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We study the vacuum zero point energy associated to a scalar field with an arbitrary mass and conformal
coupling in a dS background. Employing dimensional regularization scheme, we calculate the regularized
zero point energy density, pressure and the trace of the energy momentum tensor. It is shown that the
classical relation hTi ¼ −4hρi for the vacuum stress energy tensor receives anomalous quantum correction
which depends on the mass and the conformal coupling while the relation hρi ¼ −hPi does hold. We
calculate the density contrast associated to the vacuum zero point energy and show that δρ ∼ hρi indicating
an inhomogeneous and nonperturbative distribution of the zero point energy. Finally, we calculate the
skewness associated to the distribution of the zero point energy and pressure and show that they are highly
non-Gaussian.
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I. INTRODUCTION

Quantum field theory in a curved spacetime is a rich and
vastly studied topic which deals with important theoretical
and observational phenomena [1–5]. Since a concrete
theory of quantum gravity is not at hand, usually one
assumes that the background geometry is governed by the
classical general relativity and then the quantum fields are
quantized in this classical background. This is a simplified
and incomplete treatment of the full picture because the
quantization of the gravitational degrees of freedom is
expected to be essential at very high energy (very short
scales). But even within this simplified picture interesting
and nontrivial effects emerge if one does not get too close to
the quantum gravity scale. For example, as the background
may be dynamical, particle creation is a common phenom-
ena in quantum field theory in a curved spacetime [6–12].
In addition, the concept of vacua is a nontrivial issue as
different observers may define different vacua associated to
their quantum fields [13–18].
An important issue in studying quantum field theory in

curved spacetime is the questions of regularization and
renormalization. Similar to quantum field theories in flat
spacetime, physical quantities such as the energy momen-
tum tensor, energy density and pressure suffer from
infinities in a curved spacetime as well. The fact that
there is no unique vacuum in a curved spacetime while
particles can be created adds more complexities for the
treatment of regularization and renormalization in a

curved spacetime. Therefore, it is an important question
as how one can regularize the infinities and to read off
the finite physical quantities. There are various well-
established schemes for regularization and renormaliza-
tion in curved spacetimes such as the point splitting
regularization method [19–23], the adiabatic regulariza-
tion method based on the WKB approximation [24–27],
the zeta function regularization scheme [28–32] and the
dimensional regularization procedure [33–48].
Understanding quantum field theory in dS background

is an important question both theoretically and observa-
tionally [49–56]. On the observational side, there are
compelling evidences that the early universe experienced
a period of inflation in which the background was nearly a
dS background. The simplest models of inflation are
based on scalar field dynamics in which a light scalar
field rolls slowly on top of its nearly flat potential [57,58].
While the background expansion is given by the potential,
but there are quantum fluctuations associated to inflaton
field which are stretched to superhorizon scales. It is
believed that these quantum perturbations are the seeds of
large scale structures in universe and perturbations in
CMB [59,60] which are well supported by cosmological
observations [61,62]. In addition, various cosmological
observations indicate that the universe is undergoing a
phase of accelerated expansion now. The origin of dark
energy as the source of the late time acceleration is not
known but a cosmological constant associated with the
vacuum zero point energy of fields is a prime candidate
which fits the data well [63–67]. Beside being a possible
candidate for the origin of dark energy, the vacuum zero
point energy and its regularization in a dS spacetime is an
important question of its own right [39–45].
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In this work we study the quantum fluctuations of a real
scalar field with nonminimal coupling to gravity in a dS
background, focusing on vacuum zero point energy and its
statistical fluctuations. While quantum field theory in a dS
background has been studied extensively in the past but
here we look at this question in a different perspective.
Motivated by ideas from inflationary model building, here
we pay particular attention on the statistical variations of
the vacuum zero point energy density and pressure and look
for their physical implications.
The rest of the paper is organized as follows. In Sec. II

we present our setup while in Sec. III we calculate the
expectation values of the zero point energy and pressure.
In Sec. IV we study the statistical fluctuations in energy
density and pressure and calculate their two-point and
three-point correlation functions followed by Summary and
Discussions in Sec. V. Some technicalities dealing with
higher correlations of the energy density and pressure are
presented in the Appendix.

II. THE SETUP

We consider a real scalar fieldΦ in a dS spacetime which
is nonminimally coupled to gravity with the conformal
coupling ξ. The action is given by

S ¼
Z

dDx
ffiffiffiffiffiffiffiffiffi
−gD

p �
−
1

2
ξΦ2R −

1

2
∇μΦ∇μΦ −

1

2
m2Φ2

�
;

ð1Þ

in which D refers to the dimension of the spacetime, gD
stands for the determinant of the metric andm is the mass of
the scalar field. Since we employ dimensional regulariza-
tion to handle the quantum infinities, we keep the spacetime
dimension general and only at the end set D ¼ 4 − ϵ
with ϵ → 0 as in conventional dimensional regularization
approach. In four dimensional spacetime the theory is
classically conformally invariant if m ¼ 0 and ξ ¼ 1

6
.

However, as it is well known, this classical symmetry is
anomalous under quantum perturbations which will be
studied in some details below.
We work in the test field limit where the background

geometry is governed by the Einstein field equation and it is
not affected by the presence of the test field. In order for
this approximation to be consistent, we require the vacuum
zero point energy and pressure associated to the fluctua-
tions of Φ to be much smaller than the corresponding
background quantities. These requirements put constraints
on the mass of the test field as we shall study below. To
simplify the analysis, we consider a free theory in which
there is no interaction in the field sector. It is an interesting
question to extend the current analysis to the more physical
setup where there is a self-interaction like λΦ4 in the model.
For works studying various aspects of quantum effects in
models with λΦ4 self-interaction see [39,40,48].

The background geometry has the form of the FLRW
metric,

ds2 ¼ −dt2 þ aðtÞ2dx2; ð2Þ
where aðtÞ is the scale factor and t is the cosmic time. It is
more convenient to work with the conformal time τ related
to the cosmic time via dτ ¼ dt=aðtÞ in terms of which the
metric becomes conformally flat,

ds2 ¼ aðτÞ2ð−dτ2 þ dx2Þ: ð3Þ
In terms of conformal time, the relation aHτ ¼ −1 holds in
a dS background which will be used frequently in the
following analysis.
The dS spacetime is maximally symmetric, so the Ricci

tensor and Ricci scalar are given as follows,

Rμν ¼ ðD − 1ÞH2gμν; R ¼ DðD − 1ÞH2; ð4Þ
in which H ≡ ȧ

a is the Hubble expansion rate during
inflation.
The Klein-Gordon equation governing the dynamics of

the field is given by

□Φ − ξRΦ −m2Φ2 ¼ 0: ð5Þ
To study the quantum perturbations of the field, we
introduce the canonically normalized field σðτÞ

σðτÞ≡ a
D−2
2 ΦðτÞ; ð6Þ

in terms of which the action takes the following form,

S¼1

2

Z
dτdD−1x

�
σ0ðτÞ2−ð∇σÞ2

þ
�ðD−4ÞðD−2Þ

4

�
a0

a

�
2

þD−2

2

a00

a
−ðm2þξRÞa2

�
σ2
�
;

ð7Þ

where a prime indicates the derivative with respect to the
conformal time.
To quantize the field, as usual, we expand it in terms of

the creation and annihilation operators in the Fourier space
as follows,

σðxμÞ ¼
Z

dD−1k

ð2πÞðD−1Þ
2

ðσkðτÞeik·xak þ σ�kðτÞe−ik·xa†kÞ; ð8Þ

where σkðτÞ is the quantum mode function while ak and a†k
satisfy the following commutation relation in D − 1 spatial
dimension,

½ak; a†k0 � ¼ δD−1ðk − k0Þ: ð9Þ
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The equation of motion of the mode function from the
action (7) is given by

σ00kðτÞþ
�
k2þ 1

τ2

�
m2

H2
þDðD−1Þξ−DðD−2Þ

4

��
σkðτÞ¼0:

ð10Þ

Note that the above equation is similar to the Mukhanov-
Sasaki equation associated to the inflaton perturbations in
an inflationary background. If we set m ¼ 0 and ξ ¼ 1

6
in

D ¼ 4, then the second term in the big bracket vanishes
and the mode function reduces to its simple flat form.
In a general D-dimensional spacetime with m ¼ 0, the
conformal limit is attained for the special value of
ξ ¼ ξD ≡ D−2

4ðD−1Þ.
Imposing the Bunch-Davies (Minkowski) vacuum deep

inside the horizon, the solution of the mode function from
Eq. (10) is given in terms of the Hankel function

ΦkðτÞ ¼ a
2−D
2 σkðτÞ ¼ ð−HτÞD−1

2

�
π

4H

�1
2

e
iπ
2
ðνþ1

2
ÞHð1Þ

ν ð−kτÞ;

ð11Þ

where

ν≡ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 1Þ2 − 4DðD − 1Þξ − 4β2

q
; β≡ m

H
: ð12Þ

From the above expression of ν we see that it can be either
real or pure imaginary depending on the values of ξ and β.
For a light field with β < 1 and with a moderate value of ξ,
the index ν is real while for a heavy field with β ≫ 1 we
typically have a complex value of ν. Both cases of real and
imaginary ν will be considered in the following analysis.
In our analysis below, we are mainly interested in

the expectation values of the vacuum energy momentum
tensor hTμν

v i, the vacuum zero point energy density hρvi, the
vacuum zero point pressure hPvi and their statistical
correlations in which the subscript v stands for the vacuum.
In order to simplify the notation, we discard the subscript v
in the rest of analysis unless mentioned specifically.
The energy momentum tensor is given by,

Tμν ¼ ð1 − 2ξÞ∂μΦ∂νΦþ
�
2ξ −

1

2

�
gμνgαβ∂αΦ∂βΦ

þ ξ

�
Rμν −

1

2
gμνR

�
Φ2 þ 2ξðgμνΦ□Φ −Φ∇ν∇μΦÞ

−
1

2
gμνm2

ΦΦ2: ð13Þ

Using the field equation (5) to eliminate □Φ combined
with Eq. (4), Tμν is simplified as follows

Tμν ¼ ∂μΦ∂νΦþ gμν
2

ð4ξ − 1Þð∂αΦ∂αΦþm2Φ2Þ þ ξ

2
ðD − 1Þð2þ ð4ξ − 1ÞDÞH2gμνΦ2 − ξ∇μ∇νΦ2:

Similarly, the trace of the energy momentum-tensor T ≡ Tμ
μ is given by

T ¼ 2

�
ðD − 1Þξþ 2 −D

4

�
ð∂αΦ∂αΦþDðD − 1ÞξH2Φ2Þ þ

�
2ξðD − 1Þ −D

2

�
m2Φ2: ð14Þ

As we shall show explicitly below, hΦ2i is independent of xμ so the vacuum expectation value of hTμνi simplifies to

hTμνi ¼ h∂μΦ∂νΦi þ gμν
2

ð4ξ − 1Þh∂αΦ∂αΦi þ gμν
2

�
ð4ξ − 1Þm2 þ ξ

2
ðD − 1Þð2þ ð4ξ − 1ÞDÞH2

�
hΦ2i:

The vacuum zero point energy is ρ ¼ T00 so from the above expression we obtain

hρi ¼ ð1þ 4ξÞ
2

hΦ̇2i þ ð1 − 4ξÞ
2

h∇iΦ∇iΦi þH2

2
½ð1 − 4ξÞðβ2 þDðD − 1ÞξÞ − 2ðD − 1Þξ�hΦ2i: ð15Þ

On the other hand, the pressure P is given by

P ¼ 1

D − 1
⊥μνTμν; ð16Þ

in which ⊥μν ≡ gμν þ uμuν is projection operator and uμ ¼ ð1; 0; 0; 0Þ is the comoving velocity. Consequently, we obtain

P ¼ 1

D − 1
ðT þ ρÞ: ð17Þ
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III. DIMENSIONAL REGULARIZATIONS
AND EXPECTATION VALUES

In this section we calculate hρi and hPi using dimen-
sional regularization scheme in D dimension.
From Eq. (15) we see that hρi contains the following

three ingredients:

ρ1 ≡ 1

2
Φ̇2; ρ2 ≡ 1

2
gij∇iΦ∇jΦ; ρ3 ≡ 1

2
H2Φ2: ð18Þ

Let us start with hρ1i. With the mode function given in
Eq. (8) and performing a simple contraction using the
commutation relation (9) we obtain

hρ1i ¼
μ4−D

2a2ðτÞ
Z

dD−1k
ð2πÞD−1 jΦ0

kðτÞj2; ð19Þ

in which μ is a mass scale to keep track of the dimension-
ality of physical quantities as usual in dimensional regu-
larization analysis.
To proceed further, we decompose the integral into the

radial and angular parts as follows

dD−1k ¼ kD−2dkdD−2Ω; ð20Þ

in which dD−2Ω represents the D − 2-dimensional angular
part with the volume

Z
dD−2Ω ¼ 2π

D−1
2

ΓðD−1
2
Þ : ð21Þ

Combining all numerical factors and defining the dimen-
sionless variable x≡ −kτ we finally obtain

hρ1i ¼
π

3−D
2 μ4−DHD

21þDΓðD−1
2
Þ e

−πImðνÞ
Z

∞

0

dx x

���� ddx ðxD−1
2 Hð1Þ

ν ðxÞÞ
����2;
ð22Þ

where after integrating it reads [68]

hρ1i ¼
μ4−Dπ−

D
2
−1

4
Γ
�
νþD

2
þ 1

2

�
Γ
�
−νþD

2
þ 1

2

�

× Γ
�
−
D
2

�
cosðπνÞ

�
H
2

�
D
: ð23Þ

As explained previously, ν can be either real or pure
imaginary. In the latter case, one simply replaces ν by iν
in the above and in the following expressions. In addition,

the following relation for the complex conjugation Hð1Þ
iν ðxÞ

holds

Hð1Þ
iν ðxÞ ¼ eπImðνÞHð2Þ

iν ðxÞ; ð24Þ

which was used to obtain Eq. (23).
Following similar steps, for the remaining components

we obtain

hρ2i ¼
π

3−D
2 μ4−DHD

21þDΓðD−1
2
Þ e

−πImðνÞ
Z

∞

0

dxxDjHð1Þ
ν ðxÞj2; ð25Þ

in which the result can be expressed as

hρ2i ¼
μ4−Dπ−

D
2
−1

4
ðD − 1ÞΓ

�
νþD

2
þ 1

2

�
Γ
�
−νþD

2
þ 1

2

�

× Γ
�
−
D
2

�
cosðπνÞ

�
H
2

�
D
; ð26Þ

and

hρ3i ¼
π

3−D
2 μ4−DHD

21þDΓðD−1
2
Þ e

−πImðνÞ
Z

∞

0

dxxD−2jHð1Þ
ν ðxÞj2; ð27Þ

that yields

hρ3i ¼
μ4−Dπ−

D
2
−1

2
Γ
�
νþD

2
−
1

2

�
Γ
�
−νþD

2
−
1

2

�

× Γ
�
−
D
2
þ 1

�
cos ðπνÞ

�
H
2

�
D
: ð28Þ

Incidentally, from the above equations we see that hρii
are constants so hΦ2ðxÞi ∝ hρ3i is constant as advertised
previously. This is consistent with the fact that the dS
background is a maximally symmetric spacetime so
hΦ2ðxÞi is expected to be a constant.
With the component of hρii given in Eqs. (23), (26),

and (28) in a general D-dimensional dS spacetime we
obtain the following relations among them,

hρ1i ¼
�
ðD − 1Þξþ β2

D

�
hρ3i;

hρ2i ¼ −ðD − 1Þhρ1i ¼ −
�
ðD − 1Þ2ξþ ðD − 1Þ

D
β2
�
hρ3i:

ð29Þ

The above relations between hρii will be very helpful in the
following analysis.
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Having each components of hρii at hand, the zero point energy hρi from Eq. (15) is given by

hρi ¼ ð1þ 4ξÞhρ1i þ ð1 − 4ξÞhρ2i þ ½ð1 − 4ξÞðβ2 þDðD − 1ÞξÞ − 2ðD − 1Þξ�hρ3i: ð30Þ

Using the relation given in Eq. (29) this further simplifies to

hρi ¼ 2β2

D
hρ3i: ð31Þ

Similarly, the expectation value hTi from Eq. (14) is obtained to be

hTi ¼ ½ðD − 2Þ − 4ðD − 1Þξ�ðhρ1i − hρ2i −DðD − 1Þξhρ3iÞ þ ½4ðD − 1Þξ −D�β2hρ3i
¼ −2β2hρ3i: ð32Þ

Comparing to Eq. (31) we obtain the interesting result that

hTi ¼ −Dhρi: ð33Þ

It is crucial to note that the above relations are valid for a
general value of D. In particular, we should not set D ¼ 4
in the above relations before performing dimensional
regularizations. The reason is that we work in D ¼ 4 − ϵ
dimension in which hρii, hρi, and hTi will contain the
divergent 1

ϵ terms plus the regular terms. Consequently,
there will be additional finite contributions from the
products of a function of D and each of hρii or hρi.
Intuitively speaking, these are “quantum anomalies” which
cannot be seen classically. More specifically, consider the
relation between hTi and hρi in Eq. (33). If we simply set
D ¼ 4, we obtain the classical result hTi ¼ −4hρi which is
expected for the vacuum zero point energy. However, a
careful investigation shows that this is not true. Indeed, as
we shall verify below, setting D ¼ 4 − ϵ and performing
the dimensional regularization to leading order we have

hTi þ 4hρi ¼ A; A≡ −
H4β2

32π2
ðβ2 þ 12ξ − 2Þ: ð34Þ

The quantity A is a common effect which signals the
quantum “anomalous” contributions. We see that in the
massless limit β ¼ 0 the above anomalous contribution
vanishes. Furthermore, for a massive field if β and ξ arrange

such that ξ ¼ 1
6
− β2

12
the anomalous contribution vanishes

as well.
Similarly, the relation between hρi and hρ3i in Eq. (31)

receives the anomalous correction, yielding

hρi − β2

2
hρ3i ¼

A
4
: ð35Þ

On the other hand, from Eq. (17), combined with
Eq. (33), we obtain the following relation between hPi
and hρi:

hPi ¼ −hρi: ð36Þ

The above relation between hPi and hρi is exact and is
anomaly free. It holds for both massive and massless fields.
Physically this makes sense since we are dealing with
bubble diagrams. As the spacetime is locally Lorentz
invariant, then one requires [63,67,69] hTμνi ¼ −hρigμν
which also yields hPi ¼ −hρi. Now contracting this
tensorial relation with gμν we obtain Eq. (33). However,
as mentioned previously, Eq. (33) does not mean that hTi ¼
−hρi þ 3hPi ¼ −4hρi since D ¼ 4 − ϵ and there are diver-
gent 1

ϵ terms hiding inside hρi. Intuitively speaking, local
Lorentz invariance in dimensional regularization scheme
adds a new “extra dimension” of size ϵ which causes the
anomalous relation Eq. (34).
Now, let us calculate hρi from Eq. (31) with the value of

ρ3 given in Eq. (28). Performing the dimensional regulari-
zation to relevant order we obtain

hρi ¼ A
�
−1
ϵ

þ Δ
2

�
þ H4β2

128π2
ð2 − 8ξ − 3β2Þ; ð37Þ

in which Δ is another common factor defined via

Δ≡ ln

�
H2

4πμ2

�
þ 2Ψ

�
νþ 1

2

�
− π tanðνπÞ; ð38Þ

where ΨðxÞ is the digamma function and we have shifted μ
by γ, the Euler number, which does not affect the physical
result. Furthermore, after performing the dimensional
regularization analysis we can now set D ¼ 4 in which
from Eq. (12) we obtain

ν ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4β2 − 48ξ

q
: ð39Þ

In particular, for the special case of β ¼ ξ ¼ 0, we obtain
the expected result ν ¼ 3

2
for a massless field in the dS
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background. In addition, for a heavy field with β ≫ 1, ν
becomes pure imaginary.
Looking at Eq. (37) we see that the parameter A is the

coefficient of the divergent 1ϵ term so that is why we obtain
the hidden anomalous contribution in Eqs. (34) and (35)
when expanding D ¼ 4 − ϵ.
Finally, after subtracting the divergent 1ϵ term in Eq. (37)

via the appropriate counter terms, the regularized value of
the zero point energy is obtained to be

hρireg ¼
AΔ
2

þ H4β2

128π2
ð2 − 8ξ − 3β2Þ

¼ H4β2

64π2

�
ðβ2 þ 12ξ − 2Þ

�
ln

�
H2

4πμ2

�
þ 2Ψ

�
νþ 1

2

�

− π tanðνπÞ
�
þ 1 − 4ξ −

3

2
β2
	
: ð40Þ

As is common in dimensional regularization approach
the term lnðHμÞ originates from the regularization. To read
off the physical contribution, one has to further renormalize
the above finite term. This can be achieved upon choosing a
physical value for the mass scale parameter μ or if one
compares the values of hρireg at two different energy scales
and look for its running with the change of the energy scale.
As explained previously, depending on the mass of the

field, the index ν in Eq. (39) can be either real or imaginary.
The former happens typically when the field is light or ξ is
not large while the latter corresponds to the case where the
field is heavy with β ≫ 1. Below we study each case
separately.

A. Light field with real ν

Now we consider the case where the field is light enough
so ν is real. A particular case of interest is the massless
limit β ¼ 0. We may also consider different limit of ξ as
well, such as the special cases ξ ¼ 0 and the conformal
limit ξ ¼ 1

6
.

From Eq. (40) it may look that for massless field with
β ¼ 0, we obtain hρireg ¼ 0. However, this is tricky as there
is a particular limit in which the function tanðνπÞ diverges
when both β, ξ → 0. Taking the limit β, ξ → 0 properly,
we obtain

hρireg ¼
3H4

32π2
; ðξ ¼ β ¼ 0Þ: ð41Þ

Another limit of interest is ξ ≪ 1 such that ξ ≪ β2 < 1.
In this limit we obtain

hρireg ≃
3H4

32π2
−
9ξH4

8π2β2
−
H4β2

32π2

�
ln

�
H2

4πμ2

�
þ 10

3

�

þH4β4

64π2

�
ln

�
H2

4πμ2

�
−
31

54

�
; ðξ ≪ β2Þ;

in which the subleading terms of orders ξ2β−4 or β6 and
higher orders are neglected in the above expansion. On the
other hand, for larger values of ξ, we obtain hρireg ∝ β2

with the coefficient depending on the value of ξ. For
example, for the particular limit with ξ ¼ 1

6
we obtain

hρireg ¼ −
H4

96π2
β2 þ H4

64π2

�
ln
�

H2

4πμ2

�
−
1

2

�
β4 þOðβ6Þ;�

ξ ¼ 1

6

�
: ð42Þ

If we further assume that β ¼ 0 so the theory is classically
conformal (with m ¼ 0 and ξ ¼ 1

6
), then the above expres-

sion yields hρireg ¼ 0.
Similarly, for hTireg we can use the anomalous

relation (34) to obtain

hTireg ¼ −4hρireg þA

¼ ð1 − 2ΔÞA −
H4β2

32π2
ð2 − 8ξ − 3β2Þ: ð43Þ

For the particular case of ξ ¼ β ¼ 0 we obtain

hTireg ¼ −
3H4

8π2
; ðξ ¼ β ¼ 0Þ: ð44Þ

Curiously we see the trace anomaly in which hTireg ∝
H4 ∝ R2 ≠ 0. This is the hallmark of quantum field theory
in a curved spacetime [49]. For small value of ξ with
ξ ≪ β2, we obtain

hTireg ≃
−3H4

8π2
þ 9ξH4

2π2β2
þH4β2

8π2

�
ln

�
H2

4πμ2

�
þ 23

6

�

−
H4β4

16π2

�
ln

�
H2

4πμ2

�
−

2

27

�
; ðξ ≪ β2Þ:

On the other hand, for the particular case ξ → 1
6
we obtain

hTireg ¼
H4β2

24π2
−
3ðξ − 1

6
Þ

4π2
H4β2

�
ln

�
H2

4πμ2

�
þ 7

8

�

þO
��

ξ −
1

6

�
2

; β4
�
;

�
ξ →

1

6

�
: ð45Þ

If we further assume β ¼ 0 so the theory is classically
conformal invariant (with m ¼ 0 and ξ ¼ 1

6
), then

hTireg ¼ 0. This shows that there is no trace anomaly in
the quantum level when the theory is classically conformal
invariant. This is in contrast with the result of [49] who
obtained hTireg ∝ R2 ∝ H4 when ξ ¼ 1

6
and β ¼ 0. Here we

have a nondynamical background where the geometry is
fixed. For a dynamical gravity, one requires the R2 counter
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term to renormalize the graviton’s n-point function. The
anomaly then will be originated from this R2 counterterm.

B. Heavy field with imaginary ν

For the heavy field with β ≫ 1, the index ν in Eq. (39)
becomes pure imaginary. All our results such as Eq. (40)
are formally valid with the understanding that ν≡ iν0 with

ν0 ≡ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β2 þ 48ξ − 9

q
≃ β: ð46Þ

Correspondingly, Eq. (39) yields

hρireg ¼
H4β2

64π2

�
ðβ2 þ 12ξ− 2Þ

�
ln

�
H2

4πμ2

�
þ 2Ψ

�
iν0 þ

1

2

�

− iπ tanhðν0πÞ
�
þ 1− 4ξ−

3β2

2

	
ð47Þ

In the limit ν0 ≫ 1, we have

2Ψ
�
iν0 þ

1

2

�
− iπ tanhðν0πÞ → 2 lnðν0Þ þOðν−20 Þ: ð48Þ

Plugging this relation into Eq. (47), assuming that β ≫ ξ
and shifting the mass scale μ by a constant value, we obtain

hρireg ¼
H4β4

64π2
ln

�
ν20H

2

4πμ2

�
þOðβ2H4Þ: ð49Þ

Now noting that ν0 ≃ β ¼ m
H, we obtain

hρireg ¼
m4

64π2
ln

�
m2

4πμ2

�
þOðm2H2Þ: ð50Þ

The above result agrees with the vacuum zero point energy
density in flat background [67,69–73]. This result is also
obtained in the black hole background [74] when the
Compton wavelength of the field is much smaller than
the Schwarzschild radius of the black hole. As argued
in [67,69] one expects that hρvi for a heavy field in a curved
background agrees with the corresponding result in a flat
background. The reason is that the energy density is a local
property of the spacetime. Since the Lorentz invariance is a
local symmetry in GR, then the equivalence principle
requires that hρvi for a heavy field in a curved background,
with the Compton wavelength much smaller than the
curvature radius of the spacetime, agrees with hρvi in a
flat background. Nonetheless, it is an interesting exercise to
demonstrate this physical expectation explicitly as we
showed above.
Since we work in the test field limit, we have to make

sure that the induced vacuum energy density from quantum
fluctuations does not affect the background geometry. For
this to be the case, we require hρireg ≪ 3M2

PH
2 in which

MP is the reduced Planck mass. Correspondingly, this
absence of the backreaction imposes the following upper
bound on the mass of the quantum field

β <

ffiffiffiffiffiffiffi
MP

H

r
: ð51Þ

This is an interesting bound. For example, suppose the
background dS represents an inflationary universe. This is a
good approximation as during inflation the background is
very nearly like a dS spacetime. Upper bound on the
amplitude of primordial tensor perturbations from the
Planck observation [61,62] requires that H ≲ 10−6MP.
This imposes the bound β < 103 in order for our heavy
field to remain a test field during inflation. A superheavy
field with β much larger than the bound given in Eq. (51)
would modify the background geometry and one has to
solve the mode function with these corrections included.

IV. DENSITY CONTRAST AND SKEWNESS

In the previous analysis we have calculated the average
physical quantities such as hρi. However, as the quantum
field is fluctuating, there are fluctuations in ρ as well. In this
section we calculate the variance in the energy density and
pressure and their contrasts, i.e., δρ

hρi and
δP
hPi. As the analysis

are complicated, we restrict ourselves to the spacial case
ξ ¼ 0 but for arbitrary value of β. In addition, we also
calculate the skewness which is a measure of the non-
Gaussian distribution of the energy momentum tensor field.
To simplify the notation, let us absorb the parameter β

into ρ3 by defining

ρ̃3 ≡ β2ρ3 ¼
m2

2
Φ2: ð52Þ

Then setting ξ ¼ 0 the energy density ρ is simply given by

ρ ¼ ρ1 þ ρ2 þ ρ̃3; ð53Þ

while Eqs. (29) and (31) yield the following relations
among hρii,

hρi ¼ 2hρ1i ¼
−2

D − 1
hρ2i ¼

2

D
hρ̃3i: ð54Þ

As explained previously, it is important that we do not set
D ¼ 4 at this stage. We set D ¼ 4 only at the end of
dimensional regularization where the divergent term and
the leading finite terms are extracted from the analysis.

A. Density contrast

We are interested in the variance δρ2 ≡ hρ2i − hρi2
which is given by
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δρ2 ¼ hρ21i þ hρ22i þ hρ23i þ hρ1ρ2i þ hρ2ρ1i
þ hρ1ρ3i þ hρ3ρ1i þ hρ2ρ3i þ hρ3ρ2i
− ðhρ1i2 þ hρ2i2 þ hρ3i2Þ − 2hρ1ihρ2i
− 2hρ1ihρ3i − 2hρ2ihρ3i: ð55Þ

To proceed further we need to calculate hρiρji. Performing
various contractions (see the Appendix for further details),
one can show that

hρ21i ¼ 3hρ1i2; hρ̃23i ¼ 3hρ̃3i2: ð56Þ

The above results are understandable since Φ is a Gaussian
field while ρ1, ρ3 are made of the quadratic powers of Φ
so the Wick contractions yield the factor 3 above. On the
other hand, the expectation value hρ22i is somewhat non-
trivial as we have the integration of the components of
the momentum in D − 1-dimensional space. Performing
the appropriate contractions and the integrations over the
momentum, we obtain (see the Appendix for further
details)

hρ22i ¼
�
1þ 2

D − 1

�
hρ2i2: ð57Þ

From the above relations for hρ2i i we obtain

δρ21 ¼ 2hρ1i2; δρ22 ¼
2

D − 1
hρ2i2; δρ̃23 ¼ 2hρ̃3i2;

ð58Þ

which will be useful later on.
On the other hand, one can check that the average of the

cross terms hρiρji with i ≠ j commute:

hρ1ρ2i¼hρ1ihρ2i; hρ1ρ̃3i¼hρ1ihρ̃3i; hρ2ρ̃3i¼hρ2ihρ̃3i:
ð59Þ

Correspondingly, the variance δρ2 is obtained to be the sum
of the variances associated to individual contributions:

δρ2 ¼ δρ21 þ δρ22 þ δρ̃23

¼ 2ðhρ1i2 þ hρ̃3i2Þ þ
2

D − 1
hρ2i2

¼
�
2

�
1

4
þD2

4

�
þ 2

D − 1

ðD − 1Þ2
4

�
hρi2; ð60Þ

yielding,

δρ2 ¼ DðDþ 1Þ
2

hρi2: ð61Þ

Correspondingly, the density contrast is obtained to be

δρ

hρi ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðDþ 1Þ

2

r
; ð62Þ

in which the plus sign above correspond to an overdensity
while the minus sign represents and underdense region
under quantum fluctuations.
The regularized density contrast after setting D ¼ 4 − ϵ

and setting ϵ → 0 is given by

�
δρ

hρi
�

reg
¼ �

ffiffiffiffiffi
10

p
: ð63Þ

This agrees exactly with the results in [69,74] obtained
for heavy fields in flat as well as in black-hole back-
grounds. However, from the above analysis we see that the
result (63) is general and is independent of the mass of the
field. The fact that the density contrast is independent of
the mass and only depends on the dimensionality of the
spacetime [as given in Eq. (62)] is an intriguing result. As
argued in [69], the fact that δρv ∼ hρvi indicates that the
distribution of the vacuum zero pint energy is nonlinear and
nonperturbative, yielding to an inhomogeneous and anis-
tropic background on small scales, see also [75–78] for a
similar interpretation.
Having calculated the density contrast, it is also instruc-

tive to calculate the contrast in pressure δP
hPi. We have seen

that hPi ¼ −hρi so one may naively expect that the
formula (62) should hold for the pressure contrast as
well. However, there are subtlety here, yielding to a
different result. Decomposing the three components of
P ¼ P1 þ P2 þ P3 as

P1≡ð∂tΦÞ2
2

; P2≡ 3−D
2ðD−1Þg

ij
∂iΦ∂jΦ; P3≡−

m2
Φ
2

Φ2;

ð64Þ

and comparing with Eq. (18), we see that

P1 ¼ ρ1; P2 ¼
3 −D
D − 1

ρ2; P3 ¼ −ρ̃3: ð65Þ

Indeed, the changes in P2 compared to corresponding value
for ρ2 yield to a different result for the pressure contrast.
Following the same steps as above, we obtain

δP2 ¼ δP2
1 þ δP2

2 þ δP2
3

¼ 2ðhP1i2 þ hP3i2Þ þ
2

D − 1
hP2i2

¼ D3 − 5Dþ 8

2ðD − 1Þ hPi2: ð66Þ
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Correspondingly, the pressure contrast is

δP
hPi ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D3 − 5Dþ 8

2ðD − 1Þ

s
: ð67Þ

It is instructive to calculate δP
δρ. Combining Eqs. (67)

and (62), and noting that hPi ¼ −hρi, we obtain

δP
δρ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D3 − 5Dþ 8

DðD2 − 1Þ

s
: ð68Þ

After setting D ¼ 4 − ϵ with ϵ → 0, we obtain

�
δP
δρ

�
reg

¼ �
ffiffiffiffiffi
13

15

r
: ð69Þ

To find a physical interpretation for the meaning of the
above ratio, let us treat the vacuum zero point energy as a
cosmic fluid with the equation of state w≡ P

ρ. At the
background level, from Eq. (36) we have w ¼ −1 as
expected from a vacuum zero point energy. On the other
hand at the perturbation level Eq. (69) suggests that the

effective equation of state is w ¼ −
ffiffiffiffi
13
15

q
so the repulsive

strength of the dark energy is slightly reduced. This may be
interpreted due to quantum nature of the zero point
fluctuations unlike the usual picture that the vacuum zero
point energy (i.e., cosmological constant) is uniformly
distributed in the fabric of spacetime with a uniform
equation of state w ¼ −1. Having said this, we comment
that the above discussion about the effective equation of
state of the vacuum zero point energy is only qualitative and
care must be taken about its cosmological implications.
While the above analysis indicates that the density

contrast of the vacuum zero point energy is large, but
one should also look at the correlation length L of these
perturbations. The correlation length of zero point fluctua-
tions was studied in [69] in which it is obtained to be at the
order L ∼m−1. Therefore, for heavy field with m ≫ H, the
correlation length is deep inside the horizon. On the other
hand, for a light field with m≲H, the correlation length is
comparable to or larger than the Hubble radius. The fact
that we have large density contrast with long mode
perturbations (for light field) can have interesting cosmo-
logical implications.

B. Measure of skewness and non-Gaussianity

As the distribution of the energy momentum tensor
field can be asymmetric and non-Gaussian, it is instruc-
tive to calculate the skewness associated to vacuum zero
point fluctuations measured by δρ3 ≡ hρ3i − hρi3. A large
value of δρ3 indicates that the system is highly non-
Gaussian. Since the source of the energy is quantum

fluctuations, it would not be surprising that the system be
highly non-Gaussian.
Following a similar approach as has been employed for

calculating the variances, one can calculate δρ3. To do this,
one can check that (see the Appendix for further details)

hρ2i ρji ¼ hρ2i ihρji i ≠ j; ð70Þ

and

hρiρjρki ¼ hρiihρjihρki i ≠ j ≠ k: ð71Þ

The above relations simplify δρ3 greatly, yielding

δρ3 ¼ δρ31 þ δρ32 þ δρ̃33 þ 3hρ1iðδρ22 þ δρ̃23Þ
þ 3hρ2iðδρ21 þ δρ̃23Þ þ 3hρ̃3iðδρ21 þ δρ22Þ; ð72Þ

with δρ2i given in Eq. (58).
Now our job is to calculate hρ3i i and then δρ3i . Performing

various contractions, one can show that the following
relations hold (see the Appendix for further details):

hρ31i ¼ 15hρ1i3; hρ̃33i ¼ 15hρ̃3i3; ð73Þ

while

hρ32i ¼ hρ2i3
�
1þ 6

D − 1
þ 8

ðD − 1Þ2
�
; ð74Þ

yielding

δρ31 ¼ 14hρ1i3;

δρ32 ¼
�

6

D − 1
þ 8

ðD − 1Þ2
�
hρ2i3;

δρ̃33 ¼ 14hρ̃3i3: ð75Þ

Plugging the above values of δρ3i in Eq. (72), using Eq. (58)
for δρ2i and Eq. (54) expressing hρii in terms of hρi we
finally obtain

δρ3

hρi3 ¼
1

2
ð2D3 þ 3D2 þDþ 4Þ: ð76Þ

Plugging D ¼ 4 with ϵ → 0 yields

δρ3

hρi3 ¼ 92: ð77Þ

Therefore, we see that the distribution of the energy density
is highly non-Gaussian.
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Similarly, for δP3 we obtain

δP3

hPi3 ¼
2D5 −D4 − 3D3 þD2 − 11Dþ 28

2ðD − 1Þ2 ð78Þ

Substituting D ¼ 4 − ϵ with ϵ → 0 gives

δP3

hPi3 ¼
800

9
: ð79Þ

We see that the distribution of P is highly non-Gaussian
as well.

V. SUMMARY AND DISCUSSIONS

In this work we have studied the vacuum zero point
energy of scalar field in dS background. We have allowed
the scalar field to have an arbitrary mass parametrized via
β ¼ m

H and with the conformal coupling ξ. To calculate
the vacuum zero point energy and its fluctuations we
have employed the dimensional regularization scheme in
D ¼ 4 − ϵ spacetime. Performing the analysis in a general
D dimension, the regularized physical quantities are read
off after the subtraction of the divergent 1

ϵ terms via
appropriate counter terms.
We have calculated hρvi; hPvi and hTvi. We have shown

that hρireg ¼ −hPireg as expected from the local Lorentz
invariance but the classical relation hTvireg ¼ −4hρvireg is
anomalous under quantum corrections. The anomalous
correction is given by the factor A defined in Eq. (35)

which vanishes only when β ¼ 0 or ξ ¼ 1
6
− β2

12
. We have

looked at hρvireg and hTvireg in various limits of the
parameters space ðβ; ξÞ. It is shown that for a massless
scalar field with ξ ¼ 0, the vacuum zero point energy is
hρireg ∝ H4 ∝ R2 which is the hallmark of quantum fields
in a curved spacetime. In addition hTvireg ¼ −4hρvireg ∝
H4 ∝ R2 so we have the usual trace anomaly when m ¼ 0

and ξ ≠ 1
6
. On the other hand, the trace anomaly disappears

in the conformal massless limit β ¼ 0; ξ ¼ 1
6
.

We have shown that for the heavy fields with β ≫ 1, the
value of hρvireg ∼m4 agrees with its value in a flat back-
ground plus the subleading m2H2 corrections. This is
consistent with the physical expectation since the energy
density is a local property of the spacetime and the
equivalence principle requires that its value should agree
with the corresponding value in a flat background up to
subleading corrections.
We have calculated the energy density contrast and

the pressure contrast for the case when ξ ¼ 0. In particular,
it is shown that for both massive and massless case
δρv
hρvi ¼ � ffiffiffiffiffi

10
p

as first observed in [69] in the limit of the

heavy fields in dS background. This indicates that the
distribution of the vacuum zero point energy is nonlinear.

This can have interesting implications for the cosmological
constant problem, indicating a very inhomogeneous and
anisotropic background on small scales. In addition, we
have shown that δP2

δρ2
≠ 1 indicating a complicated picture

for the effective equation of state associated to the vacuum
zero point energy as a cosmic fluid. Since the statistical
distribution of the vacuum zero point energy can be
asymmetric and non-Gaussian we have calculated δρ3 as
a measure of skewness and non-Gaussianity. It is shown
that δρ3v ∼ hρvi3 so the distribution of the vacuum zero point
energy is highly non-Gaussian.
To simplify the analysis we have worked in the test field

limit in which the resultant vacuum zero point energy
density is assumed to be much smaller than the background
dS energy density. For this picture to hold, we require

β <
ffiffiffiffiffi
MP
H

q
. If the field is superheavy, then one cannot

neglect the backreaction of the vacuum zero point energy
on the background geometry. In addition, to solve the
mode function analytically, we have neglected the self-
coupling of the scalar field such as the λΦ4 interaction. It
would be interesting to extend the above analysis to the
case where the field has a self-interaction and to see if the
above conclusions about the vacuum energy density and
its perturbations hold for an interacting field theory
as well.
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APPENDIX: MULTIPLE CONTRACTIONS
USING WICK THEOREM

In this Appendix we outline the steps which are required
to calculate higher expectations like hρ2i i and hρ3i i for the
variance in Sec. IVA and skewness in Sec. IV B. While the
analysis can be done with brute force in Fourier space but
the results can be obtained in real space as well, using the
Wick theorem [79]. The main ingredient is that ΦðxÞ is a
Gaussian random field (i.e., a free field) so to calculate
higher correlations involving hΦðxÞni with n > 3, one can
use the Wick theorem to reduce them to combinations
of hΦðxÞ2i.
Let us start with ρ1 ¼ 1

2
Φ̇2, yielding

hρ21i ¼
1

4
hΦ̇ðxÞΦ̇ðyÞΦ̇ðzÞΦ̇ðwÞi; ðA1Þ

with the understanding that at the end x ¼ y ¼ z ¼ w.
Employing the Wick theorem for the Gaussian field Φ̇ðxÞ,
we obtain
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hΦ̇ðxÞΦ̇ðyÞΦ̇ðzÞΦ̇ðwÞi ¼ hΦ̇ðxÞΦ̇ðyÞihΦ̇ðzÞΦ̇ðwÞi þ hΦ̇ðxÞΦ̇ðzÞihΦ̇ðyÞΦ̇ðwÞi þ hΦ̇ðxÞΦ̇ðwÞihΦ̇ðyÞΦ̇ðzÞi:

Now, setting x ¼ y ¼ z ¼ w, from the above three terms
we simply obtain

hρ21i ¼ 3hρ1i2: ðA2Þ

In a similar manner, we also obtain hρ̃23i ¼ 3hρ̃3i2.
On the other hand, the analysis for hρ22i is somewhat

nontrivial as we have spatial derivatives. More specifically,

hρ22i ¼
1

4
gijgklhΦ;iðxÞΦ;jðxÞΦ;kðyÞΦ;lðyÞi: ðA3Þ

Using the Wick theorem, the result can be written as
follows:

hρ22i ¼
1

4
gijgkl½hΦ;iðxÞΦ;jðxÞihΦ;kðyÞΦ;lðyÞi

þ 2hΦ;iðxÞΦ;jðyÞihΦ;kðxÞΦ;lðyÞi�

¼ hρ2i2 þ
1

2
hΦ;iðxÞΦ;jðxÞihΦ;iðxÞΦ;jðxÞi: ðA4Þ

Now, using the isotropy of the background, one can write

hΦ;iðxÞΦ;jðxÞi ¼ cδijhð∇ΦÞ2i: ðA5Þ

To obtain the coefficient c, we contract the above expres-
sion with δij and noting that the spatial dimension isD − 1,
we obtain

c ¼ 1

D − 1
; ðA6Þ

and correspondingly,

hΦ;iðxÞΦ;jðxÞi ¼
δij

D − 1
hð∇ΦÞ2i ¼ 2

D − 1
hρ2i: ðA7Þ

Plugging the above result in Eq. (A4) we obtain

hρ22i ¼ hρ2i2 þ
2

ðD − 1Þ hρ2i
2: ðA8Þ

Now for the higher orders in a general manner from the
Wick theorem we obtain

hΦðx1ÞΦðx2Þ…Φðx2nÞi¼ð2n−1Þð2n−3ÞhΦðxÞ2i: ðA9Þ

In particular, to calculate hρ31i and hρ̃33i with 2n ¼ 6, the
symmetry factor is 5 × 3 ¼ 15 yielding to Eq. (73).
Now to calculate hρ32i, we note that

hð∇ΦÞ6i ¼ hΦ;iΦ;iΦ;jΦ;jΦ;kΦ;ki: ðA10Þ

There are three types of contractions. The first type is that
only identical indices contract to each other. There is only
one way for this type of contraction, yielding simply the
result hρ2i3. The other contraction is that two different
indices contract with each other while the remaining two
identical indices contract with each other, like
ðiiÞ; ðjkÞ; ðjkÞ. There are 6 different ways to do this.
Then using the identity (A7) this yields the total contri-
bution 6

D−1 hρ2i3. The last type is to contract all different
indices like ðijÞ; ðjkÞ; ðkiÞ. There are 8 possible ways to do
it, and using the identity (A7), this yields the total
contribution 8

ðD−1Þ2 hρ2i3. Combining all, we obtain

hρ32i ¼ hρ2i3
�
1þ 6

D − 1
þ 8

ðD − 1Þ2
�
; ðA11Þ

as reported in Eq. (74).
The last thing to show is that for i ≠ j, hρiρji ¼ hρiihρji

and hρ2i ρji ¼ hρ2i ihρji while hρiρjρki ¼ hρiihρjihρki for
i ≠ j ≠ k. To verify these identities, we note that

hΦ̇ðxÞΦðxÞi ¼ 1

2

d
dt

hΦðxÞ2i ¼ 0: ðA12Þ

The final equality holds because, as we have seen in the
main text, hΦðxÞ2i ∝ hρ3i is a constant. This is under-
standable since the dS spacetime is a maximally symmetric
space so hΦðxÞ2i is independent of xμ. Similarly, one has

h∂iΦðxÞΦðxÞi ¼ 1

2
∂ihΦðxÞ2i ¼ 0: ðA13Þ

Equipped with the above two identities and using the
fact that the background is isotropic one can show by
direct examinations that for i ≠ j, hρiρji ¼ hρiihρji,
and hρ2i ρji ¼ hρ2i ihρji while for i ≠ j ≠ k, hρiρjρki ¼
hρiihρjihρki.
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