self-consistent solution to these equations
might exist that avoids curvature singularities.

It is intriguing to wonder whether quantum physics may
play yet another, unexpected, role in the determination of
the maximum mass of compact stars.
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