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We develop a Lagrangian quantization formalism for a class of theories obtained by the restriction of the
configuration space of gauge fields from a wider (parental) gauge theory. This formalism is based on
application of the Batalin-Vilkovisky technique for quantization of theories with linearly dependent
generators, their linear dependence originating from a special type of projection from the originally
irreducible gauge generators of the parental theory. The algebra of these projected generators is shown to
be closed for parental gauge algebras closed off shell. We demonstrate that new physics of the restricted
theory, as compared to its parental theory, is associated with the rank deficiency of a special gauge-
restriction operator reflecting the gauge transformations of the restriction constraints functions—this
distinguishes the restricted theory from its partial gauge fixing. As a byproduct of this technique a workable
algorithm for the one-loop effective action in generic first-stage reducible theory was constructed, along
with the explicit set of tree-level Ward identities for gauge field, ghost, and ghosts-for-ghosts propagators.
The formalism is applied to unimodular gravity theory, and its one-loop effective action is obtained in terms
of functional determinants of minimal second-order operators, calculable on generic backgrounds by
Schwinger-DeWitt technique of local curvature expansion. The result is shown to be equivalent to Einstein
gravity theory with a cosmological term up to a special contribution of the global degree of freedom
associated with the variable value of the cosmological constant. The role of this degree of freedom in a
special duality relation between Einstein theory and unimodular gravity is briefly discussed.
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I. INTRODUCTION

The purpose of this paper is to discuss an interesting
property that arises when one restricts a configuration space
of gauge theory. This is the origin of a reducible gauge
structure characterized by linear dependence of the gen-
erators of gauge transformations. Both mechanisms—
reduction of the configuration space and reducibility of
gauge symmetry—are widely known and applied in various
areas of field theory. In the gravity theory context one of the
most important examples of the field space restriction is
unimodular gravity (UMG) theory which was suggested by
Einstein soon after the invention of general relativity [1].
Much later it was considered in the context of particle
physics [2], in the context of a spacetime covariant
formulation [3], as a problem of time and the cosmological
constant problem [4], and then applied within the dark

energy paradigm [5] with the emphasis on purely technical
issues of perturbation theory, etc. Extension beyond the
unimodular constraint on the metric of spacetime—the so-
called generalized unimodular gravity [6]—also turned out
to be rather fruitful from the viewpoint of the generation of
viable dark energy and inflation scenarios [7,8].
From a field-theoretical point of view UMG is interesting

because it is generally observationally equivalent to general
relativity (see recent review [9]), but even semiclassically
raises the issues of such an equivalence [10] depending
on the subtleties of local physics vs global behavior
encoded in boundary conditions, finiteness of the spacetime
volume, thermodynamical setup in gravity theory [11], etc.
Unimodular gravity is an interesting object of group
theoretical analysis [12] and quantization [13–17], espe-
cially regarding its relation to quantization of Einstein
theory [18] as a sort of a parental theory whose field space
reduction leads to the unimodular gravity model.
On the other hand, it has been conjectured [6] that the

formalism of quantized unimodular and generalized unim-
odular gravity theories can be developed along the lines of
gauge theory quantization in models with linearly depen-
dent (or reducible) generators [19,20]. This observation
follows from a simple fact that the restriction of the
configuration space of metrics to the subspace of metrics
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with a unit determinant results in the relevant reduction in
the space of diffeomorphism invariance parameters, which
can be attained by a projection procedure. Then, if one
wants (for the sake of retaining manifest covariance) to
describe the restricted theory in terms of the parental one,
this projection applied to the original gauge generators
makes them linearly dependent.
To the best of our knowledge this relation between the

reducible nature of gauge generators and the reduction of
the field space has not yet been fully exploited even in the
unimodular gravity context, as well as its extension to more
or less general gauge theories. The studies of theories with
restrictions on gauge transformations, the theories with the
so-called unfree gauge parameters, were recently inten-
sively conducted in a series of publications [21,22] with
the purpose of constructing the BFV (Batalin-Fradkin-
Vilkovisky) formalism transcending these restrictions to
the ghost sector of the model and starting from the first
principles of Hamiltonian formalism and canonical quan-
tization. Here we choose a somewhat different approach
(closer to the Lagrangian formalism) and try to develop the
idea of [6] for a generic parental gauge field theory with
the closed algebra of its irreducible generators becoming
linearly dependent in the course of a projection induced by
the restriction of the original configuration space.
Our method is based on the explicit construction of a

projector operator with which the generators of the original
parental theory are projected onto the generators of the
residual symmetries of the restricted theory. Linear depend-
ence of the latter is then treated by the quantization method
of Batalin and Vilkovisky (BV) for reducible gauge
theories [19,20]—a brief review of this formalism with
all necessary notations and definitions is presented in
Sec. II A. As a by-product of using BV formalism we
develop in much detail the gauge-fixing procedure for
gauge theory of the first-stage reducibility. Quite interest-
ingly, despite numerous applications of this method,
current literature does not present a workable algorithm
even for the one-loop approximation in generic reducible
gauge theories. Implicitly this algorithm is, of course,
contained in the pioneering works [19,20], but its concrete
realization with all the details of Ward identities providing
gauge independence of the on-shell effective action is
still missing. We close this omission and suggest the recipe
for all the elements of Feynman diagrammatic technique
and the relevant algorithm of the one-loop effective action
in the above class of theories at the level of presentation
characteristic of a folklore use of the well-known Faddeev-
Popov prescription.
The gauge-fixing algorithm here turns out to be more

involved than in a conventional Faddeev-Popov formalism
for irreducible theories, because it includes gauge fixing
for original gauge fields, gauge fixing for ghosts, and the
corresponding ghosts for ghosts. Even for first-stage
reducible theories (when there is no higher-order zero

vectors for reducibility generators—zero vectors of original
gauge generators) this gauge-fixing procedure involves,
apart from the usual gauge conditions, at least three extra
gauge-fixing elements and the construction of a special
projector in the gauge-breaking term of the theory. The
main result for the one-loop effective action of gauge
theories of the first-stage reducibility is assembled in the
sequence of Eqs. (2.47)–(2.51) of Sec. II C.
Then in Sec. III we explain how a reducible gauge

structure with linearly-dependent generators arises in theo-
ries with restricted configuration space of gauge fields. In
particular, we raise the question why and when constraining
this space can be regardedmerely as a partial gauge fixing, or
on the contrary, forming a new physical theory inequivalent
to the parental one. It turns out that the answer is based
on the rank of a special gauge-restriction operator. The rank
deficiency of this operator, or the presence of its nontrivial
zero modes, signifies new physics of a restricted theory as
compared to the parental model whose field space is subject
to restriction. This gauge-restriction operator allows one
to construct the projector on the space of residual gauge
symmetries. The projected gaugegenerators form the algebra
which is closed as long as the original parental theory has a
closed algebra both on and off shell.
The zero vectors of this projector become first-stage

reducibility generators of the BV method of treatment of
the restricted theory, and they represent a free element of
the formalism, whose choice is limited only by a certain
rank restriction condition. It turns out, however, that their
special normalization fully provides on-shell independence
of the one-loop effective action of this choice, whereas the
normalization of the gauge generators of the parental theory
can be fixed by matching it with the canonical formalism
and canonical quantization of parental theory.
The one-loop effective action for generic restricted

theory is discussed in Sec. IVA. Discussion of correct
normalization of the gauge generators in a covariant
formalism is the subject of Secs. IV B and IV C. In
Sec. IV D we discuss the factor in one-loop effective action
which distinguishes restricted and parental theories at the
quantum level.
In Sec. Vwe apply the above formalism to the unimodular

gravity theory treated as descending from its parental
version—Einstein general relativity. We construct all the
elements of its gauge-fixing procedure in the background
covariant gauge [23] with the background covariance prop-
erty extended to all the objects of the Feynman diagrammatic
technique. Then, according to the general algorithm, we
build on shell the one-loop effective action of the UMG
theory. This confirms conclusions of [15] which were
attained, however, with certain assumptions on the treatment
of the group of diffeomorphisms volume factored out of the
partition function. No such assumptions are needed in our
approach which is fully determined by the requirement of
gauge independence of the on-shell physical results.
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Moreover, our approach allows us to disentangle the
one-loop contribution of a global zero mode responsible
for the “new” physics contained in the UMG theory as
compared to general relativity. The UMG one-loop effec-
tive action coincides with that of the Einstein theory having
a cosmological constant modulo a special contribution of
the global degree of freedom associated with the variable
value of this constant. The resulting expression for the
effective action, which is usually presented in terms of
functional determinants on irreducible (transverse and
transverse-traceless) subspaces of the full tensor and vector
field space, is built in terms of the functional determinants
of the minimal operators. These determinants admit for
their calculation the application of the Schwinger-DeWitt
curvature expansion [24]. This property is important for
calculations on generic backgrounds not exhausted by
homogeneous spaces.
In the Conclusion we summarize the results and

briefly discuss the role of a global extra degree of
freedom in the UMG theory as a cosmological constant.
In particular, we show how this reveals the duality of
UMG and Einstein theories analogous to the transition
between statistical ensembles with fixed observables
related by the Laplace duality transformations. In the
appendices we discuss the Moore-Penrose construction
of inverse operators for degenerate operators [25], as
well as the derivation of the gauge algebra of the
projected generators and some technical details of
determinant relations needed for the construction of
the generator basis.

II. EFFECTIVE ACTION FOR THEORIES
WITH FIRST-STAGE REDUCIBLE

GAUGE GENERATORS

In this section we briefly review Batalin-Vilkovisky
(BV) formalism for the first-stage reducible gauge theories.
Throughout this section (and in the most of other sections
unless otherwise indicated) we use DeWitt condensed
notations. All indices are of condensed nature and combine
discrete bundle indices and continuous spacetime-point
labels. Two-index quantities are two-point kernels and
summation over contracted indices implies the correspond-
ing spacetime integration. Ranges of condensed indices
reflect the continuum of spacetime points and the discrete
spin-tensor labels of fields. The ranks of two-point kernels
of linear operators and forms thus refer to their functional
space dimensionality.

A. Batalin-Vilkovisky formalism
for reducible gauge theories

Consider a generic gauge theory of fields ϕi (with the
range of field indices i formally denoted in what follows by
n). Let it be described by the action S½ϕ� which is invariant
under the local gauge transformations with generators

Ri
α ¼ Ri

αðϕÞ and infinitesimal gauge parameters ξα (the
range of gauge indices α being denoted by m0 < n)

δξϕ
i ¼ Ri

αξ
α; ð2:1Þ

S;iRi
α ¼ 0; S;i ≡ δS

δϕi : ð2:2Þ

Here, and in what follows, comma denotes a functional
derivative with respect to the relevant field variable.
The algebra of gauge generators begins with the

relations—corollaries of the Jacobi identity for a double
commutator of gauge transformations

Ri
α;jR

j
β −Ri

β;jR
j
α ¼ Ri

γC
γ
αβ þ Eij

αβS;j ð2:3Þ

with the structure functions Cγ
αβðϕÞ ¼ −Cγ

βαðϕÞ, Eij
αβðϕÞ ¼

−Eij
βαðϕÞ ¼ −Eji

αβðϕÞ. For closed algebras (in contrast to

so-called open algebras) Eij
αβðϕÞ and higher-order structure

functions of the gauge algebra vanish [26,27].
The theory is reducible when its gauge generators

are linearly dependent on shell, that is on solutions of
classical equations S;i ¼ 0, so that there exist m1 reduc-
ibility generators Zα

a ¼ Zα
aðϕÞ—right zero-eigenvalue

eigenvectors of the original generators Ri
α parametrized

by indices a of range m1. This implies relations

Ri
αZα

a ¼ S;jB
ji
a ð2:4Þ

with some coefficient functions Bji
a ðϕÞ ¼ −Bij

a ðϕÞ. For the
first-stage reducible theories, which we consider in this
section, the generators Zα

a form on shell a complete
independent set, whereas for higher-order stages of reduc-
ibility they also become linearly dependent with higher-
order reducibility generators and so on.

1. Master action

Batalin-Vilkovisky quantization of gauge theories starts
with the construction of master action SBV½Φ;Φ�� which is
a certain extension of the original action classical S½ϕ� onto
the configuration space of fields and antifields ðΦI ;Φ�

IÞ.
This even-dimensional space is Z-graded with respect to
the so-called ghost number ghðΦ�

IÞ ¼ −ghðΦIÞ − 1 and
Z2-graded with respect to their Grassmann parity ϵ,
ϵðΦ�

IÞ ¼ ϵðΦIÞ þ 1. Original fields ϕi become a part of
the extended fields set ΦI and carry zero ghost number. To
avoid messy sign factors we assume that all ϕi are bosonic
(even) fields, ϵðϕiÞ ¼ 0, and Grassmann parity of ghost
fields and antifields coincides with Z2 parity of their ghost
number (those with even ghost numbers are commuting
fields, those with odd ghosts number—anticommuting).
Extension from S½ϕ� to SBV½Φ;Φ�� is governed by the

master equation on SBV½Φ;Φ��,
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ðSBV; SBVÞ≡ δðrÞSBV

δΦI

δðlÞSBV

δΦ�
I

−
δðrÞSBV

δΦ�
I

δðlÞSBV

δΦI ¼ 0 ð2:5Þ

in terms of the antibracket ðG;HÞ [28] which is defined for
any two functionals G and H of fields and antifields. Here
(r) and (l) label, respectively, right and left derivatives.
The solution SBV½Φ;Φ�� is obtained as a perturbative

expansion in powers of ghost fields and antifields. To make
this solution proper and allow one to perform a further
gauge-fixing procedure one should specify a BV-extended
configuration space and impose certain initial conditions to
(2.5) which should explicitly encode the gauge structure of
the original action S½ϕ�.
Any proper solution of master equation is inevitably

gauge invariant [19,26–30]. In terms of the total set of
BV fields and antifields ΦA

BV ¼ ðΦI ;Φ�
IÞ, A ¼ 1;…; 2N,

I ¼ 1;…; N, the master equation reads

δrSBV

δΦA
BV

ζAB δ
lSBV

δΦB
BV

¼ 0; ζAB ¼
�

0 1

−1 0

�
: ð2:6Þ

By differentiating (2.6) one gets the Noether identities

δrSBV

δΦA
BV

RA
C ¼ 0; RA

C ¼ ζAB δlδrSBV

δΦB
BVδΦC

BV

; ð2:7Þ

featuring 2N gauge generators RA
C of master action gauge

symmetry.
These generators, however, form a reducible set because

the second variational derivative of (2.6) shows their
N-reducibility on shell, ζ−1DBR

B
AR

A
C ∝ δSBV=δΦA

BV ¼ 0.
Thus, the master action SBV possess N on-shell indepen-
dent symmetries—half the dimension of the BV configu-
ration space ðΦI ;Φ�

IÞ.1
Convenient gauge fixing of the master action gauge

symmetry (2.7) consists in expressing antifields in terms of
fields via N gauge conditions [19,26–30]

Φ�
I −

δΨ½Φ�
δΦI ¼ 0: ð2:8Þ

It is parametrized by a single functional of fields—gauge
fermion Ψ½Φ� of ghost number −1 and leads to gauge-fixed
action

SΨ½Φ� ¼ SBV½Φ; δΨ½Φ�=δΦ�; ð2:9Þ
which is functional of only BV fields ΦI . For the correctly
chosen gauge fermion the gauge-fixed action (2.9) appears

to be a nondegenerate sdet½δðlÞδðrÞSΨ=δΦIδΦJ �δSΨ=δΦ¼0≠0

and yields a perturbatively consistent path integral for the
generating functional which modulo the contribution of
local measure reads

Z ¼
Z

DΦ ei SΨ½Φ�: ð2:10Þ

The master equation for SBV½Φ;Φ�� (2.5) provides the
corner stone of gauge theory quantization—independence
of the on-shell generating functional of the choice of gauge
fermion. Under the gauge fermion change Ψ → Ψþ ΔΨ,
in view of integration by parts the change in Z reads

ΔZ ¼ −
Z

DΦΔΨ
�
i
δðrÞSBV

δΦI

δðlÞSBV

δΦ�
I

þ δðrÞ

δΦI

δðlÞSBV

δΦ�
I

�����
Φ�¼δΨ

δΦ

ei SΨ ; ð2:11Þ

where extra terms vanish in view of Grassmann sym-
metry properties. This expression equals zero because
the first term vanishes in view of the master equation
δðrÞSBV=δΦ�

I δðlÞSBV=δΦI ¼ 1
2
ðSBV; SBVÞ, while the second

term in local theories is proportional to ∂…∂δð0Þ and is
supposed to be either canceled by a local measure or
killed by dimensional regularization. The local measure is
not rigorously available within the BV formalism whose
incompleteness can be disregarded for theories with local
gauge algebra and within the class of local gauge fermions.
This measure can be attained within the canonical BFV
quantization formalism, which will be used below to justify
the application of the BV method for restricted gauge
theories in which locality of their generators will be spoiled
by generically nonlocal projectors.

2. Minimal and nonminimal proper solutions

Construction of BV master action begins with finding a
proper solution of master equation (2.5) on the minimal
sector of fields and antifields. For the first-stage reducible
theories [(2.2) and (2.4)] this requires introduction of ghosts
Cα, ghðCαÞ ¼ 1, the ghosts for ghosts Ca, ghðCaÞ ¼ 2, and
antifields to all fields and ghosts [19,26,27],

Φmin ¼ ðϕi; Cα; CaÞ; Φ�
min ¼ ðϕ�

i ; C
�
α; C�aÞ: ð2:12Þ

The minimal proper solution Smin½Φmin;Φ�
min� of the master

equation can be represented as the series in powers of
antifields

Smin ¼ Sþ ϕ�
iR

i
αCα þ C�αZα

aCa þ � � � ; ð2:13Þ

where S ¼ S½ϕ� is the action of the initial gauge theory, two
terms bilinear in ghost fields and antifields serve as initial
conditions for the master equation which guarantee that such

1Nilpotence of 2N × 2N matrix implies that its rank is at most
N. Considering a proper solution implies that rank of the Hessian
δlδrSBV=δΦA

BVδΦB
BV equals N. Otherwise the set of Noether

identities (2.7) is incomplete and there are more then N gauge
generators since there are more thenN zero modes of the Hessian.
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a solution of master equation is proper,Ri
α andZα

a are gauge
and reducibility generators (2.2) and (2.4), dots stand for
higher-order terms in powers of ghost fields and antifields.
All higher-order terms can be found within the iterative
procedure of solving the master equation which leads
to [26,27]

Smin ¼ Sþ ϕ�
iR

i
αCα þ C�α

�
Zα

aCa þ
1

2
Cα
βγC

γCβ
�

þ C�a

�
Aa
bαC

bCα þ 1

2
Fa
αβγC

γCβCα
�

þ ϕ�
iϕ

�
j

�
1

2
Bji
a Ca þ 1

4
Eji
αβC

βCα
�
þ � � � ;

where the coefficient functions of higher-order terms origi-
nate from higher-order structure functions of gauge algebra
and the dots denote terms with antifields of the total ghost
number −3 and lower.
Meaningful gauge fixing of the BV master action

requires extension of the proper solution to nonminimal
configuration space. Motivation for this is that gauge fixing
(2.8) is performed through properly constructed gauge
fermion Ψ½Φ�—the functional of only the BV fields ΦI .
But the gauge fermion has a negative ghost number −1
and thus cannot be constructed as a functional of the
minimal fields ϕi; Cα; Ca with nonnegative ghost numbers.
Therefore, the set of fields should be further extended to
contain auxiliary ghosts with negative ghost numbers.
Standard scheme for first-stage reducible theories pre-

sumes introducing auxiliary ghosts C̄α; C̄a; C0a, their part-
ners πα; πa; π0a with the higher ghost number and the
corresponding set of antifields [26,27], so that nonminimal
BV configuration space reads

Φ ¼ ðϕi; Cα; Ca|fflfflfflfflffl{zfflfflfflfflffl}
Φmin

; C̄α; C̄a; C0a; πα; πa; π0aÞ;

Φ� ¼ ðϕ�
i ; C

�
α; C�a|fflfflfflfflffl{zfflfflfflfflffl}

Φ�
min

; C̄�α; C̄�a; C0�a; π�α; π�a; π0�aÞ: ð2:14Þ

Here the fields C̄α; C̄a are often referred to as antighosts,
C0a—extraghosts, πα; πa; π0a—Lagrange multiplier or
Nakanishi-Lautrup fields.
Ghost numbers of the nonminimal configuration space of

the first-stage reducible gauge theory are listed in Table I,
where antifields π�α; π�a; π0�a are omitted since they do not
appear in the BV procedure.
The nonminimal proper solution SBV½Φ;Φ�� of the

master equation on such space is just a sum of the minimal
master action Smin½Φmin;Φ�

min� (2.13) and the contribution
of auxiliary fields Saux½πα; πa; π0a; C̄�α; C̄�a; C0�a�

SBV ¼ Smin þ Saux; ð2:15Þ

Saux ¼ παC̄�α þ πaC̄�a þ C0�aπ0a: ð2:16Þ

The master action (2.15) obviously satisfies the master
equation (2.5) on the nonminimal configuration space
since auxiliary and minimal sectors are so far decoupled
(these sectors will be mixed after gauge fixing) so
that ðSmin þ Saux; Smin þ SauxÞ ¼ ðSmin; SminÞ þ ðSaux; SauxÞ,
and by construction Smin and Saux separately nilpotent in
antibracket.

3. Choice of a gauge fermion for the Gaussian
gauge fixing

Grading restriction ghðΨÞ ¼ −1 on gauge fermion Ψ½Φ�
admits the following form at most quadratic in ghosts and
auxiliary fields

Ψ½Φ� ¼ C̄αðχαðϕÞ þ σαaðϕÞC0aÞ þ C̄aωa
αðϕÞCα

þ 1

2
ðC̄αϰαβπβ þ C̄aρabπ

0b þ πaρ
a
bC

0bÞ: ð2:17Þ

The latter group of terms linear in πα; πa; π0a allows us to
implement Gaussian (Faddeev-Popov) type of gauge fixing
when ϰαβ; ρab are nondegenerate

det ϰαβ ≠ 0; det ρab ≠ 0: ð2:18Þ

In generic theories it is convenient to choose ϕ-independent
coefficient functions ϰαβ; ρab. Such a choice guarantees the
possibility to integrate out auxiliary fields πα; πa; π0a to
obtain Faddeev-Popov representation for the generating
functional.
Here we take into account that for ϕ-dependent func-

tions ϰαβðϕÞ; ρabðϕÞ terms linear in companion fields
πα; πa; π0a will arise in gauge-fixed minimal master
action Smin

Ψ instead of each antifield, ϕ�
i ¼ δΨ=δϕi ¼

1
2
Cαðδϰαβ=δϕiÞπβ þ � � �. Therefore, for open algebras and

TABLE I. BV configuration space of the first-stage reducible
gauge theory.

Φ ghðΦÞ Φ� ghðΦ�Þ
Minimal sector

ϕi 0 ϕ�
i −1

Cα þ1 C�α −2
Ca þ2 C�a −3

Auxiliary sector
C̄α −1 C̄�α 0
πα 0
C̄a −2 C̄�a þ1

πa −1
C0a 0 C0�a −1
π0a þ1
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algebras with higher-structure functions, whose Smin con-
tains second and higher powers of antifields, πα; πa; π0a

dependence of Smin
Ψ becomes more than quadratic, which

does not allow us to integrate them out via Gaussian
integration.
After the gauge fixing (2.9), Φ� → δΨ=δΦ, with the

gauge fermion (2.17) one gets the nonminimal gauge-
fixed action (2.9) which according to (2.15) is SΨ ¼ Smin

Ψ þ
SauxΨ with

Smin
Ψ ¼ Sþ C̄αðXα

;iR
i
βÞCβ þ C̄aðωa

αZα
bÞCb þ � � � ; ð2:19Þ

SauxΨ ¼ 1

2
παϰ

αβπβ þ παXα þ πaρ
a
bπ

0b

þ πaω
a
αCα þ C̄ασαbπ

0b; ð2:20Þ

where S ¼ S½ϕ� is the action of the initial gauge theory
and dots hide terms more then quadratic in ghost
fields with nonzero ghost numbers.2 We introduce the
combination

Xα ≡ χαðϕÞ þ σαcðϕÞC0c ð2:21Þ

which depends on fields ϕi; C0a with zero ghost number.
All the dependence on C0 in the gauge-fixed action SΨ is
now hidden within Xα and its variational derivative

Xα
;i ≡ δXα=δϕi ¼ χα;i þ σαc;iC0c: ð2:22Þ

4. Reduction of Lagrange multiplier fields

For ϕ-independent matrices ϰαβ and ρab—the case which
we consider in what follows—Gaussian integration over
the fields πα; πa; π0a in the generating functional (2.10)
gives

Z ¼
Z

DΦred ðdet ϰαβÞ−1=2 det ρabei S
FP½Φred�; ð2:23Þ

where Φred is the reduced nonminimal set of fields
Φred¼ðϕi;C0a;Cα; C̄α;Ca; C̄aÞ, cf. Eq. (2.14), and SFP½Φred�
is the corresponding Faddeev-Popov reduced gauge-fixed
action

SFP½Φred� ¼ S −
1

2
XαϰαβXβ þ C̄αðXα

;iR
i
β − σαaρ

−1 a
bω

b
βÞCβ

þ C̄aðωa
αZα

bÞCb þ � � � : ð2:24Þ

Here we have introduced the matrices ϰαβ, ρ−1 ab inverse
respectively to ϰβα, ρba. Dots denote terms which are more
than quadratic in ghost fields Cα, C̄α, Ca, C̄a. Such terms are
irrelevant in the one-loop approximation.
The obtained reduced action is nondegenerate in the

sense that its Hessian at the stationary points of the classical
BV action represents the nondegenerate operator

sdet
δðlÞδðrÞSFP

δΦredδΦred

����
δSFP=δΦred¼0

≠ 0 ð2:25Þ

for the relevant set of boundary conditions. This property
is inherited from the nondegeneracy of the unreduced
gauge-fixed action SΨ½Φ� with appropriately chosen gauge
fermion, in which auxiliary nondynamical variables were
integrated out (being expressed from their own equations of
motion). For nondegenerate gauge-fixing matrices ϰβα, ρba
fields πα, πa, π0a form the set of such auxiliary variables.
Now we will analyze nondegeneracy in various sectors

of the reduced configuration space.

B. Stationary point of the gauge-fixed
master action

The simplest is the ghost sector consisting of the fields
Cα, C̄α, Ca, C̄a (the field C0a with a zero ghost number does
not belong to this sector even though it is usually called
the extraghost [19]—rather it belongs to zero ghost
number sector where it plays a special role in gauge-fixing
procedure for ϕi). The variational equations for the fields
Cα, C̄α, Ca, C̄a obviously make them vanishing under zero
boundary conditions

Cα ¼ C̄α ¼ Ca ¼ C̄a ¼ 0; ð2:26Þ

provided the kernels of their bilinear forms in gauge-fixed
action (2.24) represent invertible operators having well
defined Green’s functions

Fα
β ¼ Xα

;iR
i
β − σαaρ

−1 a
bω

b
β; detFα

β ≠ 0; ð2:27Þ

Fa
b ¼ ωa

αZα
b; detFa

b ≠ 0: ð2:28Þ

The interpretation of these operators and their properties
is obvious. The first term of the ghost operator Fα

β is
degenerate because of the reducibility of gauge generators,
so the conventional Faddeev-Popov ghosts Cα, C̄α them-
selves become gauge fields with the local symmetry
induced by the reducibility generators Zα

b. The second
term of Fα

β in (2.27) plays the role of gauge breaking term
for this symmetry, and its effect is the invertibility of Fα

β.
Correspondingly, Fa

b is the Faddeev-Popov operator of
new ghosts Ca, C̄a for original ghosts Cα, C̄α treated as

2Terms explicated in (2.19) and (2.20) are sufficient in the one-
loop approximation. The gauge-fixed action with several higher-
order terms reads Smin

Ψ ½Φ�¼S½ϕ�þC̄αðXα
;iR

i
βÞCβþC̄aðωa

αZα
bÞCbþ

C̄aðωa
α;iR

i
βþ1

2
ωa

αCα
βγÞCγCβþC̄αC̄βð12Xα

;iX
α
;jB

ji
a ÞCaþ���.
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gauge fields; that is why the fields Ca, C̄a bear the name of
ghosts for ghosts.
The situation is trickier in the zero ghost number sector

of fields ϕi, C0a. Their equations of motion read

δSFP

δϕi ¼ S;i − Xα
;iϰαβX

β ¼ 0; ð2:29Þ

δSFP

δC0a
¼ −σαaϰαβXβ ¼ 0: ð2:30Þ

Contracting them respectively with Ri
γ and ρ−1 baωa

γ and
subtracting from one another we obtain, on account of the
Noether identity S;iRi

γ ¼ 0, the following on-shell relation:

ðXα
;iR

i
γ − σαbρ

−1 b
aω

a
γÞϰαβXβ ¼ Fα

γϰαβXβ ¼ 0; ð2:31Þ

which allows one in view of invertibility of Fα
γ and ϰαβ to

rewrite the equations of motion in the zero ghost number
sector as

S;i ¼ 0; ð2:32Þ

Xα ≡ χα þ σαaC0a ¼ 0: ð2:33Þ

This can be interpreted as equations of motion for ϕi

supplied by the set of gauge conditions Xα ¼ 0. The
latter look overcomplete because the number of indepen-
dent equations of motion S;i ¼ 0 on n variables ϕi is
n −m0 þm1, whereas the number of gauges ism0. Them1

mismatch is, however, corrected by the m1 extra ghost
fields C0a. This goes as follows.
Contracting the rankm0 nondegenerate operator Fα

β with

the rank m1 full-rank generator Zβ
c one gets the full-rank

condition, rank ðσαaρ−1 abωb
βZ

β
cÞ ¼ m1, which due to non-

degeneracy of Fb
c ¼ ωb

βZ
β
c and ρ−1 ab implies the full-rank

conditions rank σαa ¼ m1, rank ωb
β ¼ m1. This, in particu-

lar, guarantees that all C0a are expressible in terms of ϕi

from the equations Xα ¼ 0.
By introducing an arbitrary matrix saαðϕiÞ such that

det ðsaασβbÞ ≠ 0 one can express the solution for C0a in
terms of ϕi from Eq. (2.33)

C0a ¼ −ðsσÞ−1 absbβ χβ; ð2:34Þ

where ðsσÞ−1 ab is the inverse of ðsσÞbc ¼ sbγ σ
γ
a. On the

substitution of this solution in (2.33) the rest of relations
constitute m0 −m1 independent gauge conditions

ðδαβ − σαaðsσÞ−1 absbβÞ χβ ¼ 0; ð2:35Þ

on n original fields ϕi as it should be. Indeed, what stands
here as a matrix coefficient of χβ is the projector Tα

βðs; σÞ in

the space of gauge indices having m1 right zero eigenvalue
eigenvectors σβb and m1 left zero covectors saα,

Tα
βðs; σÞ ¼ δαβ − σαaðsσÞ−1 absbβ; ð2:36Þ

Tα
βðs; σÞσβb ¼ 0; saαTα

βðs; σÞ ¼ 0;

Tα
βðs; σÞTβ

γðs; σÞ ¼ Tα
γðs; σÞ;

rank Tα
βðs; σÞ ¼ m0 −m1; ð2:37Þ

which explains why Eq. (2.35) comprises m0 −m1 gauge
conditions rather than m0 conditions. It is remarkable that
despite the presence of an auxiliary element—an arbitrary
matrix sbβ of rank m1—these gauge conditions and expres-
sions for extraghosts (2.34) are s-independent. This easily
follows on shell from the variational equation

δs½ðsσÞ−1absbβ χβ� ¼ ðsσÞ−1acðδscγÞ Tγ
βðs;σÞ χβ ¼ 0: ð2:38Þ

Finally, consider the on-shell Hessian of the action in the
zero ghost number sector of fields Φ0 ¼ ðϕi; C0aÞ which is
actually the Hessian of S½ϕ� − 1

2
XαϰαβXβ. Bearing in mind

the on-shell value of Xα ¼ 0 we get the block-matrix
operator

δ2SFP

δΦ0δΦ0

����
δSFP=δΦred¼0

¼
"
S;ij − Xα

;iϰαβX
β
;j −σαbϰαβX

β
;i

−σαaϰαβX
β
;i −σαaϰαβσ

β
b

#
:

ð2:39Þ

In view of invertibility of ϰαβ one can introduce the
nondegenerate m1 ×m1 operator κab and its inverse

κab ¼ σαaϰαβσ
β
b; κba ≡ ðκabÞ−1: ð2:40Þ

Then one can factorize the determinant of (2.39) as the
product of determinants of two operators

det
δ2SFP

δΦ0δΦ0

����
δSFP=δΦred¼0

¼ detFij det ð−κabÞ; ð2:41Þ

where the new operator Fij is obviously the gauge-fixed
inverse propagator of fields ϕi

Fij ≡ S;ij − Xα
;iΠαβX

β
;j; ð2:42Þ

Παβ ≡ ϰαβ − ϰαγσ
γ
aκabσδbϰδβ; ð2:43Þ

in which the gauge-fixing term is built in terms of the gauge
matrices Xα

;i and the gauge-fixing matrix Παβ. The latter,
however, does not coincide with the original matrix ϰαβ in
the gauge fermion (2.17), but rather converted to the
projector form with the following properties:
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σαaΠαβ ¼ Παβσ
β
b ¼ 0; Παβϰ

βγΠγδ ¼ Παδ: ð2:44Þ

This projection is fully consistent with the fact that the rank
n −m0 þm1 of S;ij should be raised up to n by adding
nonzero eigenvalues not in the m0-dimensional subspace,
but in the ðm0 −m1Þ-dimensional one. In particular, with
the projector (2.43) one can rewrite on-shell gauge con-
ditions (2.35) on fields ϕi asΠαβ χ

β ¼ 0. The equivalence
of this to (2.35) is established by choosing saβ ¼ mabσαbϰαβ
and noting that the projector δαβ − σαaðsσÞ−1 absbβ does not

depend on a nondegenerate matrix factor mab.

C. One-loop contribution to the
generating functional

From (2.23) the one-loop contribution to the generating
functional (its preexponential factor) reads

Z1−loop ¼ det ρab
ðdet ϰαβÞ1=2

�
sdet

δðlÞδðrÞSFP

δΦredδΦred

�−1=2
; ð2:45Þ

where the Hessian in the sector of reduced fields has, in
virtue of (2.24), the following block matrix structure:

δðlÞδðrÞSFP

δΦredδΦred
¼

2
66666666664

δ2SFP
δΦ0δΦ0

0 0

0 0

0 0

0 0

0 0

0 0

0 − Fβ
α

Fα
β 0

0 0

0 0

0 0

0 0

0 0

0 0

0 Fb
a

Fa
b 0

3
77777777775
: ð2:46Þ

Block in the left column and upper row here corresponds to
the zero ghost number sector Φ0 ¼ ðϕi; C0bÞ, the middle
column and row block corresponds to the odd sector
ðCβ; C̄βÞ of gauge ghost and antighost fields, the right
bottom block corresponds to the even sector of ghost-for-
ghost and antighost-for-ghosts fields ðCb; C̄bÞ.
In virtue of the factorization property in the reduced

fields block (2.41) the calculation of the full superdeter-
minant finally gives the one-loop contribution to the
generating functional of the first-stage reducible gauge
theory

Z1−loop ¼ det ρab
ðdet ϰαβÞ1=2

detFα
β

ðdetFijÞ1=2ðdet κabÞ1=2 detFa
b

:

ð2:47Þ

Let us assemble together all numerous ingredients of this
expression which were introduced above in the course of
derivation of this formula. Here the inverse propagator
of the original gauge field Fij (2.42), the ghost operator

Fα
β (2.27), and the ghosts-for-ghosts operator Fa

b (2.28)
are, respectively,

Fij ≡ S;ij − Xα
;iΠαβX

β
;j; ð2:48Þ

Fα
β ≡ Xα

;iR
i
β − σαaρ

−1 a
bω

b
β; ð2:49Þ

Fa
b ≡ ωa

γZ
γ
b: ð2:50Þ

Gauge field and ghost operators (2.48) and (2.49) are
both gauge fixed with the aid of gauge conditions matrices
Xα
;i, σ

α
a, and ωb

β and the gauge-fixing matrices Παβ and

ρ−1 ab—kernels of bilinear terms in (Xα
;i, σ

α
a, ωb

β). Whereas

these matrices of gauge conditions for ghosts σαa and ωb
β

are a part of the originally chosen gauge fermion (2.17), a
similar matrix in the gauge fields sector is a special
projector Παβ (2.43), Παβϰ

βγΠγδ ¼ Παδ (2.44), on the
direction in the space of gauge indices orthogonal to the
“vielbein” σαa, σαaΠαβ ¼ Παβσ

β
b ¼ 0. This type of “ortho-

gonality” is determined with respect to the symmetric
metric ϰαβ, which is inverse to ϰβα originally introduced
in the gauge fermion (2.17). The projection of this metric
onto the space of reducible generator indices a with the aid
of the vielbein σαa gives rise to the gauge-fixing matrix κab
in the space of these indices. The determinants of all
gauge-fixing matrices ϰαβ, ρab, and κab appropriately enter
the final algorithm for the one-loop generating func-
tional (2.47).
Ranks of all the above gauge matrices are maximal and

determined by the range of their indices, and the main
criterion of their choice is the invertibility of the full set of
gauge and ghost operators (2.48)–(2.50).
The final important comment is the definition of the

on-shell condition for the obtained algorithm (2.47). All
ghosts, ghosts for ghosts and their antighost fields are zero
on shell, Cα ¼ C̄α ¼ Ca ¼ C̄a ¼ 0 (2.26). The exception is
the only “nonclassical” field C0a which has a zero ghost
number, though originally it was called the extraghost [19].
On shell it is generically nonvanishing and is given by the
expression (2.34), so that the gauge conditions matrix
equals

Xα
;i ¼ χα;i − σαc;iðsσÞ−1 absbβ χβ ð2:51Þ

and coincides with χα;i only for ϕ-independent σαc or
vanishing on shell sbβ χ

β. For the original gauge field ϕi

on-shell restriction and gauge conditions (2.32) and (2.33)
equivalently read S;i ¼ 0, Παβ χ

β ¼ 0 (note that the original
gauge functions χαðϕÞ introduced in the gauge fermion
(2.17) does not necessarily vanish—only their projection
vanishes on shell).
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D. Ward identities and gauge independence
of the effective action

The one-loop effective action corresponding to (2.47)
reads

iΓ1−loop ¼ −
1

2
Tr lnFij þ Tr lnFα

β − Tr lnFa
b

−
1

2
Tr ln κab −

1

2
Tr ln ϰαβ þ Tr ln ρab ð2:52Þ

and includes gauge field, ghost, ghost-for-ghost contribu-
tions and the contribution of three gauge-fixing matrices.
On shell this expression should not depend on all gauge-
fixing entities χαðϕÞ, σαaðϕÞ, ωa

αðϕÞ, ϰαβ, ρab as it is
dictated by the general BV theory. It is worth checking
this property and revealing the details of the perturbative
mechanism of such gauge independence. In the one-loop
approximation this mechanism is based on the on-shell
Ward identities for all tree-level propagators of the theory:
F−1 ij, F−1 α

β, and F−1 a
b.

Ward identity for the Green’s function of the gauge field
operator Fij follows from the sequence of on-shell relations

Ri
γ ¼ F−1 ijFjkRk

γ ¼ −F−1 ijXα
;jΠαβX

β
;kR

k
γ

¼ −F−1 ijXα
;jΠαβF

β
γ; ð2:53Þ

where we used the fact that on shell Rk
γ is a zero vector of

S;jk since S;jkR
j
γ ¼ −S;jR

j
γ;k, and ΠαβX

β
;kR

k
γ ¼ ΠαβF

β
γ in

view of Παβσ
β
b ¼ 0. Thus, contracting this relation with

F−1 γ
δ, we get on shell

F−1 ijXα
;jΠαβjS;i¼0 ¼ −Ri

γF
−1 γ

β; ð2:54Þ

whence it follows the effective action independence on the
choice of gauge matrix Xα

;i and the gauge condition χαðϕÞ

iδχΓ1−loop ¼ iδXΓ1−loop

¼ ðF−1 ijXα
;iΠαβ þRi

αF−1 α
βÞ δXβ

;i ¼ 0: ð2:55Þ

Similarly, from the relation Zγ
c ¼ F−1 γ

αFα
βZ

β
c ¼

−F−1 γ
ασαaρ

−1 a
bF

b
c it follows that the Ward identity relating

the ghost and ghosts-for-ghosts propagators is

F−1 γ
ασαaρ

−1 a
bjS;i¼0 ¼ −Zγ

cF−1 c
b; ð2:56Þ

and the effective action turns out to be on-shell independent
of ωb

α,

iδωΓ1−loop ¼ −ðF−1 β
ασαaρ

−1 a
b þ Zβ

aF−1 a
bÞ δωb

β ¼ 0:

ð2:57Þ
The dependence of Γ1−loop on σαa involves three terms of

(2.52) the sum of which also turns out to be zero on shell

iδσΓ1−loop ¼ −
1

2
δσTr lnFij þ δσTr lnFα

β

−
1

2
δσTr ln κab ¼ 0: ð2:58Þ

To prove this one should use in the variation of the operator
(2.48) the variation of the projector Παβ, δσΠαβ ¼
−2δσγaκabΠγðαϰβÞδσδb, the variation of κab, δσκab ¼
2ϰαβσ

β
ðaδσ

α
bÞ, and the corollaries of (2.54) and (2.56),

Xγ
;iF

−1ijXβ
;jΠβαjS;i¼0 ¼ −Xγ

;iR
i
βF

−1 β
α; ð2:59Þ

Xγ
;iR

i
βF

−1 β
α ¼ ðFγ

β þ σγaρ−1 abωb
βÞF−1 β

α

¼ δγα þ σγaρ−1 abωb
βF

−1 β
α; ð2:60Þ

ωb
βF

−1 β
ασαajS;i¼0 ¼ −ρba: ð2:61Þ

The ϰαβ-variation of the effective action also vanishes
on shell because of the variations δϰΠαβ ¼ −Παδδϰ

δγΠγβ,

δϰκab ¼ σαaδϰαβσ
β
b, Eq. (2.60) and its corollary

ΠαγX
γ
;iF

−1 ijXδ
;jΠδβ ¼ −Παβ (which in its turn is provided

by the orthogonality relation Παβσ
β
b ¼ 0),

iδϰΓ1−loop ¼ −
1

2
F−1 jiδϰFij −

1

2
κbaδϰκab −

1

2
ϰβαδϰ

αβ ¼ 0:

ð2:62Þ
Finally, on-shell independence of the gauge-fixing

matrix ρab follows by direct variation and the use of the
corollary (2.61) of the Ward identity (2.56) for the ghost
propagator,

iδρΓ1−loop ¼ −ðωb
βF

−1 β
ασαa þ ρbaÞ δρ−1 ab ¼ 0: ð2:63Þ

III. REDUCIBLE GAUGE STRUCTURE OF
RESTRICTED GAUGE THEORIES

Reducible structure of a gauge theory can be induced by
the procedure of restriction of the originally irreducible
gauge theory. To see this consider a generic gauge theory
with the action Ŝ½φI� subject to a closed gauge algebra of
irreducible generators R̂I

α,

Ŝ;IR̂
I
α ¼ 0; R̂I

α;JR̂
J
β − R̂I

β;JR̂
J
α ¼ R̂I

γĈ
γ
αβ: ð3:1Þ

Irreducibility of the generators R̂I
α implies that the rank of

their matrices coincides with the range of the indices α
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which in its turn is lower than the range of the indices I
enumerating the original gauge fields φI, rank R̂I

α ¼
range α ¼ m0 < n̂ ¼ range I. We will call such a theory
the parental one.
Restricted gauge theory, originating from the parental

one, is the theory whose configuration space variables are
kinematically constrained by the equations

θaðφIÞ ¼ 0; ð3:2Þ
where we will consider the functions θaðφIÞ to be func-
tionally independent, that is characterized by the full-rank
condition of their gradient matrix,

rank θa;I ¼ m1 ≡ range a: ð3:3Þ
For simplicity we assume that these functions are either
ultralocal (algebraic) in spacetime or the surface of these
constraint functions can be parametrized in terms of
local independent fields which will be denoted in what
follows by ϕi.

A. Two representations of a restricted theory

Such a restricted theory can be described in two
equivalent ways. One way is to represent it in terms of
the Lagrange multipliers action

Sλ½φ; λ� ¼ Ŝ½φ� − λaθ
aðφÞ; ð3:4Þ

whose classical equations of motion obtained by varying
both its gauge fields φI and Lagrange multipliers λa read

Ŝ;I − λaθ
a
;I ¼ 0; θa ¼ 0: ð3:5Þ

Another representation is the reduced theory, when one
solves first the constraints (3.2) with respect to φI as
functions of the reduced set of fields ϕi and formulates the
theory in terms of the reduced action Sred½ϕ�. The latter is
obtained by substituting in the parental theory action the
functions eIðϕÞ of embedding the ϕi-subspace into the
space of original gauge fields φI ,

φI ¼ eIðϕÞ; θaðeIðϕÞÞ≡ 0; ð3:6Þ
Sred½ϕ� ¼ Ŝ½eðϕÞ�: ð3:7Þ

The equations of motion in both formulations are
obviously equivalent3 because the contraction of the first
of Eq. (3.5) results in

eI;iðŜI − λaθ
a
;IÞ ¼ eI;iŜ;I ≡ δSred½ϕ�

δϕi ; eI;i ≡ δeIðϕÞ
δϕi ; ð3:8Þ

wherewe took into account that in view of (3.6) the covector
θa;I is orthogonal to the surface of constraints θa ¼ 0,

δ

δϕi θ
aðφðϕÞÞ ¼ θa;Ijθ¼0e

I
;i ¼ 0: ð3:9Þ

An important question is the relation of the original
parental theory and the restricted one from the point of
view their physical equivalence. Solutions of the system of
equations (3.5) are obviously inequivalent to those of the
parental theory, Ŝ;I ¼ 0, when on shell the Lagrange multi-
pliers λa are nonvanishing. Note that in view of the linearity
of the λ-action (3.4) in λa the variational equations with
respect to Lagrange multipliers do not allow one to express
them from the full set of equations of motion. There is
another way to write down their equations of motion by
contracting the first set of equations (3.5) with the parental
theory generators R̂I

α and use the Noether identities (3.1).
Then we get

λaQa
α ¼ 0; ð3:10Þ

where Qa
α ¼ Qa

αðφÞ is the gauge-restriction operator which
will be very important in what follows:

Qa
α ≡ θa;IR̂

I
α: ð3:11Þ

This equation for λa has a unique solution λa ¼ 0 only
when the rank ofQa

α is maximal, that is it coincides with the
range of the index a enumerating the constraint functions θa.
In this case the meaning of the constraints θaðφÞ ¼ 0 is
nothing but a partial gauge fixing of gauge invariance of the
parental theory (range a ¼ m1 < m0 ¼ range α).
On the contrary, when the rank of gauge-restriction

operator Qa
α is lower than m1

rankQa
α ¼ m1 −m2 ð3:12Þ

then m2 Lagrange multipliers can be freely specified, the
restm1 −m2 of them being fixed as unique functions of the
former free ones. This implies, in particular, the existence
of m2 gauge invariants of the parental theory constrained
to be zero in restricted theory. To see this, note that the
rank deficiency implies that operator Qa

α has m2 left zero
vectors YA

a,

YA
aQa

α ¼ 0; rangeA ¼ m2 ≤ m1; ð3:13Þ
and this, according to the definition of this operator, implies
the existence of m2 parental gauge invariants

θAðφÞ≡ YA
aðφÞθaðφÞ; θA;IR̂

I
αjθ¼0 ¼ 0; ð3:14Þ

which are constrained to vanish. So generically the
restricted theory (3.4) is inequivalent to the parental gauge

3Classical equivalence of two theories can be defined by
equivalence of spaces of solutions of their equations of motion. In
particular it can be established by the local correspondence (3.8)
and the statement that reduced fields do not carry additional
degrees of freedom. This statement means that the above
assumptions on θaðφÞ imply the existence of such reducibility,
that is the possibility of excluding auxiliary variables in terms of
the reduced ones.
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theory Ŝ½φI�, because the latter does not a priori impose any
restrictions on its gauge-invariant objects. In what follows
we will consider such restricted theories which incorporate
new physics beyond their parental ones.
There is another representation of the solution for

Lagrange multipliers. If one constructs the set θIb dual to
covariant vectors θa;I ,

θa;Iθ
I
b ¼ δab; ð3:15Þ

then, contracting the equation of motion (3.5) with θIb one
obtains

λa ¼ Ŝ;IθIa: ð3:16Þ
For local in spacetime restriction functions4 θa this is a

local expression for Lagrangemultipliers in terms of Ŝ;I—the
left-hand side of equations of motion of the parental theory.
Resolving Lagrange multipliers λa in restricted equations of
motion (3.5) leads to the projected set of equations,

Ŝ;JðδJI − θJaθ
a
;IÞ ¼ 0; ð3:17Þ

equivalent to Ŝ;JeI;i ¼ 0. The projector ðδJI − θJaθ
a
;IÞ enforces

only a part of parental equations ofmotion Ŝ;I “tangential” to
restriction surface θa ¼ 0. Which is equivalent to (3.8) and
reinstates the observation that along tangential directions
equations of motion for restricted theory coincides with that
for parental theory.
On the contrary, projected on complementary (“normal”)

directions, equations of motion for these two theories differ.
Contraction of the parental equations Ŝ;I ¼ 0 and restricted
theory equations Ŝ;I − λaθ

a
;I ¼ 0 with θIa gives correspond-

ingly Ŝ;IθIa ¼ 0 and Ŝ;IθIa ¼ λa. The normal subset of the
parental equations in addition to Eq. (3.17) further restricts
classical configurations of fields φI in parental theory.
While the normal subset of the restricted theory equations
merely expresses λa in terms of φI and thus does not
additionally constrain the latter.5 However due to gauge

invariance of the parental theory (3.1) not all dynamical
restrictions on φI in the right-hand side of (3.16) are
effectively removed. The linear dependence Ŝ;IR̂

I
α ¼ 0

between Ŝ;I may express a certain part of Ŝ;IθIa in (3.16)
as linear combinations of tangential equations (3.17) which
are still frozen to 0 within the restricted equations of
motion. Obviously such linear combinations are found by
first contracting (3.16) with θa;I and then with R̂I

α which

leads to λaQa
α ¼ Ŝ;IθIaQa

α. The same structure Ŝ;IθIaQa
α

appears in the left-hand side of tangential equations (3.17)
after contracting with R̂I

α and thus vanishes on shell.
This reinstates constraints on Lagrange multipliers (3.10),
λaQa

α ¼ 0.

B. Gauge symmetry and reducibility

We assume that the restricted theory does not acquire
local gauge symmetries beyond those of the original
parental action. On the other hand, not all gauge trans-
formations of the parental theory δξφ

I ¼ R̂I
αξ

α generate
symmetries of the reduced action (3.4). These symmetries
are only those which preserve the constraints

δξθ
ajθ¼0 ≡ θa;IR̂

I
αξ

αjθ¼0 ¼ 0; ð3:18Þ
so that with the definition (3.11) the allowed gauge trans-
formation parameters ξαred in the restricted theory should be
solutions of the linear equation Qa

αξ
α
red ¼ 0, i.e., right zero

vectors of the matrix Qa
α. The subspace of reduced gauge

parameters can be obtained by projecting gauge parameters
of the parental theory ξα with a projector Tα

β which is
orthogonal in the space of gauge indices to Qa

α,

ξαred ¼ Tα
βξ

β; Qa
αTα

β ¼ 0: ð3:19Þ
On the other hand, gauge symmetries of the restricted

theory can be formulated in the parental field space of φI

with free (nonreduced) gauge parameters ξα. This happens
if instead of projecting ξα we project with respect to the
gauge index α the original parental generators R̂I

α. Thus,
we get the reducible set of gauge generators

RI
β ≡ R̂I

αTα
β: ð3:20Þ

This formulation is covariant from the viewpoint of the
parental gauge theory because the original multiplets of
parental field indices I and gauge indices α remain
unsplitted, but the price paid for this covariance is the
reducibility of the generatorsRI

β. They are indeed reducible
because the projector Tα

β in view of rank deficiency

[following from (3.19)] possess right zero vectors kβb
which become also the right zero vectors of RI

β

Tα
βk

β
b ¼ 0; RI

βk
β
b ¼ 0: ð3:21Þ

4We consider either ultralocal (algebraic) restriction functions
θaðφÞ or those for which m1ð¼ range aÞ ultralocal independent
combinations of φI can be expressed from the restriction
conditions θaðφÞ ¼ 0. In such a case a useful criterion for the
existence of local (in fact ultralocal) vectors θIb dual to θa;I , (3.15)
is the existence of the ultralocal nondegenerate linear combina-
tion θa;Ic

I
b with local vectors cIb (in particular, the presence of the

ultralocal minor of maximal m1 rank in the matrix θa;I).
5Comparing the sets of equations of motion which define the

dynamics of φI in parental and restricted theories one finds that in
the restricted theory m1 constraints Ŝ;IθIaðφÞ ¼ 0 are “removed”
whilem1 new constraints θaðφÞ ¼ 0 are applied. As it is this does
not, however, predict the number of degrees of freedom in
restricted theory, since this requires a deeper analysis of inter-
relation between the restriction conditions (3.2) and dynamical
and gauge structures of the parental theory.
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Despite reducibility an important advantage of
such projected representation is that it generates gauge
transformations with arbitrary unrestricted gauge param-
eters ξα. In the course of subsequent Batalin-Vilkovisky
extension of configuration space it will give rise to gauge
ghosts equivalent to that of the parental theory. This
property is achieved at the cost of reducibility of the
projected gauge structure (3.20) and introduction of ghost
for ghosts fields.
The projector Tα

β may be explicitly constructed in terms
of the left- and right-kernel bases (3.19) and (3.21)

Tα
β ¼ δαβ − kαaðQkÞ−1 abQb

β ≡ Tα
βðQ; kÞ: ð3:22Þ

Left kernel,Qa
α (3.11), is fixed by the restriction conditions

and the choice of parental gauge generators. Thus (3.22)
may be considered as the family parametrized by its right
kernel basis kβb. The structure of Tα

βðQ; kÞ, which in what
follows will be referred without specification of kernels, is
analogous to the set of projectors Tα

βðs; σÞ (2.36) intro-
duced above.
Here we emphasize the property that the matrix

ðQkÞab ≡Qa
γk

γ
b is not directly invertible. Rather it could

have rank equal or lower to that of rankQa
γ ¼ m1 −m2.

The rank deficiency is dictated by the requirement of new
physics incorporated by the restricted theory (3.12)—
physical inequivalence to the parental gauge theory. As
discussed in Appendix A, this extra difficulty can be
circumvented by the Moore-Penrose construction of the
generalized inverse [25], provided the following rank
restriction conditions (3.23) are satisfied,

rank ðQkÞab ¼ rankQa
α ¼ rank kβb: ð3:23Þ

This guarantees unambiguous definition of projector (3.22)
and its correct rank property, rank Tα

β ¼ m0 −m1 þm2.
Rank restriction requirements (3.23) in particular are

guaranteed when kβb is parametrized in terms of non-
degenerate two-forms BβαðφÞ and cabðφÞ—metrics in
spaces of α-indices and a-indices respectively,

kβb ¼ BβαQa
αcab; Tα

β ¼ δαβ − BαγQa
γðQBQTÞ−1abQb

β;

ð3:24Þ

which will be used in unimodular gravity calculations in
Sec. V. In fact in this case the projector Tα

β is defined byQ
a
α

and Bβα only because the dependence on cab completely
cancels out.6

The generators (3.20) of gauge transformations in
restricted theory7 are thus far defined in the parental theory
field space of φI . They determine the gauge transformations
δredξ φI ¼ RI

βξ
β tangential to the surface of θaðφÞ ¼ 0. As

any field on this surface can be parametrized by ϕi these
gauge transformations can be expressed via the gauge
transformations of the reduced restricted gauge theory
δredξ ϕi ¼ Ri

βξ
β, δredξ φI ¼ eI;iδ

red
ξ ϕi, so that the correspond-

ing generators Ri
β of reduced space gauge fields ϕi are

related to RI
β by obvious pushforward relations

RI
βðeIðϕÞÞ ¼

δeIðϕÞ
δϕi Ri

βðϕiÞ≡ eI;iR
i
β: ð3:25Þ

Thus, the reduced-space representation of the restricted
gauge theory has reducible generators Ri

β and their first-

stage reducibility generators Zβ
a,

δSred½ϕ�
δϕi Ri

βðϕÞ ¼ 0; Ri
βZ

β
a ¼ 0; ð3:26Þ

whereZβ
a exhaust linear combinations of right zero vectors

of the projector Tα
β and have the form

Zβ
a ¼ kβbμ

b
a ð3:27Þ

with arbitrary factor μba, so that rank kβbμ
b
a ¼ rank kβb.

Such natural choice imply off-shell first-stage reducibility
(3.26) of projected gauge generators.
Note that the projectors (3.22) generically are nonlocal

depending on structure of restriction functions and gauge
generators involved in the construction of gauge-restriction
operator Qa

α.

6The “symmetric” form (3.24) has the structure analogous to
that of symmetric projector Παβ (2.43) (with the left index raised)
when ϰαβ ↔ ðBβαÞ−1 and σαb ↔ BαβQa

βcab.

7In this section we focus on the gauge transformations (3.20)
of fields φI in the restricted theory (3.4). However, the configu-
ration space of the latter also contains fields λa. The Noether
identities for the equations of motion (3.5) show that the gauge
transformation of Lagrange multipliers should be zero,
δξλa ≡Raαξ

α ¼ 0. This is so when the projector Tα
βðQ; kÞ

(3.22) in the gauge generators (3.20) is constructed with respect
to the operator Qa

α (3.11) in the whole neighborhood of the
restriction surface θaðφÞ ¼ 0. This, in particular, implies that Qa

α
has a constant rank in this neighborhood. We assumed this
property and so the gauge symmetry representation RI

β ¼
R̂I

αTα
βðQ; kÞ (3.20) and Raα ¼ 0 is enough for the purpose of

this paper. In generic case when one uses the projector (3.22) with
some other constant rank left kernel, Q0a

α ¼ Qa
α þ Γa

bαθ
b, differ-

ing from Qa
α (3.11) off the restriction surface, Noether identities

imply nonzero generators Rbα ¼ λaΓa
bβT

β
αðQ0; kÞ. This is inevi-

table when the rank of Qa
α (3.11) jumps outside of the restriction

surface.
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C. Gauge algebra of a restricted theory

To proceed further we have to know the gauge algebra of
the restricted theory generators. The a priorimaximum that
can be stated from the first of their relations (3.26) [under
certain assumptions of regularity ofRi

βðϕÞ [30]] is that they
satisfy an open algebra (2.3) with some structure functions
and S;i replaced by Sred;i . Quite remarkably, we will be able
to derive this algebra first by expressing via Eq. (3.25) Ri

β

in terms of RI
β and using the algebra of the projected (full

space) generators (3.20), RI
β ¼ R̂I

αTα
β. The latter, in its

turn, follows from the gauge algebra of the parental theory
and turns out to be also closed in the case of closure of the
algebra of R̂I

α. Thus, finally we will show that the resulting
algebra is also closed as long as we start with the closed
algebra of the parental theory.
Expressing Ri

β in terms of RI
β goes with the aid of

covariant vectors eiI dual to eJ;j

Ri
αðϕÞ ¼ eiIR

I
αðeðϕÞÞ: ð3:28Þ

These vectors satisfy the biorthogonality relation eiIe
I
;j ¼ δij

and represent a part of the complete local basis ðeiI; θa;IÞ in
the cotangent bundle of the manifold of φI . Vectors eiI may
be chosen orthogonal to the set θIb dual to θ

a
;I (3.15), so that

ðeI;i; θIaÞ and ðeiI; θa;IÞ form biorthogonal pair of tangent and
cotangent bases

eiIe
I
;j ¼ δij; θa;Iθ

I
b ¼ δab; eiIθ

I
b ¼ 0; θaI e

I
;j ¼ 0; ð3:29Þ

eI;ie
i
J þ θIaθ

a
;J ¼ δIJ; ð3:30Þ

the last equation here expressing completeness of this
basis.8 For fixed eI;j and θa;I there is a freedom of choosing
complementary basis elements

eiI → eiI þ biaθa;I; θIa → θIa − eI;ib
i
a ð3:31Þ

which preserves (3.29) and (3.30). However this freedom
does not spoil expression (3.28) since the shift ambiguity
term in eiI is killed due to defining property of restricted
generators, (3.20) θa;IR

I
β ¼ θa;IR̂

I
αTα

β ¼ Qa
αTα

β ¼ 0, thus
making expression (3.28) for Ri

αðϕÞ unambiguous.

Using (3.28) we have

Ri
½α;jR

j
β� ¼ eiIR

I
½α;JR

J
β� þRk

½αR
j
β�e

i
J;je

J
;k

¼ eiIR
I
½α;JR

J
β�; ð3:32Þ

where square brackets denote pairs of antisymmetrized
indices and the second term in the middle part vanishes
because for dual eiJ and eJ;k (3.29) eiJ;je

J
;k ¼ −eiJeJ;kj ≡

−eiJδ2eJðϕÞ=δϕkδϕj and so antisymmetrization in indices
kills it. Thus, the gauge algebra ofRi

α directly follows from
that of RI

α.
As shown in Appendix B the commutator of projected

generators RI
α replicates the algebraic relation of the

parental theory. If the latter is prescribed by

R̂I
α;JR̂

J
β − R̂I

β;JR̂
J
α ¼ R̂I

γĈ
γ
αβ þ ÊIJ

αβŜ;J; ð3:33Þ

then the projected generators of the restricted gauge theory
RI

β ¼ R̂I
αTα

β, which are defined by Eqs. (3.20)–(3.22) both
on and outside of the constraint surface θa ¼ 0, are subject
to a similar relation

RI
α;JR

J
β −RI

β;JR
J
α ¼ RI

γC
γ
αβ þ EIJ

αβŜ;J ð3:34Þ

with new structure functions Cγ
αβ and EIJ

αβ

Cγ
αβ ≡ Tγ

ζĈ
ζ
δϵT

δ
αTϵ

β þ Nγ
βα − Nγ

αβ; ð3:35Þ

EIJ
αβ ≡DI

KD
J
LÊ

KL
γδ T

γ
αTδ

β; ð3:36Þ

where

Nγ
αβ ≡ Tγ

δk
δ
a;JðQkÞ−1 abQb

αRJ
β; ð3:37Þ

DI
J ≡ δIJ − R̂I

ϵkϵaðQkÞ−1 abθb;J: ð3:38Þ

Thus, in view of (3.32) for a closed algebra of the
parental theory with ÊIJ

αβ ¼ 0 one gets a closed gauge
algebra of reduced fields representation of the restricted
theory withEIJ

αβ ¼ 0 and the same structure functions (3.35)

Ri
α;jR

j
β −Ri

β;jR
j
α ¼ Ri

γC
γ
αβ: ð3:39Þ

These structure functions can be nonlocal and with respect
to its lower indices have both transversal and longitudinal
nature regarding the projector Tα

β because of the properties
of Nγ

αβ-tail of the expression (3.35), Nγ
αβ ¼ Tγ

δN
δ
αβ ¼

Nγ
αδT

δ
β and Nγ

δβT
δ
α ¼ 0.

8A particular “symmetric” biorthogonal basis may be con-
structed with the aid of the nondegenerate metric GIJ on the
manifold of φI . This induces the metric Gij ≡ eI;iGIJeJ;j,
Gij ≡ ðGjiÞ−1, on the reduced ϕi-space—the surface of
θaðφÞ ¼ 0, and its inverse GIJ ≡ ðGJIÞ−1 induces the metric in
the directions normal to this surface, Gab ≡ θa;IG

IJθb;J ,
Gab ≡ ðGbaÞ−1. Starting from mutually orthogonal eI;i and θa;I
one can construct complementary basis elements eiI and θIa
satisfying (3.29), (3.30) as eiI ¼ GijeJ;jGJI and θIa ¼ GIJθb;JGba.
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IV. ONE-LOOP EFFECTIVE ACTION
OF RESTRICTED GAUGE THEORY

A. Two representations of the one-loop effective action

The reduced representation of the restricted gauge
theory, which was constructed above, is subject to the
BV formalism of the first-stage reducible model with first-
stage reducibility generators Zα

a ∝ kαb. Therefore, one can
use Eq. (2.47) or Eq. (2.52) along with Eqs. (2.48)–(2.50)
and the replacement of S½ϕ� by Sred½ϕ� in order to build its
one-loop effective action. However, as it was discussed
above, our goal is to perform quantization in the repre-
sentation of the original parental fields φI, rather than in
terms of the reduced variables ϕi. Hence, an interesting task
arises—to convert these algorithms into this representation.
Such a conversion is, of course, based on the relations of

embedding the restricted theory into the parental one (3.6)–
(3.7) and on the classical equation of motion (3.5) which
determines the background on top of which the semi-
classical expansion is built. These relations imply that all
field-dependent entities of the restricted theory, including
all gauge-fixing elements, result from the embedding of ϕi

into the space of φI . Conversely, the objects of the restricted
theory are the functions on the parental configuration
space. Therefore, like the relation (3.7) for the classical
parental and reduced actions Sred½ϕ� ¼ Ŝ½eðϕÞ�, we have

χα; σαa;ωa
α; ϰαβ; ρab ¼ χαðeðϕÞÞ; σαaðeðϕÞÞ;ωa

αðeðϕÞÞ;
ϰαβðeðϕÞÞ; ρabðeðϕÞÞ; ð4:1Þ

where, to avoid messy notation, we do not supply χαðφÞ
and other gauge-fixing quantities of the parental theory by
hats. In particular, this means that the gauge condition
matrices Xα

;i, (2.51), and Xα
;I in both representations are

related by the embedding formula for a covector,

Xα
;i ¼ eI;iX

α
;I ; Xα

;I ¼ χα;I − σαc;IðsσÞ−1 absbβ χβ: ð4:2Þ

The relation between Sred;ij and Ŝ;IJ is trickier. From (3.7)
it follows that on shell

Sred;ij ¼ ðeI;ieJ;jŜ;IJ þ Ŝ;IeI;ijÞjθa¼0

¼ eI;ie
J
;jðŜ;IJ − λaθ

a
;IJÞjSλ;I¼0; θa¼0

≡ eI;ie
J
;jS

λ
;IJjSλ;I¼0; θa¼0; ð4:3Þ

where we took into account the equation of motion Ŝ;I ¼
λaθ

a
;I and the corollary of Eq. (3.6) θa;IJe

I
;ie

J
;j þ θa;Ie

I
;ij ¼ 0.

Therefore, with the inclusion of the gauge-breaking term
we have for the operator (2.48)

Fij ¼ eI;ie
J
;jFIJ; FIJ ¼ Ŝ;IJ − λaθ

a
;IJ − Xα

;IΠαβX
β
;J: ð4:4Þ

What remains now is to convert the functional determi-
nant of Fij on the space of ϕi to the functional determinant
of FIJ on the space of φI . This can be done by comparing
two expressions for one and the same Gaussian integral
with the quadratic part of the action Sλ½φ; λ� in the
exponential. On the one hand it equals

Z
DhDλ eið

1
2
hIFIJhJ−λaθa;Ih

IÞ ¼
�
det

� FIJ −θb;J
−θa;I 0

��−1=2

¼ ðdetFIJÞ−1=2ðdetΘabÞ−1=2;
ð4:5Þ

Θab ≡ θa;IF
−1IJθb;J; ð4:6Þ

where hI denotes perturbations of φI . On the other hand,
this integral can be calculated in the parametrization of
reduced fields ϕi with perturbations hi and specially chosen
set of remaining “reducibility” fields θa with perturba-
tions ha,

hI ¼ eI;ih
i
ðeÞþ θIahaðθÞ; hiðeÞ ¼ ei;Ih

I; haðθÞ ¼ θa;Ih
I; ð4:7Þ

where eI;i, θ
a
;I , e

i
I , θ

I
a are calculated on the classical back-

ground and chosen to satisfy the biorthogonality relations
(3.29) and (3.30). Thus, making the change of integration
variables hI → ðhiðeÞ; haðθÞÞ we have for the same integral

Z
Dh e

i
2
hIFIJhJδðθa;IhIÞ

¼ det½eI;i θIa�
Z

DhðeÞDhðθÞe
i
2
hiðeÞFijh

j
ðeÞδðhaðθÞÞ

¼ det½eI;i θIa� ðdetFijÞ−1=2; ð4:8Þ

whence the comparison of these two expressions gives

detFij ¼ detFIJ detΘabðdet½eI;i θIa�Þ2: ð4:9Þ

For ultralocal restriction constraint (3.2) the reparamet-
rization (4.7) is also ultralocal in spacetime, eI;i; θ

a
;I; e

i
I;

θIa ∼ δðx; yÞ, and the last squared determinant here con-
tributes to the effective action δð0Þ terms. Repeating the
derivation procedure of Eqs. (4.7)–(4.9) with FIJ replaced
by some ultralocal symmetric matrix GIJ proportional to
undifferentiated delta function of spacetime coordinates—
the metric on the configuration space of φI ,

GIJ ∼ δðxI; xJÞ; ð4:10Þ

one finds the expression for Jacobian ½eI;i θIa� in the right-
hand side of (4.9) in terms of the corresponding functional
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determinants of this metric, its inverse GIJ ≡ ðGJIÞ−1, the
induced metric Gij of the reduced ϕi-space and the metric
Gab in the θa-directions (see footnote 8)

Gij ≡ eI;iGIJeJ;j; Gij ≡ ðGjiÞ−1;
Gab ≡ θa;IG

IJθb;J; Gab ≡ ðGbaÞ−1: ð4:11Þ

The square of this Jacobian therefore reads

ðdet½eI;i θIa�Þ2 ¼
detGij

detGIJ
detGab ∼ expðδð0Þð…ÞÞ: ð4:12Þ

Note that Gab is ultralocal (for ultralocal restrictions) in
contrast to the operator Θab defined by Eq. (4.6).
Thus, this is an inessential normalization factor of the

generating functional or, if treated seriously, it can be
absorbed into the definition of the local path integral
measure provided one identifies the ultralocal matrix Gij

with the Hessian of the gauge-fixed reduced action Sredgf ½ϕ�
with respect to the configuration space velocities _ϕ,9Z

Dϕ →
Z

Dϕ ðdetGijÞ1=2;

Gij ¼
δ2Sredgf

δ _ϕiδ _ϕj ¼
δ2Sλgf
δ _φIδ _φJ e

I
;ie

J
;j ≡ eI;iGIJeJ;j: ð4:13Þ

Then detFij in the one-loop expressions (2.47) or (2.52)
get replaced by

detFi
j ¼ detFI

J detΘa
b; ð4:14Þ

where raising the indices of operator forms Fij and FIJ is
done by the corresponding local metrics of Eq. (4.11) and
the second index in the operator of the last determinant is
analogously lowered by the “induced” metric Gab along
normal directions,

Fi
j ≡ GikFkj; FI

J ≡ GIKFKJ; Θa
b ≡ ΘacGcb: ð4:15Þ

Replacement of Fij by (4.14) in (2.47) finally gives the
one-loop generating functional of a restricted gauge theory
fully in terms of the parental theory structures

Z1−loop
restricted ¼

det ρab
ðdet ϰαβÞ1=2ðdet κabÞ1=2

×
detFα

β

ðdetFI
JÞ1=2ðdetΘa

bÞ1=2 detFa
b

: ð4:16Þ

Here the gauge-fixed ghost operator Fα
β is, of course, given

by the unreduced theory version of (2.49) with the
projected generators RI

α ¼ R̂I
γT

γ
βðQ; kÞ (3.20),

Fα
β ¼ Xα

;IR̂
I
γT

γ
β − σαaρ

−1 a
bω

b
β: ð4:17Þ

Note that despite ultralocal reparametrization (4.7) the
transition to parental theory representation leads to the
additional nontrivial factor—the determinant of (4.6).
The complexity of this factor follows from the fact that
this is no longer a determinant of the local differential
operator. Rather, this is the determinant of a nonlocal
object Θa

b—the Green’s function of the local operator
FIJ sandwiched between two normal covariant vectors θa;I
and θb;J.

1. Ambiguity in the choice of generator bases

The BV generating functional (2.10) is not invariant
under the change of generator bases of R̂I

α and Zα
b as

obvious from one-loop expressions (2.47) or (4.16). When
linearly transformed with respect to their gauge index α
gauge generators R̂I

α still remain the generators of gauge
transformations of the parental theory. A unique represen-
tations of R̂I

α is not a priori fixed in Lagrangian theory. The
linear transformations of Zα

b with respect to its reducibility
index b are also not fixed and this ambiguity reveals itself in
the arbitrary matrix μab (3.27)

Zα
b ¼ kαaμab: ð4:18Þ

Ambiguity of the linear reparametrizations of generators
results in “normalizing” factors in the generating functional
and is the well-known feature of the BV formalism which
will be addressed later in this section.
Another ambiguity is the choice of a projector parameter

kαa which implicitly enters restricted theory gauge gener-
ators RI

α (3.20) via projectors (3.22) and reducibility
generators Zα

b ∝ kαa. The only restriction on the choice
of kαa is that it should satisfy the rank conditions (3.23).
Otherwise it is arbitrary, and this arbitrariness may extend
to the effective action (4.16). The problem of potential
dependence of the latter on kαa is a specific issue of
reducible gauge structure approach to restricted theory
and it should be fixed independently of the generators
normalization issue. Below we show that the requirement
of independence of the generating functional (4.16) on the
choice of kαa may be satisfied by a special choice of the
factor μab in (4.18).

9Here, of course, the functional dependence of the redu-
ced and parental actions on velocities is mediated by their
gauge-fixed Lagrangians, i.e., Sredgf ¼ R

dt Lred
gf ðϕ; _ϕÞ and Sλgf ¼R

dt Lλ
gfðφ; _φÞ. The gauge-fixed action is just the corresponding

classical action with added gauge breaking term. Also remember
that we consider relativistic gauges, so that the “kinetic” metric
(4.13) in reduced theory is nondegenerate. Extending eiIGije

j
J

with linear combinations bIaθa;J þ θa;IbJa one acquires the non-
degenerate metric GIJ .
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B. Independence of projector parameter

The variational equation

−δkΓ1−loop ¼ δk ln
detFα

β

detFa
b

¼ F−1 α
βX

β
;I δkR

I
α − ðωZÞ−1 abωb

β δkZ
β
a ¼ 0

ð4:19Þ

can be transformed by using the relation δkRI
α¼

R̂I
β δkT

β
αðQ;kÞ¼RI

β δkT
β
αðQ;kÞ (note that δkT

β
αðQ;kÞ∝Tβ

γ

ðQ;kÞ), the analog of the Ward identity (2.60) and the
identity (2.56), so that

F−1 α
γðXγ

;iR
i
βÞ ¼ F−1 α

γðFγ
β þ σγaρ−1 abωb

βÞ
¼ δαβ − Zα

aðωZÞ−1 abωb
β: ð4:20Þ

For the first term in the right-hand side of (4.19) this gives

F−1 α
βX

β
;I δkR

I
α ¼ ðωZÞ−1 abωb

βT
β
αðQ; kÞ δkZα

a; ð4:21Þ

where we used the fact that δkTα
α ¼ δkðδαα − δaaÞ ¼ 0 and

δkT
β
αZα

a ¼ −Tβ
α δkZα

a in view of Tβ
αðQ; kÞZα

a ¼ 0. Thus,
Eq. (4.19) takes the form

ðωZÞ−1 abωb
βðTβ

αðQ; kÞ − δβαÞ δkZα
a

¼ ðωZÞ−1 abðωkÞbcðQkÞ−1 cdQd
α δkZα

a ¼ 0: ð4:22Þ

With the expression (4.18) this equation reads in condensed
matrix notations

trðμ−1δkμþ ðQkÞ−1δkðQkÞÞ
¼ δk lnðdet μ detðQkÞÞ ¼ 0; ð4:23Þ

where tr denotes the trace over indices of the matrices
μ ¼ μab and ðQkÞ ¼ ðQkÞab. Without loss of generality this
equation can be solved by μab ¼ ðQkÞ−1 ab, so that finally

Zα
b ¼ kαaðQkÞ−1 ab: ð4:24Þ

C. Canonical normalization of generators

Specification of the gauge generators basis R̂I
α is a more

complicated issue. However, we will give brief and,
perhaps, not so exhaustive arguments in favor of a concrete
choice which, in particular, will confirm the form (4.24) of
Zα

b. Conventional Lagrangian quantization in the form of
the Faddeev-Popov integral (or the BV integral in more
complicated models with open and reducible algebras) is
not intrinsically closed. It does not provide uniquely the
concrete form of the local measure and does not resolve the
associated problem of the choice of the generators bases.

In order to fix them one should appeal to the canonical form
of the path integral which for a general class of relativistic
gauge conditions comprises the BFV formalism. For simple
gauge systems10 fixing the measure and the basis of
generators looks as follows.
The starting point is the canonical formalism of the

gauge theory whose canonical action Scan ¼
R
dt ðp _q −

H − vαγαÞ explicitly contains first-class constraints γα dual
to the Lagrange multipliers vα which are a part of the
Lagrangian configuration space of the theory φI ¼ ðq; vÞ.
This action is invariant with respect to gauge trans-
formations which are canonical (ultralocal in time and
generated by Poisson brackets with constraints) in the
sector of phase space variables δξðq; pÞ ¼ fðq; pÞ; γαgξα,
but contain the first-order time derivative of the gauge
transformation parameter in the sector of Lagrange multi-
pliers, δξvα ¼ _ξα þ � � �. Here dots denote ultralocal in time
terms containing structure functions of the Poisson bracket
algebra of first-class constraints and the Hamiltonian H,
their explicit form being unimportant for us in what
follows. The corresponding canonical path integral in the
class of canonical gauges χα ¼ χαðq; pÞ reads as

Z ¼
Z

DqDpDv ei Scan½q;p;v�
Y
t

δðχαÞ detfχα; γβg

¼
Z

DqDp ei
R

dtðp _q−HÞY
t

δðχαÞδðγαÞ detfχα; γβg;

ð4:25Þ

and it is obviously invariant under the linear changes of the
basis of constraints, γα → γ0α ¼ γβΩ

β
α, with any ultralocal

in time and nondegenerate matrix Ωβ
α. Subsequent inte-

gration over momenta p converts this integral into the
Lagrangian form which, modulo corrections associated
with the transition to the Lagrangian expressions for
momenta, takes the form of the Faddeev-Popov integral

Z ¼
Z

Dφ μ½φ� detQα
β δðχαÞei S½φ�: ð4:26Þ

Here the local measure μ½φ� ∼ exp½δð0Þð…Þ� absorbs ultra-
local in time factors associated with the above corrections,
and the Faddeev-Popov operator Qα

β is built in terms of the
gauge generatorsRI

β—the Lagrangian version of the above

10The simplification used here is that the Lagrangian gauge
theory (which later will be the parental gauge system) admits the
so-called one-step Hamiltonization. That is, when performing the
Legendre transform only with respect to the fields with velocities
in the Lagrangian action, one obtains the constrained canonical
action having only first-class constraints, and Dirac consistency
equations for these “primary” constraints do not generate new
“secondary” constraints. This is the case of Einstein general
relativity, Yang-Mills theory, and many others.
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transformations in the canonical formalism, δξφI ¼
RI

αξ
α ∝ δξðq; vÞ,

Qα
β ¼ χα;IR

I
β: ð4:27Þ

Starting from the BFV canonical quantization11 one can
arrive at the same expression for this wider class of gauge
conditions [26,31] including relativistic (or “dynamical”)
gauges so that gauges χα involve linear dependence on the
time derivatives of Lagrange multipliers vα.
The integral (4.26) is not explicitly invariant under

the rotation of the generator basis, RI
α → R0I

α ¼ RI
βΩ

β
α,

but implicitly the choice of this basis is fixed by the
requirement that it should match with the basis of canonical
gauge transformations δξφ ¼ δξðq; vÞ implying that δξvα ¼
_ξα þ… or Rα

β ¼ δαβðd=dtÞ þ…. The ambiguity of split-
ting the configuration space of gauge fields φI ∼ ðq; vÞ into
canonical coordinates and Lagrange multipliers (which is
ultralocal in time) can only lead to some inessential local
matrix μαβ in the last equation, δαβðd=dtÞ → μαβðd=dtÞ, and
some extra factor in the local measure μ½φ� ∼ exp½δð0Þð…Þ�
which is again unimportant in concrete applications. Thus,
the ambiguity in the choice of generator basis RI

β coming
from the canonical formalism reduces to its rotation by
ultralocal in time matrices, which is equivalent to changing
the basis of first-class constraints in the canonical formal-
ism. This ambiguity is physically inessential, so that finally
the choice of generator basis is fixed by the requirement of
local coefficient of the first-order time derivative in the
gauge generators RI

α.
Unfortunately, in the case of restricted gauge theories such

a line of reasoning does not work directly because the
reducible generators obtained by the projection procedure
may become nonlocal in time. Moreover, the restriction of
gauge theory generically leads to its canonical formalism
with a much more complicated structure involving many
generations of constraints. Therefore it is much harder to
implement with the same level of generality the above
scheme starting from the canonical quantization. For this
reason we will choose a somewhat different approach in
order to show that the equivalence to the canonical quanti-
zation fixes the basis of projected generators in restricted
gauge theory by the requirement that the local parental theory
generators R̂I

α are canonically induced, that is they satisfy a
local normalization condition for their time derivative part.
Consider a parental gauge theory with the action Ŝ½φ�

whose gauge generators R̂I
α form a closed algebra and are

irreducible, so that its generating functional is given by a
standard Faddeev-Popov path integral. This integral can be
represented on shell (with switched off sources) in three
equivalent forms differing by the choice of gauge-fixing
integration measure,

Zparental ≡
Z

Dφ M̂delta
ðχÞ ei Ŝ½φ� ¼

Z
Dφ M̂ðχ;ϰÞei Ŝ½φ�

¼
Z

Dφ M̂delta
ðχ;ϰ;σÞe

i Ŝ½φ�: ð4:28Þ

The measure factors M̂delta
ðχÞ and M̂ðχ;ϰÞ respectively corre-

spond to the delta-function-type and Gaussian-type gauge
fixing with the full set of gauge conditions χα, the latter
involving the exponentiated gauge-breaking term with an
invertible gauge-fixing matrix ϰαβ

M̂delta
ðχÞ ¼ det Q̂α

β δðχαÞ; ð4:29Þ

M̂ðχ;ϰÞ ¼ det Q̂α
β ðdet ϰαβÞ1=2e−i

2
χαϰαβ χ

β
; ð4:30Þ

where Q̂α
β is a standard Faddeev-Popov operator

Q̂α
β ¼ χα;IR̂

I
β: ð4:31Þ

Obviously, M̂delta
ðχÞ ¼ M̂ðχ;∞Þ is a limit of M̂ðϰÞ at ϰαβ → ∞.

The third measure factor is less known and corresponds
to the situation when a part of gauge conditions χp are of
delta-function-type, whereas the rest of them are enforced
via the gauge breaking term with the projector Παβ

M̂delta
ðχ;ϰ;σÞ ¼

det Q̂α
β ðdet ϰαβÞ1=2

ðdet κpqÞ1=2
e−

i
2
χαΠαβχ

β
δðσpαχαÞ: ð4:32Þ

Here

σpαχα ≡ χp ð4:33Þ
is a subset of gauge conditions obtained by projecting the
full subset χα with the aid of a vielbein σpα ¼ κpqσβqϰβα
which is dual to the set σαp introduced above in the
formalism of reducible gauge generators,12

11The Faddeev-Popov-type expression (4.26) is obtained by
neglecting ghost vertices which contribute to higher loops and are
irrelevant in the context of the present discussion. In the same
manner we neglect possible higher-order loop contributions to
the Lagrangian generating functional, which appear when the
classical relation between momenta and velocities acquire ghost
corrections.

12The proof of the last equality in (4.28) can be done by
complementing the bases of σαp with the remaining vielbein
vectors σαM which are orthogonal to σαp in the metric ϰαβ,
σαpϰαβσ

β
M ¼ 0 and, therefore, satisfy the determinant relation

detð½ σαp σαM �Þðdet ϰαβÞ1=2 ¼ ðdet κpq det κMNÞ1=2, where κpq ¼
σαpϰαβσ

β
q and κMN ¼ σαMϰαβσ

β
N are respectively the metrics

on subspaces spanned by σαp and σαM. Then the full delta func-
tion of gauge conditions can be decomposed as δðχαÞ ¼
δðχpÞδðχMÞðdet ϰαβÞ1=2=ðdet κpq det κMNÞ1=2 and the factor
δðχMÞ=ðdet κMNÞ1=2 here, according to ’t Hooft trick, being
replaced by expð− i

2
χMκMNχ

NÞ ¼ expð− i
2
χαΠαβχ

βÞ—the imple-
mentation of the second equality of (4.28) in the sector of χM
gauges.
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σpασαq ¼ δpq; σαpσ
p
β ¼ δαβ − Πα

β; Πα
β ¼ ϰαγΠγβ:

ð4:34Þ
On the other hand, inclusion of delta function of the

subset of gauge conditions (or partial gauge fixing) can be
interpreted as quantization of the restricted gauge theory
with partial gauge-fixing conditions χp playing the role of
restriction constraints θp. According to our derivation
above, this restricted gauge theory has reducible gauge
generators RI

α ¼ R̂I
βT

β
αðQ; kÞ built with the aid of the

operator Qp
α ¼ χp;IR̂

I
α and some set of vectors kαp, so that

its path integral over reduced configuration space of ϕi

should read

Zpartial gf ¼
Z

Dϕ Mred
ðχ;ϰ;σ;ω;k;ρÞe

i Sred½ϕ�; ð4:35Þ

where Sred½ϕ� ¼ Ŝ½φ�jχp¼0 and the gauge-fixing integration
measure according to the reducible gauge theory algorithm
(2.47) looks like (we distinguish the partial gauge fixing
case from the restricted theory case by replacing the indices
a; b;… with the indices p; q;… from the second part of
Latin alphabet)13

Mred
ðχ;ϰ;σ;ω;k;ρÞ ¼

detFα
β det ρ

p
q

detFp
q

ðdet ϰαβÞ1=2
ðdet κpqÞ1=2

e−
i
2
χαΠαβχ

β
; ð4:36Þ

Fα
β ¼ Q̂α

γT
γ
βðQ; kÞ − σαpρ

−1p
qω

q
β; ð4:37Þ

Fp
q ¼ ðωZÞpq ¼ ðωkÞprðQkÞ−1 rq; ð4:38Þ

Q≡Qp
α ¼ σpβQ̂

β
α: ð4:39Þ

Here Qp
α is in fact a projected (from the left) Faddeev-

Popov operator Q̂β
α of the parental theory, Tγ

βðQ; kÞ—the
corresponding projector (3.22) with kernels Qp

α and kαq,
Fα

β is the gauge-fixed ghost operator, Fp
q is the ghosts-for-

ghosts operator and first-stage reducibility generators Zα
p

are normalized according to (4.24).
Remarkable property proven in Appendix C is the

determinant relation which is valid for operators defined
by Eqs. (4.31) and (4.38),

det Q̂α
β ¼

detFα
β det ρ

p
q

detFp
q

: ð4:40Þ

It allows one to express the combined measure (4.32) in
terms of the restricted theory measure

M̂delta
ðχ;ϰ;σÞ ¼ Mred

ðχ;ϰ;σ;ω;k;ρÞδðσpαχαÞ; ð4:41Þ
whence one has

Zpartial gf ¼
Z

Dφ M̂delta
ðχ;ϰ;σÞe

i Ŝ½φ� ¼ Zparental; ð4:42Þ

where the last equality follows from (4.28). This relation
shows that the restricted theory with full-rank operator Qp

α

is nothing but a partial gauge fixing concept—the parental
and restricted theories which are physically equivalent at
the classical level remain equivalent at the quantum level.
The BFV canonical prescription of normalization for

gauge generators in the Lagrangian BV approach for the
parental theory with the irreducible gauge structure thus
imply that correctly normalized reducible “projected”
gauge generatorsRI

α ¼ R̂I
βT

β
αðQ; kÞ of the restricted (here,

partially gauge-fixed) formalism just should be constructed
by projecting canonically normalized parental gauge gen-
erators R̂I

β. Note that this result also confirms the normali-
zation (4.24) of reducibility generators derived above from
another (projector parameter independence) principle.
Let us go over from the case of partial gauge fixing to

generic restricted theory physically inequivalent to the
parental one. Its path integral in reduced space representa-
tion is given by the analog of Eq. (4.35) with the set of
restriction conditions θa instead of χp, whose operator Qa

α

is rank deficient, rankQa
α ¼ m1 −m2 < range a ¼ m1,

Zrestricted ¼
Z

Dϕ Mred
ðχ;ϰ;σ;ω;k;ρÞe

i Sred½ϕ�

¼
Z

Dφ Mred
ðχ;ϰ;σ;ω;k;ρÞδðθaÞei Ŝ½φ�: ð4:43Þ

The transition to integration over the parental theory
configuration space, Dϕ ðdetGijÞ1=2¼Dφ ðdetGIJÞ1=2 ×
ðdetGabÞ1=2δðθaÞ, is written here modulo local measure
factors which we will disregard in what follows. The set of
functions θa according to the rank of Qa

α can be split into
the set of gauge-invariant functions θA, rangeA ¼ m2, and
the set θp, rangep ¼ m1 −m2, cf. Eqs. (3.12) and (3.13),
θa → ðθA; θpÞ so that

δðθaÞ ¼ δðθAÞδðθpÞY; ð4:44Þ

where Y ¼ det ∂ðθA; θpÞ=∂θa. The functions θp enumer-
ated by letters from the second part of Latin alphabet play
here the role conditions of partial gauge fixing, χp ≡ θp,
while the invariants θA, which are forced to vanish in the
path integral, are responsible for inequivalence of the
restricted and parental theories.
Now, let us choose in the measure Mred

ðχ;ϰ;σ;ω;k;ρÞ the full
set of gauge conditions

χα ¼ σαpχ
p þ σαMχ

M ð4:45Þ

13The reason for that which will be clarified below is that the
set of restriction conditions θa generically contains a gauge-fixing
subset, which will be labeled by indices p; q;… of range
m1 −m2, and the remaining conditions of range m2 which
restrict gauge invariants of the parental theory.
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with χp identified with θp, χp ¼ θp, rangep ¼ m1 −m2

[cf. the footnote 12 and Eq. (4.33) which applies here in
view of orthogonality σpασαM ¼ 0]. Let the rest of gauge
conditions χM, rangeM ¼ m0 −m1 þm2, form any com-
plementary set of gauges such that the total Faddeev-Popov
operator ½Qp

β Q
M
β � is nondegenerate. Then, substituting the

above relation (4.44) in (4.43) and using the relation (4.41)
between the measures one has

Zrestricted ¼
Z

Dφ M̂delta
ðχ;ϰ;σÞYδðθAÞei Ŝ½φ�

¼
Z

Dφ M̂delta
ðχÞ YδðθAÞei Ŝ½φ�: ð4:46Þ

Here, the last equality follows from the equality of
measures Eq. (4.28) and the fact that

det½Qp
β Q

M
β �δðχpÞδðχMÞ ¼ det Q̂α

β δðχαÞ≡Mdelta
ðχÞ ð4:47Þ

in view of invariance of the Faddeev-Popov delta-function-
type measure with respect to linear transformations of the
basis of gauge conditions.
Equation (4.46) allows us to make the needed statement;

as long as the quantum measureMdelta
ðχÞ can be derived from

the canonical quantization with canonically normalized
local generators R̂I

α, then the same choice of parental
theory generators should be used in the construction of
restricted theory.
Note that the last expression for Zrestricted can be alter-

natively represented by expressing in terms of original
special gauge conditions θp and χM and then using (4.44).
This allows us to get rid of a potentially nonlocal factor Y
and obtain the representation directly in terms of the
restriction functions θa and the complementary subset of
gauge conditions,

Zrestricted ¼
Z

Dφ det½Qp
β Q

M
β �δðχMÞδðθaÞei Ŝ½φ�: ð4:48Þ

It should be emphasized again that here the Faddeev-Popov
operator ½Qp

β Q
M
β � is built with respect to partial gauge

fixing subset of θa and any complementary to it set of
gauge conditions χM. This recipe may be less suitable
in concrete applications, because explicit disentangling
the subset θp from θa may be involved, so the original
form (4.43) should be more useful, and it was explicitly
used above for the derivation of the one-loop generating
functional (4.16).

D. The difference between parental and restricted
theories in the one-loop approximation

For a class of theories with the Jacobian Y independent
of integration fields in (4.46) one can write down the
representation for Zrestricted and its one-loop order (such

irrelevant Y will be omitted in the subsequent expressions
in this section). In view of gauge invariance of θA Eq. (4.46)
implies on shell the usual Faddeev-Popov integral with ϰαβ-
fixed gauge and with the gauge-invariant insertion of δðθAÞ

Zrestricted ¼
Z

Dφ M̂ðχ;ϰÞδðθAÞei Ŝ½φ�; ð4:49Þ

which in the one-loop order by the mechanism of the
identical transformation of Eq. (4.5) goes over to a simple
relation between the generating functionals of the restricted
and parental theories

Z1−loop
restricted ¼ Ẑ1−loopðdetΘABÞ−1=2; ð4:50Þ

where Ẑ1−loop is obviously the one-loop generating func-
tional of the parental theory given in terms of its (hatted)
gauge and ghost inverse propagators

Ẑ1−loop ¼ det Q̂α
β

ðdet ϰαβÞ1=2ðdet F̂IJÞ1=2
; ð4:51Þ

F̂IJ ¼ Ŝ;IJ − χα;Iϰαβχ
β
;J − λAθ

A
;IJ; ð4:52Þ

and

ΘAB ≡ θA;IF̂
−1 IJθB;J: ð4:53Þ

The operator (4.53) is analogous to (4.6), but it is acting
in the space of indices A which enumerate gauge-invariant
functions θA disentangled from the full set of θa. Note that
it is defined in terms of the Green’s function of the gauge-
fixed operator F̂IJ of the parental theory with a source λA
(at gauge-invariant observable θA). The presence of such
source term in parental theory may be interpreted as going
off shell and performing one-loop calculations on the
family of backgrounds Ŝ;I ¼ λAθ

A
;I, which [together with

θAðφIÞ ¼ 0 conditions] specify saddle points of (4.49).
This is in accordance with the fact that solutions of these
background equations cover all possible backgrounds of
the restricted theory. To compare Z1−loop

restricted and Ẑ1−loop in
(4.50) these objects of course should be calculated on the
same backgrounds.14

Another important observation confirming the consis-
tency of the relation (4.50) is that the additional factor
depending on the matrix ΘAB and this matrix itself are
independent on shell of the choice of gauge, δðχ;ϰÞΘAB ¼ 0,

14According to rather generic assumptions on restriction
conditions θa ¼ 0 (see discussion in Sec. III A) the Lagrange
multipliers λa, and thus λA, are expressible in terms of the
background fields. In direct analogy with (3.17) here λAðφÞ ¼
Ŝ;IðφÞθIAðφÞ for θIAðφÞ being dual to θA;I .
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which can be checked by using the Ward identities for
F̂−1IJ derived above.
Finally, let us note on practical aspects regarding the

structure of (4.53). Calculation of ΘAB based on nonlocal
F̂−1 IJ may be technically inconvenient. The transition to
objects defined in terms of a local differential operator
F̂IJ significantly simplifies calculations. When the dual
biorthogonal basis ðeII0 ; θIAÞ satisfying θA;Ie

I
I0 ¼ 0 and

θA;Iθ
I
B ¼ δAB, is “orthogonal” with respect to the operator

F̂IJ in the sense that eII0F̂IJθ
J
A ¼ 0, then it is easy to calculate

operator ΘBA inverse to ΘAB: ΘABΘBC ¼ δAC. Under the
above assumptions the determinant ðdetΘBAÞ−1=2 in (4.50)
can be replaced by ðdetΘABÞ1=2—the inverse operator
acquiring simple form in terms of local F̂IJ

ΘAB ¼ θIAF̂IJθ
J
B: ð4:54Þ

V. UNIMODULAR GRAVITY THEORY

Application of the above formalism to unimodular
gravity theory is straightforward. Its parental theory is
Einstein general relativity with the action—the functional
of the metric field

φI ↦ gμνðxÞ; I ↦ ðμν; xÞ; ð5:1Þ

Ŝ½φ� ↦ SE½gμν� ¼
Z

d4x g1=2ðxÞRðgμνðxÞÞ; ð5:2Þ

where gðxÞ≡ − det gμνðxÞ and RðgμνðxÞÞ is the scalar
curvature of this metric (for brevity we work in units with
16πG ¼ 1). The arrow signs (↦) signify in what follows
the realization of condensed notations of previous sections
in this concrete field model.
Einstein theory is invariant under local gauge trans-

formations δξφI ¼ R̂I
αξ

α—metric diffeomorphisms gener-
ated by the vector field ξα, which read in explicit notations
δξgμν ¼ ∇μξν þ∇νξμ, ξα ↦ ξαðxÞ≡ gαμξμðxÞ, so that the
gauge generators R̂I

α have the form

R̂I
α ↦ 2gαðμ∇νÞδðx; yÞ; I ↦ ðμν; xÞ; α ↦ ðα; yÞ:

ð5:3Þ
By default, derivatives act to the right on the first
spacetime-point argument of delta functions.
Unimodular restriction of the theory (5.2) consists

in the restriction to the subspace of metrics gμνðxÞ ¼
gμνðxÞ=g1=4ðxÞ with a unit determinant, gðxÞ ≡
− det gμνðxÞ ¼ 1. We will not introduce a special notation
for nine independent variables per spacetime point playing
the role of ϕi but just formulate the restriction constraints
θaðφÞ as

θa ↦ θx ≡ θðxÞ ¼ g1=2ðxÞ − 1; a ↦ x; ð5:4Þ

θa;I ↦ θx; μν;y ¼ 1

2
g1=2gμνδðx; yÞ;

a ↦ x; I ↦ ðμν; yÞ; ð5:5Þ
and the gauge-restriction operator (3.11) has the form

Qa
α ↦ Qx

α;y ¼ g1=2∇αδðx; yÞ ¼ ∂αðg1=2ðxÞδðx; yÞÞ; ð5:6Þ

where ∇α is a covariant derivative with Christoffel con-
nection, here acting on a vector field.
Counterpart of restricted theory (3.4)—the Lagrange

multiplier action of unimodular gravity, and its metric
equations of motion read

SλE½gμν; λ� ¼
Z

d4x ðg1=2RðgμνÞ − λðg1=2 − 1ÞÞ; ð5:7Þ

δSλE
δgμν

¼ −g1=2
�
Rμν −

1

2
gμνRþ 1

2
λgμν

�
¼ 0: ð5:8Þ

The latter resembles Einstein equations with the term
mimicking cosmological constant; the Lagrange multiplier
λðxÞ on shell is indeed constant because according to (3.10)
its nonzero part is a spacetime constant zero mode of the
gauge-restriction operator (5.6),

λaQa
α ¼ 0 ↦

Z
d4x λðxÞQx

α;y ¼ −g1=2∇αλðyÞ ¼ 0; ð5:9Þ

where the covariant derivative is acting on scalar. This
result is obviously equivalent to contracting (5.8) with
covariant derivative and using contracted Bianchi identity
for the Einstein tensor. On the other hand, tracing this
equation one finds λ ¼ R=2, and the set of ten metric
equations becomes linearly dependent which corresponds
to Eqs. (3.16) and (3.17) of the general formalism of
restricted gauge theories,

Rμν −
1

4
gμνR ¼ 0; ∇μR ¼ 0: ð5:10Þ

The vacuum solution of these equations is a generic
Einstein space metric gμν, Rμν ¼ Λgμν, Λ ¼ λ=2 ¼ const
with a unit determinant g≡ − det gμν ¼ 1.
Thus, the left kernel of the operatorQa

α of dimensionality
m2 ¼ 1 spanned by the zero mode YA

a ↦ Yx ¼ 1,
rangeA ¼ m2 ¼ 1, is what physically distinguishes unim-
odular gravity theory from Einstein (or Einstein-Hilbert
theory with a cosmological constant term) because it allows
one to prescribe any constant value of λ from the initial
conditions rather than postulate it as a fundamental constant
in the Lagrangian of the theory. The relevant gauge-invariant
physical degree of freedom constrained by the unimodular
restriction according to Eqs. (3.13) and (3.14) above,
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θA ¼ YA
aθ

a ¼ 0 ↦ θ̄ ¼
Z

d4x ðg1=2ðxÞ − 1Þ ¼ 0; ð5:11Þ

is the full spacetime volume
R
d4x g1=2jθ¼0 ¼

R
d4x which,

of course, a priori is not completely specified in Einstein
gravity.
The construction of projectors (3.22) with the aid of the

matrix kαa satisfying the rank restriction conditions (3.23)
suggests the following obvious choice:

kαa ↦ kα;xy ¼ ∇αδðx; yÞ ¼ gαβ∂βδðx; yÞ;
α ↦ ðα; xÞ; a ↦ y; ð5:12Þ

ðQkÞab ↦ ðQkÞxy ¼ g1=2□δðx; yÞ ¼ ∂μðg1=2gμν∂μδðx; yÞÞ;
a ↦ x; b ↦ y; ð5:13Þ

which also provides covariance with respect to spacetime
coordinate change. Here ∇α is the covariant derivative with
respect to the dynamical metric gαβ and □ is its covariant
d’Alembertian,

∇α ¼ gαβ∇β; □ ¼ gαβ∇α∇β; ð5:14Þ

which act here on the scalars [we use the standard definition
of δðx; yÞ as the symmetric kernel of the scalar identity
operator], though in what follows we reserve for them the
same notation when they will be acting on general tensors
and tensor densities. With such choice projector (3.22)
reads

Tα
βðQ; kÞ ↦ Tα;x

β;y ¼ Tα
βð∇Þδðx; yÞ;

Tα
βð∇Þ ¼ δαβ −∇α 1

□
∇β: ð5:15Þ

Tα
βð∇Þ is a projector on the subspace of spacetime trans-

verse vectors, and it is nonlocal because it is defined in
terms of the Green’s function of □ operator, which is
understood in the Moore-Penrose sense associated with the
rank deficiency of operators (5.6), (5.12), and (5.13)—the
number m2 of their spacetime constant zero modes being
just 1.

A. Gauge fixing and propagators

Nowwe go over to the construction of auxiliary elements
of gauge-fixing procedure χα, ϰαβ, σαa, ωa

α and ρab. To
preserve covariance of the formalism we will use back-
ground covariant gauge conditions which for simplicity
will be linear in the dynamical (quantum) metric field
φI ¼ gμν. The coefficient of gμν in χα, that is χα;I , is
gμν-independent but explicitly depends on the background
metric gμν—the one which on shell satisfies the equations
of motion (5.10) and is subject to unimodularity restriction
g ¼ 1. Background covariance of such gauge conditions

implies that the choice of this coefficient should be such
that χα is covariant with respect to simultaneous diffeo-
morphisms of both gμν and gμν. Usually as such a gauge one
uses the linearizeddeDonder orDeWitt gaugewhich is linear
in hμνðxÞ ¼ gμνðxÞ − gμνðxÞ—the quantum fluctuation
of the metric on top of its background. The DeWitt gauge
is χα ↦ χαðxÞ ¼ g1=2 gαβð∇μhβμ − 1

2
gμν∇βhμνÞ, where, as

well as below, the covariant derivatives ∇β and ∇μ ≡ gμν∇ν

are constructed in terms of the background metric. In the
unimodular case, however, the trace part gμνhμν of the metric
fluctuation is systematically projected out, so that it is worth
using a simpler gauge

χα ↦ χαðxÞ ¼ g1=2 ∇μhαμðxÞ
≡ g1=2gμβgαν∇βðgμνðxÞ − gμνðxÞÞ: ð5:16Þ

For the same reasons of covariance the choice of gauge-
fixing matrices ϰαβ, σαa, ωa

α and ρab is also obvious. Just like
χα;I above wewill construct them in terms of the background
metric, part of them being directly related to the already
introduced quantities

ϰαβ ↦ ϰα;x β;y ¼ g1=2gαβδðx; yÞ; ð5:17Þ

σαa ↦ σα;xy ¼ −g1=2gαβ∇βðx; yÞ ¼ −g1=2gαβ∂βðx; yÞ
¼ −g1=2kα;xy jgμν→gμν ; ð5:18Þ

ωa
α ↦ ωx

α;y ¼ g1=2∇αδðx; yÞ ¼ ∂αðg1=2δðx; yÞÞ
¼ Qx

α;yjgμν→gμν ; ð5:19Þ

ρab ↦ ρxy ¼ g1=2 δðx; yÞ; ð5:20Þ
where in σαa covariant derivative acts on scalar, whereas in
ωa

α covariant derivative acts on vector (forming a covariant
divergence).
As the on-shell results do not depend on the choice of

these quantities, they could have been chosen in terms of
the quantum field gμν, but this would have lead to the origin
of extra terms involving functional derivatives ϰαβ;I , σ

α
a;I , etc.

Avoiding such terms essentially simplifies calculations and,
particular, allows one to avoid explicit use of the extraghost
C0a entering (2.21), because in view of (2.22)

Xα
;I ¼ χα;I ↦ g1=2 gαðμ∇νÞδðx; yÞ: ð5:21Þ

It should be emphasized that, as long as we restrict
ourselves with the one-loop approximation, after all needed
functional derivatives have been taken everything gets
computed at the background, so that the distinction
between gμν and gμν disappears. For this reason we will
basically write all the formalism below in terms of the
metric gμν with the understanding that it should be
restricted to the on-shell unimodular background gμν
satisfying (5.10).
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Objects dual to those defined above, or raising and
lowering condensed indices I ↦ ðμν; xÞ, α ↦ ðα; xÞ,
a ↦ x, can be attained by introducing a local configuration
space metric GIJ and a similar metric in the space of
gauge indices. In Einstein theory a natural choice is
the DeWitt metric of the kinetic term of the action,
GIJ ↦ Gμν;x αβ;y ¼ 1

2
g1=2ðgμðαgβÞν − 1

2
gμνgαβÞδðx; yÞ. In the

unimodular context, again due to projecting out the trace
part of metric fluctuations, it is more useful to choose

GIJ ↦ Gμν;x αβ;y ¼ 1

2
g1=2gμðαgβÞνδðx; yÞ: ð5:22Þ

As regards the sector of gauge and reducibility indices, the
role of the relevant metrics can be played respectively by
ϰαβ and κab introduced in Sec. II. (Let us remind that by ϰαβ
we denote the inverse to ϰβα, and by κba—the inverse
to κab.)
The gauge-fixing choice (5.17) and (5.18) leads to

operator (2.40) and dual operators (4.34)

κab ≡ σαaϰαβσ
β
b ↦ κxy ¼ −g1=2□δðx; yÞ; ð5:23Þ

σaα ≡ κabσβbϰβα ↦ σxα;y ¼ − 1

□
g−1=2∇αδðx; yÞ; ð5:24Þ

which define the projector form (2.43)

Παβ ≡ ϰαβ − ϰαγσ
γ
aσaβ ↦

Πα;x β;y ¼
�
g−1=2 gαβ −∇α

1

□
g−1=2∇β

�
δðx; yÞ: ð5:25Þ

Partial derivatives acting on delta functions in the latter two
equations are covariant derivatives since they finally act on
vector densities (forming a covariant divergence).
With the above objects the construction of the metric

and ghost fields inverse propagators (4.4) and (4.17) is
straightforward,

FIJ ↦ Fμν αβð∇Þδðx; yÞ;

Fμν αβð∇Þ ¼ 1

2
g1=2

�
gμðαgβÞν□þ 2RμðανβÞ

− 2∇ðμ∇νÞ 1
□
∇ðα∇βÞ

�

þ 1

2
g1=2ðgμν∇ðα∇βÞ þ gαβ∇ðμ∇νÞÞ

−
1

2
g1=2gμνgαβð□þ 1

4
RÞ; ð5:26Þ

Fα
β ↦ Fα

βð∇Þδðx; yÞ;
Fα
βð∇Þ ¼ g1=2

�
□þ 1

4
R

�
δαβ −

1

2
g1=2R∇α 1

□
∇β; ð5:27Þ

Fa
b ¼ δab ↦ Fx

y ¼ δðx; yÞ: ð5:28Þ

In the derivation of these expressions we used back-
ground equations of motion (5.10), so these are essentially
on-shell objects. In particular, applications beyond one-
loop approximation would generate extra terms because
of the necessity to distinguish background and quantum
fields. The choice of the gauge-fixing matrix ρab in (5.20)
allows one to avoid extra term ∇α∇β in the local part of the
vector operator Fα

βð∇Þ. Finally, simplification of the ghosts-
for-ghosts operator Fa

b is due to correct normalization of
reducibility generators (4.24) and a special choice (5.19)
of ωa

α ¼ Qa
α.

Note that the operators acquired nonlocal parts containing
inverse (scalar) d’Alembertians. They were generated due to
nonlocal projectors in the gauge-breaking term and in the
projected gauge generators. Moreover, even in the local part
of the tensor operator covariant derivatives do not form
overall d’Alembertian, and their indices get contracted with
the indices of test functions on which the operator is acting.
This situation is very different from the Einstein theory case
forwhichDeWitt gauge conditions guaranteeminimal nature
of the operator of field disturbances which is an important
property admitting direct use of the heat kernel method for
the calculation of the effective action.
The local part of (5.26) can, however, be simplified. Its

functional determinant enters the one-loop partition func-
tion via the combination (4.9), detFIJ detΘab, or (4.14),
where Θab is defined in terms of FIJ by Eq. (4.6). It is easy
to check that this combination is invariant under the change
of the operator FIJ of the form

δFIJ ¼ δΩaðIθa;JÞ; ð5:29Þ
because

δ lnðdetFIJ detΘabÞ ¼ δΩaIθ
a
;JF

−1JI

−θa;IF−1IJδΩcJθ
c
;KF

−1KLθb;LΘ−1
ba ¼ 0; ð5:30Þ

since θc;KF
−1KLθb;L ¼ Θcb. Therefore, we can omit in (5.26)

the terms which are proportional to θa;I ∼ gμν and θa;J ∼ gαβ

and replace this operator by

F̃μν αβð∇Þ ¼ 1

2
g1=2

�
gμðαgβÞν□þ 2RμðανβÞ

− 2∇ðμ∇νÞ 1
□
∇ðα∇βÞ

�
; ð5:31Þ

accordingly taking the operator Θ̃ab induced by
F̃−1 IJ ¼ F̃−1

μν αβð∇Þδðx; yÞ,

Θ̃ab ¼ θa;IF̃
−1 IJθb;J ↦ Θ̃xy ¼ Θ̃ð∇Þδðx; yÞ; ð5:32Þ

Θ̃ð∇Þ ¼ 1

4
g1=2gμνF̃−1

μν αβð∇Þgαβg1=2: ð5:33Þ

Still, all the vector (5.27), tensor (5.31), and scalar (5.33)
operators remain nonlocal, and their remains a problem of
reducing their determinants to some calculable form.

A. O. BARVINSKY and D. V. NESTEROV PHYS. REV. D 108, 065004 (2023)

065004-22



B. Reduction of functional determinants

Reduction of the above determinants can be done
by the decomposition of the space of tensor and vector
fields into irreducible transverse and traceless components.
However, this decomposition in concrete applications can
be useful only when the underlying metric background is
homogeneous and the bases of irreducible scalar, transverse
vector, and tensor harmonics with their explicit spectra
are known. If one wants to work on generic backgrounds
and use such general methods as heat kernel method or
Schwinger-DeWitt technique of curvature expansion [24],
then the above operators should be transformed to the form
of differential or pseudodifferential operators with simple
principal symbols, preferably local andminimal ones that are
constructed of covariant derivatives which form powers of
covariant d’Alembertians. This is especially important for
the operator (5.33) having essentially nonlocal structurewith
the Green’s function of another nonlocal operator.
In order to reduce the calculation of the determinant of

F̃μν αβð∇Þ to that of the minimal operator let us include it
into the one-parameter family

F̃μν αβðaj∇Þ ¼ 1

2
g1=2

�
gμðαgβÞν□þ 2RμðανβÞ

− 2a∇ðμ∇νÞ 1
□
∇ðα∇βÞ

�
; ð5:34Þ

interpolating between F̃μν αβð1j∇Þ ¼ F̃μν αβð∇Þ and the
local minimal operator F̃μν αβð0j∇Þ ¼ Δμν αβð∇Þ,

ΔIJ ¼ GIKΔK
J ↦ Δμν αβð∇Þ ¼ 1

2
g1=2gμγgνδΔγδ

αβð∇Þ;
Δμν

αβð∇Þ ¼ □δμν
αβ þ 2Rμ

ðα
ν
βÞ: ð5:35Þ

Differentiation of the family of their determinants gives

d
da

Tr ln F̃μν αβðaj∇Þ

¼ −Tr
�
g1=2∇ðα∇βÞ 1

□
∇ðμ∇νÞF̃−1

μν γδðaj∇Þ
�
; ð5:36Þ

where the double derivative of the inverse operator
F̃−1
μν γδðaj∇Þ can be obtained by the following sequence

of transformations. When applied to F̃μν αβðaj∇Þ this
double derivative reads as a local expression

∇μ∇νF̃μναβðaj∇Þ ¼ 1

4
g1=2ð2ð1− 2aÞ□þ ð1− aÞRÞ∇ðα∇βÞ;

ð5:37Þ

where we used the fact that ∇μRμανβ ¼ 0 on Einstein
background. Functionally contracting this relation with
the inverse of F̃μν αβðaj∇Þ on the right and with the inverse

of the scalar operator g1=2ð2ð1 − 2aÞ□þ ð1 − aÞRÞ on the
left, we obtain

∇α∇βF̃−1
αβ μνðaj∇Þ ¼ 2

ð□þ R
2
Þ − 2að□þ R

4
Þ g

−1=2∇ðμ∇νÞ;

ð5:38Þ
whence

∇α∇βF̃−1
αβ μνðaj∇Þ∇μ∇ν ¼ 2

□ð□þ R
4
Þ

ð□þ R
2
Þ − 2að□þ R

4
Þ g

−1=2;

ð5:39Þ
where we took into account that on Einstein manifold
∇μ∇ν∇μ∇ν ¼ □ð□þ R

4
Þ when this operator is acting on a

scalar. Substituting this result in (5.36), using cyclic
permutation under the trace and integrating over a from
0 to 1 we have

Tr ln F̃μν αβð1j∇Þ ¼ Tr ln F̃μν αβð0j∇Þ þ Tr0 ln
□

□þ R
2

:

ð5:40Þ
Here Tr0 implies taking the functional trace of the operator
over the space of eigenmodes of the scalar operator □

excluding its constant zero mode. The explanation of this
important fact follows from the observation that the action of
the operator (5.39) on a covariantly constant mode obviously
gives zero in view of the positive power of □ in the
numerator. Therefore, even the multiplication by 1=□ in
(5.36) does not make the contribution of this mode in the
functional trace nonzero; this is obviously consistent with
the Penrose-Moore prescription for the inverse of □ dis-
cussed above.
With the inclusion of the local measure factor (5.40) then

becomes

det F̃I
J ↦ det F̃μν

αβð∇Þ ¼ detΔμν
αβð∇Þ det0

□

□þ R
2

;

ð5:41Þ
where the prime in det0 obviously implies the same rule—
omission of the zero eigenvalue of□ in the definition of the
functional determinant—and this of course refers to both
the numerator and denominator of the operator valued
fraction under the sign of det0.
Similar steps for the vector operator (5.27) on the

Einstein metric background result in

det F̃α
βð∇Þ ¼ det

�
□δαβ þ

1

4
Rδαβ

�
det0

□

□þ R
2

: ð5:42Þ

The reduction of the determinant of the scalar operator
Θ̃ð∇Þ, which is defined by Eq. (5.33) and does not at all
have a local part, can also be done via the transformations
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of the above type. First of all consider the contraction
which localizes the operator F̃μν αβð∇Þ,

gμνF̃μν αβð∇Þ ¼ 1

2
g1=2

��
□þ 1

2
R

�
gαβ − 2∇α∇β

�
: ð5:43Þ

Contracting this relation with F̃−1
αβ μνð∇Þ and using

Eq. (5.38) with the parameter a ¼ 1 we get

gαβF̃−1
αβ μνð∇Þ ¼ 2

□þ R
2

�
gμν −

2

□
∇μ∇ν

�
g−1=2; ð5:44Þ

so that the operator (5.33) and its determinant take the form

Θ̃ð∇Þ ¼ 1

□þ R
2

; det Θ̃ð∇Þ ¼ 1

detð□þ R
2
Þ : ð5:45Þ

Assembling together in the tilde version of (4.16) the
results (5.41), (5.42), and (5.45), trivial contribution of
det ρ ¼ 1 and noting that det κab ¼ det0□ we finally get

Z1−loop
UMG ¼ detð□δαβ þ R

4
δαβÞ

½detð□δμν
αβ þ 2Rμ

ðα
ν
βÞÞ�1=2

�
detð□þ R

2
Þ

det0ð□þ R
2
Þ
�
1=2

:

ð5:46Þ

Note the origin of the nontrivial factor

�
detð□þ R

2
Þ

det0ð□þ R
2
Þ
�
1=2

¼ ð2ΛÞ1=2; ð5:47Þ

which looks purely numerical, but in fact it is a function of
the dynamical global degree of freedom Λ belonging in
UMG to the full configuration space of the theory.
Modulo this extra factor, the result (5.46) exactly

coincides with the one-loop contribution of gravitons in
Einstein theory with the action

SΛ½gμν� ¼
Z

d4x g1=2ðR − 2ΛÞ ð5:48Þ

and the on-shell value of the cosmological constant
Λ ¼ R=4,

Ẑ1−loop
E ðΛÞ ¼ detð□δαβ þ R

4
δαβÞ

½detð□δμν
αβ þ 2Rμ

ðα
ν
βÞÞ�1=2

����
Rμν¼Λgμν

: ð5:49Þ

The on-shell inverse propagator of this model in the DeWitt
gauge,

Δμν
αβðΛj∇Þ ¼

�
□δμν

αβ þ 2Rμ
ðα
ν
βÞ þ δðαμ R

βÞ
ν þ δðαν R

βÞ
μ

− Rμνgαβ − gμνRαβ þ ð2Λ − RÞδμναβ

þ 1

2
Rgμνgαβ

�����
Rμν¼Λgμν

¼ □δμν
αβ þ 2Rμ

ðα
ν
βÞ; ð5:50Þ

equals the above minimal operator Δμν
αβð∇Þ and the

Faddeev-Popov ghost operator Qα
β ¼ □δαβ þ Rα

β also

coincides with the vector operator ð□þ 1
4
RÞδαβ. So if we

consider Einstein gravity with the cosmological constant as
a parental theory of unimodular gravity then the relation
(5.46) can be interpreted as Eq. (4.50) relating the gen-
erating functionals of the restricted theory and the parental
one with Ẑ1−loop ↦ Ẑ1−loop

E ðΛÞ, provided we can prove
equality of factors (5.47) and ðdetΘABÞ−1=2. This proof is
straightforward.
The only invariant θA that can be built out of the

restriction function (5.4) and (5.5) by integrating it with
the constant zero mode of the gauge-restriction operator
is the following global quantity which reads along with
its θA;I as

θA ↦ θ̄≡
Z

d4x θðxÞ ¼
Z

d4x ðg1=2ðxÞ − 1Þ; ð5:51Þ

θA;I ↦ θ̄μνðyÞ ¼ 1

2
g1=2gμνðyÞ: ð5:52Þ

In order to find its ΘAB,

Θ̄AB ↦ Θ̄≡
Z

d4xd4y θ̄μνðxÞF̂−1
μν αβð∇Þδðx; yÞθ̄αβðyÞ;

ð5:53Þ

we need the gauge field inverse propagator of the parental
theory—Einstein gravity with a cosmological constant,
which reads on shell as

F̂IJ ↦ F̂μν αβð∇ÞjRμν¼Λgμν

¼ 1

4
g1=2ð2gμðαgβÞν − gμνgαβÞ□

þ g1=2
�
RμðανβÞ −

1

8
Rgμνgαβ

�
: ð5:54Þ

This operator satisfies an obvious relation

gμνF̂
μν αβð∇Þ ¼ −

1

2
g1=2

�
□þ 1

2
R

�
gαβ; ð5:55Þ
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which allows one to find the following contraction of the
Green’s function kernel with metric tensors

gμνF̂−1
μν αβð∇Þδðx; yÞgαβðyÞ ¼ −8

□þ 1
2
R
δðx; yÞg−1=2ðyÞ;

ð5:56Þ
whence the needed factor (5.53) equals

Θ̄ ¼ −2
Z

d4x g1=2ðxÞ 1

□þ 1
2
R
· 1 ¼ −

1

Λ

Z
d4x g1=2ðxÞ;

ð5:57Þ
where the last equality follows from the uniformity of
R ¼ 4Λ in spacetime. Of course on shell, gμν ¼ gμν,
we have g1=2 ¼ 1, so the square root of the metric
determinant is retained entirely for the sake of manifest
covariance, and in this way it represents invariant volume
of spacetime. Thus,

ðdetΘABÞ−1=2 ↦ Θ̄−1=2 ¼ Λ1=2

ðR d4x g1=2ðxÞÞ1=2 ; ð5:58Þ

which up to a constant factor coincides with (5.47).15

For completeness we present here the same answer
rewritten in the basis of irreducible subspaces of tensor
and vector fields, which are defined via disentangling from
the full tensor field its tranverse-traceless hTT ¼ hTTμν , trans-
versal vector hT ¼ hTμ and two scalar parts [32],

hμν ¼ hTTμν þ 2∇ðμhTνÞ þ
�
∇μ∇ν −

1

4
gμν□

�
sþ 1

4
gμνh;

∇μhTTμν ¼ gμνhTTμν ¼ 0; ∇μhTμ ¼ 0: ð5:59Þ

Similarly for a vector such a decomposition reads

vμ ¼ vTμ þ∇μv; ∇μvTμ ¼ 0: ð5:60Þ

Jacobians of transition hμν → ðhTT; hT; s; hÞ, vμ →
ðvTμ ; vÞ in the functional integration over hμν and vμ equal

DðhμνÞ
DðhTT; hT; s; hÞ

¼
�
det0□ det0

�
□þ R

3

�
detT

�
□δμν þ R

4
δμν

��
1=2

;

ð5:61Þ
DðvμÞ

DðvT; vÞ ¼ ðdet0□Þ1=2: ð5:62Þ

Here det0 is a functional determinant of a scalar operator
with omitted zero mode of the □-operator [note that this is
the omission of the (constant) zero mode of □, but not
the zero mode of the operator whose determinant is being
taken].16 Similarly detT denotes the determinant of the
vector operator taken on the space of transverse vector
functions. Quadratic forms with tensor field Δμν αβð∇Þ and
vector field ð□þ R=4Þgμν kernels correspondingly readZ

d4x g1=2hμνΔμν αβð∇Þhαβ

¼
Z

d4x g1=2
�
hTTμνΔμν αβð∇ÞhTTαβ − hTμ

�
□þ R

4

�
2

hμT

þ 3

4
s□

�
□þ R

2

��
□þ R

3

�
sþ 1

4
h

�
□þ R

2

�
h

�
;

ð5:63ÞZ
d4x g1=2vμ

�
□þR

4

�
vμ

¼
Z

d4x g1=2
�
vTμ

�
□þR

4

�
vμT − v□

�
□þR

2

�
v

�
: ð5:64Þ

Taking the Gaussian integrals with these quadratic forms
and using the above Jacobians one can find the represen-
tation for the determinants of Eq. (5.46) in terms of their
irreducible counterparts—transverse-traceless tensor detTT
and transverse vector detT ones,

detð□δμν
αβ þ 2Rμ

ðα
ν
βÞÞ

¼ detTTð□δμν
αβ þ 2Rμ

ðα
ν
βÞÞ detT

�
□δμν þ R

4
δμν

�

× det

�
□þ R

2

�
det0

�
□þ R

2

�
; ð5:65Þ

det
�
□δμν þ R

4
δμν

�
¼ detT

�
□δμν þ R

4
δμν

�
det0

�
□þ R

2

�
;

ð5:66Þ
whence the partition function in Einstein theory with the
cosmological constant (5.49) reads

Ẑ1−loop
E ¼

�
detTð□δμν þ R

4
δμνÞ

detTTð□δμν
αβ þ 2Rμ

ðα
ν
βÞÞ

�
1=2�det0ð□þ R

2
Þ

detð□þ R
2
Þ
�
1=2

:

ð5:67Þ
In terms of these determinants on irreducible subspaces

of transverse-traceless modes it differs by extra factor from
the usually claimed form [33]. This factor originates on
account of a constant zero mode of a scalar d’Alembertian.

15When calculating determinants we omit irrelevant overall
numerical factors. Here in the determinant of a zero-dimensional
matrix we neglect the −1 factor.

16The omission of these spacetime constant zero modes of □
takes place because they do not contribute to the left-hand sides
of Eqs. (5.59) and (5.60).
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It should be emphasized that on homogeneous de Sitter or
anti–de Sitter background other vector and tensor operators
also have zero modes associated with Killing symmetries of
these backgrounds [33]. Here we disregard them because
we consider generic inhomogeneous Einstein metric space-
times for all of which this zero mode of □ always exists.
Thus, in terms of determinants on constrained (irreduc-

ible) fields the one-loop result for Einstein theory with the
cosmological constant differs from a conventional expres-
sion by the contribution of one constant eigenmode of
the operator □þ R

2
. Curiously, for unimodular gravity this

contribution in the same representation completely cancels
by additional factor in (5.46), and we have

Z1−loop
UMG ¼

�
detTð□δμν þ R

4
δμνÞ

detTTð□δμν
αβ þ 2Rμ

ðα
ν
βÞÞ

�
1=2

: ð5:68Þ

This result coincides with the one claimed in [13,15]. It
manifestly exhibits the counting of local physical degrees
of freedom—5 traceless-tensor modes minus 3 transverse
vector modes.

VI. CONCLUSION

To summarize our results, we worked out a full set of
gauge-fixing elements in generic gauge theory of the first-
stage reducibility and constructed a workable algorithm for
its one-loop effective action. We also derived the set of
tree-level Ward identities for gauge field, ghost and ghosts-
for-ghosts propagators, which allow one to prove on-shell
gauge independence of the effective action from the choice of
auxiliary elements of gauge-fixing procedure. We showed
that Lagrangian quantization of a restricted theory originat-
ing from its parental gauge theory can be performed within
the BV formalism for models with linearly-dependent gauge
generators of the first-stage reducibility. It turns out that new
physics contained in the restricted theory as compared to its
parental theory model is associated with the rank deficiency
of a special gauge-restriction operator reflecting the gauge
transformation properties of the restriction constraints func-
tions.Thechoice of first-stage reducibility generators, or zero
vectors of the projected gauge generators induced from the
parental theory, has a certain freedom limited only by a
special rank restriction condition, but the on-shell independ-
ence of physical results from this choice is provided by a
special normalization of these vectors.
These general results are applied to the quantization of

unimodular gravity theory. Its one-loop effective action,
initially obtained in terms of complicated nonlocal pseudo-
differential operators, is transformed to functional determi-
nants of minimal second-order differential operators
calculable on generic backgrounds by Schwinger-DeWitt
technique of local curvature expansion. This also confirms
the known representation of one-loop contribution in unim-
odular gravity theory in terms of functional determinants on

irreducible transverse and transverse traceless subspaces of
tensor, vector, and scalar modes. The one-loop order in
unimodular gravity turns out to be equivalent to that of
Einstein gravity theory with a cosmological term only up to a
special contribution of the global degree of freedom asso-
ciated with the variable value of the cosmological constant.
From the viewpoint of local phenomenology, the new

physics in unimodular gravity turns out to be of a somewhat
borderline nature. Classically it is manifested in the fact
that the cosmological constant in UMG becomes a part of
initial conditions rather than a fundamental constant in the
Lagrangian of the Einstein theory. At the one-loop level the
contribution of this extra global and spacetime constant
degree of freedom is very peculiar, and the way it shows up
depends on the representation of the theory. In fact we have
two somewhat complementary representations for both
theories; in terms of functional determinants of differential
operators on full field spaces or on spaces constrained by
irreducible representations. The one-loop Einstein gravity
in the full space representation (5.49) does not reveal the
contribution of this mode, whereas the constrained deter-
minants representation (5.67) makes it manifest. With two
representations for unimodular gravity (5.46) and (5.68)
this situation is reversed.
The manifestation of this contribution is the power-

like dependence on (5.57) in the partition function
∼
R
d4x g1=2=Λ which becomes in the effective action a

logarithmic essentially nonlocal contribution. Off shell, that
is in transition to gradient expansion for nonconstant
curvature scalar, R → RðxÞ, it may go over into the
structures like ln

R
d4x g1=2ðxÞð1=RðxÞ þOð∇RÞÞ. These

structures might be important in Euclidean quantum gravity
responsible for tunneling phenomena and gravitational
thermodynamics. In fact, thermodynamics reveals the
duality relation between Einstein theory and unimodular
gravity as the analogy of the Laplace transform relating the
statistical ensemble with fixed volume vs the fixed pressure
ensemble. Qualitatively, this can be shown as follows.
By identifying in (5.11) the coordinate 4-volumeR
d4x ¼ V as the fixed argument of the generating func-

tional (4.49) we have the expression for this functional in
UMG theory (in Euclidean picture this is a partition
function at fixed volume V)

ZUMGðVÞ ¼
Z

Dgμν M̂e−SE½gμν�δ
�Z

d4x g1=2 − V

�
;

ð6:1Þ
where the measure M̂ incorporates, just like in (4.49), the
full local gauge fixing of all four dimensional diffeo-
morphisms. Then, it is obvious that the Laplace transform
with respect to the volume variable converts the UMG
partition function ZUMGðVÞ to that of the Einstein theory
ZEðΛÞ with a fixed value of Λ—the cosmological constant
dual to V,
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Z
∞

0

dVe−
ΛV
8πG ZUMGðVÞ

¼
Z

Dgμν M̂ exp

�
−SE½gμν� −

Λ
8πG

Z
d4x g1=2

�
≡ ZEðΛÞ; ð6:2Þ

[here we reinsert the gravitational constant factor 1=16πG
and note the opposite sign of the Euclidean version of the
action (5.48)]. Of course, this derivation should be
regulated by specifying the boundary conditions which
fully determine a finite value of V (or its infinite limit)
and a finite value of the action, achieved by a subtraction
of proper surface terms. This can be done along the lines
of [11], but in the present form it already conveys the
essence of duality between Einstein theory and UMG
gravity.
It should be emphasized that throughout our deriva-

tions we used Moore-Penrose concept of inverting
operators with zero modes, which by and large corre-
sponds to the omission of the zero-mode subspace. This
makes all derivations, as discussed in Appendix A,
consistent, but apparently leaves room for nontrivial
effects of the above extra contributions based on a
careful treatment of boundary conditions. Despite the
fact that the functional determinants of the scalar
d’Alembertian in Eqs. (5.61)–(5.67), which are vulner-
able to zero-mode treatment, completely cancel out, there
still may be a subtlety in their treatment and this might
amount to the extension of the BV method beyond first-
stage reducibility. Note that m2-dimensional zero-mode
subspace of gauge-restriction operator (3.11) is exactly
the playground for second-stage reducibility in the gen-
eral formalism. The smallness of the phase-space sector
of this mode in UMG, m2 ¼ 1, does not make it less
important and might be at the core of cosmological
constant problem. All this, however, goes beyond the
scope of this paper and remains a subject of further
research to be reported elsewhere.
Another direction of further research might be the

generalized unimodular gravity (GUMG) of [6,7], which
is interesting in view of its dark energy and inflation
theory implications. This model is more complicated than
UMG, it has more complicated canonical formalism
encumbered by the presence of second-class Dirac con-
straints and it strongly breaks diffeomorphism and
Lorentz symmetry because of replacement of the UMG
restriction condition det gμν ¼ −1 by the Lorentz non-
invariant relation between the lapse function and spatial
metric. New physics in this model is associated with the
origin of the dark perfect fluid which might serve as a
source of dark energy or play the role of inflaton, i.e.
scalar graviton degree of freedom [8]. Covariant quan-
tization of this model along the lines of the BV method

applied to parental Einstein gravity is also a good
nontrivial playground for our technique.
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APPENDIX A: MOORE-PENROSE INVERSE
AND VARIATION OF PROJECTORS

Gauge theory restriction implies introduction of the
transversal projector (3.22) which is defined by its left
kernel Qa

α—the gauge-restriction operator Qa
α ¼ θa;IR̂

I
α.
17

Peculiar feature of this operator is its rank deficiency. While
the range of index a labeling the restriction condition
functions θaðφÞ is m1, the rank of Qa

β is m1 −m2. As
discussed in Sec. III it is physically important, for if Qa

β

were a full-rank matrix (m2 ¼ 0) then this would be just a
partial gauge fixing and the parental and restricted theories
would be physically equivalent. New physics comes when
m2 > 0, which means that m2 out of m1 restriction
conditions θaðφÞ ¼ 0 annihilate several gauge-invariant
functions i.e., physical observables.
The right kernel kαb of the projector (3.22) is a para-

meter of the particular projector family, which must satisfy
the rank condition rank ðQkÞab ¼ rankQa

β ¼ rankkβb ¼
m1 −m2 (3.23). Thus, a critically important feature of
the projector Tα

βðQ; kÞ (3.22),

Tα
β ¼ δαβ − kαaðQkÞ−1 abQb

β;

is that it includes the inverse of the degenerate operator
ðQkÞab. This inverse can be uniquely defined as Moore-
Penrose inverse [25], and a brief reminder on this con-
struction for the generalized inverse of generic matrices is
in order here.
All objects below are matrices in nature so for the sake of

readability we omit indices in most of equations implying
ordinary matrix multiplication. When introducing matrices
we explicitly correlate them with their counterparts in index
notation using symbol ↔.
For a generic m1 ×m1 matrix M ↔ Ma

b which is
rank deficient with rankM ¼ m1 −m2 the following pro-
perties unambiguously define Moore-Penrose inverse
M−1 ↔ M−1 a

b [25]:

17Remember that we consider the restriction conditions θa ¼ 0
irreducible and independent of equations of motion of the
parental theory Ŝ;I ¼ 0.
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1Þ MM−1M ¼ M

2Þ M−1MM−1 ¼ M−1

3Þ P1 ≡MM−1 ¼ P�
1

4Þ P2 ≡M−1M ¼ P�
2 ðA1Þ

where P1 ↔ P a
1 b and P2 ↔ P a

2 b are Hermitian projectors
with idempotent properties P2

1 ¼ P1, P2
2 ¼ P2, and the

star denotes Hermitian conjugation of matrices.18 These
properties imply the equality of ranks, rankM−1 ¼
rankM ¼ rankP1 ¼ rankP2.
We introduce, for convenience, the complementary

projectors L1 ¼ I − P1, L2 ¼ I − P2 where I is the identity
m1 ×m1 matrix. The complete set of projector properties,
which could serve as their definitions, is

P1M ¼ MP2 ¼ M; M−1P1 ¼ P2M−1 ¼ M−1: ðA2Þ

Similarly the action of complimentary projectors respec-
tively from the left and from the right on M and M−1

annihilate them,

L1M ¼ ML2 ¼ 0; M−1L1 ¼ L2M−1 ¼ 0: ðA3Þ

Therefore, the rows of L1 (reducibly) span left kernel of M
and its columns span right kernel of M−1, while L2

(reducibly) spans the right kernel of M and the left kernel
of M−1.
With this definition of the inverse matrix for Ma

b ¼
ðQkÞab ≡Qa

αkαb ↔ M ¼ ðQkÞ the restricted theory
m0 ×m0 projector Tα

β ↔ T (3.22) satisfies all needed
properties. In particular, its left kernel is spanned by the
gauge-restriction operator Q ↔ Qa

α because QT ¼ Q−
ðQkÞðQkÞ−1Q ¼ L1Q ¼ 0. The latter equality is true since
matrices Q and M ¼ ðQkÞ have the same ranks and the
same coranks with respect to the left index with range m1

and thus matrices Q and M share the same left kernel so
that L1Q ¼ 0 in view of (A3). The right kernel of T is
spanned by k ↔ kαb provided the rank restriction condition
(3.23) is satisfied. This follows from the relation Tk ¼ k−
kðQkÞ−1ðQkÞ ¼ kL2 ¼ 0 where k is annihilated by L2

from the right for the analogous reason as for the left kernel.
Such a definition is fully consistent until one has to vary

inverse matrices. When the variation of M changes its rank
the inverse matrix and projectors become discontinuous
and fail to be differentiable. As was shown in [34] the rank
preserving matrix variations δM which guarantee continu-
ity of the Moore-Penrose inverse matrix and its projectors
should satisfy the property

L1δML2 ¼ 0: ðA4Þ

The variation of Eq. (2) in (A1) with respect to such δM
gives

δðM−1Þ ¼ −M−1δMM−1 þ δðM−1ÞL1 þ L2δðM−1Þ: ðA5Þ

The last two anomalous terms here are responsible
for the deviation from the usual variational equation for
the inverse of nondegenerate matrices. The first standard
term is in fact transverse because in view of (A2)
M−1δMM−1 ¼ P2M−1δMM−1P1.
It is important that the anomaly terms in (A5) cancel

when the variation of the inverse matrix is performed inside
the contraction from the left and from the right, respec-
tively, with structures annihilated by projectors L2 and L1,
so that A ¼ AP2 and B ¼ P1B,

AδðM−1ÞB ¼ −AP2M−1δMM−1P1B

¼ −AM−1δMM−1B: ðA6Þ

In concrete applications generically one can not restrict
the variation of the rank-deficient matrix M to preserve its
rank. However, when the matrix M has a special internal
structure it may be a part of the solution circumventing
this difficulty. This is exactly the case of m1 ×m1 rank-
deficient operator ðQkÞab ≡Qa

αkαb. The rank restriction
conditions (3.23), rank ðQkÞ ¼ rankQ ¼ rank k, provide
the rank preservation (A4) under arbitrary variations of k
and Q,

L1δðQkÞL2 ¼ L1δQkL2 þ L1QδkL2 ¼ 0; ðA7Þ

where L1, L2 are the projectors onto left and right kernels of
the operator ðQkÞ.
Since an arbitrary variation of the matrix ðQkÞab satisfies

the rank preserving condition (A4) one can use Eq. (A5) for
the variation of its inverse. Moreover in the projector T
(3.22) the variation of ðQkÞ−1 stands inside the structure
kδðQkÞ−1Q ↔ kβaδðQkÞ−1 abQb

β which, due to L1Q ¼ 0

and kL2 ¼ 0, guarantees the cancelation of the anomalous
terms in (A5) and implies (A6)

kδðQkÞ−1Qb
β ¼ −kðQkÞ−1δðQkÞðQkÞ−1Q: ðA8Þ

This variational equation underlies the variation formula for
the projector T (3.22), which finally reads

δT ¼ −TδkðQkÞ−1Q − kðQkÞ−1δQT: ðA9Þ

It should be emphasized again that this relation crucially
relies on rank restriction conditions (3.23).

18For real matrices the Hermitian conjugation is just a
transposition, and Hermitian projectors become orthonormal
projectors.
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APPENDIX B: GAUGE ALGEBRA
OF THE RESTRICTED THEORY
FROM A PARENTAL THEORY

The algebra (3.34) follows directly by substituting the
projected generators RI

β ¼ R̂I
αTα

β (3.20) into their Lie
bracket,

RI
α;JR

J
β −RI

β;JR
J
α ¼ ðR̂I

γ;JR̂
J
δ − R̂I

δ;JR̂
J
γ ÞTγ

αTδ
β

þ ðR̂I
γT

γ
α;JR̂

J
δTδ

β − R̂I
δTδ

β;JR̂
J
γT

γ
αÞ;
ðB1Þ

and noting that in view of the open algebra relations for R̂I
α

the first group of terms here reads

ðR̂I
γ;JR̂

J
δ − R̂I

δ;JR̂
J
γ ÞTγ

αTδ
β ¼ R̂I

ϵĈ
ϵ
γδT

γ
αTδ

β þ ÊIJ
γδŜ;JT

γ
αTδ

β:

ðB2Þ

The second group of terms in the right-hand side
of (B1) requires differentiation of the projector Tγ

α

(3.22). This projector involves the procedure of inverting
the matrix ðQkÞab whose rank is lower than the range of
its indices and, therefore, requires the Moore-Penrose
construction of the generalized matrix inversion [25].
This, in turn, leads to subtleties of variational procedure
for ðQkÞ−1 ab discussed in Appendix A. As shown there,
the variational property of the projector is effectively
equivalent to the naive use of the variational rule
δðQkÞ−1 ¼ −ðQkÞ−1δðQkÞðQkÞ−1, provided the rank
restriction condition (3.23) holds, and it reads as (A9).
This can be directly applied to the second group of
terms in (B1) on using the symmetry θb;IJ ¼ θb;JI, the
algebra of parental theory generators and their corollary
Qb

γ;JT
γ
αR̂J

δT
δ
β − ðα↔ βÞ ¼ θb;IðR̂I

ϵĈ
ϵ
γδT

γ
αTδ

βþ ÊIJ
γδŜ;JT

γ
αTδ

βÞ.
As a result

ðR̂I
γT

γ
α;JR̂

J
δT

δ
β − R̂I

δTδ
β;JR̂

J
γT

γ
αÞ

¼ −ðR̂I
γT

γ
ϵkϵa;JðQkÞ−1 abQb

αR̂
J
δT

δ
β − ðα ↔ βÞÞ

− ðR̂I
γk

γ
aðQkÞ−1 abQb

ϵ;JT
ϵ
αR̂

J
δTδ

β − ðα ↔ βÞÞ
¼ −R̂I

γL
γ
ϵĈϵ

γδT
γ
αTδ

β −RI
γN

γ
αβ þRI

γN
γ
βα

− R̂I
ϵkϵaðQkÞ−1 abθb;KÊKJ

γδ Ŝ;JT
γ
αTδ

β: ðB3Þ

HereNγ
αβ is defined by Eq. (3.37) and L

α
β is the longitudinal

projector complementary to transverse projector Tα
β,

Lα
β ≡ δαβ − Tα

β ¼ kαaðQkÞ−1 abQb
β: ðB4Þ

Therefore, summing the contributions (B2) and (B3) one
observes that their first terms form out of R̂I

ϵ the projected
generator RI

ϵ, so that we get

RI
α;JR

J
β −RI

β;JR
J
α ¼ RI

ϵĈ
ϵ
γδT

γ
αTδ

β −RI
γN

γ
αβ þRI

γN
γ
βα

þDI
KÊ

KJ
γδ Ŝ;JT

γ
αTδ

β; ðB5Þ

where DI
K is defined by Eq. (3.38),

DI
K ≡ δIK − R̂I

ϵkϵaðQkÞ−1abθb;K; ðB6Þ

and we used the fact that RI
ϵ ¼ RI

βT
β
ϵ, kαa ¼ Lα

βk
β
a

and Qb
γ ¼ Qb

βL
β
γ. Here the last term is not explicitly

antisymmetric in indices I and J. However, due to the
property Ŝ;J ¼ Ŝ;IDI

J of the projector DI
J it can equiv-

alently be rewritten in the antisymmetric form with
EIJ
αβ ¼ DI

KD
J
LÊ

KL
γδ T

γ
αTδ

β. This finally leads to the algebra
(3.34) with structure functions (3.35)–(3.38).
The oblique projector DI

J defined by (3.38) enters the
formalism when the parental algebra is open. Its left kernel
is spanned by ðQkÞ−1 abθb;I and the right kernel is spanned

by the set of longitudinal gauge vectors R̂J
βk

β
a

DI
JD

J
K ¼ DI

K; ðQkÞ−1 abθb;IDI
J ¼ 0;

DI
JR̂

J
βk

β
a ¼ 0: ðB7Þ

Moreover, this projector in the φI-space converts
the parental generator into the projected one in the
space of gauge indices, DI

JR̂
J
β ¼ R̂I

αTα
β ≡RI

β, so that

θb;ID
I
JR̂

J
β ¼ 0.

When rank θa;I ¼ rankQa
α ¼ m1 then the second of

relations (B7) can be simplified to θb;ID
I
J ¼ 0. For rank-

deficient Qa
α, when rankθa;I ¼m1 and rankQa

α ¼m1 −m2,
the correct property is θb;ID

I
J ¼ ð1 − ðQkÞðQkÞ−1Þbaθa;I ≡

L b
1 aθ

a
;I, where L

b
1 a is a projector on left zero vectors of Q

a
α.

For this generic (physically interesting case) the rank
deficiency of DI

J equals the rank of gauge-restriction
operator (3.11), corankDI

J ¼ rankQa
β ¼ rank kαb.

Note that the resulting open algebra of the restricted
theory (3.34) closes on shell of the parental theory Ŝ;I ¼ 0

rather than on its own shell Ŝ;I − λaθ
a
;I ¼ 0. In view of

the above relations one has Ŝ;IDI
J ¼ ðŜ;I − λaθ

a
;IÞDI

J þ
λaL a

1 bθ
b
;J, so that the algebra (3.34) can be rewritten in

the form

RI
α;JR

J
β −RI

β;JR
J
α ¼ RI

γC
γ
αβ þ EIJ

αβðŜ;J − λaθ
a
;JÞ

þ EIJ
αβλaL

a
1 bθ

b
;J; ðB8Þ

where the last term, unless it is zero, breaks its closure
on shell of the restricted theory. Note that λaL a

1 b is the
part of the full set of Lagrange multipliers λa which stay
unrestricted by the equation of motion (3.5) for Lagrange
multipliers.
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APPENDIX C: DETERMINANT RELATION

In this section we prove the determinant relation (4.40).
All involved quantities are matrix (two-index) structures
which allow us to omit indices implying standard matrix
multiplication. There are indices of two types; lower-
case Greek indices of some range m0 and lowercase
Roman indices of the lower range m1 < m0.

19 Quadratic
m0 ×m0 matrices are denoted by capital Roman letters
(e.g., T ). The matrices mapping from m0-dimensional
space to a lower m1-dimensional space and back will be
either underlined or will respectively carry a line over them.
Thus, we have

Q ↔ Q̂α
β; I ↔ δαβ;

a ↔ aaα; σ ↔ σaα; σ̄ ↔ σαa; k̄ ↔ kαa;

σ̄ a ↔ ðσ̄ aÞαβ ≡ σαaaaβ; σQk̄ ↔ ðσQk̄Þab ≡ σaαQ̂
α
βk

β
b;

a k̄ ↔ ða k̄Þab ≡ aaαkαb: ðC1Þ

Note that the matrix Q here is a quadratic m0 ×m0 matrix
and in Sec. IV C it stands for the complete Faddeev-Popov
operator for the rank-m0 parental gauge symmetry. We also
assume that σ and σ̄ form dual vectors in the sense that

σ σ̄ ¼ I ↔ σaασ̄
α
b ¼ δab: ðC2Þ

Then one can prove the following relation between the
determinants of these matrices

detQ ¼ detðσQk̄Þ
detða k̄Þ detðQðI − k̄ðσQk̄Þ−1σQÞ þ σ̄ a|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F

Þ: ðC3Þ

It is also assumed that all determinants in (C3) are nonzero.
Note that the m0 ×m0 matrix in the first determinant in

the right-hand side of (C3) can be written as

F ¼ QT þ σ̄ a; T ¼ I − k̄ðσQk̄Þ−1σQ; ðC4Þ

where T ↔ Tα
βðσQ; kÞ is in fact the oblique projector

(3.22) with the left kernel σQ ↔ σaβQ̂
β
α ¼ Qa

α which
can be identified with the gauge-restriction operator. The
first term of the matrix F is therefore degenerate and
has as right and left zero vectors k̄ and σ respectively,
QT k̄ ¼ σQT ¼ 0. Therefore it can be interpreted as the
analog of the Hessian of a gauge-invariant action, whereas
the second term in F plays the role of a gauge-fixing term
providing invertibility of this matrix.
The proof of the relation (C3) can be done by using the

basis in which the matrix F acquires a block-triangular
form, but it is easier to use the analog of the Ward identities

in order to prove that the right-hand side is actually
independent of the choice of arbitrary elements σ, a, and
k̄ and then check that this relation indeed holds under a
special choice of these elements. Such a choice is obvious
and reads as σ̄ ¼ Qk̄ and a ¼ σQ (when σQk̄ ¼ a k̄ ¼ I),
so that it remains to check that the right-hand side is indeed
ðσ; a; k̄Þ independent.
Multiplying the matrix (C4) from the left and from the

right by zero vectors of its first termQT one finds twoWard
identities and their corollary,

F−1σ̄ ¼ k̄ða k̄Þ−1; aF−1 ¼ σ; F−1QT ¼ I − k̄ða k̄Þ−1a:
ðC5Þ

Then, direct variation of the right-hand side of the relation
(C3) with respect to a, k̄, and σ shows that it is indeed
independent of these quantities on account of the above
identities and the variational version of duality relation
(C2), σ δσ̄ þ δσ σ̄ ¼ 0.
We finish this discussion with the note on applica-

bility of the above relation to the case when the objects
labeled by indices a are rank deficient (with the rank
m1 −m2 < m1). In Sec. IV C, where this determinant
relation was used, instead of indices a we explicitly used
the indices p belonging to the range m1 −m2 which
symbolized the maximal rank (irreducible) representation.
In such a representation all matrices are nondegenerate
and quantities with mixed indices are of the maximal
rank. However, the maximal rank representation is not
necessary and this proof runs equally well in the reducible
representation of rank-deficient objects ðσ; σ̄; a; k̄Þ of rank
m1 −m2, provided the composite quantities σ̄ a, ða k̄Þ,
ðσQk̄Þ have the same rank m1 −m2

20 and the inverse
degenerate matrices ðσQk̄Þ−1, ða k̄Þ−1 are treated in the
Moore-Penrose sense (as was discussed in Appendix A).
Determinants of degenerate operators of rank m1 −m2

should be understood in an appropriate regularized
sense, for example by omitting the contribution of zero
eigenvalues in the eigenvector bases. If one goes into
details of the variational proof, then the variations of
regularized determinants turn out to be δ det ðσQk̄Þ ¼
tr½δðσQk̄ÞðσQk̄Þ−1� with the Moore-Penrose definition
of the inverse matrix. The uniqueness of T projector
variation was shown in Appendix A. The uniqueness
of the regularized determinant variation has a similar
mechanism.
This line of reasoning justifies the validity of one-loop

contributions to the effective action of the restricted
theory of Secs. III and IVA (even though in Sec. II these
contributions were formally based on full-rank quantities
with reducibility indices a).

19Regarding the rank of quantities with indices a; b;…; see a
brief discussion in the end of this section. 20This is the analog of the rank condition (3.23).
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