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We study fermionic modes localized on the static spherically symmetric self-gravitating non-Abelian
monopole in the SUð2Þ Einstein-Dirac-Yang-Mills-Higgs theory. We consider dependence of the spectral
flow on the effective gravitational coupling constant and show that, in the limiting case of transition
to the Reissner-Nordström black hole, the fermion modes are fully absorbed into the interior of the black
hole.
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I. INTRODUCTION

Various black holes with localized matter fields, which
circumvent the no-hair theorem (see, e.g., [1–3] and
references therein), are rather a common presence in the
landscape of gravity solutions. The most well-known
examples in (3þ 1)-dimensional asymptotically flat space-
time are static hairy black holes with spherically symmetric
event horizon in the SUð2Þ Einstein-Yang-Mills theory
[4–6], black holes with Skyrmion hairs [7–9], and black
holes inside magnetic monopoles [10–12]. Various gener-
alizations of solutions of that type with different types
of hairs were considered over last decade. In particular,
there are spinning black holes with scalar hairs both in
the Einstein-Klein-Gordon theory [13,14] and in the

nonlinear O(3) sigma model [15], dyonic black holes in
Einstein-Yang-Mills-Higgs theory [16,17], and black holes
with axionic hairs [18,19]. There are also hairy black holes
supporting the stationary Proca hair [20] and electrostatic
charged black holes [21–23].
In most cases, such solutions can be viewed as a small

black hole immersed inside a localized field configuration,
the horizon radius rh cannot be arbitrary large. The limiting
case of the event horizon shrinking to zero corresponds to
the regular self-gravitating lump, which may also possess a
flat space solitonic limit. The corresponding solutions may
represent a topological soliton, like monopoles [24,25] and
Skyrmions [26,27], or a nontopological solitons, like
Q-balls [28–30]. There is also another class of spinning
hairy black holes which do not possess the solitonic limit,
like black holes with stationary Klein-Gordon hair [13,14]
or black holes with Yang-Mills hair [4–6].
On the other hand, some of hairy black holes with finite

horizon radius may bifurcate with the vacuum black holes,
as it happens, for example, with the black holes with
monopole hair, they smoothly approach the extremal
Reissner-Nordström solution [10–12,31]. Another scenario
is that there is a mass gap between hairy black holes and
corresponding vacuum solutions with an event horizon.
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This situation takes place for black holes with Skyrmion
hairs [7–9] and for the black holes with pure Yang-Mills
hairs on the Schwarzschild background [4–6].
A notable exception in the variety of asymptotically flat

solutions of general relativity in (3þ 1) dimensions, which
circumvents the no-hair theorems, is a missing class of
black holes with fermionic hairs. Although there are regular
localized solutions of the Einstein-Dirac and Einstein-
Maxwell-Dirac equations [32–38], all attempts to extend
these solutions to the case of finite event horizon has been
failed: the spinor modes, which are gravitationally bound in
the black hole spacetime decay due to the absence of
superradiance mechanism for the Dirac field [39]. On the
other hand, black holes with fermionic hairs are known to
exist in the gauged d ¼ 4; 5 N ¼ 2 supergravity [40,41];
here the N ¼ 2 extremal black holes represent 1=2
Bogomolnyi-Prasad-Sommerfield (BPS) states [42] with
a set of fermion zero modes. Appearance of these modes is
related with remarkable relation between the topological
charge of the field configuration and the number of
zero modes, exponentially localized on a soliton: the
fundamental Atiyah-Patodi-Singer index theorem [43]
requires one normalizable fermion zero mode per unit
topological charge. Recently, massless electroweak fer-
mions in the near horizon region of black hole we discussed
in Ref. [44].
The fermion modes localized on a soliton are well

known and are exemplified by the spinor modes of the
kinks [45,46], vortices [47,48], Skyrmions [49,50], and
monopoles [46,51,52]. In supersymmetric theories the
fermion zero modes are generated via supersymmetry
transformations of the boson field of the static soliton;
breaking of supersymmetry yields a spectral flow of the
eigenvalues of the Dirac operator with some number of
normalizable bounded modes crossing zero. However, little
is known about evolution of the bounded fermionic modes
in the presence of gravity, especially as the self-gravitating
soliton approaches the critical limit and bifurcates with a
black hole.
In this Letter we investigate numerically a self-

gravitating non-Abelian monopole-fermion system with
back-reaction and elucidate the mechanism for disappear-
ance of the fermionic modes. Our computations reveal that
as the BPS monopole bifurcates with the extremal
Reissner-Nordström solution, the fermionic modes become
absorbed into the interior of the black hole. Further, we
show that this observation also holds for non-BPS monop-
oles with localized nonzero modes.

II. THE MODEL

We consider the (3þ 1)-dimensional SUð2Þ Einstein-
Yang-Mills-Higgs system, coupled to a spin-isospin field
ψαi. The model has the following action (we use natural
units with c ¼ ℏ ¼ 1 throughout):

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

R
16πG

−
1

2
TrðFμνFμνÞ

þ TrðDμϕDμϕÞ − λ

4
Trðϕ2 − ϕ2

0Þ2 þ Lsp

�
; ð1Þ

where R is the scalar curvature, G is Newton’s gravita-
tional constant, g denotes the determinant of the metric
tensor, and the field strength tensor of the gauge field
Aμ ¼ 1

2
Aa
μτ

a is

Fμν ¼ ∂μAν − ∂νAμ þ ie½Aμ; Aν�;

where a ¼ 1, 2, 3 is a color index, μ, ν ¼ 0, 1, 2, 3 are
spacetime indices, and τa are the Pauli matrices. The
covariant derivative of the scalar field in adjoint represen-
tation ϕ ¼ ϕaτa is

Dμϕ ¼ ∂μϕþ ie½Aμ;ϕ�;

where e is the gauge coupling constant. The scalar potential
with a Higgs vacuum expectation value ϕ0 breaks the
SUð2Þ symmetry down to Uð1Þ and the scalar self-
interaction constant λ defines the mass of the Higgs field,
Ms ¼

ffiffiffi
λ

p
ϕ0. The gauge field becomes massive due to the

coupling with the scalar field, Mv ¼ eϕ0.
Bosonic sector of the model (1) is coupled to the Dirac

isospinor fermions ψαi with the Lagrangian [46]

Lsp ¼
{
2
ðð=̂D ψ̄Þψ − ψ̄ =̂DψÞ −mψ̄ψ −

{
2
hψ̄γ5ϕψ ; ð2Þ

where m is a bare mass of the fermions, h is the Yukawa
coupling constant, γμ are the Dirac matrices in the standard
representation in a curved spacetime, γ5 is the correspond-
ing Dirac matrix defined in the Appendix, =̂D ¼ γμD̂μ and
the isospinor covariant derivative on a curved spacetime is
defined as (see, e.g., Ref. [39])

D̂μψ ¼ ð∂μ − Γμ þ ieAμÞψ :

Here Γμ are the spin connection matrices [39]. Explicitly, in
component notations, we can write

D̂μψαi ≡
�
δijð∂μ − ΓμÞ −

{e
2
ðτaÞijAa

μ

�
ψαi

with the group indices i, j taking the values 1, 2 and the
Lorentz index α takes the values 0…3.
Variation of the action (1) with respect to the metric leads

to the Einstein equations

Rμν −
1

2
gμνR ¼ 8πG

h
ðTμνÞYM þ ðTμνÞϕ þ ðTμνÞs

i
ð3Þ

with the pieces of the total stress-energy tensor
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ðTμνÞYM ¼ −Fa
μαFa

νβg
αβ þ 1

4
gμνF2;

ðTμνÞϕ ¼Dμϕ
aDνϕ

a − gμν

�
1

2
Dαϕ

aDαϕa −
λ

4
ðϕ2 −ϕ2

0Þ2
�
;

ðTμνÞs ¼
{
4

h
ψ̄γμðD̂νψÞ þ ψ̄γνðD̂μψÞ

− ðD̂μψ̄Þγνψ − ðD̂νψ̄Þγμψ
i
− gμνLsp:

The corresponding matter field equations are

DνFaνμ ¼ −eϵabcϕbDμϕc −
e
2
ψ̄γμσaψ ;

DμDμϕa þ λϕaðϕ2 − ϕ2
0Þ þ {hψ̄γ5σaψ ¼ 0;

{=̂Dψ − {
h
2
γ5σaϕaψ −mψ ¼ 0: ð4Þ

III. EQUATIONS AND SOLUTIONS

Working within the above model, in this section we
present general spherically symmetric equations and solve
them numerically for some values of system parameters.

A. The Ansatz

For the gauge and Higgs field we employ the usual static
spherically symmetric hedgehog Ansatz [24,25]

Aa
0 ¼ 0; Aa

i ¼ εaik
rk

er2
½1 −WðrÞ�; ϕa ¼ ra

er
HðrÞ:

ð5Þ
The spherically symmetric Ansatz with a harmonic time

dependence for the isospinor fermion field localized by the
monopole can be written in terms of two 2 × 2 matrices
χ and η [46,53] as

ψ ¼ e−{ωt
�
χ

η

�
with χ ¼ uðrÞffiffiffi

2
p

�
0 −1
1 0

�
;

η ¼ {
vðrÞffiffiffi

2
p

�
sin θe−{φ − cos θ

− cos θ − sin θe{φ

�
:

Here uðrÞ and vðrÞ are two real functions of the radial
coordinate only and ω is the eigenvalue of the Dirac
operator.
For the line element we employ Schwarzschild-like

coordinates, following closely the usual consideration of
gravitating monopole (see, e.g., Refs. [11,12])

ds2 ¼ σðrÞ2NðrÞdt2 − dr2

NðrÞ − r2ðdθ2 þ sin2 θdφ2Þ: ð6Þ

The metric function NðrÞ can be rewritten as NðrÞ ¼
1 − 2GμðrÞ

r with the mass function μðrÞ; the ADM mass of
the configuration is defined as M ¼ μð∞Þ. The above
metric implies the following form of the orthonormal
tetrad:

eaμ ¼ diag

�
σ

ffiffiffiffi
N

p
;
1ffiffiffiffi
N

p ; r; r sin θ

�
;

such that ds2 ¼ ηabðeaμdxμÞðebνdxνÞ, where the Minkowski
metric ηab ¼ ðþ1;−1;−1;−1Þ and γμ ¼ eμaγ̂a with γ̂a

being the usual flat space Dirac matrices.

B. Equations

Substitution of the Ansatz (5) and (6) into the general
system of equations (3) and (4) yields the following set of
six coupled ordinary differential equations for the functions
W;H; u; v; N; σ (here the prime denotes differentiation
with respect to the radial coordinate, σ0 ¼ dσ

dr, etc.):

σ0

σ
¼ α2

�
2
W02

x
þ xH02 −

2W þ hxH
N

uvþ 2ω
xðu2 þ v2Þ
N3=2σ

−m
xðu2 − v2Þ

N

�
; ð7Þ

N0 þ 1

x
ðN − 1Þ ¼ −α2

�
2
NW02

x
þ xNH02 þ ð1 −W2Þ2

x3
þ 2

W2H2

x
þ β2

2
xð1 −H2Þ2 þ 2ω

xðu2 þ v2Þffiffiffiffi
N

p
σ

�
; ð8Þ

W00 þ
�
N0

N
þ σ0

σ

�
W0 þ ð1 −W2Þ

Nx2
W ¼ WH2

N
þ xuv

N
; ð9Þ

H00 þ
�
2

x
þ N0

N
þ σ0

σ

�
H0 − 2

W2H
Nx2

þ β2

N
ð1 −H2ÞH − 2h

uv
N

¼ 0; ð10Þ

u0 þ u

�
−

Wffiffiffiffi
N

p
x
−
h
2

Hffiffiffiffi
N

p þ 1

4

N0

N
þ 1

x
þ 1

2

σ0

σ

�
þ v

�
ω

Nσ
þ mffiffiffiffi

N
p

�
¼ 0; ð11Þ

v0 þ v

�
Wffiffiffiffi
N

p
x
þ h

2

Hffiffiffiffi
N

p þ 1

4

N0

N
þ 1

x
þ 1

2

σ0

σ

�
− u

�
ω

Nσ
þ mffiffiffiffi

N
p

�
¼ 0: ð12Þ
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Here we define a new dimensionless radial coordinate,
x ¼ eϕ0r, and three rescaled effective coupling constants
α2 ¼ 4πGϕ2

0; β
2 ¼ λ

e2 ; h̃ ¼ h
e. The scaled bare mass para-

meter and the eigenfrequency of the fermion field are m̃ ¼
m
eϕ0

and ω̃ ¼ ω
gϕ0

, respectively. The fermion field scales as

ψ → ψ=ð ffiffiffi
e

p
ϕ3=2
0 Þ. To simplify the formulas, we will drop

the tilde notation henceforth. Also, in what follows, we
restrict ourselves to the case of fermions with zero bare
mass setting m ¼ 0. Hence, the solutions depend essen-
tially on three dimensionless parameters given by the mass
ratios

α ¼
ffiffiffiffiffiffi
4π

p Mv

eMPl
; β ¼ Ms

Mv
; h ¼ 2Mf

Mv
;

where MPl ¼ G−1=2 is the Plank mass and Mv ¼ eϕ0,
Ms ¼

ffiffiffi
λ

p
ϕ0 and Mf ¼ hϕ0=2 are the masses of the gauge

field, Higgs field, and fermion field, respectively.
The system of equations (7)–(12) is supplemented by the

normalization condition of the localized fermion mode1

Z
dVψ†ψ ¼ 4π

e2

Z
∞

0

ũ2 þ ṽ2ffiffiffiffi
N

p x2dx ¼ 1: ð13Þ

Note that, as ω ≠ 0, the metric field σ cannot be
eliminated from the system (7)–(12), as is done, for example,
for a self-gravitating monopole (see, e.g., Ref. [1]).
The system (7)–(12) admits embedded Reissner-

Nordström (RN) solution [54,55]; for the case of unit
magnetic charge it reads

σ ¼ 1; μðxÞ ¼ μ∞ −
α2

2x
; W ¼ 0;

H ¼ 1; u ¼ v ¼ 0: ð14Þ
A horizon occurs when NðxÞ → 0, in the Schwarzschild-
like parametrization it happens at some finite critical value
of x ¼ xcr ¼ αcr.

C. Numerical results

The system (1) possesses two limits. The flat space
monopole corresponds to the case α ¼ 0; further, setting
β ¼ 0, yields the familiar self-dual BPS solution [56,57]
(see also Ref. [58] for a review),

WðxÞ ¼ x
sinh x

; HðxÞ ¼ coth x −
1

x
: ð15Þ

There is a remarkable flat space solution for the back-
ground isospin fermion zero (ω ¼ 0) mode [46,53]. Indeed,
in this case the last pair of equations (7)–(12) is decoupled,
and it is reduced to

u0 þ u

�
1 −W

x
−
h
2
H

�
¼ 0;

v0 þ v

�
1þW

x
þ h

2
H

�
¼ 0:

Using the vacuum boundary conditions, we can see that the
linearized asymptotic equations for the spinor components
approaching the vacuum are

u0 −
hu
2

þ ωv ≈ 0; v0 þ hv
2
− ωu ≈ 0:

Therefore, gravitationally localized fermion modes with
exponentially decaying tail may exist if ω2 < h2=4.
The normalizable solution for the localized zero mode is

v ¼ 0; u ∼ exp

�
−
Z

dx0
�
1 −Wðx0Þ

x0
−
h
2
Hðx0Þ

��
;

and it exists only for nonzero negative values of the scaled
Yukawa couplingh. For example, settingh ¼ −2 andmaking
use of the exact BPS monopole solution (15), we obtain

v ¼ 0; u ¼ 1

cosh2ðx=2Þ : ð16Þ

In our numerical calculations we used these closed form BPS
solutions as a input.
Another limit h → 0 while β is kept fixed, corresponds to

the decoupled fermionic sector. In such a case the well
known pattern of evolution of the self-gravitating monopole
is recovered, a branch of gravitating solutions emerges
smoothly from the flat space monopole as the effective
gravitational coupling α increases from zero and β remains
fixed [10–12]. Along this branch the metric function NðxÞ
develops a minimum, which decreases monotonically.
The branch terminated at a critical value αcr at which
the gravitating monopole develops a degenerate horizon
and configuration collapses into the extremal Reissner-
Nordström black hole, as displayed in the left panel of
Fig. 1. A short backward branch of unstable solutions arises
in the BPS limit β ¼ 0 at α ¼ αmax, it bends backwards and
bifurcates with the branch of extremal RN solutions of unit
magnetic charge at αcr < αmax [10]. Note that the ADM
mass of the monopole coupled to the fermion zero mode
remains the same as the mass of the pure self-gravitating
monopole; this is because the nonzero spinor component
uðxÞ is decoupled and there is no backreaction of the
fermions, see below.
Generally, the system of mixed order differential equa-

tions (7)–(12) can be solved numerically together with
constraint imposed by the normalization condition (13).
The boundary conditions are found by considering the
asymptotic expansion of the solutions on the boundaries of
the domain of integration together with the assumption of
regularity and asymptotic flatness. Explicitly, we impose1In our numerical calculations we fix e ¼ 0.689.
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Nð0Þ ¼ 1; Wð0Þ ¼ 1; Hð0Þ ¼ 0; vð0Þ ¼ 0; ∂xuð0Þ ¼ 0; ∂xσð0Þ ¼ 0;

Nð∞Þ ¼ 1; Wð∞Þ ¼ 0; Hð∞Þ ¼ 1; vð∞Þ ¼ 0; uð∞Þ ¼ 0; σð∞Þ ¼ 1: ð17Þ

Consider first the evolution of the fermion zero mode
localized on the self-gravitating BPS monopole. Note that
since both the bare mass of the fermion field and the

eigenvalue of the Dirac operator are zero, there is no
backreaction of the fermions on the monopole, the system
of equations (7)–(12) becomes decomposed into three

FIG. 1. Left panel: the dependence of the ADMmassM of the gravitating monopole on the effective gravitational coupling α is shown
for β ¼ 0 and β ¼ 1 at h ¼ −1 and ω ¼ 0. Right panel: the same dependence is shown for the bounded monopole-fermion system with
nonzero (positive and negative) eigenvalues ω for β ¼ 1 and h ¼ 1, 1.5. For comparison, in both panels, the mass of the extremal
Reissner-Nordström black hole of unit charge is also shown.

FIG. 2. The profile functions of the solutions of the system (7)–(12) in the BPS limit β ¼ 0 are shown as functions of the compactified
radial coordinate x̄ ¼ x=ð1þ xÞ for some set of values of the effective gravitational coupling α at ω ¼ 0 and h ¼ −1. The spinor
component v always remains zero.
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familiar coupled equations for self-gravitating mono-
pole [10–12] and two decoupled equations for the compo-
nents of the localized fermion mode.
The fundamental branch of gravitating BPS monopoles

with bounded fermionic zero mode smoothly arise from the
flat space configuration (15) and (16) as the effective
gravitational constant α is increased above zero. This
branch reaches a limiting solution at maximal value

αmax ¼ 1.403, here it bifurcates with the short backward
branch which leads to the extremal RN black hole with unit
magnetic charge, see Fig. 1.
In Fig. 2 we displayed the corresponding solutions for

some set of values of the effective gravitational coupling α
at h ¼ −1 and β ¼ 0. With increasing α the size of the
configuration with localized modes is gradually decreasing.
As the critical value of α is approached, the minimum of the

FIG. 3. The profiles of the spinor and metric functions of the solutions of the system (7)–(12) are shown as functions of the
compactified radial coordinate x̄ ¼ x=ð1þ xÞ for some set of values of the effective gravitational coupling α at h ¼ 1, β ¼ 1. The left
panel shows the solutions for ω > 0 and the right one for ω < 0.
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metric function NðxÞ tends to zero at x ¼ xcr. The metric
becomes splitted into the inner part, x < xcr and the outer
part, x > xcr separated by the forming horizon. The Higgs
field is taking the vacuum expectation value in exterior of

the black hole while the gauge field profile function WðxÞ
trivializes there, so the limiting configuration corresponds
to the embedded extremal RN solution (14) with a
Coulomb asymptotic for the magnetic field. At the same
time, the fermion field becomes absorbed into the interior
of the black hole, see Fig. 2.
Apart from the zero mode, the system of equations (7)–

(12) supports a tower of regular normalizable solutions for
fermionic modes with ω ≠ 0; jωj < jh=2j. Here, both
components u and v are nonzero, and for h < 0 they
posses at least one node while for h > 0 they are nodeless.
These solutions can be obtained numerically, now we have
to solve the full system of coupled differential equa-
tions (7)–(12) imposing the boundary conditions (17).
Note that this system is not invariant with respect to
inversion of the sign of ω. Indeed, it is seen in
Figs. 3 and 4, which display the metric components
NðxÞ, σðxÞ and the fields uðxÞ, vðxÞ, WðxÞ, HðxÞ for some
set of values of the gravitational coupling α and fixed β ¼ 1

FIG. 4. The profiles of the gauge and scalar functions of the solutions of the system (7)–(12) are shown as functions of the
compactified radial coordinate x̄ ¼ x=ð1þ xÞ for some set of values of the effective gravitational coupling α at h ¼ 1, β ¼ 1. The left
panel shows the solutions for ω > 0 and the right one for ω < 0.

FIG. 5. Normalized energy of the localized fermionic states as a
function of the Yukawa coupling h for fixed β ¼ 1 and several
values of α indicated by the numbers near the curves. The red
dashed lines correspond to the continuum threshold jωj ¼ jh=2j
in the limit α → 0. The blue lines correspond to the curves linked
to the extremal RN black hole at some hcr as ω → 0. Bold red
dots indicate the critical values hcr given in Table I. TABLE I. Critical values αcr at which ω → �0 for some set of

values of the Yukawa coupling h (cf. the red bold dots in Fig. 5).

h 0.25 0.5 0.7 1.0 1.5

αcrðω → þ0Þ 1.106 1.102 1.10 1.095 1.09
αcrðω → −0Þ 1.185 1.187 1.191 1.193 1.199
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and h ¼ 1, that, as ω → þ0 and ω → −0, the configura-
tions approach the RN limit in a different way.
In the flat space limit the fermion mode becomes

delocalized as jωj → jh=2j, while increasing of the gravi-
tational coupling stabilizes the system. Both the ADMmass
of the configuration and the eigenvalue ω, which is defined
from the numerical calculations, are decreasing as α
increases, see the right panel of Fig. 1. The evolution
scenario depends generically on the values of the param-
eters of the model. For example, setting β ¼ 1 and h ¼ 1,
we observe that there are two branches of solutions which
are linked to the negative and positive continuum: they
end at the critical value αcr ≈ 1.095 as ω → þ0, and at
αcr ≈ 1.193 as ω → −0 (cf. Fig. 5 and Table I). In both
cases the configuration reaches the embedded extremal RN
solution (14) in a way which is qualitatively similar to that
of the BPS monopole with localized fermion zero mode
discussed above. As α tends to the critical value, the
eigenvalue ω approaches zero and the fermion field is fully
absorbed into interior of the forming black hole.
In Fig. 5 we plot the normalized energy of the localized

fermionic states as a function of the Yukawa coupling
constant h. Having constructed some set of solution for
different values of α, the following scenario becomes
plausible. As the Yukawa coupling increases from zero,
while both β and α are kept fixed, a branch of normalizible
nonzero fermion modes emerges smoothly from the
self-gravitating monopole. The energy of the localized

fermionic states is restricted as jωj < jh=2j, as the gravi-
tational coupling remains relatively weak, the modes
remain close to the continuum threshold.
The spectral flow is more explicit as the coupling α

becomes stronger, see Fig. 5. Increase of the Yukawa
coupling, which yields the mass of the fermionic states,
leads to an increase of eigenvalues ω. However,
an interesting observation is that at some critical value
of the parameter h, the energy of the localized mode
approaches some maximal value. As the Yukawa coupling
continue to grow, the corresponding eigenvalue starts to
decrease, it tends to zero as some maximal value hcr. Again,
in this limit the configuration approaches the embedded RN
solution (14) and the fermion fields are again fully
absorbed into interior of the forming black hole. The
pattern is illustrated in Fig. 5, where two blue curves
display the spectral flow of both positive and negative Dirac
eigenvalues ω for α ¼ 1.09 and α ¼ 1.185, respectively. In
the limiting case ω → þ0 one has hcr ≈ 1.5 (for α ¼ 1.09)
and when ω → −0 we have hcr ≈ 0.25 (for α ¼ 1.185).
The general scenario is that, depending on the value of

the Yukawa coupling constant h, there exist a critical value
of the gravitational coupling αcr at which the spectral flow
approaches the limit ω → �0 and the configuration runs to
the embedded RN solution (14). Some corresponding
values are given in Table I, and they are also displayed
by the bold red dots in Fig. 5. Once again, each particular
value of the Yukawa coupling gives rise to two distinct

FIG. 6. The profile functions of the gauge fieldWðxÞ, the scalar field HðxÞ, and the metric functions NðxÞ and σðxÞ of the gravitating
non-BPS monopole (h ¼ 0) and of the monopole-fermion system (h ¼ 5) are shown as functions of the compactified radial coordinate
x̄ ¼ x=ð1þ xÞ at α ¼ 1 and β ¼ 1.
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spectral flows approaching the embedded RN solution as
ω → �0 at two different values of αcr.
Finally, we note that the system of equations (7)–(12)

possesses two characteristic limiting cases, h → ∞ and
β → ∞. First, for a fixed value of β and increasing Yukawa
coupling, the backreaction of the localized fermions
becomes stronger, the energy of the gravitating bounded
fermionic mode increases and the profile functions of the
monopole are significantly deformed, see Fig. 6. We
observe that an increase of the Yukawa coupling moves
the configuration closer to the RN solution (see the bottom
plots of Fig. 6). Note that deformations of the configuration
caused by its coupling with massive fermion modes may
produce a number of interesting effects related with back-
reaction of the fermions [59–62].

Second, as the scalar field becomes verymassive, the core
of the monopole shrinks and in the limit β → ∞ the Higgs
field is taking its vacuum expectation value everywhere in
space apart the origin. One can expect that, for the inter-
mediate range of values of β, the scenario reported above for
the β ¼ 1, should persist. Our numerical results confirm that
an increase of the scalar coupling β decreases the critical
value of the Yukawa coupling h at which the configuration
approaches the extremal Reissner-Nordström solution.
However, for relatively large values of β, the pattern of
evolution of the self-gravitating monopole becomes differ-
ent [10–12,31,63]. One might expect also that the behavior
of the fermion field could be different in the large-β regime.

IV. CONCLUSIONS

The objective of this work is to investigate the fermionic
modes localized on the static spherically symmetric self-
gravitating non-Abelian monopole in the SUð2Þ Einstein-
Dirac-Yang-Mills-Higgs theory. We have constructed
numerically solutions of the full system of coupled field
equations supplemented by the normalization condition for
the localized fermions, and investigated their properties.
We have found that, in addition to the usual zero mode,
which always exists for a BPS monopole, there is a tower of
gravitationally localized states with nonzero eigenvalues ω,
which are linked to the positive and negative continuum.
While the fermionic zero mode exists for any negative
value of the Yukawa coupling h, the massive nodeless
modes appear for positive values of h. We find that, as we
increase the gravitational coupling, the monopole bifur-
cates with the extremal Reissner-Nordström solution and
the fermionic modes become absorbed into the interior of
the forming black hole. This scenario is viable for both zero
and nonzero fermionic modes. Further, we observe that the
Yukawa interaction breaks the symmetry between the
localized massive modes with positive and negative eigen-
values. Another observation is that the localized gravitating
fermions may deform the monopole affecting the transition
to the limiting solution.

The work here should be taken further by considering
highermassive localized fermionic states with some number
of radial nodes. Another interesting question, which we
hope to be addressing in the near future, is to investigate the
effect of the bare mass of the fermions, localized on the
monopole. Another direction can be related with investiga-
tion of properties of charged fermions localized on the self-
gravitating dyon. Finally, let us note that there can be several
fermionic modes localized by the gravitating monopole. We
hope to address these problems in our future work.
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APPENDIX: DEFINITION OF THE γ5 MATRIX IN
CURVED (3 + 1)-DIMENSIONAL SPACETIME

The interaction term between the spin-isospin fermions
and the Higgs field of non-Abelian self-gravitating monop-
ole in the Lagrangian (2) is

−{hψ̄ i
αðγ̃5Þαβσaijϕaψ j

β; ðA1Þ

where γ̃5 is defined in the curved (3þ 1)-dimensional
spacetime as

γ̃5 ¼ 1

4!
Eαβρσγ

αγβγργσ

¼ 1

4!

ffiffiffiffiffiffi
−g

p
ϵαβρσeαae

β
be

ρ
ceσdγ

aγbγcγd

¼ 1

4!

ffiffiffiffiffiffi
−g

p ðϵαβρσϵabcdeαaeβbeρceσdÞγ5: ðA2Þ

Here Eαβρσ ¼ ffiffiffiffiffiffi−gp
ϵαβρσ is the Levi-Civita tensor in curved

space, ϵαβρσ is the Levi-Civita tensor in flat space, and

γaγbγcγd ¼ ϵabcdγ5; γ5 ¼ {γ0γ1γ2γ3:

The expression in the round brackets in (A2) is the
determinant of the matrix eαa:

1

4!
ϵαβρσϵ

abcdeαae
β
be

ρ
ceσd ¼ detðeαaÞ ¼

1ffiffiffiffiffiffi−gp :

Hence, the interaction term (A1) can be written as

−{hψ̄ i
αðγ5Þαβσaijϕaψ j

β:
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