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We develop a Lagrangian quantization formalism for a class of theories obtained by the restriction of the
configuration space of gauge fields from a wider (parental) gauge theory. This formalism is based on
application of the Batalin-Vilkovisky technique for quantization of theories with linearly dependent
generators, their linear dependence originating from a special type of projection from the originally
irreducible gauge generators of the parental theory. The algebra of these projected generators is shown to
be closed for parental gauge algebras closed off shell. We demonstrate that new physics of the restricted
theory, as compared to its parental theory, is associated with the rank deficiency of a special gauge-
restriction operator reflecting the gauge transformations of the restriction constraints functions—this
distinguishes the restricted theory from its partial gauge fixing. As a byproduct of this technique a workable
algorithm for the one-loop effective action in generic first-stage reducible theory was constructed, along
with the explicit set of tree-level Ward identities for gauge field, ghost, and ghosts-for-ghosts propagators.
The formalism is applied to unimodular gravity theory, and its one-loop effective action is obtained in terms
of functional determinants of minimal second-order operators, calculable on generic backgrounds by
Schwinger-DeWitt technique of local curvature expansion. The result is shown to be equivalent to Einstein
gravity theory with a cosmological term up to a special contribution of the global degree of freedom
associated with the variable value of the cosmological constant. The role of this degree of freedom in a

special duality relation between Einstein theory and unimodular gravity is briefly discussed.

DOI: 10.1103/PhysRevD.108.065004

I. INTRODUCTION

The purpose of this paper is to discuss an interesting
property that arises when one restricts a configuration space
of gauge theory. This is the origin of a reducible gauge
structure characterized by linear dependence of the gen-
erators of gauge transformations. Both mechanisms—
reduction of the configuration space and reducibility of
gauge symmetry—are widely known and applied in various
areas of field theory. In the gravity theory context one of the
most important examples of the field space restriction is
unimodular gravity (UMG) theory which was suggested by
Einstein soon after the invention of general relativity [1].
Much later it was considered in the context of particle
physics [2], in the context of a spacetime covariant
formulation [3], as a problem of time and the cosmological
constant problem [4], and then applied within the dark
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energy paradigm [5] with the emphasis on purely technical
issues of perturbation theory, etc. Extension beyond the
unimodular constraint on the metric of spacetime—the so-
called generalized unimodular gravity [6]—also turned out
to be rather fruitful from the viewpoint of the generation of
viable dark energy and inflation scenarios [7,8].

From a field-theoretical point of view UMG is interesting
because it is generally observationally equivalent to general
relativity (see recent review [9]), but even semiclassically
raises the issues of such an equivalence [10] depending
on the subtleties of local physics vs global behavior
encoded in boundary conditions, finiteness of the spacetime
volume, thermodynamical setup in gravity theory [11], etc.
Unimodular gravity is an interesting object of group
theoretical analysis [12] and quantization [13-17], espe-
cially regarding its relation to quantization of Einstein
theory [18] as a sort of a parental theory whose field space
reduction leads to the unimodular gravity model.

On the other hand, it has been conjectured [6] that the
formalism of quantized unimodular and generalized unim-
odular gravity theories can be developed along the lines of
gauge theory quantization in models with linearly depen-
dent (or reducible) generators [19,20]. This observation
follows from a simple fact that the restriction of the
configuration space of metrics to the subspace of metrics
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with a unit determinant results in the relevant reduction in
the space of diffeomorphism invariance parameters, which
can be attained by a projection procedure. Then, if one
wants (for the sake of retaining manifest covariance) to
describe the restricted theory in terms of the parental one,
this projection applied to the original gauge generators
makes them linearly dependent.

To the best of our knowledge this relation between the
reducible nature of gauge generators and the reduction of
the field space has not yet been fully exploited even in the
unimodular gravity context, as well as its extension to more
or less general gauge theories. The studies of theories with
restrictions on gauge transformations, the theories with the
so-called unfree gauge parameters, were recently inten-
sively conducted in a series of publications [21,22] with
the purpose of constructing the BFV (Batalin-Fradkin-
Vilkovisky) formalism transcending these restrictions to
the ghost sector of the model and starting from the first
principles of Hamiltonian formalism and canonical quan-
tization. Here we choose a somewhat different approach
(closer to the Lagrangian formalism) and try to develop the
idea of [6] for a generic parental gauge field theory with
the closed algebra of its irreducible generators becoming
linearly dependent in the course of a projection induced by
the restriction of the original configuration space.

Our method is based on the explicit construction of a
projector operator with which the generators of the original
parental theory are projected onto the generators of the
residual symmetries of the restricted theory. Linear depend-
ence of the latter is then treated by the quantization method
of Batalin and Vilkovisky (BV) for reducible gauge
theories [19,20]—a brief review of this formalism with
all necessary notations and definitions is presented in
Sec. I A. As a by-product of using BV formalism we
develop in much detail the gauge-fixing procedure for
gauge theory of the first-stage reducibility. Quite interest-
ingly, despite numerous applications of this method,
current literature does not present a workable algorithm
even for the one-loop approximation in generic reducible
gauge theories. Implicitly this algorithm is, of course,
contained in the pioneering works [19,20], but its concrete
realization with all the details of Ward identities providing
gauge independence of the on-shell effective action is
still missing. We close this omission and suggest the recipe
for all the elements of Feynman diagrammatic technique
and the relevant algorithm of the one-loop effective action
in the above class of theories at the level of presentation
characteristic of a folklore use of the well-known Faddeev-
Popov prescription.

The gauge-fixing algorithm here turns out to be more
involved than in a conventional Faddeev-Popov formalism
for irreducible theories, because it includes gauge fixing
for original gauge fields, gauge fixing for ghosts, and the
corresponding ghosts for ghosts. Even for first-stage
reducible theories (when there is no higher-order zero

vectors for reducibility generators—zero vectors of original
gauge generators) this gauge-fixing procedure involves,
apart from the usual gauge conditions, at least three extra
gauge-fixing elements and the construction of a special
projector in the gauge-breaking term of the theory. The
main result for the one-loop effective action of gauge
theories of the first-stage reducibility is assembled in the
sequence of Eqgs. (2.47)—(2.51) of Sec. 11 C.

Then in Sec. III we explain how a reducible gauge
structure with linearly-dependent generators arises in theo-
ries with restricted configuration space of gauge fields. In
particular, we raise the question why and when constraining
this space can be regarded merely as a partial gauge fixing, or
on the contrary, forming a new physical theory inequivalent
to the parental one. It turns out that the answer is based
on the rank of a special gauge-restriction operator. The rank
deficiency of this operator, or the presence of its nontrivial
zero modes, signifies new physics of a restricted theory as
compared to the parental model whose field space is subject
to restriction. This gauge-restriction operator allows one
to construct the projector on the space of residual gauge
symmetries. The projected gauge generators form the algebra
which is closed as long as the original parental theory has a
closed algebra both on and off shell.

The zero vectors of this projector become first-stage
reducibility generators of the BV method of treatment of
the restricted theory, and they represent a free element of
the formalism, whose choice is limited only by a certain
rank restriction condition. It turns out, however, that their
special normalization fully provides on-shell independence
of the one-loop effective action of this choice, whereas the
normalization of the gauge generators of the parental theory
can be fixed by matching it with the canonical formalism
and canonical quantization of parental theory.

The one-loop effective action for generic restricted
theory is discussed in Sec. IVA. Discussion of correct
normalization of the gauge generators in a covariant
formalism is the subject of Secs. IVB and IVC. In
Sec. IV D we discuss the factor in one-loop effective action
which distinguishes restricted and parental theories at the
quantum level.

In Sec. V we apply the above formalism to the unimodular
gravity theory treated as descending from its parental
version—Einstein general relativity. We construct all the
elements of its gauge-fixing procedure in the background
covariant gauge [23] with the background covariance prop-
erty extended to all the objects of the Feynman diagrammatic
technique. Then, according to the general algorithm, we
build on shell the one-loop effective action of the UMG
theory. This confirms conclusions of [15] which were
attained, however, with certain assumptions on the treatment
of the group of diffeomorphisms volume factored out of the
partition function. No such assumptions are needed in our
approach which is fully determined by the requirement of
gauge independence of the on-shell physical results.
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Moreover, our approach allows us to disentangle the
one-loop contribution of a global zero mode responsible
for the “new” physics contained in the UMG theory as
compared to general relativity. The UMG one-loop effec-
tive action coincides with that of the Einstein theory having
a cosmological constant modulo a special contribution of
the global degree of freedom associated with the variable
value of this constant. The resulting expression for the
effective action, which is usually presented in terms of
functional determinants on irreducible (transverse and
transverse-traceless) subspaces of the full tensor and vector
field space, is built in terms of the functional determinants
of the minimal operators. These determinants admit for
their calculation the application of the Schwinger-DeWitt
curvature expansion [24]. This property is important for
calculations on generic backgrounds not exhausted by
homogeneous spaces.

In the Conclusion we summarize the results and
briefly discuss the role of a global extra degree of
freedom in the UMG theory as a cosmological constant.
In particular, we show how this reveals the duality of
UMG and Einstein theories analogous to the transition
between statistical ensembles with fixed observables
related by the Laplace duality transformations. In the
appendices we discuss the Moore-Penrose construction
of inverse operators for degenerate operators [25], as
well as the derivation of the gauge algebra of the
projected generators and some technical details of
determinant relations needed for the construction of
the generator basis.

II. EFFECTIVE ACTION FOR THEORIES
WITH FIRST-STAGE REDUCIBLE
GAUGE GENERATORS

In this section we briefly review Batalin-Vilkovisky
(BV) formalism for the first-stage reducible gauge theories.
Throughout this section (and in the most of other sections
unless otherwise indicated) we use DeWitt condensed
notations. All indices are of condensed nature and combine
discrete bundle indices and continuous spacetime-point
labels. Two-index quantities are two-point kernels and
summation over contracted indices implies the correspond-
ing spacetime integration. Ranges of condensed indices
reflect the continuum of spacetime points and the discrete
spin-tensor labels of fields. The ranks of two-point kernels
of linear operators and forms thus refer to their functional
space dimensionality.

A. Batalin-Vilkovisky formalism
for reducible gauge theories

Consider a generic gauge theory of fields ¢’ (with the
range of field indices i formally denoted in what follows by
n). Let it be described by the action S[¢] which is invariant
under the local gauge transformations with generators

Ri, = Ri(¢) and infinitesimal gauge parameters £ (the
range of gauge indices a being denoted by m < n)

5 = RiE™,
oS
o
Here, and in what follows, comma denotes a functional
derivative with respect to the relevant field variable.

The algebra of gauge generators begins with the

relations—corollaries of the Jacobi identity for a double
commutator of gauge transformations

(2.1)

SiRi =0, Si= (2.2)

i i ) iy ij
Ri Rj— Ry Rh=RiCl, +ELS,  (23)

with the structure functions Cy;(¢p) = —Cj, (), E;fﬁ((/)) =
—E;{a(q{;) = —Egﬁ(cﬁ) For closed algebras (in contrast to

so-called open algebras) E’a’/}(qb) and higher-order structure
functions of the gauge algebra vanish [26,27].

The theory is reducible when its gauge generators
are linearly dependent on shell, that is on solutions of
classical equations S; = 0, so that there exist m; reduc-
ibility generators Z% = Z%(¢)—right zero-eigenvalue
eigenvectors of the original generators R!, parametrized
by indices a of range m;. This implies relations

Ri,Z% =S B) (2.4)
with some coefficient functions B (¢) = —BY (¢). For the
first-stage reducible theories, which we consider in this
section, the generators Z% form on shell a complete
independent set, whereas for higher-order stages of reduc-
ibility they also become linearly dependent with higher-
order reducibility generators and so on.

1. Master action

Batalin-Vilkovisky quantization of gauge theories starts
with the construction of master action SBY[®, ®*] which is
a certain extension of the original action classical S[¢] onto
the configuration space of fields and antifields (@7, @%).
This even-dimensional space is Z-graded with respect to
the so-called ghost number gh(®%) = —gh(®?) — 1 and
Z,-graded with respect to their Grassmann parity e,
e(@%) = e(®*) + 1. Original fields ¢ become a part of
the extended fields set ®* and carry zero ghost number. To
avoid messy sign factors we assume that all ¢/ are bosonic
(even) fields, e(¢') = 0, and Grassmann parity of ghost
fields and antifields coincides with Z, parity of their ghost
number (those with even ghost numbers are commuting
fields, those with odd ghosts number—anticommuting).

Extension from S[¢] to SBV[®, ®*] is governed by the
master equation on SBY[®, ®*],
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r) GBV s(I) ¢BV r) GBV s(I) ¢BV
(SBV,SBV)E(S( )SBV s() g _5( )SBV 5(0 g o
50T 503 5®; 5ot

(2.5)

in terms of the antibracket (G, H) [28] which is defined for
any two functionals G and H of fields and antifields. Here
(r) and (/) label, respectively, right and left derivatives.

The solution SBY[®, ®*] is obtained as a perturbative
expansion in powers of ghost fields and antifields. To make
this solution proper and allow one to perform a further
gauge-fixing procedure one should specify a BV-extended
configuration space and impose certain initial conditions to
(2.5) which should explicitly encode the gauge structure of
the original action S[¢].

Any proper solution of master equation is inevitably
gauge invariant [19,26-30]. In terms of the total set of
BV fields and antifields @3y, = (®%, ®%), A= 1,...,2N,
Z =1,...,N, the master equation reads

0
-1

BV [ BV
&S pdS®Y 0
Blota Rlole ’

gAB_{ H (2.6)

By differentiating (2.6) one gets the Noether identities

515rsBV
SOE, 508,

5rsBV

——R{ =0,
s, ¢

R =48 .27

featuring 2N gauge generators R’C“ of master action gauge
symmetry.

These generators, however, form a reducible set because
the second variational derivative of (2.6) shows their
N-reducibility on shell, {7ERERA o 5SBY /50y, = 0.
Thus, the master action SBY possess N on-shell indepen-
dent symmetries—half the dimension of the BV configu-
ration space (@7, ®3)."

Convenient gauge fixing of the master action gauge
symmetry (2.7) consists in expressing antifields in terms of
fields via N gauge conditions [19,26-30]

5Y[D]
o ———=0. 2.8

A 5@1’ ( )
It is parametrized by a single functional of fields—gauge
fermion W[®] of ghost number —1 and leads to gauge-fixed
action

Sy|®] = SBY[@, 5¥[D]/5D], (2.9)

which is functional of only BV fields ®Z. For the correctly
chosen gauge fermion the gauge-fixed action (2.9) appears

lNilpotence of 2N x 2N matrix implies that its rank is at most
N. Considering a proper solution implies that rank of the Hessian
515" SBY | 5®4,,6@5,, equals N. Otherwise the set of Noether
identities (2.7) is incomplete and there are more then N gauge
generators since there are more then N zero modes of the Hessian.

to be a nondegenerate sdet[5)5") Sy /DT 5D |55, /50— #0
and yields a perturbatively consistent path integral for the
generating functional which modulo the contribution of
local measure reads

Z= /D(I)eis‘*‘[q’]. (2.10)

The master equation for SBV[®, ®*] (2.5) provides the
corner stone of gauge theory quantization—independence
of the on-shell generating functional of the choice of gauge
fermion. Under the gauge fermion change ¥ — ¥ + AW,
in view of integration by parts the change in Z reads

5(r) SBY 5(1) SBV
AZ:—/D(I)A‘P —
sol 5%
5 s gBV
SDT 5D; )

ezS\y7

oW
@ oD

(2.11)

where extra terms vanish in view of Grassmann sym-
metry properties. This expression equals zero because
the first term vanishes in view of the master equation
s\ SBY/ 5z 51 SBY/sT = 1(SBY, SBY), while the second
term in local theories is proportional to 0...95(0) and is
supposed to be either canceled by a local measure or
killed by dimensional regularization. The local measure is
not rigorously available within the BV formalism whose
incompleteness can be disregarded for theories with local
gauge algebra and within the class of local gauge fermions.
This measure can be attained within the canonical BFV
quantization formalism, which will be used below to justify
the application of the BV method for restricted gauge
theories in which locality of their generators will be spoiled
by generically nonlocal projectors.

2. Minimal and nonminimal proper solutions

Construction of BV master action begins with finding a
proper solution of master equation (2.5) on the minimal
sector of fields and antifields. For the first-stage reducible
theories [(2.2) and (2.4)] this requires introduction of ghosts
C*, gh(C*) = 1, the ghosts for ghosts C%, gh(C*) = 2, and
antifields to all fields and ghosts [19,26,27],

q)rnin = (¢i’Crt’Ca)’ D = ( T’C;;’CZ)

min

(2.12)
The minimal proper solution S™"[®,;,, @ . | of the master
equation can be represented as the series in powers of
antifields

SN = § + IR+ CLZ5C + -+, (2.13)
where S = S[¢] is the action of the initial gauge theory, two

terms bilinear in ghost fields and antifields serve as initial
conditions for the master equation which guarantee that such
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a solution of master equation is proper, R/, and Z¢ are gauge
and reducibility generators (2.2) and (2.4), dots stand for
higher-order terms in powers of ghost fields and antifields.
All higher-order terms can be found within the iterative
procedure of solving the master equation which leads
to [26,27]

. . 1
ST = § + prRICT + Ch (zgca +5 cgycrcﬂ)

* a (o4 1 a (04
+C (AbaC”C + 5 oy C10°C )

1 . 1 .
+ & d; (5 By C* + ZEfll/”CﬁCa> +--
where the coefficient functions of higher-order terms origi-
nate from higher-order structure functions of gauge algebra
and the dots denote terms with antifields of the total ghost
number —3 and lower.

Meaningful gauge fixing of the BV master action
requires extension of the proper solution to nonminimal
configuration space. Motivation for this is that gauge fixing
(2.8) is performed through properly constructed gauge
fermion W[®]—the functional of only the BV fields ®Z.
But the gauge fermion has a negative ghost number —1
and thus cannot be constructed as a functional of the
minimal fields ¢, C*, C* with nonnegative ghost numbers.
Therefore, the set of fields should be further extended to
contain auxiliary ghosts with negative ghost numbers.

Standard scheme for first-stage reducible theories pre-
sumes introducing auxiliary ghosts C,.,C,,C', their part-
ners 7, m,, 7' with the higher ghost number and the
corresponding set of antifields [26,27], so that nonminimal
BV configuration space reads

i IS / /
D = (¢',C* C* Cy,Cp, C%, 10y, o, @),
q)min
q)* — ( ?,C:,C;,C*a,C*a,c/z,ﬂ'*a,ﬂ'*a,ﬂ'/Z).
—_——

o

min

(2.14)

Here the fields C,,C, are often referred to as antighosts,
C'“—extraghosts, m,,,, ©’°—Lagrange multiplier or
Nakanishi-Lautrup fields.

Ghost numbers of the nonminimal configuration space of
the first-stage reducible gauge theory are listed in Table I,
where antifields 7*%, #*¢, z'% are omitted since they do not
appear in the BV procedure.

The nonminimal proper solution SBY[®,®*| of the
master equation on such space is just a sum of the minimal
master action S™[®, ., @7 . | (2.13) and the contribution
of auxiliary fields $***[x,, ﬂa,ﬂ’“,@*“,é*“,C’Z]

SBV — Smin + Saux’ (215)

TABLE I. BV configuration space of the first-stage reducible
gauge theory.
gh(®) o gh(®")
Minimal sector
o' 0 ¢ -1
c* +1 C; -2
ce +2 C -3
Auxiliary sector
Cq -1 c 0
T, 0
Ca -2 c +1
7, -1
c 0 c -1
la +]
S = 7,0 + 1, C + Cin. (2.16)

The master action (2.15) obviously satisfies the master
equation (2.5) on the nonminimal configuration space
since auxiliary and minimal sectors are so far decoupled
(these sectors will be mixed after gauge fixing) so
that <Smin + Saux Smin + Saux) — (Smin’ Smin) + (Saux’ Saux),
and by construction S™" and $%* separately nilpotent in
antibracket.

3. Choice of a gauge fermion for the Gaussian
gauge fixing
Grading restriction gh(¥) = —1 on gauge fermion ¥ |®]
admits the following form at most quadratic in ghosts and
auxiliary fields

P[] = Co(r“(¢) + 6%(#)C') + o'y ()"

1 - _
+ 5 (Cox™rg + Copyn™® + 7,p9,C'°). (2.17)

The latter group of terms linear in r,, 7., z’* allows us to
implement Gaussian (Faddeev-Popov) type of gauge fixing
when »x% p¢, are nondegenerate

detx? #0, detp“, # 0. (2.18)
In generic theories it is convenient to choose ¢-independent
coefficient functions x, p® . Such a choice guarantees the
possibility to integrate out auxiliary fields z,,7z,, 7/ to
obtain Faddeev-Popov representation for the generating
functional.

Here we take into account that for ¢-dependent func-
tions x*(¢),p%(¢) terms linear in companion fields
T g, @% will arise in gauge-fixed minimal master
action S$i“ instead of each antifield, ¢ = 6¥/5¢p' =
1C,(6x* /8¢ s + - - -. Therefore, for open algebras and
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algebras with higher-structure functions, whose S™" con-
tains second and higher powers of antifields, z,, z,, 7™
dependence of S$i“ becomes more than quadratic, which
does not allow us to integrate them out via Gaussian
integration.

After the gauge fixing (2.9), ®* — 6¥/5®, with the
gauge fermion (2.17) one gets the nonminimal gauge-
fixed action (2.9) which according to (2.15) is Sy = S@i“ +
S§* with

S§" = 8 + Ca(XIRHC + Cu(@ Z)C" + -+ (2.19)
aux 1 a[j o a /b
Slp = 5”{1}{ g + 7, X" + 7mp b
+ 7,0%C* + Coqo® ', (2.20)

where S = S[¢] is the action of the initial gauge theory
and dots hide terms more then quadratic in ghost
fields with nonzero ghost numbers.” We introduce the
combination

X =x%(¢) + o (#)C (2.21)

which depends on fields ¢',C’* with zero ghost number.
All the dependence on ' in the gauge-fixed action Sy is
now hidden within X% and its variational derivative

X% = 5X7/8¢ = 4% + 0%.,C°. (2.22)

4. Reduction of Lagrange multiplier fields

For ¢-independent matrices »* and p“—the case which

we consider in what follows—Gaussian integration over
the fields =, 7,, 7’ in the generating functional (2.10)
gives

Z= / D®,q (detx®) =12 detp? &5 [l (2,23)

where @, is the reduced nonminimal set of fields
®,q = (¢',C'*.C%,C,.C%,C,), cf. Eq. (2.14), and STP[®, 4]
is the corresponding Faddeev-Popov reduced gauge-fixed
action

1 - )
SFP[(Dred] =S§- EXa}{aﬂXﬂ + Ca(XﬁR;} - Gaapil aba)b/j)cﬂ

+ Col@% Z)C + -+ (2.24)

*Terms explicated in (2.19) and (2.20) are sufficient in the one-
loop approximation. The gauge-fixed action with several higher-
order terms reads S§™ (@] = S[¢p] +Co (X4 R})CP +Cy (o 25)C+

Co(@l Riy+307,C8 )CCP +CoCp(XIX4BL )+ -+,

a,i

Here we have introduced the matrices x,;, p‘l“b inverse
respectively to x”*, pb.. Dots denote terms which are more
than quadratic in ghost fields C%, C,,, C%, C,. Such terms are
irrelevant in the one-loop approximation.

The obtained reduced action is nondegenerate in the
sense that its Hessian at the stationary points of the classical
BV action represents the nondegenerate operator

5 5(r) gFP
sdet —— #0
5(I)red6¢)red 58T /6®,.4=0

(2.25)
for the relevant set of boundary conditions. This property
is inherited from the nondegeneracy of the unreduced
gauge-fixed action Sy[®@] with appropriately chosen gauge
fermion, in which auxiliary nondynamical variables were
integrated out (being expressed from their own equations of
motion). For nondegenerate gauge-fixing matrices »”%, p?,
fields z,, 7., #’* form the set of such auxiliary variables.

Now we will analyze nondegeneracy in various sectors
of the reduced configuration space.

B. Stationary point of the gauge-fixed
master action

The simplest is the ghost sector consisting of the fields
c*, C,, C*, C, (the field C'* with a zero ghost number does
not belong to this sector even though it is usually called
the extraghost [19]—rather it belongs to zero ghost
number sector where it plays a special role in gauge-fixing
procedure for ¢'). The variational equations for the fields
c*, C,, C%, C, obviously make them vanishing under zero
boundary conditions

Cc*=C,=C*"=C,=0, (2.26)
provided the kernels of their bilinear forms in gauge-fixed
action (2.24) represent invertible operators having well
defined Green’s functions

Fo = X"jR}, —o%p~! ”ba)b/,,

detF% #0,  (2.27)

Fo = 0 Z5, det F9, # 0. (2.28)
The interpretation of these operators and their properties
is obvious. The first term of the ghost operator F; is
degenerate because of the reducibility of gauge generators,
so the conventional Faddeev-Popov ghosts C%, C, them-
selves become gauge fields with the local symmetry
induced by the reducibility generators Zf. The second

term of F* in (2.27) plays the role of gauge breaking term
for this symmetry, and its effect is the invertibility of F’ %
Correspondingly, F, is the Faddeev-Popov operator of

new ghosts C%, C, for original ghosts C% C, treated as
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gauge fields; that is why the fields C, C, bear the name of
ghosts for ghosts.

The situation is trickier in the zero ghost number sector
of fields ¢, C'*. Their equations of motion read

5SFP

s~ 51 XixgX! =0, (2.29)
5sFP
s =~ X! =0, (2.30)

Contracting them respectively with R} and p~'%,w% and
subtracting from one another we obtain, on account of the
Noether identity S ,R;, = 0, the following on-shell relation:

ai a —1b ,.a
(XUR, — 6%p~' P05,

)}{aﬁXﬂ = F‘);,}(aﬂXﬂ = 0, (231)
which allows one in view of invertibility of £, and x,z to
rewrite the equations of motion in the zero ghost number

sector as
(2.32)

X*=y*+06%C = 0. (2.33)
This can be interpreted as equations of motion for ¢’
supplied by the set of gauge conditions X* = 0. The
latter look overcomplete because the number of indepen-
dent equations of motion S; =0 on n variables ¢' is
n — mg + my, whereas the number of gauges is m. The m;
mismatch is, however, corrected by the m; extra ghost
fields C'*. This goes as follows.

Contracting the rank m, nondegenerate operator F; with

the rank m; full-rank generator 20 one gets the full-rank
condition, rank (6%, “,,a)b,,zé ) = my, which due to non-
degeneracy of Fb, = a)bﬁZg and p~! 4, implies the full-rank
conditions rank 6% = m,, rank @’y = m,. This, in particu-
lar, guarantees that all C'* are expressible in terms of ¢

from the equations X* = 0.
By introducing an arbitrary matrix s (¢") such that

det (s%0”,) # 0 one can express the solution for C'* in
terms of ¢ from Eq. (2.33)

C* = —(so) "% AP, (2.34)
where (so)7'¢, is the inverse of (s0)’. = sPc%. On the
substitution of this solution in (2.33) the rest of relations
constitute m, — m; independent gauge conditions

(6% — o%(s0)! “bsbﬂ) 7 =0, (2.35)
on n original fields ¢ as it should be. Indeed, what stands
here as a matrix coefficient of y” is the projector T%(s, o) in

the space of gauge indices having m; right zero eigenvalue
eigenvectors o ,» and m; left zero covectors s,

T%(s,0) = 8% — o%(s0) "%, s", (2.36)
T%(s.0)d’, =0,  s4T%(s.0) =0,
a j a
T%(s.0)Th(s.0) = T%(s.0),
rank T%(s, 0) = my — my, (2.37)

which explains why Eq. (2.35) comprises m, — m; gauge
conditions rather than m, conditions. It is remarkable that
despite the presence of an auxiliary element—an arbitrary
matrix sbﬂ of rank m;—these gauge conditions and expres-
sions for extraghosts (2.34) are s-independent. This easily
follows on shell from the variational equation
8,[(s0)™14,5h 2] = (s0)714(35) Th(s.0) £/ =0.  (2.38)

Finally, consider the on-shell Hessian of the action in the
zero ghost number sector of fields @, = (¢, C'*) which is
actually the Hessian of S[¢] — 1 X%x,;X”. Bearing in mind
the on-shell value of X* =0 we get the block-matrix
operator

52SFP _ S,[j - Xci}{(lﬂxﬁ] _Gi%(lﬁx{jf
PPy | 557 /505, =0 _O-(Z}fuf)’x{);' _U{Ztkuﬁaﬁb
(2.39)

In view of invertibility of x,; one can introduce the
nondegenerate m; X m; operator k,;, and its inverse
Kab = Gaa}{aﬁaﬁb» Kba = (Kab)_l' (240)
Then one can factorize the determinant of (2.39) as the
product of determinants of two operators

52 SFP

det———
0D 6Dy | 557 /6®,0q=0

= detF,J det (_Kab>’ (241)

where the new operator F;; is obviously the gauge-fixed
inverse propagator of fields ¢’

_ a p
Fij = S.ij - X,iHaﬂX, j? (2-42)

s = Xop — Xy Oak™ 69255, (2.43)

in which the gauge-fixing term is built in terms of the gauge
matrices X% and the gauge-fixing matrix Il,;. The latter,
however, does not coincide with the original matrix s, in
the gauge fermion (2.17), but rather converted to the
projector form with the following properties:
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Uaana/} = Ha/}oﬂb =0, Ha/}}{ﬁyny& = Ha&' (244)
This projection is fully consistent with the fact that the rank
n—my+ my of §;; should be raised up to n by adding
nonzero eigenvalues not in the m,-dimensional subspace,
but in the (mq — m,)-dimensional one. In particular, with
the projector (2.43) one can rewrite on-shell gauge con-
ditions (2.35) on fields ¢’ as 15’ = 0. The equivalence
of this to (2.35) is established by choosing s% = m“ba"‘b}{aﬂ
and noting that the projector 8% — o% (s0)! “bs};} does not

depend on a nondegenerate matrix factor m®.

C. One-loop contribution to the
generating functional

From (2.23) the one-loop contribution to the generating
functional (its preexponential factor) reads

detp“b 6(1)6(r) SFP —-1/2
7 <sdet . (2.45)

7 I—loop
(det ) ¢ ap ) 5q)red 6q)red

where the Hessian in the sector of reduced fields has, in
virtue of (2.24), the following block matrix structure:

i 0 0 0
50§ gFP oo o -FJ| 0 o
SOTST ) (2.46)
5D, 10D,y 0 0 F4 0 0 0

0 0l 0 0 0 F

0 0| 0 0 F¢ 0

Block in the left column and upper row here corresponds to
the zero ghost number sector @, = (¢',C'?), the middle
column and row block corresponds to the odd sector
(CP.Cs) of gauge ghost and antighost fields, the right
bottom block corresponds to the even sector of ghost-for-
ghost and antighost-for-ghosts fields (C”,C,).

In virtue of the factorization property in the reduced
fields block (2.41) the calculation of the full superdeter-
minant finally gives the one-loop contribution to the
generating functional of the first-stage reducible gauge
theory

detp?, det F’;),
(detx®)1/2 (det Fy;)'/?(detk,p)"/? det F4,
(2.47)

Zl—loop —

Let us assemble together all numerous ingredients of this
expression which were introduced above in the course of
derivation of this formula. Here the inverse propagator
of the original gauge field F;; (2.42), the ghost operator

F“ﬂ (2.27), and the ghosts-for-ghosts operator F, (2.28)
are, respectively,

Fij=S8;;—XT,zX", (2.48)
Foy = XGR), = o%p~ ' 40", (2.49)
F = w2, (2.50)

Gauge field and ghost operators (2.48) and (2.49) are
both gauge fixed with the aid of gauge conditions matrices
X%, 0%, and wbﬁ and the gauge-fixing matrices I1,; and
p~!9,—kernels of bilinear terms in (X%, 6%, a)hﬂ). Whereas
these matrices of gauge conditions for ghosts ¢%, and a)bﬂ
are a part of the originally chosen gauge fermion (2.17), a
similar matrix in the gauge fields sector is a special
projector I,z (2.43), M, p"TLs =Tl,5 (2.44), on the
direction in the space of gauge indices orthogonal to the
“vielbein” ¢, 6%l = Haﬂojz = 0. This type of “ortho-
gonality” is determined with respect to the symmetric
metric x,4, which is inverse to »P originally introduced
in the gauge fermion (2.17). The projection of this metric
onto the space of reducible generator indices a with the aid
of the vielbein 6%, gives rise to the gauge-fixing matrix «,,
in the space of these indices. The determinants of all
gauge-fixing matrices x4, p%,, and k,;, appropriately enter
the final algorithm for the one-loop generating func-
tional (2.47).

Ranks of all the above gauge matrices are maximal and
determined by the range of their indices, and the main
criterion of their choice is the invertibility of the full set of
gauge and ghost operators (2.48)—(2.50).

The final important comment is the definition of the
on-shell condition for the obtained algorithm (2.47). All
ghosts, ghosts for ghosts and their antighost fields are zero
on shell, C* = C, = C* = C, = 0 (2.26). The exception is
the only “nonclassical” field C'* which has a zero ghost
number, though originally it was called the extraghost [19].
On shell it is generically nonvanishing and is given by the
expression (2.34), so that the gauge conditions matrix
equals

XG =y — o i(so) " sty 1P (2.51)
and coincides with % only for ¢-independent of or
vanishing on shell s% y”. For the original gauge field ¢'
on-shell restriction and gauge conditions (2.32) and (2.33)
equivalently read S ; = 0, I1,4 x” = 0 (note that the original
gauge functions y%(¢) introduced in the gauge fermion
(2.17) does not necessarily vanish—only their projection
vanishes on shell).
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D. Ward identities and gauge independence
of the effective action

The one-loop effective action corresponding to (2.47)
reads

1
i1 —loop _ETrln Fij+TrinF§ - Trin F,

1 1
—ETranab —ETrln}f”/" + Trlnp¢

(2.52)
and includes gauge field, ghost, ghost-for-ghost contribu-
tions and the contribution of three gauge-fixing matrices.
On shell this expression should not depend on all gauge-
fixing entities y*(¢h), 0%(), w%(P), x¥, p% as it is
dictated by the general BV theory. It is worth checking
this property and revealing the details of the perturbative
mechanism of such gauge independence. In the one-loop
approximation this mechanism is based on the on-shell
Ward identities for all tree-level propagators of the theory:
Fli, F“‘j),, and F~'4¢.

Ward identity for the Green’s function of the gauge field
operator F;; follows from the sequence of on-shell relations

R = FUFRE = —F~1 X211, X/ R
—1ij g
= —F~YXOT1,.F, (2.53)

where we used the fact that on shell RJ’f is a zero vector of
S jx since S 3R} = =S 7R/ . and T zX, RE = M4, in
view of H(,/;oﬁ » = 0. Thus, contracting this relation with
F~'". we get on shell

FUXTgls g = —RIF'7,, (2.54)

whence it follows the effective action independence on the
choice of gauge matrix X% and the gauge condition y*(¢)

i5){1—*1—100p — i(SXFl_lOOp
= (FUXM,, + RLFT'%) 6X/, = 0. (2.55)
Similarly, from the relation 2% = F~',F% 2} =

—F'7,6%p7 "4, F*_ it follows that the Ward identity relating
the ghost and ghosts-for-ghosts propagators is

F 0% g o= —ZIF1 ¢, (2.56)

and the effective action turns out to be on-shell independent
of o’,,

i8, 717000 = —(F'0,p=1 0, + ZLF14,) Swby = 0.
(2.57)

The dependence of I''71°°P on 6%, involves three terms of
(2.52) the sum of which also turns out to be zero on shell

1
i5,-loop — — 5 8, Trn F;; + 5, Tr In F'

1
- EégTrln Kgp = 0. (258)

To prove this one should use in the variation of the operator
(2.48) the variation of the projector Il J,11s =

—260" kT, xp)50°,, the variation of K., &,Ku =
2}(0,/30/(250“,]), and the corollaries of (2.54) and (2.56),

XXl o = —XREF e, (2.59)
XRYF = (Fy 4 Sap ) 1,
=&y + dup~ 40 F, (2.60)
b F o )s _o = —ph (2.61)
B a0 qls,=0 Pa- .

The »*-variation of the effective action also vanishes
on shell because of the variations 6, 11,5 = —Ha(;é}f‘syl'lyﬂ,
O, Kap = oaaéxa/,aﬁ » EBq. (2.60) and its corollary
I, X", F~1 X% 55 = —I,4 (which in its turn is provided
by the orthogonality relation Haﬁaﬁ » = 0),

1 . 1 1
iﬁ,{rl_IOOP = _EF_ljl(s){Fij - EKhaé;{Kab - 5}{[)’(15}{{1/} =0.

(2.62)

Finally, on-shell independence of the gauge-fixing
matrix p¢ follows by direct variation and the use of the
corollary (2.61) of the Ward identity (2.56) for the ghost
propagator,

18,0171 = — (o, F~' V00, + pb,) 0p719, = 0. (2.63)

III. REDUCIBLE GAUGE STRUCTURE OF
RESTRICTED GAUGE THEORIES

Reducible structure of a gauge theory can be induced by
the procedure of restriction of the originally irreducible
gauge theory. To see this consider a generic gauge theory
with the action § [¢!] subject to a closed gauge algebra of
irreducible generators 7@2,

Sq]ﬁ{l = 0, 7@;_,7%;; - ﬁé"]ﬁé - 7,\?‘]1/6125 (31)
Irreducibility of the generators 7@{1 implies that the rank of
their matrices coincides with the range of the indices a
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which in its turn is lower than the range of the indices /
enumerating the original gauge fields ¢, rank R =
rangea = my < 1 = range I. We will call such a theory
the parental one.

Restricted gauge theory, originating from the parental
one, is the theory whose configuration space variables are
kinematically constrained by the equations

0“(¢") =0, (3.2)

where we will consider the functions §4(¢') to be func-
tionally independent, that is characterized by the full-rank
condition of their gradient matrix,

rank 6% = m; = range a. (3.3)

For simplicity we assume that these functions are either
ultralocal (algebraic) in spacetime or the surface of these
constraint functions can be parametrized in terms of
local independent fields which will be denoted in what
follows by ¢'.

A. Two representations of a restricted theory

Such a restricted theory can be described in two
equivalent ways. One way is to represent it in terms of
the Lagrange multipliers action

SHp. 2] = Slg] — 2,60%(). (3.4)

whose classical equations of motion obtained by varying
both its gauge fields ¢’ and Lagrange multipliers 1, read

S;=2,04=0,  6“=0. (3.5)

Another representation is the reduced theory, when one
solves first the constraints (3.2) with respect to ¢ as
functions of the reduced set of fields ¢ and formulates the
theory in terms of the reduced action $™[¢]. The latter is
obtained by substituting in the parental theory action the
functions e/(¢) of embedding the ¢'-subspace into the
space of original gauge fields ¢/,

o' =el(p). 0 () =0,
§d[g] = Sle(gh))].

The equations of motion in both formulations are
obviously equivalent3 because the contraction of the first
of Eq. (3.5) results in

(3.6)

(3.7)

3Classical equivalence of two theories can be defined by
equivalence of spaces of solutions of their equations of motion. In
particular it can be established by the local correspondence (3.8)
and the statement that reduced fields do not carry additional
degrees of freedom. This statement means that the above
assumptions on 6%(¢) imply the existence of such reducibility,
that is the possibility of excluding auxiliary variables in terms of
the reduced ones.

& o _ 0S*I[g] de' ()
eli(S;—2,09) = €S = o e’ T
where we took into account that in view of (3.6) the covector
0¢ is orthogonal to the surface of constraints 6¢ = 0,

(3.8)

O 0(p(¢)) = 0o 0", = . (3.9)

o'
An important question is the relation of the original
parental theory and the restricted one from the point of
view their physical equivalence. Solutions of the system of
equations (3.5) are obviously inequivalent to those of the
parental theory, ‘SA', ; = 0, when on shell the Lagrange multi-
pliers 4, are nonvanishing. Note that in view of the linearity
of the A-action (3.4) in 4, the variational equations with
respect to Lagrange multipliers do not allow one to express
them from the full set of equations of motion. There is
another way to write down their equations of motion by
contracting the first set of equations (3.5) with the parental
theory generators R/, and use the Noether identities (3.1).
Then we get

4aQ% =0,

where Q% = Q%(¢p) is the gauge-restriction operator which
will be very important in what follows:

(3.10)

04, = 04R.. (3.11)

This equation for A, has a unique solution 4, = 0 only
when the rank of Q¢ is maximal, that is it coincides with the
range of the index a enumerating the constraint functions 6°.
In this case the meaning of the constraints 6¢(¢) =0 is
nothing but a partial gauge fixing of gauge invariance of the
parental theory (range a = m; < mg = range a).

On the contrary, when the rank of gauge-restriction
operator Q% is lower than m;

rank Q% = m; — m, (3.12)

then m, Lagrange multipliers can be freely specified, the
rest m; — m, of them being fixed as unique functions of the
former free ones. This implies, in particular, the existence
of m, gauge invariants of the parental theory constrained
to be zero in restricted theory. To see this, note that the
rank deficiency implies that operator Q¢ has m, left zero
vectors Y4 |

Y4,0% =0,

range A = my <my, (3.13)

and this, according to the definition of this operator, implies
the existence of m, parental gauge invariants

04 () = Y4 (0)0(9).

which are constrained to vanish. So generically the
restricted theory (3.4) is inequivalent to the parental gauge

‘9',417%|9:0 =0, (3.14)
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theory S[¢'], because the latter does not a priori impose any
restrictions on its gauge-invariant objects. In what follows
we will consider such restricted theories which incorporate
new physics beyond their parental ones.

There is another representation of the solution for
Lagrange multipliers. If one constructs the set 6! dual to
covariant vectors 67,

040, = 5%, (3.15)
then, contracting the equation of motion (3.5) with 9{, one
obtains

do =S ,00. (3.16)

For local in spacetime restriction functions® 64 this is a
local expression for Lagrange multipliers in terms of S —the
left-hand side of equations of motion of the parental theory.
Resolving Lagrange multipliers 4, in restricted equations of
motion (3.5) leads to the projected set of equations,

S,(8] - 6l6%) =0, (3.17)

equivalent to S je/; = 0. The projector (8] — 660%) enforces
only a part of parental equations of motion S 1 “tangential” to
restriction surface ¢ = 0. Which is equivalent to (3.8) and
reinstates the observation that along tangential directions
equations of motion for restricted theory coincides with that
for parental theory.

On the contrary, projected on complementary (“normal’)
directions, equations of motion for these two theories differ.
Contraction of the parental equations S . = 0 and restricted
theory equations S‘, 1 — 4,09 = 0 with 0!, gives correspond-
ingly §,6, = 0 and S 6%, = J,. The normal subset of the
parental equations in addition to Eq. (3.17) further restricts
classical configurations of fields ¢’ in parental theory.
While the normal subset of the restricted theory equations
merely expresses 4, in terms of ¢! and thus does not
additionally constrain the latter.” However due to gauge

*We consider either ultralocal (algebraic) restriction functions
6% (@) or those for which m; (= range a) ultralocal independent
combinations of ¢! can be expressed from the restriction
conditions (@) = 0. In such a case a useful criterion for the
existence of local (in fact ultralocal) vectors 92 dual to 69, (3.15)
is the existence of the ultralocal nondegenerate linear combina-
tion 0_"16{, with local vectors ¢! (in particular, the presence of the
ultralocal minor of maximal »; rank in the matrix 6%).

SComparing the sets of equations of motion which define the
dynamics of ¢’ in parental and restricted theories one finds that in
the restricted theory m; constraints §,19{1 (@) = 0 are “removed”
while m, new constraints 8 () = 0 are applied. As it is this does
not, however, predict the number of degrees of freedom in
restricted theory, since this requires a deeper analysis of inter-
relation between the restriction conditions (3.2) and dynamical
and gauge structures of the parental theory.

invariance of the parental theory (3.1) not all dynamical
restrictions on ¢! in the right-hand side of (3.16) are
effectively removed. The linear dependence 51,7@{, =0
between S‘J may express a certain part of S‘ﬂé in (3.16)
as linear combinations of tangential equations (3.17) which
are still frozen to O within the restricted equations of
motion. Obviously such linear combinations are found by
first contracting (3.16) with 69 and then with 7@{, which
leads to 1,0% = S ,0.,0%. The same structure S ,0.0°
appears in the left-hand side of tangential equations (3.17)
after contracting with 7%2 and thus vanishes on shell.
This reinstates constraints on Lagrange multipliers (3.10),

j'oz Qaa =0.

B. Gauge symmetry and reducibility

We assume that the restricted theory does not acquire
local gauge symmetries beyond those of the original
parental action. On the other hand, not all gauge trans-
formations of the parental theory 5§g0’ = 7%(5" generate
symmetries of the reduced action (3.4). These symmetries
are only those which preserve the constraints

5§9u|9:0 = 937%(115"\9:0 =0, (3.18)

so that with the definition (3.11) the allowed gauge trans-
formation parameters &%, ; in the restricted theory should be
solutions of the linear equation Q%% = 0, i.e., right zero
vectors of the matrix Q%,. The subspace of reduced gauge
parameters can be obtained by projecting gauge parameters
of the parental theory £* with a projector T% which is

orthogonal in the space of gauge indices to Q¢,
é;led = T%éﬂ’

On the other hand, gauge symmetries of the restricted
theory can be formulated in the parental field space of ¢’
with free (nonreduced) gauge parameters £%. This happens
if instead of projecting £* we project with respect to the

04,14 = 0. (3.19)

gauge index a the original parental generators 7@2 Thus,
we get the reducible set of gauge generators

Ry =R,TY. (3.20)
This formulation is covariant from the viewpoint of the
parental gauge theory because the original multiplets of
parental field indices / and gauge indices a remain
unsplitted, but the price paid for this covariance is the
reducibility of the generators Rllj They are indeed reducible
because the projector 7% in view of rank deficiency

[following from (3.19)] possess right zero vectors % 3
which become also the right zero vectors of R},
T4k, =0,

RIK, = 0. (3.21)
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Despite reducibility an important advantage of
such projected representation is that it generates gauge
transformations with arbitrary unrestricted gauge param-
eters £%. In the course of subsequent Batalin-Vilkovisky
extension of configuration space it will give rise to gauge
ghosts equivalent to that of the parental theory. This
property is achieved at the cost of reducibility of the
projected gauge structure (3.20) and introduction of ghost
for ghosts fields.

The projector T, may be explicitly constructed in terms

of the left- and right-kernel bases (3.19) and (3.21)

T = 6% — k% (Qk) ta, bﬁ =T%(0.k). (3.22)
Left kernel, Q¢ (3.11), is fixed by the restriction conditions
and the choice of parental gauge generators. Thus (3.22)
may be considered as the family parametrized by its right
kernel basis k/Z. The structure of T‘;(Q, k), which in what
follows will be referred without specification of kernels, is
analogous to the set of projectors 7%(s,0) (2.36) intro-
duced above.

Here we emphasize the property that the matrix
(Qk)4, = Q%K’, is not directly invertible. Rather it could
have rank equal or lower to that of rank Q¢ = m; — m,.
The rank deficiency is dictated by the requirement of new
physics incorporated by the restricted theory (3.12)—
physical inequivalence to the parental gauge theory. As
discussed in Appendix A, this extra difficulty can be
circumvented by the Moore-Penrose construction of the
generalized inverse [25], provided the following rank
restriction conditions (3.23) are satisfied,

rank (Qk)% = rank Q% = rank kﬂb. (3.23)
This guarantees unambiguous definition of projector (3.22)
and its correct rank property, rank T = mg —my + my.

Rank restriction requirements (3.23) in particular are
guaranteed when K , 1s parametrized in terms of non-

degenerate two-forms B’#(¢) and c,;,(@)—metrics in
spaces of a-indices and a-indices respectively,

kﬂb = BﬁaQaacalr T% — 50;} — BayQay(QBQT);; Qb/}’
(3.24)

which will be used in unimodular gravity calculations in
Sec. V. In fact in this case the projector 7 is defined by Q¢

and B’ only because the dependence on c,, completely
cancels out.”

The “symmetric” form (3.24) has the structure analogous to
that of symmetric projector I1,4 (2.43) (with the left index raised)
when o5 <> (B/)™" and ¢ < BYQ%c,,

The generators (3.20) of gauge transformations in
restricted theory7 are thus far defined in the parental theory
field space of ¢'. They determine the gauge transformations
559" = Rj¢P tangential to the surface of 6“(p) = 0. As
any field on this surface can be parametrized by ¢' these
gauge transformations can be expressed via the gauge
transformations of the reduced restricted gauge theory
St = Ry, 589" = e!i5F¢), so that the correspond-
ing generators R}j of reduced space gauge fields ¢’ are
related to R; by obvious pushforward relations

5¢'(¢) 1,

R;}<el(¢>) = 5¢,‘ B

(9" = efiRj,. (3.25)

Thus, the reduced-space representation of the restricted
gauge theory has reducible generators Rlﬁ and their first-

stage reducibility generators z8,

68*llg]

5¢,‘ ;}(4)) =0,

RyZ =0,  (3.26)

where 2, exhaust linear combinations of right zero vectors
of the projector T and have the form

2 =1 b, (3.27)

with arbitrary factor ub,, so that rank k”,u?, = rank k”,.
Such natural choice imply off-shell first-stage reducibility
(3.26) of projected gauge generators.

Note that the projectors (3.22) generically are nonlocal
depending on structure of restriction functions and gauge
generators involved in the construction of gauge-restriction
operator Q%.

"In this section we focus on the gauge transformations (3.20)
of fields ¢’ in the restricted theory (3.4). However, the configu-
ration space of the latter also contains fields 4,. The Noether
identities for the equations of motion (3.5) show that the gauge
transformation of Lagrange multipliers should be zero,
Oeda = Raa® = 0. This is so when the projector T%(Q,k)
(3.22) in the gauge generators (3.20) is constructed with respect
to the operator Q% (3.11) in the whole neighborhood of the
restriction surface 6“(¢) = 0. This, in particular, implies that 04,
has a constant rank in this neighborhood. We assumed this
property and so the gauge symmetry representation R =
QQT%(Q, k) (3.20) and R, = 0 is enough for the purpose of
this paper. In generic case when one uses the projector (3.22) with
some other constant rank left kernel, Q'¢ = Q%, + I Z(ﬁ" , differ-
ing from Q¢ (3.11) off the restriction surface, Noether identities

imply nonzero generators R, = laFZﬂT,ﬁ,(Q’ , k). This is inevi-
table when the rank of Q% (3.11) jumps outside of the restriction
surface.
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C. Gauge algebra of a restricted theory

To proceed further we have to know the gauge algebra of
the restricted theory generators. The a priori maximum that
can be stated from the first of their relations (3.26) [under
certain assumptions of regularity of R;,(qﬁ) [30]] is that they
satisfy an open algebra (2.3) with some structure functions
and S ; replaced by Sffd. Quite remarkably, we will be able
to derive this algebra first by expressing via Eq. (3.25) R},,
in terms of RZ and using the algebra of the projected (full
space) generators (3.20), RL = 7A2(I,T‘; The latter, in its
turn, follows from the gauge algebra of the parental theory
and turns out to be also closed in the case of closure of the
algebra of 7%3 Thus, finally we will show that the resulting
algebra is also closed as long as we start with the closed
algebra of the parental theory.

Expressing Rj in terms of Rj goes with the aid of
covariant vectors ¢j dual to e’,

Ra(@) = ejRale(9))- (3.28)

These vectors satisfy the biorthogonality relation e’, el = 5’
and represent a part of the complete local basis (e?, 9“) in
the cotangent bundle of the manifold of ¢. Vectors e} may
be chosen orthogonal to the set 0{, dual to 6% (3.15), so that
(e, 0%) and (e}, 6%) form biorthogonal pair of tangent and
cotangent bases

e}e{j = 5; Hf’IH{, =67, e}ﬂi =0, H?e{j =0, (3.29)

elel + 6409 = &, (3.30)
the last equation here expressing completeness of this
basis.® For fixed e ; and 09 there is a freedom of choosing
complementary basis elements
ej — e} + bLoY, 0, — 0, —e'bl,  (3.31)
which preserves (3.29) and (3.30). However this freedom
does not spoil expression (3.28) since the shift ambiguity
term in ¢! is killed due to defining property of restricted
generators, (3.20) 6",7%;} = Hf’,ﬁé,T"/; = Q“aT”/’, =0, thus
making expression (3.28) for R}, (¢) unambiguous.

¥A particular “symmetric” biorthogonal basis may be con-
structed with the aid of the nondegenerate metric G;; on the
manifold of ¢’. This induces the metric G;; = e Ge’,
G'=(G;)™', on the reduced ¢'-space—the surface of
0%(p) = 0, and its inverse G = (G,;)~! induces the metric in
the directions normal to this surface, G =69G"¢",
G, = (G"*)~!. Starting from mutually orthogonal eili' and 09
one can construct complementary basis elements ei) and @/,
satisfying (3.29), (3.30) as ¢; = G'¢’,G,; and 0}, = G"0",G,,.

Using (3.28) we have

R R —e,Rf RJ]—&—Rf‘Rj]eJJ
= eiR!

RY. (3.32)

(CNA)

laJ

where square brackets denote pairs of antisymmetrized
indices and the second term in the middle par[ vanishes
because for dual ¢} and e (3.29) e} e} = —ehe); =
—ei5%e! (¢)/5¢p*6¢’ and so antisymmetrization in 1ndlces
kills it. Thus, the gauge algebra of R/, directly follows from
that of R.

As shown in Appendix B the commutator of projected
generators R/ replicates the algebraic relation of the
parental theory. If the latter is prescribed by

ResRp — R Ry =Ry Cly + ENS ;0 (3.33)
then the projected generators of the restricted gauge theory
R/’, = QQT%, which are defined by Eqs. (3.20)—(3.22) both
on and outside of the constraint surface 6 = 0, are subject
to a similar relation

RLR)—RE Ry =RICT, + ElyS,  (3.34)
with new structure functions CZ/} and Eaﬁ
chy=T.C5.T5T% + Ny, — Ny, (3.35)
ElY = DI D} EF T, TS, (3.36)
where
Niy=T5K, ,(Qk)~' 4 0% R, (3.37)
D!, =8, - RLkS,(0k) 140", (3.38)

Thus, in view of (3 32) for a closed algebra of the
parental theory with Eaﬁ =0 one gets a closed gauge
algebra of reduced fields representation of the restricted
theory with E% = 0 and the same structure functions (3.35)

R’a’jRj, - R}J,’jR’ R;Cfl/, (3.39)
These structure functions can be nonlocal and with respect
to its lower indices have both transversal and longitudinal

nature regarding the projector TS because of the properties
of N7 -tail of the expression (3.35), Nyﬁ =T Naﬂ =
N 5T‘S and N5, T% = 0.
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IV. ONE-LOOP EFFECTIVE ACTION
OF RESTRICTED GAUGE THEORY

A. Two representations of the one-loop effective action

The reduced representation of the restricted gauge
theory, which was constructed above, is subject to the
BV formalism of the first-stage reducible model with first-
stage reducibility generators Z§  kj. Therefore, one can
use Eq. (2.47) or Eq. (2.52) along with Egs. (2.48)—(2.50)
and the replacement of S[¢] by S™[¢] in order to build its
one-loop effective action. However, as it was discussed
above, our goal is to perform quantization in the repre-
sentation of the original parental fields ¢’, rather than in
terms of the reduced variables ¢'. Hence, an interesting task
arises—to convert these algorithms into this representation.

Such a conversion is, of course, based on the relations of
embedding the restricted theory into the parental one (3.6)—
(3.7) and on the classical equation of motion (3.5) which
determines the background on top of which the semi-
classical expansion is built. These relations imply that all
field-dependent entities of the restricted theory, including
all gauge-fixing elements, result from the embedding of ¢’
into the space of ¢. Conversely, the objects of the restricted
theory are the functions on the parental configuration
space. Therefore, like the relation (3.7) for the classical

parental and reduced actions S™¢[¢] = S[e(¢)], we have

7% 0%. % xP . pY = 1% (e(9)). o (e(@)). ' (e()).
x(e()). 'y (e()). (4.1)

where, to avoid messy notation, we do not supply y*(¢)
and other gauge-fixing quantities of the parental theory by
hats. In particular, this means that the gauge condition
matrices X%, (2.51), and X% in both representations are
related by the embedding formula for a covector,

X% = el X9,

X4 = x4 = 0% (so)! ahsb[;’ i (4.2)

The relation between Sf?j‘-i and S‘J ; is trickier. From (3.7)
it follows that on shell

55 = (el 51l

= ejeli(Su - 2a9%91) |5 ~0. =0

= e,lie,JjS?IJ‘SfI:O, 07=0s (4.3)

where we took into account the equation of motion S ; =
2,04 and the corollary of Eq. (3.6) 69,ee’, + 6%e’; = 0.
Therefore, with the inclusion of the gauge-breaking term
we have for the operator (2.48)

Fjy=eielFry. Fry=38;,-2,09 - X3,x),. (44)

ij =
What remains now is to convert the functional determi-
nant of F;; on the space of ¢' to the functional determinant
of F;; on the space of ¢'. This can be done by comparing
two expressions for one and the same Gaussian integral
with the quadratic part of the action S$*[gp,1] in the
exponential. On the one hand it equals

b9\ —1/2
/DhDﬂ ei(%h’Flth—bgﬁh’) = ( det Fu _9,1 /
=04 0

= (det F ;)2 (det®@0)=1/2,
(4.5)

O =04F """, (4.6)
where h! denotes perturbations of ¢’. On the other hand,
this integral can be calculated in the parametrization of
reduced fields ¢’ with perturbations 4’ and specially chosen
set of remaining “reducibility” fields §¢ with perturba-
tions h¢,

1 _ I i [ 1,a i
W= ehhl, +OLhly .

(e) = eflhl’ hi

) = 04!,

(4.7)
where e’ 0, e}, 0., are calculated on the classical back-
ground and chosen to satisfy the biorthogonality relations
(3.29) and (3.30). Thus, making the change of integration
variables h! — (h’('e>, h{y)) we have for the same integral

/ Dh &"'Ful’ 564 hT)

%hie Elhje a
= det[e{i 92] / Dl’l(e)Dh<9)€ () ()5(h(0))

= det[e{i 6{1] (det Fij)_l/z, (48)

whence the comparison of these two expressions gives

det FU = det F[J det @ah (det[e,li 92})2 (49)
For ultralocal restriction constraint (3.2) the reparamet-
rization (4.7) is also ultralocal in spacetime, e’;, 6%, ¢,
0! ~ 5(x,y), and the last squared determinant here con-
tributes to the effective action §(0) terms. Repeating the
derivation procedure of Eqs. (4.7)—(4.9) with F; replaced
by some ultralocal symmetric matrix G;; proportional to
undifferentiated delta function of spacetime coordinates—
the metric on the configuration space of ¢/,
Gy~ d(xp, x;), (4.10)

one finds the expression for Jacobian [¢/; 6}] in the right-
hand side of (4.9) in terms of the corresponding functional
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determinants of this metric, its inverse G = (G,;)~!, the
induced metric G;; of the reduced ¢'-space and the metric
G, in the §“-directions (see footnote 8)

Gl] = e{iGIJe{j, GU = (Gji)_l,
G =69G"0,,  Gu=(G)'. (4.11)
The square of this Jacobian therefore reads
det Gi'
(detle’; 01])% = detGI; detG,, ~exp(6(0)(...)). (4.12)

Note that G is ultralocal (for ultralocal restrictions) in
contrast to the operator @ defined by Eq. (4.6).

Thus, this is an inessential normalization factor of the
generating functional or, if treated seriously, it can be
absorbed into the definition of the local path integral
measure provided one identifies the ultralocal matrix G;

with the Hessian of the gauge-fixed reduced action Sg'[¢]

with respect to the configuration space velocities b’

/D¢ - /D¢ (detG;)"/2,
525rc%d 525/1f
Gij = 5¢1(3g¢] = 5('p15ibj e{ie{j = e{iGl‘]eG. (413)

Then det F;; in the one-loop expressions (2.47) or (2.52)
get replaced by

det F'; = det F'; det ©°, (4.14)

where raising the indices of operator forms F;; and Fy; is
done by the corresponding local metrics of Eq. (4.11) and
the second index in the operator of the last determinant is
analogously lowered by the “induced” metric G, along
normal directions,

FIJ = GIKFKJ, @ab = @aCGCb.

Fl = G, (4.15)

Replacement of F;; by (4.14) in (2.47) finally gives the
one-loop generating functional of a restricted gauge theory
fully in terms of the parental theory structures

9Here, of course, the functional dependence of the redu-
ced and parental actions on velocities is mediated by their

gauge-fixed Lagrangians, i.e., Sy’ = [dr Li(¢, $) and S =
Jdt Léf((p, ¢). The gauge-fixed action is just the corresponding
classical action with added gauge breaking term. Also remember
that we consider relativistic gauges, so that the “kinetic” metric
(4.13) in reduced theory is nondegenerate. Extending e}'G,-jeﬂ
with linear combinations b;,0% + 69b,, one acquires the non-

degenerate metric Gy;.

Zl—loop _ det pub
restricted (det }{a/f) 1/2(det Kab) 12
det F

. 4.16
x (det F',)1/2(det @%)1/2 det F*, (4.16)

Here the gauge-fixed ghost operator F % is, of course, given
by the unreduced theory version of (2.49) with the
projected generators Rl = 7A2}’,T7}( 0, k) (3.20),

F = X4Ry T — 6%p~ ). (4.17)

Note that despite ultralocal reparametrization (4.7) the
transition to parental theory representation leads to the
additional nontrivial factor—the determinant of (4.6).
The complexity of this factor follows from the fact that
this is no longer a determinant of the local differential
operator. Rather, this is the determinant of a nonlocal
object ®9—the Green’s function of the local operator
F; sandwiched between two normal covariant vectors 69

and 6%,

1. Ambiguity in the choice of generator bases

The BV generating functional (2.10) is not invariant
under the change of generator bases of R’ and 2% as
obvious from one-loop expressions (2.47) or (4.16). When
linearly transformed with respect to their gauge index o
gauge generators 7% still remain the generators of gauge
transformations of the parental theory. A unique represen-
tations of R/, is not a priori fixed in Lagrangian theory. The
linear transformations of Z¢ with respect to its reducibility
index b are also not fixed and this ambiguity reveals itself in
the arbitrary matrix u9 (3.27)

25 = k%u4,. (4.18)
Ambiguity of the linear reparametrizations of generators
results in “normalizing” factors in the generating functional
and is the well-known feature of the BV formalism which
will be addressed later in this section.

Another ambiguity is the choice of a projector parameter
k% which implicitly enters restricted theory gauge gener-
ators R. (3.20) via projectors (3.22) and reducibility
generators Z§ o k%,. The only restriction on the choice
of k% is that it should satisfy the rank conditions (3.23).
Otherwise it is arbitrary, and this arbitrariness may extend
to the effective action (4.16). The problem of potential
dependence of the latter on k% is a specific issue of
reducible gauge structure approach to restricted theory
and it should be fixed independently of the generators
normalization issue. Below we show that the requirement
of independence of the generating functional (4.16) on the
choice of k% may be satisfied by a special choice of the
factor u“, in (4.18).
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B. Independence of projector parameter

The variational equation

detF“
—5,'71oP — 5, In——F
det F%,

= Flox! 5 RL — (w2) ' 0ty 6,20 =0

p
(4.19)

can be transformed by using the relation &,R.=
Ry T(Q.k) =R55,Ta(Q.k) (note that §,T5(Q.k) T}
(Q,k)), the analog of the Ward identity (2.60) and the
identity (2.56), so that

F1(XTRy) = F7'4(Fly + o'ap™ Yay)

= 6%~ 2% (02) (4.20)

b
@’
For the first term in the right-hand side of (4.19) this gives

Floxh §RL = (02) 790" Th(0. k) 8,2° (4.21)

where we used the fact that 5, 7% = 6,(6% — 6%) = 0 and
5, Th2% = —T%, 5,22 inview of T%,(Q, k) 2%, = 0. Thus,
Eq. (4.19) takes the form

(@02)™1 40" (Tha(Q. k) — &) 6,25,

= (02)71% (k)" (Qk) 7€, Q% 6 2% = 0. (4.22)
With the expression (4.18) this equation reads in condensed
matrix notations

tr(p~' S + (Qk)~16,(Qk))

= & In(detpdet(Qk)) =0 (4.23)
where tr denotes the trace over indices of the matrices
u = p and (Qk) = (Qk)% . Without loss of generahty this
equation can be solved by u% = (Qk)~'%, so that finally
kaa(Qk)—la

2% = (4.24)

C. Canonical normalization of generators

Specification of the gauge generators basis 7% is a more
complicated issue. However, we will give brief and,
perhaps, not so exhaustive arguments in favor of a concrete
choice which, in particular, will confirm the form (4.24) of
2% . Conventional Lagrangian quantization in the form of
the Faddeev-Popov integral (or the BV integral in more
complicated models with open and reducible algebras) is
not intrinsically closed. It does not provide uniquely the
concrete form of the local measure and does not resolve the
associated problem of the choice of the generators bases.

In order to fix them one should appeal to the canonical form
of the path integral which for a general class of relativistic
gauge conditions comprises the BFV formalism. For simple
gauge systems10 fixing the measure and the basis of
generators looks as follows.

The starting point is the canonical formalism of the
gauge theory whose canonical action S.,, = [dt (pg—
H — v%y,,) explicitly contains first-class constraints y, dual
to the Lagrange multipliers v* which are a part of the
Lagrangian configuration space of the theory ¢! = (g, v).
This action is invariant with respect to gauge trans-
formations which are canonical (ultralocal in time and
generated by Poisson brackets with constraints) in the
sector of phase space variables 5 (g, p) = {(q, ). 74 }¢%
but contain the first-order time derivative of the gauge
transformation parameter in the sector of Lagrange multi-
pliers, 85v% = &% + - - .. Here dots denote ultralocal in time
terms containing structure functions of the Poisson bracket
algebra of first-class constraints and the Hamiltonian H,
their explicit form being unimportant for us in what
follows. The corresponding canonical path integral in the
class of canonical gauges y* = y*(q, p) reads as

7 = /DquDv e"Sca"["*"’”]HzS(;(“) det{y*, 75}
t

- / DgDp & L 1P 6()58(r,) det{z”. 7).
1
(4.25)

and it is obviously invariant under the linear changes of the
basis of constraints, y, — 7, = yﬂQﬂ «» With any ultralocal

in time and nondegenerate matrix Qﬁa. Subsequent inte-
gration over momenta p converts this integral into the
Lagrangian form which, modulo corrections associated
with the transition to the Lagrangian expressions for
momenta, takes the form of the Faddeev-Popov integral

Z= / D ulp) det Q% 5(x)eS! (4.26)

Here the local measure u[g] ~ exp[6(0)(...)] absorbs ultra-
local in time factors associated with the above corrections,
and the Faddeev-Popov operator Q° is built in terms of the

gauge generators Ré—the Lagrangian version of the above

"The simplification used here is that the Lagrangian gauge
theory (which later will be the parental gauge system) admits the
so-called one-step Hamiltonization. That is, when performing the
Legendre transform only with respect to the fields with velocities
in the Lagrangian action, one obtains the constrained canonical
action having only first-class constraints, and Dirac consistency
equations for these “primary” constraints do not generate new
“secondary” constraints. This is the case of Einstein general
relativity, Yang-Mills theory, and many others.
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transformations in the canonical formalism, &¢! =
RiE" & 8(q.v),

% :)(”’,R/I, (4.27)
Starting from the BFV canonical quantization“ one can
arrive at the same expression for this wider class of gauge
conditions [26,31] including relativistic (or “dynamical’)
gauges so that gauges y“ involve linear dependence on the
time derivatives of Lagrange multipliers v*.

The integral (4.26) is not explicitly invariant under
the rotation of the generator basis, R, — R/l = R;),Qﬁ >
but implicitly the choice of this basis is fixed by the
requirement that it should match with the basis of canonical
gauge transformations 6°¢ = &°(g, v) implying that §*v* =
E 4 .. or R = 8%(d/dt) + .... The ambiguity of split-
ting the configuration space of gauge fields ¢’ ~ (g, v) into
canonical coordinates and Lagrange multipliers (which is
ultralocal in time) can only lead to some inessential local
matrix 4% in the last equation, 6%(d/dt) — u%(d/dt), and
some extra factor in the local measure u[p] ~ exp[5(0)(...)]
which is again unimportant in concrete applications. Thus,
the ambiguity in the choice of generator basis R;} coming
from the canonical formalism reduces to its rotation by
ultralocal in time matrices, which is equivalent to changing
the basis of first-class constraints in the canonical formal-
ism. This ambiguity is physically inessential, so that finally
the choice of generator basis is fixed by the requirement of
local coefficient of the first-order time derivative in the
gauge generators R..

Unfortunately, in the case of restricted gauge theories such
a line of reasoning does not work directly because the
reducible generators obtained by the projection procedure
may become nonlocal in time. Moreover, the restriction of
gauge theory generically leads to its canonical formalism
with a much more complicated structure involving many
generations of constraints. Therefore it is much harder to
implement with the same level of generality the above
scheme starting from the canonical quantization. For this
reason we will choose a somewhat different approach in
order to show that the equivalence to the canonical quanti-
zation fixes the basis of projected generators in restricted
gauge theory by the requirement that the local parental theory
generators /.. are canonically induced, that is they satisfy a
local normalization condition for their time derivative part.

Consider a parental gauge theory with the action S )
whose gauge generators 7@2 form a closed algebra and are

UThe Faddeev-Popov-type expression (4.26) is obtained by
neglecting ghost vertices which contribute to higher loops and are
irrelevant in the context of the present discussion. In the same
manner we neglect possible higher-order loop contributions to
the Lagrangian generating functional, which appear when the
classical relation between momenta and velocities acquire ghost
corrections.

irreducible, so that its generating functional is given by a
standard Faddeev-Popov path integral. This integral can be
represented on shell (with switched off sources) in three
equivalent forms differing by the choice of gauge-fixing
integration measure,

delta lS
/ Do M5 etSlvl =

/D(p M((l;lta) 1S[(p]‘

z parental =

(4.28)

The measure factors M‘é‘:ﬁm and M (vx) Tespectively corre-

spond to the delta-function-type and Gaussian-type gauge
fixing with the full set of gauge conditions y“, the latter
involving the exponentiated gauge-breaking term with an
invertible gauge-fixing matrix s

M = det 0% 8(x*), (4.29)
M, = det 0% (detix,y)"/2e™3"w’’ | (4.30)
where Q“ﬂ is a standard Faddeev-Popov operator
)t = 1R, (431)
Obviously, M{5* = M, ) is a limit of M, at x,s — .

The third measure factor is less known and corresponds
to the situation when a part of gauge conditions y” are of
delta-function-type, whereas the rest of them are enforced
via the gauge breaking term with the projector Il

_ det 0% (det )/

A _ia B
M((i;lfif’) o (dethq)l/Z i M 5ol ™). (4.32)
Here
6Py = yP (4.33)

is a subset of gauge conditions obtained by projecting the
full subset y* with the aid of a vielbein 6%, = kPigl 4% pa

which is dual to the set oy introduced above in the

formalism of reducible gauge generators,12

"The proof of the last equality in (4.28) can be done by
complementing the bases of of with the remaining vielbein
vectors of, which are orthogonal to o in the metric Haps
oa}fa/,aﬁ =0 and, therefore, satisfy the determinant relation
det([0% of])(detx,5)"/? = (detk,, detkyy)'/?, where «,, =
6‘,",%0,/,05 and Ky :(;M}{aﬁd,i, are respectively the metrics
on subspaces spanned by of and of;. Then the full delta func-
tion of gauge conditions can be decomposed as &(y%) =
S(xP)8(x™)(detix,p)'/?/ (detk,, detkyy)'/?  and  the factor
(M) (detKMN)l/ 2 here, accordmg to ’t Hooft trick, being
replaced by exp(—4yMiyny") = exp(— 2;("1'[,,(1,;(ﬁ')—the 1mple-
mentation of the second equality of (4.28) in the sector of y¥
gauges.
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P _ —
oy = 6% —T1%,  TI% = X1,

(4.34)

On the other hand, inclusion of delta function of the
subset of gauge conditions (or partial gauge fixing) can be
interpreted as quantization of the restricted gauge theory
with partial gauge-fixing conditions y? playing the role of
restriction constraints 7. According to our derivation
above, this restricted gauge theory has reducible gauge

generators R/ = ﬁngﬂa(Q,k) built with the aid of the
operator Q% = ;(’}7@5 and some set of vectors k%, so that

its path integral over reduced configuration space of ¢’
should read

Zpartial of = /D¢ Mg((,il,ﬂ.(u.k,/))eisrﬂd[(ﬁ]ﬂ (435)

where $7¢4[¢] = S[¢] ,»—o and the gauge-fixing integration
measure according to the reducible gauge theory algorithm
(2.47) looks like (we distinguish the partial gauge fixing
case from the restricted theory case by replacing the indices
a, b, ... with the indices p, ¢, ... from the second part of
Latin alphabet)13

o ~ det Fédetp’y (detix,;)'/?

e /My’ | (4.36)

wxookp) — detF%,  (det Kpg) 2
F = QAayTyﬂ(Q, k) — aapp_lpqwqﬂ, (4.37)
Fly = (wZ)fy = (wk)"(Qk)7'7,, (4.38)
0=0%=dy0 (4.39)

Here Q7, is in fact a projected (from the left) Faddeev-
Popov operator O’ of the parental theory, Tyﬂ(Q, k)—the
corresponding projector (3.22) with kernels Q, and k%,
F?% is the gauge-fixed ghost operator, F’, is the ghosts-for-
ghosts operator and first-stage reducibility generators Z%,
are normalized according to (4.24).

Remarkable property proven in Appendix C is the

determinant relation which is valid for operators defined
by Eqgs. (4.31) and (4.38),

det F*; det p'y

det Ao
etQ det F,

(4.40)

It allows one to express the combined measure (4.32) in
terms of the restricted theory measure

“The reason for that which will be clarified below is that the
set of restriction conditions §¢ generically contains a gauge-fixing
subset, which will be labeled by indices p,gq,... of range
my —m,, and the remaining conditions of range m, which
restrict gauge invariants of the parental theory.

M((i;}stﬁ) = M@?X,a,m,k,p)é(apaxa)’ (441)
whence one has
Zpartial gf = / D¢ M((i;,lﬁo)eiska] = Zparentals (4.42)

where the last equality follows from (4.28). This relation
shows that the restricted theory with full-rank operator Q7,
is nothing but a partial gauge fixing concept—the parental
and restricted theories which are physically equivalent at
the classical level remain equivalent at the quantum level.

The BFV canonical prescription of normalization for
gauge generators in the Lagrangian BV approach for the
parental theory with the irreducible gauge structure thus
imply that correctly normalized reducible “projected”

gauge generators R/, = 7@;;Tﬁ «(Q, k) of the restricted (here,
partially gauge-fixed) formalism just should be constructed
by projecting canonically normalized parental gauge gen-
erators 7@;3 Note that this result also confirms the normali-
zation (4.24) of reducibility generators derived above from
another (projector parameter independence) principle.

Let us go over from the case of partial gauge fixing to
generic restricted theory physically inequivalent to the
parental one. Its path integral in reduced space representa-
tion is given by the analog of Eq. (4.35) with the set of
restriction conditions #¢ instead of y”, whose operator Q¢,
is rank deficient, rank Q%, = m; — m, < rangea = m,,

Fresiced = / b¢ Mr(j:((,ix,a,w,k,p)ei 57t [g]

= / Do M, 800 (4.43)
The transition to integration over the parental theory
configuration space, D¢ (detG;;)"/? =Dy (detG;)"/? x
(detG*)'/25(0%), is written here modulo local measure
factors which we will disregard in what follows. The set of
functions 0 according to the rank of Q¢ can be split into
the set of gauge-invariant functions 64, range A = m,, and
the set 67, range p = m; — m,, cf. Egs. (3.12) and (3.13),
0 — (64,07) so that

5(04) = 5(01)5(07)Y, (4.44)
where Y = detd(6”,07)/00". The functions 6”7 enumer-
ated by letters from the second part of Latin alphabet play
here the role conditions of partial gauge fixing, y” = 67,
while the invariants @4, which are forced to vanish in the
path integral, are responsible for inequivalence of the
restricted and parental theories.

Now, let us choose in the measure M@dx.gw k) the full

set of gauge conditions

X" =0y + o (4.45)
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with y? identified with 67, y? = 0P, range p = m; — m,
[cf. the footnote 12 and Eq. (4.33) which applies here in
view of orthogonality ¢%,6%, = 0]. Let the rest of gauge
conditions y¥, range M = my, — m, + m,, form any com-
plementary set of gauges such that the total Faddeev-Popov
operator | 1;5 Q"g] is nondegenerate. Then, substituting the
above relation (4.44) in (4.43) and using the relation (4.41)
between the measures one has

Zresricted = /D(O M%?}?G) Yﬁ(GA)eiS[(l’]

= / Do M{*Y5(04)e! 517, (4.46)
Here, the last equality follows from the equality of
measures Eq. (4.28) and the fact that
det[Q"; Q%15(r")6(x) = det 0% 6(x*) = M (4.47)
in view of invariance of the Faddeev-Popov delta-function-
type measure with respect to linear transformations of the
basis of gauge conditions.

Equation (4.46) allows us to make the needed statement;
as long as the quantum measure M ‘&;ta can be derived from

the canonical quantization with canonically normalized

local generators %%, then the same choice of parental

theory generators should be used in the construction of
restricted theory.

Note that the last expression for Z .q.eq can be alter-
natively represented by expressing in terms of original
special gauge conditions 67 and ¥ and then using (4.44).
This allows us to get rid of a potentially nonlocal factor Y
and obtain the representation directly in terms of the
restriction functions 6 and the complementary subset of
gauge conditions,

Zrsseed = / D det{Q”, QYI6(,)5(6°) ¢S, (4.48)

It should be emphasized again that here the Faddeev-Popov
operator [Q'; 0] is built with respect to partial gauge
fixing subset of 8¢ and any complementary to it set of
gauge conditions ™. This recipe may be less suitable
in concrete applications, because explicit disentangling
the subset 6”7 from 6 may be involved, so the original
form (4.43) should be more useful, and it was explicitly
used above for the derivation of the one-loop generating
functional (4.16).

D. The difference between parental and restricted
theories in the one-loop approximation

For a class of theories with the Jacobian Y independent
of integration fields in (4.46) one can write down the
representation for Z,..giceq and its one-loop order (such

irrelevant Y will be omitted in the subsequent expressions
in this section). In view of gauge invariance of #* Eq. (4.46)
implies on shell the usual Faddeev-Popov integral with s~
fixed gauge and with the gauge-invariant insertion of 5(6*)

Z estricted = /D(p M()(,k)é(aA)eis‘[[p]y (449)

which in the one-loop order by the mechanism of the
identical transformation of Eq. (4.5) goes over to a simple
relation between the generating functionals of the restricted
and parental theories

I-loop __ 4Sl-loop AB\—1/2
Zrestricted =Z (det@ ) ’

(4.50)

where Z'71°°P is obviously the one-loop generating func-
tional of the parental theory given in terms of its (hatted)
gauge and ghost inverse propagators

1-toop _ det 0y (4.51)
(det}{aﬂ>1/2(detF”>l/2 ’
F[] = §,11 —)(fll}faﬁ)(% - j’Aef}J’ (4.52)
and
O =AF 6B, (4.53)

The operator (4.53) is analogous to (4.6), but it is acting
in the space of indices A which enumerate gauge-invariant
functions ¢ disentangled from the full set of #¢. Note that
it is defined in terms of the Green’s function of the gauge-
fixed operator £, of the parental theory with a source A,
(at gauge-invariant observable #4). The presence of such
source term in parental theory may be interpreted as going
off shell and performing one-loop calculations on the
family of backgrounds S‘J = lAQf}, which [together with
0" (¢') = 0 conditions] specify saddle points of (4.49).
This is in accordance with the fact that solutions of these
background equations cover all possible backgrounds of
the restricted theory. To compare Z\ 0%  and Z'7°°P in
(4.50) these objects of course should be calculated on the
same backgrounds.14

Another important observation confirming the consis-
tency of the relation (4.50) is that the additional factor
depending on the matrix ®? and this matrix itself are
independent on shell of the choice of gauge, &, ,,@"# =0,

14According to rather generic assumptions on restriction
conditions 8 = 0 (see discussion in Sec. IIl A) the Lagrange
multipliers A%, and thus A4, are expressible in terms of the
background fields. In direct analogy with (3.17) here 14 (¢) =
S /(@)% () for 0! (p) being dual to 64.
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which can be checked by using the Ward identities for
E~1 derived above.

Finally, let us note on practical aspects regarding the
structure of (4.53). Calculation of ®*8 based on nonlocal
F~'" may be technically inconvenient. The transition to
objects defined in terms of a local differential operator
F;; significantly simplifies calculations. When the dual
biorthogonal basis (ef,,6) satisfying 64el, =0 and
6,0 = &3, is “orthogonal” with respect to the operator
F;; inthe sense that !, F;,6") = 0, then itis easy to calculate
operator @, inverse to ©48: @8Oy, = 52. Under the
above assumptions the determinant (det ®24)~1/2 in (4.50)
can be replaced by (det®,z)'/>—the inverse operator
acquiring simple form in terms of local £, 7

Oy = 0, F,0%. (4.54)

V. UNIMODULAR GRAVITY THEORY

Application of the above formalism to unimodular
gravity theory is straightforward. Its parental theory is
Einstein general relativity with the action—the functional
of the metric field
I (uv,x),

(5.1)

@' = g (x),

$l] v Selg] = / g 2 (R(g, (1), (52)

where g(x) = —detg,, (x) and R(g,(x)) is the scalar
curvature of this metric (for brevity we work in units with
162G = 1). The arrow signs () signify in what follows
the realization of condensed notations of previous sections
in this concrete field model.

Einstein theory is invariant under local gauge trans-
formations §z¢ = RLE*—metric diffeomorphisms gener-
ated by the vector field £%, which read in explicit notations
8egu = V&, + V.6, &% = &%(x) = g™&,(x), so that the
gauge generators X% have the form

R 20a,V0)0(x.y). T (ur.x),  a— (a.y).
(5.3)

By default, derivatives act to the right on the first
spacetime-point argument of delta functions.

Unimodular restriction of the theory (5.2) consists
in the restriction to the subspace of metrics g,,(x) =
Gu(x)/g"*(x) with a unit determinant, g(x)=
—detg,, (x) = 1. We will not introduce a special notation
for nine independent variables per spacetime point playing
the role of ¢' but just formulate the restriction constraints

0 () as

04— 0 =0(x) = g'?(x) -1, ar x, (5.4)
o1
0 > 01 = S g2 g 5(x, y),
ar>x, I (uw,y), (5.5)

and the gauge-restriction operator (3.11) has the form

0% = Oy = 9'7V,8(x,y) = 9,(9'*(x)8(x.y)).  (5.6)
where V,, is a covariant derivative with Christoffel con-
nection, here acting on a vector field.

Counterpart of restricted theory (3.4)—the Lagrange
multiplier action of unimodular gravity, and its metric
equations of motion read

Sh[gued] = / ' (9 2R(g,) — (g2~ 1)), (5.7)

5%

—E 5.8
50 (5.8)

1 1
— g2 R — R L Z ) | =
g < zg/‘ +2/19”) 0

The latter resembles Einstein equations with the term
mimicking cosmological constant; the Lagrange multiplier
A(x) on shell is indeed constant because according to (3.10)
its nonzero part is a spacetime constant zero mode of the
gauge-restriction operator (5.6),

105 =0 [ dix)Qs, = =g V,A0) = 0. (59)
where the covariant derivative is acting on scalar. This
result is obviously equivalent to contracting (5.8) with
covariant derivative and using contracted Bianchi identity
for the Einstein tensor. On the other hand, tracing this
equation one finds A = R/2, and the set of ten metric
equations becomes linearly dependent which corresponds
to Egs. (3.16) and (3.17) of the general formalism of
restricted gauge theories,
1

RM — Zg’”’R =0, V,R=0. (5.10)
The vacuum solution of these equations is a generic
Einstein space metric g,,, R,, = Ag,,, A = 1/2 = const
with a unit determinant g = —detg,, = 1.

Thus, the left kernel of the operator Q¢ of dimensionality
my, =1 spanned by the zero mode Y4+>Y, =1,
range A = m, = 1, is what physically distinguishes unim-
odular gravity theory from Einstein (or Einstein-Hilbert
theory with a cosmological constant term) because it allows
one to prescribe any constant value of A from the initial
conditions rather than postulate it as a fundamental constant
in the Lagrangian of the theory. The relevant gauge-invariant
physical degree of freedom constrained by the unimodular
restriction according to Eqgs. (3.13) and (3.14) above,
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9A:Y’29“=0I—>é=/d4x (02(x) =1) =0, (5.11)

is the full spacetime volume [ d*x ¢'/?|,_, = [ d*x which,
of course, a priori is not completely specified in Einstein
gravity.

The construction of projectors (3.22) with the aid of the
matrix k%, satisfying the rank restriction conditions (3.23)
suggests the following obvious choice:

kG = k5 = V8(x, y) = ¢ 9p8(x. y),

ar (a,x), am>y, (5.12)

(QK)%, = (QK)Y, = ¢g'?06(x,y) = 9,(9' > ¢ 9,5(x. ¥)),
(5.13)

ar—>x, by,
which also provides covariance with respect to spacetime
coordinate change. Here V* is the covariant derivative with
respect to the dynamical metric g,; and U is its covariant
d’Alembertian,

V¢ = gaﬁVﬁ, 0= gaﬁVQVﬁ, (514)
which act here on the scalars [we use the standard definition
of 8(x,y) as the symmetric kernel of the scalar identity
operator], though in what follows we reserve for them the
same notation when they will be acting on general tensors
and tensor densities. With such choice projector (3.22)
reads

T%(Q. k) = Ty = T%(V)s(x. y),

T4(V) = 8~ Ve LV, (5.15)
T%(V) is a projector on the subspace of spacetime trans-
verse vectors, and it is nonlocal because it is defined in
terms of the Green’s function of [ operator, which is
understood in the Moore-Penrose sense associated with the
rank deficiency of operators (5.6), (5.12), and (5.13)—the
number m, of their spacetime constant zero modes being
just 1.

A. Gauge fixing and propagators

Now we go over to the construction of auxiliary elements
of gauge-fixing procedure y*, x%, 6% w¢ and py- To
preserve covariance of the formalism we will use back-
ground covariant gauge conditions which for simplicity
will be linear in the dynamical (quantum) metric field
@' = g,. The coefficient of g, in x? that is y%, is
gu-independent but explicitly depends on the background
metric g,,—the one which on shell satisfies the equations
of motion (5.10) and is subject to unimodularity restriction
g = 1. Background covariance of such gauge conditions

implies that the choice of this coefficient should be such
that y* is covariant with respect to simultaneous diffeo-
morphisms of both g, and g,,. Usually as such a gauge one
uses the linearized de Donder or DeWitt gauge which is linear
in h,,(x) = g,(x) = g,(x)—the quantum fluctuation
of the metric on top of its background. The DeWitt gauge
is y* > y%(x) = g2 g (V¥hy, —Lg"'Vsh,,), where, as
well as below, the covariant derivatives V; and V¥ = gV,
are constructed in terms of the background metric. In the
unimodular case, however, the trace part g#*h,, of the metric
fluctuation is systematically projected out, so that it is worth
using a simpler gauge

X 2(x) = V2 VEhg(x)
= g'28" gV 5( g (x) — 8,0 (X))

For the same reasons of covariance the choice of gauge-
fixing matrices x%, 6%, % and P4 is also obvious. Just like
X7 above we will construct them in terms of the background
metric, part of them being directly related to the already
introduced quantities

(5.16)

1P s X Py — gl/Zga/}(s(x,y)’ (5]7)

0% > oy = —g'2gPVy(x,y) = —g"2g%oy(x, y)

= PR, (5.18)

o > @y = 8'2V,5(x, y) = 0,(8"28(x, y))
= Ouy =8’ (5.19)
P Py = 817 8(x, y), (5.20)

where in 6% covariant derivative acts on scalar, whereas in
*, covariant derivative acts on vector (forming a covariant
divergence).

As the on-shell results do not depend on the choice of
these quantities, they could have been chosen in terms of
the quantum field g,,, but this would have lead to the origin
of extra terms involving functional derivatives }{?}ﬂ, 04 1» €LC.
Avoiding such terms essentially simplifies calculations and,
particular, allows one to avoid explicit use of the extraghost

C'® entering (2.21), because in view of (2.22)

It should be emphasized that, as long as we restrict
ourselves with the one-loop approximation, after all needed
functional derivatives have been taken everything gets
computed at the background, so that the distinction
between g, and g, disappears. For this reason we will
basically write all the formalism below in terms of the
metric g,, with the understanding that it should be
restricted to the on-shell unimodular background g,,
satisfying (5.10).
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Objects dual to those defined above, or raising and
lowering condensed indices I+ (uv,x), at> (a,x),
a — x, can be attained by introducing a local configuration
space metric G;; and a similar metric in the space of
gauge indices. In Finstein theory a natural choice is
the DeWitt metric of the kinetic term of the action,
Gy > Gy =392 (ggP — 39 g)5(x. ). In the
unimodular context, again due to projecting out the trace
part of metric fluctuations, it is more useful to choose

Gy > GHAaPy = %gl/zgﬂ(“gm%(x,y). (5.22)
As regards the sector of gauge and reducibility indices, the
role of the relevant metrics can be played respectively by
%45 and k4, introduced in Sec. I1. (Let us remind that by x4
we denote the inverse to »”%, and by x?“—the inverse
to Kah')

The gauge-fixing choice (5.17) and (5.18) leads to
operator (2.40) and dual operators (4.34)

Kap = 05 ap0ly > Koy = —g?08(x,y).  (5.23)

1

Gaa = Kabdﬂb}{/"a = 62,}’ = _Eg_l/zvaé(x’ y)’ (524)

which define the projector form (2.43)
Mop = 245 — }(a},ayaaaﬁ —
1
Ha,x By — (g_l/2 ga/i - vaig_l/zvﬁ)é(xﬂy)' (525)

Partial derivatives acting on delta functions in the latter two
equations are covariant derivatives since they finally act on
vector densities (forming a covariant divergence).

With the above objects the construction of the metric
and ghost fields inverse propagators (4.4) and (4.17) is
straightforward,

Fiy— Fﬂwﬂ(V)é(x,y),

1
F/wa/f(V) - Eg1/2 <gﬂ(agﬁ)vg 4 2 RH(avp)

1
— V) —y(ayh)
2VHV DV \Y% )

+ L g (guvays 4+ grgey)

2
_%gl/Zgﬂvgaﬁ(D +211R)’ (5.26)
Fj— Fg(V)é(x,y),
Fy(V) = g'? <D + %R) 85— % g1/2Rvaévﬁ, (5.27)
F8 =58+ F5 =5(x,y). (5.28)

In the derivation of these expressions we used back-
ground equations of motion (5.10), so these are essentially
on-shell objects. In particular, applications beyond one-
loop approximation would generate extra terms because
of the necessity to distinguish background and quantum
fields. The choice of the gauge-fixing matrix p9 in (5.20)
allows one to avoid extra term V*Vy in the local part of the
vector operator F§(V). Finally, simplification of the ghosts-

for-ghosts operator Fj is due to correct normalization of
reducibility generators (4.24) and a special choice (5.19)
of wf = 0%

Note that the operators acquired nonlocal parts containing
inverse (scalar) d’ Alembertians. They were generated due to
nonlocal projectors in the gauge-breaking term and in the
projected gauge generators. Moreover, even in the local part
of the tensor operator covariant derivatives do not form
overall d’ Alembertian, and their indices get contracted with
the indices of test functions on which the operator is acting.
This situation is very different from the Einstein theory case
for which DeWitt gauge conditions guarantee minimal nature
of the operator of field disturbances which is an important
property admitting direct use of the heat kernel method for
the calculation of the effective action.

The local part of (5.26) can, however, be simplified. Its
functional determinant enters the one-loop partition func-
tion via the combination (4.9), det F;; det®“*, or (4.14),
where @ is defined in terms of F;, by Eq. (4.6). It is easy
to check that this combination is invariant under the change
of the operator F;; of the form

OF; = 59(1(197,)7 (5.29)
because
Sln(det Fp; det©®) = 6Q,,04F '
—04F Q. 0% F'KL0h 0,0 =0, (5.30)

since 0% F~'XL9", = @¢". Therefore, we can omit in (5.26)
the terms which are proportional to 6 ~ ¢** and 07 ~ [
and replace this operator by

- 1
Fﬂbaﬁ(V) - 591/2 (Qu(agﬁ)vg + 2 RHavp)

1
—2Viwy) ﬁvwvm) , (5.31)
accordingly taking the operator 0% induced by
FTH = F o (V)5(x. ),
O = 1 F 1o, > O = O(V)d(x.y).  (5.32)
~ 1 -
B(V) =392 il , (VP92 (533)

Still, all the vector (5.27), tensor (5.31), and scalar (5.33)
operators remain nonlocal, and their remains a problem of
reducing their determinants to some calculable form.
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B. Reduction of functional determinants

Reduction of the above determinants can be done
by the decomposition of the space of tensor and vector
fields into irreducible transverse and traceless components.
However, this decomposition in concrete applications can
be useful only when the underlying metric background is
homogeneous and the bases of irreducible scalar, transverse
vector, and tensor harmonics with their explicit spectra
are known. If one wants to work on generic backgrounds
and use such general methods as heat kernel method or
Schwinger-DeWitt technique of curvature expansion [24],
then the above operators should be transformed to the form
of differential or pseudodifferential operators with simple
principal symbols, preferably local and minimal ones that are
constructed of covariant derivatives which form powers of
covariant d’Alembertians. This is especially important for
the operator (5.33) having essentially nonlocal structure with
the Green’s function of another nonlocal operator.

In order to reduce the calculation of the determinant of
P (V) to that of the minimal operator let us include it
into the one-parameter family

~ 1
Frel(a|V) = 5g'2 <gﬂ(agﬂ)vD + 2 Rulawp)

—2aV#VY) év«m) , (5.34)

interpolating between F#*%(1|V) = F#* (V) and the
local minimal operator F**%(0|V) = A (V),
1
Ay = GA = A (V) = Egl/zg”yg"‘sAyaaﬂ(v),
A, (V) =06,% + 2R, P (5.35)

Differentiation of the family of their determinants gives
iTr In F* % (a|V)
da

— Tr (91/2v<aw>év<ﬂvv>ﬁ;;y5(a|V)), (5.36)

where the double derivative of the inverse operator
F;l}yé(aW) can be obtained by the following sequence
of transformations. When applied to F**(a|V) this

double derivative reads as a local expression

V,V, b (q|V) = % ¢'2(2(1 =2a)0 + (1 — a)R)V(@VP),
(5.37)

where we used the fact that VMR”“”/’ =0 on Einstein
background. Functionally contracting this relation with
the inverse of F#*%(a|V) on the right and with the inverse

of the scalar operator g'/?(2(1 — 2a)(J + (1 — a)R) on the
left, we obtain

2

ap -1 _ ~1/2

VeV Faﬂ/w(a|v) (D n %) _ 2a(|:| n %) g V(”VD),
(5.38)

whence

y 0@+
V"VﬂF;1 (a|V)VEVY =2 4 g2,
& (O+5 -240O+%)

(5.39)

where we took into account that on Einstein manifold
V,V,V#V¥ = 0O(0 + &) when this operator is acting on a
scalar. Substituting this result in (5.36), using cyclic
permutation under the trace and integrating over a from
0 to 1 we have

i , O
Trin P (1|V) = Trin F**(0|V) + Tr' In =
O+%

(5.40)

Here Tt implies taking the functional trace of the operator
over the space of eigenmodes of the scalar operator []
excluding its constant zero mode. The explanation of this
important fact follows from the observation that the action of
the operator (5.39) on a covariantly constant mode obviously
gives zero in view of the positive power of [J in the
numerator. Therefore, even the multiplication by 1/ in
(5.36) does not make the contribution of this mode in the
functional trace nonzero; this is obviously consistent with
the Penrose-Moore prescription for the inverse of [ dis-
cussed above.

With the inclusion of the local measure factor (5.40) then
becomes

det F', > det F,, (V) = det A, (V) det’

O+%
(5.41)

where the prime in det’ obviously implies the same rule—
omission of the zero eigenvalue of [ in the definition of the
functional determinant—and this of course refers to both
the numerator and denominator of the operator valued
fraction under the sign of det’.

Similar steps for the vector operator (5.27) on the
Einstein metric background result in

i 1 O
det F3(V) = det([lé“ﬂ + 4R6"ﬁ> det’ FiE (5.42)

O+2

The reduction of the determinant of the scalar operator

O(V), which is defined by Eq. (5.33) and does not at all
have a local part, can also be done via the transformations
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of the above type. First of all consider the contraction
which localizes the operator F***(V),

Gu (V) = % g'? ( (D + %R) g7 - 2vavﬂ>. (5.43)

Contracting this relation with F; (V) and using

Eq. (5.38) with the parameter @ = 1 we get

2

a/}F—l V) =

aff pv

2
<gm, - Dvﬂvy> g%, (5.44)

so that the operator (5.33) and its determinant take the form

1

&(v) = Nt

det®(V)

, 5.45

Assembling together in the tilde version of (4.16) the
results (5.41), (5.42), and (5.45), trivial contribution of
detp = 1 and noting that detx,, = det'[J we finally get

loop _ det(016% + 5 6%) {det(D + §)} 1/2
UMG [det(Dém,”ﬁ + ZRﬂ<abﬁ))]1/2 det’(l:‘ _’_g) .
(5.46)
Note the origin of the nontrivial factor
det(00+%)71/2
—_— = (2A)'/2, 547
{det’(lﬂ + §)] (2A) (347)

which looks purely numerical, but in fact it is a function of
the dynamical global degree of freedom A belonging in
UMG to the full configuration space of the theory.

Modulo this extra factor, the result (5.46) exactly
coincides with the one-loop contribution of gravitons in
Einstein theory with the action

Salgwl = [ dx g PR=20)  (5.48)

and the on-shell value of the cosmological constant
A =R/4,

det(018% + § &%)
[det(05,,% + 2R, (@, )]/2

A

27 (A) =

(5.49)
RupzAgub

The on-shell inverse propagator of this model in the DeWitt
gauge,

A, (AV) = <D5ﬂyaﬂ +2R, @) 4+ 5°R) + 5 "Rl

- R/wgaﬂ - gﬂuRaﬁ + (2A - R)éﬂbaﬂ

1 »
+ 5 Rgm/g(
RubzAg;w

=05, + 2R, @7, (5.50)

equals the above minimal operator AW“/’ (V) and the
Faddeev-Popov ghost operator Q% = &% + R% also
coincides with the vector operator ([J + ;R)%. So if we
consider Einstein gravity with the cosmological constant as
a parental theory of unimodular gravity then the relation
(5.46) can be interpreted as Eq. (4.50) relating the gen-
erating functionals of the restricted theory and the parental
one with 2719\ ZI7°P(A) | provided we can prove
equality of factors (5.47) and (det®8)~'/2, This proof is
straightforward.

The only invariant 64 that can be built out of the
restriction function (5.4) and (5.5) by integrating it with
the constant zero mode of the gauge-restriction operator
is the following global quantity which reads along with
its 6] as

N — éE/d“)( 0(x) = /d4x (g"%(x) = 1), (5.51)

i} 1
0 = 0 (y) = Eg” 2g(y). (5.52)

In order to find its @45,
011> 0= [ diaaty B4 7L (Vo )PI)
(5.53)

we need the gauge field inverse propagator of the parental
theory—Einstein gravity with a cosmological constant,
which reads on shell as

Fiy = B (V)

R;w =Ag;u/

1
— Z91/2(29;4((1:9/})1/ _ gyugaﬁ)D

1
+ g'/? <R"(“”ﬁ) - gRgWgOf/’). (5.54)
This operator satisfies an obvious relation
[y af 1 1/2 1 aff
Gt (V) = =590+ 5R g7, (5.55)
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which allows one to find the following contraction of the
Green’s function kernel with metric tensors

8(x,y)g7 2 (y),

(5.56)

9V E) 5 (V)8(x. y) g™ (y) =

O+3R

I
2
whence the needed factor (5.53) equals

_ 1 1
0= —2/d4x g'%(x) IR 1= —K/d‘*x g'"2(x).

(5.57)

where the last equality follows from the uniformity of
R =4A in spacetime. Of course on shell, g, = g,
we have ¢!/ =1, so the square root of the metric
determinant is retained entirely for the sake of manifest
covariance, and in this way it represents invariant volume
of spacetime. Thus,

AB\—1/2 S-1/2 A2

det®@*")~ 14 15 @714 = ,
e (& 97617
which up to a constant factor coincides with (5.47).15

For completeness we present here the same answer
rewritten in the basis of irreducible subspaces of tensor
and vector fields, which are defined via disentangling from
the full tensor field its tranverse-traceless 2" = AL}, trans-
versal vector hp = hg and two scalar parts [32],

(5.58)

1 1
h;w = l’l;,;r + 2V(”h;[;> + <Vﬂvy - ZgyuD> s+ _g/“/h’

4
Ve = ¢*h, =0, VFh, =0. (5.59)
Similarly for a vector such a decomposition reads
v, =vy+ Vo, Vil =0. (5.60)
Jacobians of transition h,, — (h"",h', s, k), v, -

(vj, v) in the functional integration over /,, and v, equal

D(h,)
D(K™, 1T, 5, h)

/ / R H R H 12
= [ det'J det D—f—g dety Dé,,—l—zé,, ,

(5.61)

D(v,)

— P = (det'd)'/2.
D(v",v) (det'D)

(5.62)

"When calculating determinants we omit irrelevant overall
numerical factors. Here in the determinant of a zero-dimensional
matrix we neglect the —1 factor.

Here det’ is a functional determinant of a scalar operator
with omitted zero mode of the [-operator [note that this is
the omission of the (constant) zero mode of [, but not
the zero mode of the operator whose determinant is being
taken].' Similarly dett denotes the determinant of the
vector operator taken on the space of transverse vector
functions. Quadratic forms with tensor field A*** (V) and
vector field (CJ 4 R/4)g,, kernels correspondingly read

/ d*x g% h,, AP (V) Ry

R\ 2
= / d'x g2 (h}} AP (V)R — R} <D + Z) s

3 R R 1 R
(5.63)
R
/d4x gl/zvﬂ (D +Z> !

:/d“x gl/z<v;(D +§)U’{—UD<D +§>v>. (5.64)

Taking the Gaussian integrals with these quadratic forms
and using the above Jacobians one can find the represen-
tation for the determinants of Eq. (5.46) in terms of their
irreducible counterparts—transverse-traceless tensor detpy
and transverse vector dety ones,

det(5,,” + 2R, 1)

R

R R
O+— O+ —
xdet( +2>det< +2>,

det(Dé"y + gaﬂy) — dety <D5"D + §5”D> det (D + §> ,

(5.66)

(5.65)

whence the partition function in Einstein theory with the
cosmological constant (5.49) reads

Zl—loop _ 1/2 det/(D + %) 172
E ) det(@d+%)]
(5.67)

detT(Dﬁﬂ,, + %g‘y)
detTT(Déﬂbaﬁ + 2Rﬂ<ayﬁ

In terms of these determinants on irreducible subspaces
of transverse-traceless modes it differs by extra factor from
the usually claimed form [33]. This factor originates on
account of a constant zero mode of a scalar d’ Alembertian.

"®The omission of these spacetime constant zero modes of []
takes place because they do not contribute to the left-hand sides
of Egs. (5.59) and (5.60).

065004-25



A.O. BARVINSKY and D. V. NESTEROV

PHYS. REV. D 108, 065004 (2023)

It should be emphasized that on homogeneous de Sitter or
anti—de Sitter background other vector and tensor operators
also have zero modes associated with Killing symmetries of
these backgrounds [33]. Here we disregard them because
we consider generic inhomogeneous Einstein metric space-
times for all of which this zero mode of [] always exists.

Thus, in terms of determinants on constrained (irreduc-
ible) fields the one-loop result for Einstein theory with the
cosmological constant differs from a conventional expres-
sion by the contribution of one constant eigenmode of
the operator [J 4 & Curiously, for unimodular gravity this
contribution in the same representation completely cancels
by additional factor in (5.46), and we have

dety (018, + %5,) 12
detrp(05,,% + 2R, 7))

1-loop __
UMG

(5.68)

This result coincides with the one claimed in [13,15]. It
manifestly exhibits the counting of local physical degrees
of freedom—>5 traceless-tensor modes minus 3 transverse
vector modes.

VI. CONCLUSION

To summarize our results, we worked out a full set of
gauge-fixing elements in generic gauge theory of the first-
stage reducibility and constructed a workable algorithm for
its one-loop effective action. We also derived the set of
tree-level Ward identities for gauge field, ghost and ghosts-
for-ghosts propagators, which allow one to prove on-shell
gauge independence of the effective action from the choice of
auxiliary elements of gauge-fixing procedure. We showed
that Lagrangian quantization of a restricted theory originat-
ing from its parental gauge theory can be performed within
the BV formalism for models with linearly-dependent gauge
generators of the first-stage reducibility. It turns out that new
physics contained in the restricted theory as compared to its
parental theory model is associated with the rank deficiency
of a special gauge-restriction operator reflecting the gauge
transformation properties of the restriction constraints func-
tions. The choice of first-stage reducibility generators, or zero
vectors of the projected gauge generators induced from the
parental theory, has a certain freedom limited only by a
special rank restriction condition, but the on-shell independ-
ence of physical results from this choice is provided by a
special normalization of these vectors.

These general results are applied to the quantization of
unimodular gravity theory. Its one-loop effective action,
initially obtained in terms of complicated nonlocal pseudo-
differential operators, is transformed to functional determi-
nants of minimal second-order differential operators
calculable on generic backgrounds by Schwinger-DeWitt
technique of local curvature expansion. This also confirms
the known representation of one-loop contribution in unim-
odular gravity theory in terms of functional determinants on

irreducible transverse and transverse traceless subspaces of
tensor, vector, and scalar modes. The one-loop order in
unimodular gravity turns out to be equivalent to that of
Einstein gravity theory with a cosmological term only up to a
special contribution of the global degree of freedom asso-
ciated with the variable value of the cosmological constant.

From the viewpoint of local phenomenology, the new
physics in unimodular gravity turns out to be of a somewhat
borderline nature. Classically it is manifested in the fact
that the cosmological constant in UMG becomes a part of
initial conditions rather than a fundamental constant in the
Lagrangian of the Einstein theory. At the one-loop level the
contribution of this extra global and spacetime constant
degree of freedom is very peculiar, and the way it shows up
depends on the representation of the theory. In fact we have
two somewhat complementary representations for both
theories; in terms of functional determinants of differential
operators on full field spaces or on spaces constrained by
irreducible representations. The one-loop Einstein gravity
in the full space representation (5.49) does not reveal the
contribution of this mode, whereas the constrained deter-
minants representation (5.67) makes it manifest. With two
representations for unimodular gravity (5.46) and (5.68)
this situation is reversed.

The manifestation of this contribution is the power-
like dependence on (5.57) in the partition function
~ [d*x g"/?/ A\ which becomes in the effective action a
logarithmic essentially nonlocal contribution. Off shell, that
is in transition to gradient expansion for nonconstant
curvature scalar, R — R(x), it may go over into the
structures like In [d*x g'/?(x)(1/R(x) + O(VR)). These
structures might be important in Euclidean quantum gravity
responsible for tunneling phenomena and gravitational
thermodynamics. In fact, thermodynamics reveals the
duality relation between Einstein theory and unimodular
gravity as the analogy of the Laplace transform relating the
statistical ensemble with fixed volume vs the fixed pressure
ensemble. Qualitatively, this can be shown as follows.

By identifying in (5.11) the coordinate 4-volume
[ d*x =V as the fixed argument of the generating func-
tional (4.49) we have the expression for this functional in
UMG theory (in Euclidean picture this is a partition
function at fixed volume V)

Zum(V) = /Dg,w Me_SE[gw]5</ d*x g'/* — V>,
(6.1)

where the measure M incorporates, just like in (4.49), the
full local gauge fixing of all four dimensional diffeo-
morphisms. Then, it is obvious that the Laplace transform
with respect to the volume variable converts the UMG
partition function Zyyg(V) to that of the Einstein theory
Zg(A) with a fixed value of A—the cosmological constant
dual to V,
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/00 dVe 6 Zyyg(V)
0

. A
= / Dg,, M CXP<—SE[9W} ~ %G / d*x gl/z)

= Zg(N), (6.2)

[here we reinsert the gravitational constant factor 1/16zG
and note the opposite sign of the Euclidean version of the
action (5.48)]. Of course, this derivation should be
regulated by specifying the boundary conditions which
fully determine a finite value of V (or its infinite limit)
and a finite value of the action, achieved by a subtraction
of proper surface terms. This can be done along the lines
of [11], but in the present form it already conveys the
essence of duality between Einstein theory and UMG
gravity.

It should be emphasized that throughout our deriva-
tions we used Moore-Penrose concept of inverting
operators with zero modes, which by and large corre-
sponds to the omission of the zero-mode subspace. This
makes all derivations, as discussed in Appendix A,
consistent, but apparently leaves room for nontrivial
effects of the above extra contributions based on a
careful treatment of boundary conditions. Despite the
fact that the functional determinants of the scalar
d’Alembertian in Egs. (5.61)—(5.67), which are vulner-
able to zero-mode treatment, completely cancel out, there
still may be a subtlety in their treatment and this might
amount to the extension of the BV method beyond first-
stage reducibility. Note that m,-dimensional zero-mode
subspace of gauge-restriction operator (3.11) is exactly
the playground for second-stage reducibility in the gen-
eral formalism. The smallness of the phase-space sector
of this mode in UMG, m, = 1, does not make it less
important and might be at the core of cosmological
constant problem. All this, however, goes beyond the
scope of this paper and remains a subject of further
research to be reported elsewhere.

Another direction of further research might be the
generalized unimodular gravity (GUMG) of [6,7], which
is interesting in view of its dark energy and inflation
theory implications. This model is more complicated than
UMG, it has more complicated canonical formalism
encumbered by the presence of second-class Dirac con-
straints and it strongly breaks diffeomorphism and
Lorentz symmetry because of replacement of the UMG
restriction condition detg,, = —1 by the Lorentz non-
invariant relation between the lapse function and spatial
metric. New physics in this model is associated with the
origin of the dark perfect fluid which might serve as a
source of dark energy or play the role of inflaton, i.e.
scalar graviton degree of freedom [8]. Covariant quan-
tization of this model along the lines of the BV method

applied to parental FEinstein gravity is also a good
nontrivial playground for our technique.
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APPENDIX A: MOORE-PENROSE INVERSE
AND VARIATION OF PROJECTORS

Gauge theory restriction implies introduction of the
transversal projector (3.22) which is defined by its left
kernel Q% —the gauge-restriction operator Q% = 97,7%.17
Peculiar feature of this operator is its rank deficiency. While
the range of index a labeling the restriction condition
functions 6“(p) is m, the rank of Q% is m; —m,. As
discussed in Sec. III it is physically important, for if Q%
were a full-rank matrix (m, = 0) then this would be just a
partial gauge fixing and the parental and restricted theories
would be physically equivalent. New physics comes when
m, > 0, which means that m, out of m,; restriction
conditions 6“(¢) = 0 annihilate several gauge-invariant
functions i.e., physical observables.

The right kernel k% of the projector (3.22) is a para-
meter of the particular projector family, which must satisfy

the rank condition rank (Qk)9, = rank Q% = rank kﬂb =

my —m, (3.23). Thus, a critically important feature of
the projector 7%(Q. k) (3.22),

T = 8% — k% (Qk) ™4, 0",

is that it includes the inverse of the degenerate operator
(Qk)“,. This inverse can be uniquely defined as Moore-
Penrose inverse [25], and a brief reminder on this con-
struction for the generalized inverse of generic matrices is
in order here.

All objects below are matrices in nature so for the sake of
readability we omit indices in most of equations implying
ordinary matrix multiplication. When introducing matrices
we explicitly correlate them with their counterparts in index
notation using symbol <.

For a generic m; x m; matrix M <> Mj which is
rank deficient with rank M = m; — m, the following pro-
perties unambiguously define Moore-Penrose inverse
M~ < M4 [25]:

"Remember that we consider the restriction conditions 6¢ =
irreducible and independent of equations of motion of the
parental theory S; = 0.
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2) MMM~ = M~
3) Py =MM~"' = P}

1) MM~'M =M
) M
) P
4) P,=M"'M =P}

(A1)

where Py <> P, and P, <> P,’, are Hermitian projectors
with idempotent properties P? = P, P5 = P,, and the
star denotes Hermitian conjugation of matrices.'® These
properties imply the equality of ranks, rank M~ =
rank M = rank P; = rank P,.

We introduce, for convenience, the complementary
projectors L; = I — Py, L, = I — P, where I is the identity
m; X m; matrix. The complete set of projector properties,
which could serve as their definitions, is

P\M =MP,=M, M'P,=P,M"'=M" (A2)
Similarly the action of complimentary projectors respec-
tively from the left and from the right on M and M~!
annihilate them,

LlM - ML2 - 0, M_lLl - 1121‘4_1 - 0 (AS)
Therefore, the rows of L; (reducibly) span left kernel of M
and its columns span right kernel of M~!, while L,
(reducibly) spans the right kernel of M and the left kernel
of M1,

With this definition of the inverse matrix for Mj =
(Qk)%, = Q%k% <> M = (Qk) the restricted theory
mgy X mg projector 7% < T (3.22) satisfies all needed
properties. In particular, its left kernel is spanned by the
gauge-restriction operator Q < Q% because QT = Q —
(Qk)(Qk)™'Q = L, 0 = 0. The latter equality is true since
matrices Q and M = (Qk) have the same ranks and the
same coranks with respect to the left index with range m,
and thus matrices Q and M share the same left kernel so
that L;Q = 0 in view of (A3). The right kernel of T is
spanned by k <> k¢ provided the rank restriction condition
(3.23) is satisfied. Th1s follows from the relation Tk = k —
k(Qk)™'(Qk) = kL, = 0 where k is annihilated by L,
from the right for the analogous reason as for the left kernel.

Such a definition is fully consistent until one has to vary
inverse matrices. When the variation of M changes its rank
the inverse matrix and projectors become discontinuous
and fail to be differentiable. As was shown in [34] the rank
preserving matrix variations SM which guarantee continu-
ity of the Moore-Penrose inverse matrix and its projectors
should satisfy the property

"®For real matrices the Hermitian conjugation is just a
transposition, and Hermitian projectors become orthonormal
projectors.

The variation of Eq. (2) in (Al) with respect to such 6M
gives

S(M™") = —M~'6SMM~" + §(M™")L, + L,6(M™"). (AS5)
The last two anomalous terms here are responsible
for the deviation from the usual variational equation for
the inverse of nondegenerate matrices. The first standard
term is in fact transverse because in view of (A2)
M='sMM~" = P,M~'6MM~'P,.

It is important that the anomaly terms in (A5) cancel
when the variation of the inverse matrix is performed inside
the contraction from the left and from the right, respec-
tively, with structures annihilated by projectors L, and L,
so that A = AP, and B = P B,

AS(M~")B = —AP,M~'\§MM~'P,B

= —-AM~'6SMM~'B. (A6)

In concrete applications generically one can not restrict
the variation of the rank-deficient matrix M to preserve its
rank. However, when the matrix M has a special internal
structure it may be a part of the solution circumventing
this difficulty. This is exactly the case of m; x m; rank-
deficient operator (Qk)% = Q%k%. The rank restriction
conditions (3.23), rank (Qk) = rank Q = rank k, provide
the rank preservation (A4) under arbitrary variations of k
and Q,

L6(Qk)Ly = L{6QkL, + L1Q6kL, =0, (A7)
where L, L, are the projectors onto left and right kernels of
the operator (Qk).

Since an arbitrary variation of the matrix (Qk)¢, satisfies
the rank preserving condition (A4) one can use Eq. (AS) for
the variation of its inverse. Moreover in the projector T
(3.22) the variation of (Qk)~! stands inside the structure
ks(Qk)™1Q < kﬁgé(Qk)*“;,Qhﬂ which, due to L;Q0 =0
and kL, = 0, guarantees the cancelation of the anomalous
terms in (A5) and implies (A6)

(0K)~'8(Qk)(0k)'0.  (A8)

kS(QK)™' Q4 = —k

This variational equation underlies the variation formula for
the projector T (3.22), which finally reads
ST = —Tsk(Qk)™'Q — k(Qk)~16QT. (A9)

It should be emphasized again that this relation crucially
relies on rank restriction conditions (3.23).
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APPENDIX B: GAUGE ALGEBRA
OF THE RESTRICTED THEORY
FROM A PARENTAL THEORY

The algebra (3.34) follows directly by substituting the
projected generators RL = QQT‘/’, (3.20) into their Lie
bracket,

RL R, —RE Ry = (R) /Rs — R Ry TLT,
+ (RIT, /RS % - ﬁng,,fz{ %),
(B1)

and noting that in view of the open algebra relations for R/,
the first group of terms here reads

(Ry RS — R R T4T% = RECTLT + ELSS T TS,
(B2)

The second group of terms in the right-hand side
of (B1) requires differentiation of the projector T7%
(3.22). This projector involves the procedure of inverting
the matrix (Qk)$ whose rank is lower than the range of
its indices and, therefore, requires the Moore-Penrose
construction of the generalized matrix inversion [25].
This, in turn, leads to subtleties of variational procedure
for (Qk)~'¢ discussed in Appendix A. As shown there,
the variational property of the projector is effectively
equivalent to the naive use of the variational rule
5(Qk)™! = —(Qk)~'6(Qk)(Qk)~!, provided the rank
restriction condition (3.23) holds, and it reads as (A9).
This can be directly applied to the second group of
terms in (B1) on using the symmetry 9{’1 , =0, the
algebra of parental theory generators and their corollary

b THRETY — (a < B) = 04 (RLCS,THTS + ENS , TLTS).
As a result

(R T4 R3TYy = ReT) Ry T%)

= —(RIT"KS ,(QK) ™' 4 QL RITY — (a <> )
— (RKa(Qk)™14.08 , TSRETS, — (a <> B))
= —RL.CST TS — RINY, + RINY,

— RLKG(QK) 1405 EXIS ) T, TS, (B3)

Here N Zﬂ is defined by Eq. (3.37) and L% is the longitudinal
projector complementary to transverse projector 7%,

Lj = 8% — T4 = k&,(0k) 4,05, (B4)

Therefore, summing the contributions (B2) and (B3) one
observes that their first terms form out of 7A2£ the projected
generator R/, so that we get

RLRE— Ry R = Rgé;éT’an; — RINW; + RN,

+ DREN'S T/, T3, (BS)
where D’ is defined by Eq. (3.38),
D =68y - ﬁikZ(Qk)"Z@f’K» (B6)

and we used the fact that R/ :RéTﬂe, kS :L‘;kg

and Q) = Q%L@. Here the last term is not explicitly
antisymmetric in indices / and J. However, due to the
property S, = §,D’, of the projector D/, it can equiv-
alently be rewritten in the antisymmetric form with
El, = DY D’ EX/T',T%. This finally leads to the algebra
(3.34) with structure functions (3.35)—(3.38).

The oblique projector D!, defined by (3.38) enters the
formalism when the parental algebra is open. Its left kernel
is spanned by (Qk)~'4 6" and the right kernel is spanned

by the set of longitudinal gauge vectors 7@{;/(‘%
D!, D% = Dl
5J
DRk, = 0.

(Qk)~'465D", =0,
(B7)

Moreover, this projector in the ¢'-space converts
the parental generator into the projected one in the
space of gauge indices, D’ﬂAEJ :ﬁiT?,zRﬁ, so that
0%,D', R}, = 0.

When rank 69 = rank Q% = m; then the second of
relations (B7) can be simplified to 6% D", = 0. For rank-
deficient Q¢,, when rank 69 = m; and rank Q¢ = m; —m,
the correct property is 65D" = (1 — (Qk)(Qk)™")%,04 =
L0, where L, is a projector on left zero vectors of Q4.
For this generic (physically interesting case) the rank
deficiency of D', equals the rank of gauge-restriction
operator (3.11), corank D!, = rank Q¢ = rank k5.

Note that the resulting open algebra of the restricted
theory (3.34) closes on shell of the parental theory S,I =0
rather than on its own shell S, — 2,09 =0. In view of
the above relations one has §,D%, = (S, —1,0%)D', +
A,L % 0%, so that the algebra (3.34) can be rewritten in
the form
Rl Ry =Ry Ry = RyCly + EZ;(S,J —240%)

+ E(Ixjﬁ/laLlabH{JJ’ (BS)

where the last term, unless it is zero, breaks its closure
on shell of the restricted theory. Note that 1,L % is the
part of the full set of Lagrange multipliers 1, which stay
unrestricted by the equation of motion (3.5) for Lagrange
multipliers.
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APPENDIX C: DETERMINANT RELATION

In this section we prove the determinant relation (4.40).
All involved quantities are matrix (two-index) structures
which allow us to omit indices implying standard matrix
multiplication. There are indices of two types; lower-
case Greek indices of some range m, and lowercase
Roman indices of the lower range m; < mo.19 Quadratic
mg X mq matrices are denoted by capital Roman letters
(e.g., T). The matrices mapping from m(-dimensional
space to a lower m;-dimensional space and back will be
either underlined or will respectively carry a line over them.
Thus, we have

Q< 0% Lo 8%

a < a‘, k < k%,
Ga < (Ga)}y=0ay,  oQk < (aQk)), = GaaQaﬂk/Z’
ak < (ak), = a%ke, (1)

a = a
O <> 0y, O <> 0y,

Note that the matrix Q here is a quadratic m, x m, matrix
and in Sec. IV C it stands for the complete Faddeev-Popov
operator for the rank-m parental gauge symmetry. We also
assume that ¢ and & form dual vectors in the sense that
06 =1+« 0%5% =59. (C2)
Then one can prove the following relation between the
determinants of these matrices

ey 92220

det(a k) det(Q(I - k(cQk)™'0Q) + 5 a).

(C3)

It is also assumed that all determinants in (C3) are nonzero.
Note that the mq X mg matrix in the first determinant in

the right-hand side of (C3) can be written as
F=QT +oa,

T =1-k(cQk)'cQ, (C4)

where T < T"ﬁ(g@,k) is in fact the oblique projector

(3.22) with the left kemel ¢Q <> 040/, = Q% which

can be identified with the gauge-restriction operator. The
first term of the matrix F is therefore degenerate and
has as right and left zero vectors k and ¢ respectively,
QTk = 6QT = 0. Therefore it can be interpreted as the
analog of the Hessian of a gauge-invariant action, whereas
the second term in [ plays the role of a gauge-fixing term
providing invertibility of this matrix.

The proof of the relation (C3) can be done by using the
basis in which the matrix F acquires a block-triangular
form, but it is easier to use the analog of the Ward identities

19Regarding the rank of quantities with indices a, b, ...; see a
brief discussion in the end of this section.

in order to prove that the right-hand side is actually
independent of the choice of arbitrary elements o, a, and
k and then check that this relation indeed holds under a
special choice of these elements. Such a choice is obvious
and reads as 6 = Qk and g = 6Q (when 0cQk = ak = I),
so that it remains to check that the right-hand side is indeed
(o, a, k) independent.

Multiplying the matrix (C4) from the left and from the
right by zero vectors of its first term QT one finds two Ward
identities and their corollary,

F'6 = k(ak)™, F'QT =1-k(ak)'a.

(Cs)

aF ' =0,

Then, direct variation of the right-hand side of the relation
(C3) with respect to a, k, and o shows that it is indeed
independent of these quantities on account of the above
identities and the variational version of duality relation
(C2), 666 + 6o = 0.

We finish this discussion with the note on applica-
bility of the above relation to the case when the objects
labeled by indices a are rank deficient (with the rank
my —m, < myp). In Sec. IV C, where this determinant
relation was used, instead of indices a we explicitly used
the indices p belonging to the range m; — m, which
symbolized the maximal rank (irreducible) representation.
In such a representation all matrices are nondegenerate
and quantities with mixed indices are of the maximal
rank. However, the maximal rank representation is not
necessary and this proof runs equally well in the reducible
representation of rank-deficient objects (o, G, a, l_c) of rank
m; —m,, provided the composite quantities 6a, (a l_c),
(cQk) have the same rank m; —m,” and the inverse
degenerate matrices (cQk)™', (ak)™' are treated in the
Moore-Penrose sense (as was discussed in Appendix A).
Determinants of degenerate operators of rank m; —m,
should be understood in an appropriate regularized
sense, for example by omitting the contribution of zero
eigenvalues in the eigenvector bases. If one goes into
details of the variational proof, then the variations of
regularized determinants turn out to be ddet(cQk) =
tr[6(cQk)(cQk)~'] with the Moore-Penrose definition
of the inverse matrix. The uniqueness of T projector
variation was shown in Appendix A. The uniqueness
of the regularized determinant variation has a similar
mechanism.

This line of reasoning justifies the validity of one-loop
contributions to the effective action of the restricted
theory of Secs. III and IV A (even though in Sec. II these
contributions were formally based on full-rank quantities
with reducibility indices a).

“This is the analog of the rank condition (3.23).
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