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We discuss generalized baby Skyrmions emerging in a (1þ 2)-dimensional σ model with a certain
Lie-algebraic structure. The same result applies to the Polyakov-Belavin instantons inD ¼ 1þ 1. The O(3)
symmetry of the target space is lost, but O(2) is preserved in the simplest model under consideration.
Both the topological charge and the soliton mass (the instanton action) are determined. Of special interest
are limiting cases of the deformation parameter k (also referred to as the elongation parameter). If
jk − 1j ≪ 1, we arrive at a model which is studied in condensed matter. If k ≫ 1, we obtain the so-called
cigar, or sausage, model well-known in little string theory. If k ¼ 1, we return to CP(1). The deformed
model under consideration interpolates between CP(1) and the cigar model. In D ¼ 2 we calculate the
coupling constants renormalization at one loop. At k ≥ 1 this class of models is asymptotically free in the
ultraviolet limit and enters the strong coupling domain in the infrared. Also, in the infrared k → 1 [i.e.,
we recover CP(1)].
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I. INTRODUCTION

Baby Skyrmions in D ¼ 1þ 2 attracted much atten-
tion in condensed matter physics, especially in magnetic
phenomena.1 The literature on this topic is enormous,
including studies of the baby Skyrmion Hall effect of
the texture and the topological Hall effect of the electron
(see, e.g., the review in [2]). In this paper we con-
sider the evolution of the baby Skyrmions as we
deform the Heisenberg model (in the continuous limit)
to include a certain Lie-algebraic construction (see
[3,4]). Deformed in this way the baby Skyrmion con-
tinuously interpolates between the standard Polyakov-
Belavin baby Skyrmion and the so-called cigar models
[5] (for a review see [6]).
The standard Heisenberg model—a prototype model in

this range of questions—can be written as2

L ¼ 1

2g2
ð∂SiÞð∂SiÞ; S⃗ S⃗ ¼ 1; ð1Þ

where S⃗ is a unit isovector describing spin, S⃗ ¼
fS1; S2; S3g, and g2 is the coupling constant with mass
dimension ½m−1�. Its target space is S2, a two-dimensional
(2D) sphere.
Various generalizations of the standard baby Skyrmions

were considered previously (e.g., [7,8] and references
therein). Here we use the Lie-algebraic construction of
[3,4] to deform the O(3) model and, hence, the Polyakov-
Belavin baby Skyrmion in a special way. Assuming that the
deformed target space preserves Oð2Þ × Z2 of the original
O(3) we arrive at

L ¼ 1

2g2ðS3Þ
ð∂SiÞð∂SiÞ; S⃗ S⃗ ¼ 1; ð2Þ

where the coupling g2 becomes a function of S3, the third
component of the isovector S⃗,

g2ðS3Þ ¼ g2 ·

�
1þ k
2

þ 1 − k
2

S23

�
: ð3Þ

Moreover, k is a numerical parameter to be defined below.
At k → 1 we return to the O(3) model while at k → þ∞
with g2 · k ¼ const we approach the sausage model.
Equation (3) leads to the following scalar curvature R
of the target space:
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1The original baby Skyrmion is, in fact, the Polyakov-Belavin
(PB) instanton [1] in the 2D CP(1) model elevated to D ¼ 1þ 2
dimensions and reinterpreted as a static soliton excitation.

2Also referred to as the O(3) model.
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1

2
R ¼ g2

ð1þ kÞ − ð1 − kÞS23
ð1þ kÞ þ ð1 − kÞS23

¼ g2
�
1þ 2ðk − 1ÞS23

ð1þ kÞ þ ð1 − kÞS23

�
: ð4Þ

When we consider k ≫ 1, the scalar curvature is small
in the equatorial region and almost everywhere else,
∼g2 ∼ 1=k, with the exception of two polar domains where
1 − S23 ∼ 1=k. Indeed,

1

2
R ∼

�
g2 equator;

g2k poles:

In the polar domains the scalar curvature ∼g2k ∼Oð1Þ,
i.e., the ratio of the polar scalar curvature to equatorial,
is ∼k ≫ 1.
Equations (2) and (3) do not present the most gen-

eral extension. The extensions breaking O(2) of the
target space [rotations around the third axis in the iso-
space in (2), (3)] can be obtained in a similar way; see
footnote 3.
Organization of the paper is as follows. In Sec. II we

review the Lie-algebraic construction that lies in the basis
of the generalization under consideration. In Secs. III and
IV, we calculate the baby Skyrmion mass (equal to the
instanton action in the two-dimensional model) and study
the internal structure of the baby Skyrmions in detail. In
Sec. V we will study a special limit corresponding to the
cigar models of [5] also known as the metric of a 2D
Euclidean black hole [9,10].

II. LIE-ALGEBRAIC CONSTRUCTION

The simplest Lie-algebraic construction is based on the
slð2Þ × slð2Þ algebra [3,4]. In the CP(1) model the target
space is one-dimensional (two real dimensions) and is
parametrized by a single complex field ϕ and its complex
conjugated. Our task is to build a class of Lie-alegebaric
extensions. The slð2Þ × slð2Þ generators can be represented
in the form

Tþ ¼ −ϕ2dϕ; T0 ¼ ϕdϕ; T− ¼ dϕ;

T̄þ ¼ −ϕ̄2dϕ̄; T̄0 ¼ ϕ̄dϕ̄; T̄− ¼ dϕ̄; ð5Þ

where one of the two slð2Þ algebras is holomorphic and the
other antiholomorphic. The commutation relations are
standard for slð2Þ,

½Tþ; T−� ¼ 2T0; ½Tþ; T0� ¼ −Tþ; ½T−; T0� ¼ þT−;

ð6Þ

with the structure constants

fþ−
0 ¼ 2; fþ0

þ ¼ −1; f−0− ¼ 1; ð7Þ
and similar for T̄’s.
Generically, the Lie-algebraic metric (with the upper

indices) must take the form of a quadratic in T combination

G11̄dϕdϕ̄ ¼
X
a;b̄

Pab̄T
aT̄b̄ ð8Þ

with a set of numeric coefficients fPab̄g.
Assuming that the target space preserves a residual U(1)

symmetry, we can reduce the set of coefficients fPab̄g to
the diagonal form

fPg ¼ fP11̄ ≡ n1; P22̄ ≡ n2; P33̄ ≡ n3g ð9Þ

with all off-diagonal Pab̄ vanishing. Without loss of
generality we can choose the set of coefficients (9) real.
Then the metric with the lower indices G11̄ takes the form

3

G11̄ ¼
1

n1 þ n2ϕ̄ϕþ n3ðϕ̄ϕÞ2
: ð10Þ

We arrive at the Lagrangian

L ¼ G11̄ð∂μϕ̄∂μϕÞ: ð11Þ

If the coefficients n1;3 are nonsingular (i.e., neither 0 nor
∞), by rescaling the fields ϕ; ϕ̄,

ϕ; ϕ̄ → λϕ; λϕ̄; λ2 ¼
ffiffiffiffiffiffiffi
n1
n3

;
r

ð12Þ

one can always make the first and the third coefficients
equal to each other.4 One can keep this in mind. If so, one
can conveniently parametrize n1;2;3 as follows:

n1 ¼ n3 ¼
g2

2
; n2 ¼ g2k: ð13Þ

The only extra parameter compared to CP(1) is k. If k ¼ 1,
we return to CP(1). Another interesting limit to be
discussed below is k → þ∞.
The geometry of the space (10) is Kählerian. The Kähler

potential is

3In the most general case the Lie-algebraic metric G11̄ is
parametrized as

G11̄ ¼
1

n1þn2ϕ̄ϕþn3ϕ̄2ϕ2þðm1ϕþm2ϕ
2þm3ϕϕ̄

2þH:c:Þ :
4This may not be the case if, say, n1 → 0; see below.
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K ¼ −
1

g2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p
��

log

�
−

ϕϕ̄ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p
þ k

�
logðϕϕ̄þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p
þ kÞ

þ Li2

�
ϕϕ̄þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p
þ kffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 − 1
p

þ k

��
− ðkþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p
→ k −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p
Þ
�

ð14Þ

for k∈ ½1;∞�. Here Li2ðzÞ is the dilogarithm. Further
geometric data are given by the following expressions:

Γ1
11 ¼ −

2ðkþ ϕ̄ϕÞϕ̄
1þ 2kϕ̄ϕþ 3ðϕ̄ϕÞ2 ;

R11̄11̄ ¼ −
4½kþ 2ϕϕ̄þ kðϕϕ̄Þ2�
g2½ðϕ̄ϕÞ2 þ 2kϕ̄ϕþ�3 ;

R11̄ ¼
2½kþ 2ϕϕ̄þ kðϕϕ̄Þ2�
½ðϕ̄ϕÞ2 þ 2kϕ̄ϕþ 1�2 ;

R ¼ 2g2½kþ 2ϕϕ̄þ kðϕϕ̄Þ2�
ðϕ̄ϕÞ2 þ 2kϕ̄ϕþ 1

: ð15Þ

Correspondence between ϕ; ϕ̄ and the O(3) representation
through the unit vector S⃗ ¼ fSig, i ¼ 1; 2; 3 [see Eq. (1)] is
realized through the stereographic projection,

ϕ ¼ S1 þ iS2
1þ S3

; ϕ̄ ¼ S1 − iS2
1þ S3

: ð16Þ

Then the following equations ensue:

∂μϕ̄∂
μϕ ¼ 1

ð1þ S3Þ2
∂μS⃗∂μS⃗ ð17Þ

and

n1 þ n2ðϕ̄ϕÞ þ n3ðϕ̄ϕÞ2

¼ g2
1

ð1þ S3Þ2
½ð1þ kÞ þ ð1 − kÞS23�: ð18Þ

Combining (17) and (18) we arrive at Eqs. (2) and (3). For
future convenience, let us also present the spherical
coordinate representation of the spin vector. Namely,

S1 ¼ sin α cos β; S2 ¼ sin α sin β; S3 ¼ cos α; ð19Þ

where α is the angle from the z axis and β is the azimuthal
angle.

III. BABY SKYRMIONS (INSTANTONS IN 2D)

In the subsequent discussion, we will focus on k ≥ 1.
The topological charge Q of the baby Skyrmion [which

is the same as that of 2D deformedCPð1Þ] is defined by the
pullback of the Kähler form on the target space (with
suitable normalization) [11], say,

Q ¼ 1

VolðMÞ
Z
M

d2ϕ
ðϕ̄ϕÞ2 þ 2kϕ̄ϕþ 1

¼ 1

VolðMÞ
Z
S2

j∂ϕ=∂zj2 − j∂ϕ=∂z̄j2
ðϕ̄ϕÞ2 þ 2kϕ̄ϕþ 1

d2z: ð20Þ

Here VolðMÞ stands for the volume of the target spaceM,

VolðMÞ ¼ 2πarccoshkffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p : ð21Þ

Two spatial dimensions (x and y) are parametrized by
complex variables z; z̄. The duality equation is the same as
in the Polyakov-Belavin analysis [1], and so is the instanton
solution; see below Eq. (24). Then the corresponding
instanton action reads

Sinst ¼
2

g2

Z
M

∂μϕ∂
μϕ̄

ðϕ̄ϕÞ2 þ 2kϕ̄ϕþ 1
d2z ¼ 2VolðMÞ

g2
: ð22Þ

In 1þ 2 dimensions the 2D instanton action is reinterpreted
as the baby Skyrmion mass Mbaby Sk; since the baby
Skyrmion saturates the Bogomol'nyi–Prasad–Sommerfield
(BPS) bound we have

Mbaby Sk ¼
4π

g2
arccoshkffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p ; k ≥ 1; ð23Þ

see Fig. 1.
Alternatively, the same result could be obtained directly,

with no reference to the topological charge and the BPS
saturation. Indeed, the duality equation remains the same as

FIG. 1. The baby Skyrmion mass in the units of 4π=g2. If
k → ∞, the Skyrmion mass tends to zero as k−1 log 2k.
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in the CP(1) model implying that ϕ is an analytic function
of z (the sum of poles) and ϕ̄ is the complex conjugated
analytic function of z̄. The minimal soliton presents just a
single pole. The appropriate solution can be chosen as
follows:

ϕðzÞ ¼ a
z − z0

: ð24Þ

The parameter jaj has the meaning of the overall size of the
solution, and the phase of this parameter argðaÞ is a
collective coordinate reflecting the U(1) symmetry of the
target space. We have four collective coordinates overall.
After plugging the ansatz (24) (with z0 set to zero) in
Eqs. (2) and (3), we arrive at the following the density:

dρ2ðx; yÞ ¼ dz̃d ¯̃z
2

g2
1

1þ 2kjz̃2j þ jz̃2j2 ; ð25Þ

where

z̃ ¼ z
a
: ð26Þ

After integrating the density above over the fx; yg plane,
we obtain the same mass as in (23). The plots in Fig. 2 show
the density distribution for different k.

IV. INTERNAL STRUCTURE
OF BABY SKYRMIONS

In this section, we further investigate the baby Skyrmion
solutions discovered in the previous section. As shown in
the metric (10) of the deformed model, we can see that the
vacuum moduli space of baby Skyrmion solutions, i.e., the
target space, is a squashed sphere (see also Fig. 4). In
contrast to the CP(1) case, where the moduli space is a
round sphere and any chosen base point yields the same
baby Skyrmion solution, the vacuum moduli space of the
present model exhibits a different behavior. Varying selec-
tions of a reference point on its moduli space generate
different baby Skyrmion configurations.

To gain insight into the above claim, let us examine the
general solution of the unit charge baby Skyrmion, as
presented in [12]. Namely,

ϕ ¼ a
z − z0

þ b; ð27Þ

where a; z0; b∈C. A choice of parameters, a; z0, and b,
corresponds to the size, position, and the orientation of the
spin vector S⃗ in asymptotics z → ∞, respectively. Indeed,
recall that via the stereographic map (16), we know that the
moduli field ϕ can be expressed in terms of the spin vector.
Comparing (27) with (16), in the infinite z limit (z0 is kept
finite) we arrive at

S1;vev þ iS2;vev
1 − S3;vev

¼ b; ð28Þ

indicating that the vacuum expectation value of S⃗ is
determined by b.
Collecting all ingredients above, we can find that the

energy density of the baby Skyrmion solution (27) takes the
form

E ¼ 2jaj2 · ½jbð−z0 þ xþ iyÞ þ aj4
þ 2kjðbð−z0 þ xþ iyÞ þ aÞðxþ iy − z0Þj2
þ jxþ iy − z0j4�−1: ð29Þ

Some numerical demonstrations are shown in Fig. 3. In
Fig. 3, we not only plot the baby Skyrmion configuration
for different k but also include the plots of different bwith a
fixed k since the vacuum moduli are inhomogeneous.
Summarizing, for a fixed value of k, we observe two

peaks when the base point in the vacuum moduli is situated
at the equator. As we move toward the two poles, these
peaks converge into a single peak. Conversely, when we
vary the deformation constant k, we notice that the two
peaks overlap for small values of k (i.e., k≳ 1) and
gradually separate into two distinct lumps as k increases.
Moreover, the rate of transitioning into a single peak is

FIG. 2. The density distribution of the Skyrmion solution for k ¼ 0.5; 1; 2. a and z0 are set at 1 and 0, respectively.
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greater for larger values of k. Note that the separation of the
peaks in the current scenario is due to the inhomogeneity of
the vacuum moduli, in contrast to the more common
occurrence where multiple lumps arise from large topo-
logical charges; for a recent example, see [13].

V. LARGE-k LIMIT: THE SAUSAGE MODEL

In this section we discuss the large-k limit which leads us
to the cigar model [5,6]. This can be seen by a simple
rearrangement of Eq. (2),

L ¼ 1

g2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p ð∂SiÞ2ffiffiffiffiffiffi
kþ1
k−1

q
−

ffiffiffiffiffiffi
k−1
kþ1

q
S23

; ð30Þ

coinciding with the standard expression of the sausage
model in [5,6] as long as k ≥ 1. A sketch of the corre-
sponding metric is presented in Fig. 4. See the Appendix
for further details.
In the following, we give a short illustration of the target

space in the large k limit. As shown in the above
illustration, the model is mostly characterized by its length
of the flat part. To make an estimation of the length, we
rewrite the Lagrangian of the deformed CP(1) model as
follows:

L ¼ 1

g2ð1þ kÞ
ð∂αÞ2 þ sin2αð∂βÞ2

1 − k−1
kþ1

cos2α
: ð31Þ

As k ≫ 1, we want to compare (31) with the metric of a
cylindrical shell (up to an overall constant)

dl2 þ a2dβ2; ð32Þ

where l is the coordinate along the cylinder and a is the
radius of the shell. To proceed, let us make a change of the
variable of (31) such that for the deformed CP(1)

FIG. 3. From top to bottom, the value of the deformation constants k are taken to be 5,20,50, respectively. Also, the value of b in (27)
of the first two rows are chosen to be 0; 1=

ffiffiffi
3

p
; 1;

ffiffiffi
3

p
; 2þ ffiffiffi

3
p

from left to right while the parameters b of the last row are
0; 2 −

ffiffiffi
3

p
; ð ffiffiffi

2
p

− 1Þð ffiffiffi
3

p
−

ffiffiffi
2

p Þ; 1; ffiffiffi
3

p
, respectively.

FIG. 4. The metric of the sausage model in the present para-
metrization. The contours from inside to outside (i.e., red to blue)
correspond to k equal to 1.0, 9.5, 200, and 1000, respectively. The
surfaces corresponding to the metric are embedded in the three-
dimensional Euclidean space [5,14]. See also Appendix for the
coordinate ðX; ZÞ.

REMARKS ON BABY SKYRMION LIE-ALGEBRAIC … PHYS. REV. D 108, 065003 (2023)

065003-5



L ∼ dζ2 þ rðζÞ2dβ2: ð33Þ

Both ζ and rðζÞ are of dimension ½m0�. In the following we
will see that the radius rðζÞ ∼ 1 for a certain range of the
coordinate along the cylinder ζ which we can take twice of
this range as the “length” of the cylinder. To see this is the
case, we note that

ζ ¼ −
Z π

2
−α

π
2

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k−1

kþ1
cos2t

q ¼ −F
�
π

2
− α;

k − 1

kþ 1

�
; ð34Þ

where Fðθ; κÞ is the incomplete elliptic integral defined as

Fðθ; κÞ ≔
Z

θ

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κcos2t

p : ð35Þ

In addition, the new parameter ζ varies in the ranges

−K
�
k − 1

kþ 1

�
≤ ζ ≤ K

�
k − 1

kþ 1

�
; ð36Þ

whereKðκÞ is the complete elliptic integral, i.e., θ ¼ π=2 in
(35). Then gββ can be expressed in terms of

sin2β
1 − k−1

kþ1
cos2β

¼
�
cnðζ; k−1kþ1

Þ
dnðζ; k−1kþ1

Þ
�2
: ð37Þ

Note that some Jacobi elliptic functions are used in the
above reparametrization. Their definitions are as follows.
Namely,

snðz; κÞ ≔ sinðF−1ðz; κÞÞ;
cnðz; κÞ ≔ cosðF−1ðz; κÞÞ; ð38Þ

with the identity

κsn2ðz; κÞ þ dn2ðz; κÞ ¼ 1; ð39Þ

where F−1ðz; κÞ is the inverse function for the incomplete
elliptic function F. Now, by direction comparison, we can
identify rðζÞ as

rðζÞ ¼ cnðζ; k−1kþ1
Þ

dnðζ; k−1kþ1
Þ : ð40Þ

From Fig. 4, we can see that rðζÞ ∼ 1 for the cylindrical
part, and its derivative has the asymptotic form

r0ðζÞ ¼ −
sinh 2ζ

k
þOðk−2Þ ð41Þ

in the large k limit. Note that for any values of ζ not scaling
with k, the radius of the cross-sectional circle remains one.
The expression k−1 sinh 2ζ becomes Oð1Þ as ζ reaches the

edge of the cylinder. Therefore, we can then define the half-
length of the cylinder by finding the domain in which
sinh 2ζ is comparable to k, i.e.,

length ∼ arc sinh k ∼ log k: ð42Þ

VI. RENORMALIZATION GROUP FLOW
IN TWO DIMENSIONS

After examining (quasi)classical aspects of the deformed
CP(1) model, particularly its static solutions in 2þ 1
dimensions in the previous sections, we will now study
the role of quantum fluctuations at one-loop level in
two dimensions. One can consider either Euclidean or
Minkowski spacetime. Wewill limit ourselves toD¼1þ1.
In this case loop corrections are logarithmic.
Strictly speaking, the theory defined by Eqs. (10) and (11)

is not renormalizable in the usual sense of this word because
themetric (10) is not of theEinstein type.However,G11̄ in the
bare Lagrangian at one loop is replaced by

Leff ¼
�
G11̄ þ

1

2π
G11̄

1

2
RL

�
∂μϕ̄∂

μϕ; ð43Þ

where R is the scalar curvature

R ¼ 2G11̄ðn1n2 þ 4n1n3ϕϕ̄þ n2n3ϕ2ϕ̄2Þ ð44Þ

and

L ¼ − log
Muv

μ
ð45Þ

is the renormalization group (RG) “time.”Equations (43) and
(44) follow from the general theory of nonlinear sigma
models [15],which implies that theβ function of themetric at
the one-loop level is proportional to its Ricci tensor.
Assembling together Eqs. (10), (13), (43), and (44)we obtain

δG11̄ ¼ −ðG11̄Þ2δG1̄1

¼ ðn1n2 þ 4n1n3ϕϕ̄þ n2n3ϕ2ϕ̄2Þ
�
−

1

2π
L

�
ðG11̄Þ2;

ð46Þ
implying

δG1̄1 ¼ ðn1n2 þ 4n21ϕϕ̄þ n1n2ϕ2ϕ̄2Þ 1

2π
L: ð47Þ

This equation implies

dg2

dL
¼ −

kg4

2π
;

dðg2kÞ
dL

¼ −
g4

2π
; ð48Þ

following from Eq. (10). In passing from (47) to (48) we
compared the right-hand side of (47) with the coefficients in
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G1̄1 ¼ 1=G11̄. Also, we assume n1;3 are nonsingular and
apply the identification (13).
The RG flow equations for g2 and k are summarized by

the following β function:

βG11̄
¼ G11̄

1
2
R

2π

1

1 − 1
2π

1
2
R

: ð49Þ

In fact, in this paper we derived only the one-loop
expression corresponding to the term OðRÞ in the expan-
sion of the right-hand side in (49). As a matter of fact, if we
continue expansion up to OðR2Þ we will correctly repro-
duce the two-loop result, too.
The two coupling constants g2 and k are coupled under

the RG flow. The combination

g4ðk2 − 1Þ ¼ RGI; ð50Þ

where RGI stands for RG invariant. We integrate (48)
numerically to obtain the RG flow from UV to IR. The
result of integration is shown in Fig. 5. The directions of the
arrows indicate the flow to IR. k ¼ 1 is a separatrix. On the
other hand, the other separatrix shows up at k ¼ −1, i.e.,
the green one in Fig. 5. This can be seen from the RG flow
equation of k, namely,

dk
dL

∼ k2 − 1: ð51Þ

Qualitatively, the RG flows can be categorized into two
groups. On the right-hand side of the k ¼ 1 separatrix (in
the limit of large k), the initial state with a small g2 evolves
into a state with strong coupling and k ¼ 1. See, for
example, the thick black line in Fig. 5. On the other hand,
when the UV starting point of the RG flow formula lies
between the two separatrices (−1 ≤ k ≤ 1), the coupling
weakens initially and eventually becomes strong as the
elongation parameter approaches unity. Thus in the IR we
return to the CP(1) mode, and the full O(3) symmetry is
restored.

VII. CONCLUSIONS AND PERSPECTIVES

In this paper we consider some implications of the Lie-
algebraic deformations of the CP(1) model (see [4]). First,
we present a one-parametric family of deformations—the
simplest example of the Lie-algebraic models; see Eqs. (2)
and (3). In addition to the coupling constant g2 of CP(1),
an “elongation” parameter k is added. In this example,
the O(3) symmetry of the CP(1) model is broken down to
O(2) by construction. The target space is Kählerian; we find
the corresponding Kähler function (14). This class of
models, being considered in D ¼ 1þ 1 supports deformed
Polakov-Belavin instantons which in D ¼ 1þ 2 (in the
static limit) become baby Skyrmions. We determine the
instanton action and baby Skyrmion mass as a function of
g2 and k. In Sec. IV the internal structure of the deformed
PB instantons is studied; see Figs. 2 and 3.
Finally, we explore in detail two limiting cases:

k≳ 1 and k ≫ 1: ð52Þ

In the first case, as we approach k ¼ 1we recover the CP(1)
model. In the second limit we approach the so-called cigar
or sausage model; see Sec. V. The interpolation between
these two extreme cases is smooth.
In D ¼ 2 (in which case renormalizations are logarith-

mic) we calculate the one-loop “β function.” The quotation
marks emphasize the fact that the β function is rather
peculiar (see Sec. VI). The geometric structure of the one-
loop Lagrangian is different from that of the classical
Lagrangian. Nevertheless, no new coupling constants
appear—the constants g2 and k are entangled in the running
formula. Moreover, in the infrared, g2 runs toward the
strong coupling domain, while k approaches 1; see Fig. 6.
In conclusion, let us briefly discuss possible phenom-

enological uses of the Lie-algebraic sigma models—the
simplest nontrivial example presented in Eqs. (2) and (3), or
more general versions, with more than three parameters
introduced in (10). So far, we are aware of a single
appropriate example of magnetoelectric effects in Mott
insulators. For simplicity, let us limit our consideration
to the window jk − 1j ≪ 1. Then Eqs. (2) and (3) can be
represented as

FIG. 5. The RG flow of g2 and k couplings. The flow is from
UV to IR. The separatrices are marked with green and red lines
while the thick black line represents an example of the RG flow in
the limit of the sausage model (i.e., large k).
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L ¼ 1

2g̃2
ð∂SiÞð∂SiÞf1þ εS23g; S⃗ S⃗ ¼ 1;

g̃2 ¼ g2
kþ 1

2
; ε ¼ k − 1

2
; ð53Þ

up to terms of higher order in the small parameter ε. The
first term in the first line in (53) is isotropic in the target
space [i.e., SU(2) invariant]. Switching on the ε term breaks
the SU(2) symmetry of the target space down to U(1).
Unisotropic deformations which are currently studied in
experiments (see, e.g., [16]) are expected to pave the way
to new exotic magnetic states. For instance, Ref. [17]
deals with a dynamical material system which can reduce to
(53) in the continuum limit (under certain fine-tuning of
parameters).
The above-mentioned system of strongly coupled Mott

insulators includes spin-orbit couplings that produce an
impact on electronically induced magnetoelectric effects.
In addition to the isotropic Heisenberg term [see Eq. (11)
in [17] ], biquadratic interactions appearing in two-orbital
versions lead to an extra quartic term of the following
form [17]:

Hquart ∝
X

ðk;jÞneighbors
½SðkÞ3 SðjÞ3 þ ΔðSðkÞ1 SðjÞ1 þ SðkÞ2 SðjÞ2 Þ�

× ½SðkÞ3 SðjÞ3 þ Δ0ðSðkÞ1 SðjÞ1 þ SðkÞ2 SðjÞ2 Þ� ð54Þ

on the square 2D lattice. The upper indices in the paren-
theses mark the nodes of this lattice. If Δ → 1 and Δ0 → 0
in the continuum limit, this returns us to the model (53).
As far as the opposite limit k ≫ 1 is concerned, we hope

that the emerging cigarlike baby Skyrmions/PB instantons
could be used in exotic magnetic phenomena in condensed
matter and in high-energy theory, but so far this is not
yet clear.
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APPENDIX: EMBEDDING OF THE TARGET
MANIFOLD IN LARGE k LIMIT

In this appendix, we estimate the length of the flat part of
the target manifold. In this section, we detail the process to
find the surface evolution.
Along the same line with [14], we embed the target

manifold in a three-dimensional Euclidean space R3 such
that the induced metric coincides with (31). Assume that
ðX; Y; ZÞ is the coordinate of R3 and Z is the axis of
symmetry. It then suffices to consider the section of X and
Z because of the Uð1Þ symmetry. To parametrize X and Z,
we can first consider α≡ const, resulting in

X ¼ � sin αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k−1

kþ1
cos2 α

q : ðA1Þ

On the other hand, as β≡ const, we can find Z via

dZ2 ¼
�

1

1 − k−1
kþ1

cos2α
−
�
dX
dα

�
2
�
dα2; ðA2Þ

which turns out to be

Z ¼ i

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

k − 1

r
E

�
iγ

				 2

kþ 1

�
; ðA3Þ

where

cschγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ cosh ð2 log tanðα=2ÞÞ

k − 1

r

and EðajbÞ is the elliptic integral of the second kind. With
ðX; ZÞ parametrized in α, one can find the illustration of the
target space in Fig. 4 in which α ranges from 0 to π.
Furthermore, to approximate the length of the cylindrical

part of the target manifold, one observes that for large
enough k, jXj drops rapidly at both ends. Therefore, the
length scales as

Zðα ¼ πÞ − Zðα ¼ 0Þ ∼ log 2k ðA4Þ

consistent with what we have found in (42).
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