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Large inflationary logarithms in a nontrivial nonlinear sigma model
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Loops of inflationary gravitons are known to induce large temporal and spatial logarithms that can cause
perturbation theory to break down. Nonlinear sigma models possess the same kind of derivative interactions
and induce the same sorts of large logarithms, without the complicated index structure and potential gauge
problem. Previous studies have examined models with zero field space curvature that can be reduced to
free field theories by local, invertible field redefinitions. Here we study a model that cannot be so reduced
and still shows the same sorts of large logarithms. We compute the evolution of the background at 1-loop and
2-loop orders, and we find the 1-loop f and y functions.
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I. INTRODUCTION

The background geometry of cosmology is characterized
by scale factor a(t), Hubble parameter H(¢), and first slow-
roll parameter e(7),

ds’ = —df? + 2(H)di-di = H()="2,
a
H

The accelerated expansion of inflation [H(f) > 0 with
0 < e(r) < 1] rips virtual scalars and gravitons out of the
vacuum. This is the basis for the primordial spectra of
scalars [1] and tensors [2]. At some level these quanta
must interact among themselves and with other particles.
Gravitons are especially interesting because their cou-
plings are universal and because their tensor structure
allows them to mediate effects which scalars cannot.
For example, on de Sitter background [e(7) = 0] 1-loop
gravitons modify the plane wave mode function u(t, k) of
gravitational radiation [3] and the gravitational response
¥(z,r) to a point mass [4] to

16GH?

u(t, k) = u(t, k){l + In?(a) + O(Gz)}, (2)

GM 103G 8GH? 3 ’
T(t,r)——m‘{ m— . In (a)—l—O(G) .
(3)
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Similar results have been obtained for the corrections of
inflationary gravitons to fermions [5], to electrodynamics
[6,7], and to massless, minimally coupled scalars [8].

A fascinating aspect of these corrections is that the steady
production of inflationary gravitons endows them with a
secular growth which must eventually overwhelm the loop-
counting parameter GH? provided inflation persists long
enough. One must develop a nonperturbative resummation
technique in order to evolve past that point. Nonlinear sigma
models provide a useful testing ground for developing such
a technique because they possess the same sorts of deriva-
tive interactions as gravitons, and induce the same sorts of
large logarithms, without the complicating tensor structures
or the potential for gauge dependence [9-12]. A successful
technique has been devised through combining a variant of
Starobinsky’s stochastic formalism [13,14] with a variant of
the renormalization group [15,16]. Even better, the tech-
nique can be generalized from de Sitter to an arbitrary
cosmological background (1) which has undergone primor-
dial inflation [17]. Applying this technique shows that the
large scales of primordial inflation can be transmitted to late
time [18].

The obvious next step is generalizing the resummation
technique from nonlinear sigma models to quantum gravity.
This seems to be entirely possible and works for the one
graviton loop correction on which it has been checked [8].
However, our purpose here is to clear up a worry concerning
the sorts of nonlinear sigma models on which the resum-
mation technique has so far been applied. Specifically, both
of those models can be reduced to free theories by means of
local invertible field redefinitions, which means that their
flat space S-matrices are unity by Borchers theorem [19].
That in no way precludes interesting evolutions for the
scalar backgrounds and for the 1-particle states, and it was
these evolutions which suggested and confirmed the resum-
mation technique. One might still worry that the technique
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FIG. 1.

only works for models which can be reduced to free
theories. The purpose of this paper is to demonstrate that
the resummation technique applies for a model whose flat
space S-matrix is nontrivial.

This paper contains five sections, of which this
Introduction is the first. In Sec. II we describe the old
and new models, and we give the Feynman rules. Section I1I
computes the time-evolving background at 1-loop and
2-loop orders. It also computes and renormalizes the
one-particle-irreducible (1PI) 2-point and 3-point functions
at 1-loop order. The resummation technique is applied in
Sec. IV. Our conclusions comprise Sec. V.

II. THE MODEL

The purpose of this section is to define the model and
give those of its Feynman rules that are required for our
work. We begin by presenting the old models and explain-
ing why their S-matrices are trivial. Then a new model is
proposed by making a small variation that preserves the
lowest order interactions.

The resummation technique was developed based on
work with two nonlinear sigma models [15]. One of these
was based on a single field. All models of this sort can be
made free by a local, invertible field redefinition,

L=~ P(®)0,00,0¢" /5,
d¥Y = f(®)dd = L= —%aﬂwangﬂv\/——g. (4)
A second model was based on two fields,
Log = —%aﬂAayAg””\/—_—% (1 +/21A>26M36,,Bg””\/—_g.
(5)

Although it was not initially realized, this model can also be
reduced to a theory of two free scalars by making a local,
invertible field redeﬁnition,1

=2(ida)elis) @
Y %(1+%A>sin<%3). (7)

'"We thank Arkady Tseytlin for this observation.

= Vigz

1. 3 1. 3
5
) 5 = Viogus ) 6> V12,3456
2/ 4 2/ 4

Primitive interactions of the bare Lagrangian (8). A lines are solid and B lines are dashed.

Hence the flat space S-matrices of (4) and (5) are both unity
by Borchers theorem [19]. That in no way precludes these
models from manifesting interesting evolutions of their
backgrounds and of the single-particle kinematics.

To be certain that the resummation technique does not
rely on having a trivial S-matrix we devised a slight
modification of the 2-field model (5) whose field space
curvature implies that it cannot be reduced to a fee theory,

1 1 A \*
Lyew = —50,A0,Ag" /= ) <1 +4A> 0,B9,Bg""\/—g.

2
(8)

The 3-point coupling in this model is identical to that of the
old model (5), and the 4-point coupling has the same field
content with the old numerical coefficient of % replaced by
%. There are additional 5-point and 6-point interactions
which make only simple contributions to the diagrams we
evaluate in Sec. III,

1 A\ 1 A 3)2
~(1+5A) (aB)* - (3B)*> =>A(0B)* + =—A*(dB)?
/13 3 2 '14 4 2
+ - A%(0B)> + ——A*(0B)*.

A diagrammatic representation of the Feynman rules is
shown in Fig. 1.

The new model (8) is no more renormalizable than the
old one (5). Hence divergences must be subtracted, order-
by-order, using Bogoliubov-Parasiuk-Hepp-Zimmermann
(BPHZ) counterterms [20-23]. The I-loop counterterms
we require are shown in Fig. 2. The first and second
diagrams renormalize the A and B self-masses and corre-
spond to the counterterm,

1 1

ALR) = _ECIAZDADA‘ /=g — ECzAzRaﬂAd,,Agf‘”\/—g
1 1

- E C182DBD31 / —g - E CzBZRaﬂBaUBg”u\/ _g.

(10)

The third diagram is required to renormalize the 3-point
vertex and corresponds to
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FIG. 2. Diagrammatic representation of the 1-loop counterterms we require. The first two diagrams renormalize the A and B self-
masses while the rightmost diagram renormalizes the vertex function. Recall that A lines are solid and B lines are dashed.

1
SLB) = 3 CiapJA9,BA,BG* /=g
— Cyu20,A0,BOBg™ /=g
1
- E C3A32ADBDB\/_—Q

1

—§C4ABZRA()”B@DBQ”DV—Q. (11)

Here R = D(D —1)H? is the Ricci scalar. Section III
will determine the various coefficients in expressions (10)
and (11) as functions of A, D, and the dimensional
regularization scale u.

In D spacetime dimensions, the propagators of both
fields obey the equation

[aP20,iA(x; X)) = DiA(x;x') = isP (x = x').  (12)
The solution consists of a de Sitter invariant part plus a de
Sitter breaking logarithm [24,25],

IA(x;x') = F(Y(x;x")) + k In(ad’),
_ HP2 T(D-1)
S () )
Here Y(x;x') = aad' H*Ax*(x;x') = ad’H*(x — x')? is the

de Sitter length function, and the first derivative of
F(Y(x;x')) obeys

s Q) 3"

. i (n 4+ +2) (y) i2ia

—~ I'(n+3) 4

4
T )

F'(y) =

y (14)

In dimensional regularization the coincidence limits of the
propagator and its derivatives are

iA(x; x) _k[ mot<D2 ) +2In(a )i

0,iA(x;x)| = kHad,, (15)
D -1
N e
0,iA(x; x) = 2kHas",. (16)

We close by commenting on notation. Because the de
Sitter metric g, = a’ N 1s conformal to the Minkowski
metric Nuw» WE adopt a notation where () stands for =2 5o 0
matter what sort of tensor it acts upon. Further we raise and
lower its indices using the Minkowski metric, 0 = #*“d,.
And we define 0> = " 0,0,. To save space we sometimes
write coordinate arguments of the metric and its scale factor
using a subscript or a superscript, asin \/—g(x) = /=g, =
a? and ¢(y) = ¢} = a;*n*. The same notation applies
to derivatives, as in 07 = az

III. EXPLICIT RESULTS

The purpose of this section is to carry out the same
explicit calculations for (8) that were done for the old
model (5) [15,16]. We begin with the 1-loop and 2-loop
expectation values of A(x). Next, the self-masses of A and
B are computed and renormalized at 1-loop order. Finally,
we evaluate the 1-loop vertex function.

A. The 1-loop and 2-loop background

We start with the 1-loop expectation value of A(x) whose
diagrammatic representation is shown in Fig. 3. Because
the 3-point couplings of the old and new models agree, this
diagram is unchanged from the old result [15],

FIG. 3.
A(x).

The 1-loop contribution to the expectation value of
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FIG. 4. Contributions to the expectation value of A(x) at 2-loop order.

AH?
1672

1

(QIA(x)|Q) = [In(a) —§+3—23] +0(2%) | (17)

The 2-loop contributions are shown in Fig. 4. The first
seven diagrams (which we label A,, through A,;) were
calculated in [15]. We need only include a relative factor of
% for each 4-point coupling to express their final contribu-
tions, at leading logarithm order, as multiples of the factor

S =2BH*In?(a)/2'07%

AZa_)_?"S’ Azb—>+8'S, A20—>O'S,

AZd_) —6'S, (18)
3

Aze—)—l—E'S, A2f—)—2S, Azg—)O‘S. (19)

Only the last diagram, A,;, is really new. It has a
symmetry factor of 1, and its initial expression is

d”y\/=g(y)g"* (y)

IA(y3y) - 0,3031'A(y;1)‘

CiA(x;y)
(20)

y=z

The two coincidence limits can be read from (15) and (16)
to give

(21)

where I,, and its leading logarithm result, was given
in [18],

= /dDy\/—g(y)iA(xJ)iA(y;)’) - -

x In?(a).

b
247*
(22)

This is finite and does not require renormalization, so we
can set D =4,

3

Adding this to the leading logarithm results for the first
seven diagrams gives

Ay, — =3-S, Ay —48-S,  A,.—0-S,
A2d —- —6- S, (24)
3
Ape > 4378, Ay =2:5 Ay =08,
3
Ay~ +3°S. (25)

At leading logarithm order the eight diagrams of Fig. 4 sum
to zero, so our result for the expectation value of A is

AH? In(a)

(@A) =50

140/ +001% | (26)

B. The 1-loop self-masses

We now move on to the 1-loop self-masses. Absorbing
the divergences of these reveals curvature-dependent field
strength renormalizations Z, and Zp from the terms
proportional to C,,2 and C,p in expression (10). These
give the y functions that will be used in the renormalization
group (RG) analysis of Sec. IV.

The 1-loop contributions to —iM?3(x;x’) are shown in
Fig. 5. The first diagram is unchanged from the old model,
and the second diagram is just % times the previous result [5],

(=id)?
2

iV () = {%’DD’[;‘A(x; o)
x)]

— kHaP~109,is" (x — x’)},

1
- ED[iA(x;x) i6P (x —

(27)
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FIG. 5. The 1-loop contributions to the A self-mass —iM3 (x; x').

272
—iMj (x;x') = —%5D(x—x’) x —(D—1)kH?*aP. (28)

The counterterm is i times the second variation of (10),

'5D R
—iM2 (x;X') = —Cy e DD’ [%]

+ Cpp20*[RaP20,is" (x — x')].  (29)

Because only (27) diverges in dimensional regularization,
and this diagram is identical to the old model, so too are the
coefficients C4, and Cy,,

22uP=4 F(%— 1)
3222 2(D-3)(D-4)’

2uP-4T(D — 1 ncot(&>
Copr = £ D ( ) : :
4(47)2 F(g) D(D-1)

We move to the B self-mass, whose 1-loop contributions
are shown in Fig. 6. As before, the 3-point diagram is
unchanged from the old model, and the 4-point diagram is
just the result from the old model times %,

.l 2
—iM3, :%DD’[iA(x;x’)}z

—(iA)?0#0"7[(aa')P~20,iA(x;x")d,iA(x;x')], (31)

322kn cot(%) D

8

32H
327°

—iMp = - [i6P (x — x')]

[In(a)a®0,is*(x — x')] + O(D — 4).
(32)

The counterterm is i times the second variation of (10) with
respect to B,

'5D R
—iM3 (x;x') = =C DD’ [IOC,QX)]
(ad')>
+ Cype0*[RaP~20,i8” (x — x')].  (33)

Multiplying the divergences from (32) by % and combining
with those from (31) gives

12D r (% - 1)

Cipp = — 1 , 34
18 1672 2(D —3)(D —4) (34)
_3/12'uD—41—*(D_1)7TCOt<%)
8 (4n) r(g) D(D—1)
> p-4 T[(2-1 D—2
_Au (-1) (35)

3272% 2(D-3)(D-4)D-1"

C. The 1-loop vertex function

In this subsection we first isolate the primitive diver-
gences of the 3-point vertex —iV/(x;y;z) at 1-loop order.
These divergences are removed by the counterterm (11),
which determines the coefficients C 52, Coyp2, C3452, and
Cysp2- We regard the C, 52 counterterm as a curvature-
dependent renormalization of the bare 3-point coupling and
infer the corresponding beta function as

352
dln (u)

The tree order vertex can be inferred from the Feynman
rules,

—iVo(x;y;2) = —idy/—g(x) g 0,6 (x — y)9,6" (x — 2).
(37)

Sh=Cpup xR+0(M) = p= (36)

The various 1-loop contributions are shown in Fig. 7.
Because the leftmost diagram involves only 3-point cou-
plings, it is unchanged from the old model [16],

FIG. 6. The 1-loop contributions to the B self-mass —iM%(x; ).

065001-5



C. LITOS, R.P. WOODARD, and B. YESILYURT PHYS. REV. D 108, 065001 (2023)

FIG. 7. The I-loop contributions to the ABB vertex —iV(x;y;z).

. iﬂ:i ) o Y - Qj N .
=iV, (x;y:2) = TDX%%{W% 070 (x; y) /=502 05 iA (x; Z)IA(y:Z)}

2 ussl e -]

13 Tl . Q, .
- 3%62{, /=0,y 0piA(y; )/=0.97 0%iA(y: 2) [5D(x -y)+8P(x— z)} } (38)
The second and third diagrams involve a single 4-point coupling and are therefore % times the results of the old model [16],
. 343 vl 2 38 oy v
=iV 1y (x:3:2) = g Dy VG O 1A (i) | 0,67 (x = 2) p + T a5y { gt dhia )
X /=Gy il (25 y) 8P (x — Z)}, (39)
) 343 art v D 3 oy
=iVie(xyiz) = ?Dz{\/—gxﬁ %uliA(x;2)]20,67 (x — y)} + T&aaﬁ{\/—gydy’ ilA(y: 2)
X /=G0 0 (y; 2)8P (x — y)}- (40)

Before considering the fourth diagram, we combine and reduce expressions (38)—(40). Because the last two differ from
the old model, the reduction is more complicated. Adding all three terms and performing some judicious partial integrations
gives

, i2’ Doa. . . 343
=iV 1ane = 5 D0t (aya. )P 2B (33 2) i (x: )05 A (v 2) } + -

. : Dyt {ab2[ia(i2)| 08 (v - 2)}

+ %Dzaﬁ {ai? - [iA(y; z)} S0P (x - y)} - ’gDyDZ{ [iA(y; z)} ’ [519 (x—y) +6°(x - Z)} }

Lo (aa)rointiainia) [Pl ) + 06 -2)] | (@)

After considerable manipulations explained in the Appendix A expression, the divergent part of (41) can be brought to
the form

0P (x — 1)9,00 (x — 2) — iV (%33 2). (42)

—iVigpe(X;3352) = —

where —iV(x;y; z) consists of higher derivative divergences,

065001-6
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5 3,04 [(2-1 9 62 (x — v)HSP (x —
iV (xysz) = O (2 ) Dx[” ST Z)]

1627 D(D—3)(D—4) ag™?
S5iBuPAr(2 -1

+— .
12827(D-3)(D—4) |

[5D(x —3)0,6°(x — z)} iy [0”5D(x —y)-8P(x - z)} }

/131“(% - 1) i8” (x — 2)8°(x - y)
6473(D - 3)(D — 4) B { a4 ] ' )

I
We call the new diagram —iV,(x;y;z), and its  Adding the primitive divergences from (42) to this gives
contribution is

—iVia = _l_\/—gﬂy 0,6°(x =) /13H2 2
X 0,6°(x = 2) - 1A (x: ). gy TVimnle2id) = I 0= 99,00~ 2)
This is just the bare vertex (37) times the simple factor {2 7 X —#cot <D2 >
%2 iA(x; x). Recall that the coincident propagator is given P41 % ) )
in Eq. (15), 47:%(D e 4)] iV(x;y:2)
—iViy = —i%aD 20460 (x — y) (47)

x 0,00 (x - Z)k[—ﬂCOt(DZ ) +2In(a )] (45)

The primitive divergences (47) are absorbed by the third
33k < D ﬂ> variation of (11),

= —IT X —m cot
x a20"8P(x — y)9,6°(x —z) + O(D —4). (46)

i8S ,p2[A, B] 6P (x — y)0,6P (x — z) 6P (x = v)9,8P (x — 2)
4 = —iCup2D K iCy 2D, 0% £
SACISB(OB() T @ Ty a
_ 0,0°(x—y)xP(x-2)] . 5P (x = y)8P (x - 2)
+ iCypp2 D0k { s g } — iC3up DD, { 4D }
— iCyppRa20"8P (x — y)9,6° (x — z). (48)
Adding (48) to (47) and demanding regularity as D — 4 PBub-4r (Q _ 1)
implies Coipe = — 2 (51)

6477(D —3)(D —4)’
#ur(8-1)

Ciap = o , (49) 3, D—4 3rcot(2Z)0(D - 1)
1672D(D — 3)(D — 4) Congr = —F ( 2 )D
324°D(D - 1) 8r'(2)
D
sPub=r(2-1) _ r(3+1) (52)
Coapr =~ : (50) (D-3)(D-4)|

1287%(D — 3)(D — 4)
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Because we have suppressed the finite contributions the
renormalized result will not be given, but let us take note of
the fact that logarithms of 4 come in the form In(%7). We can
regard Cy,p2 X R = 04 as a curvature-dependent renormal-
ization. The associated 1-loop beta function (36) is

W PE 5
b=~ @t oW | (53)

IV. SUMMING THE LOGARITHMS

Here we demonstrate that the results of the previous
section for the new model (8) can be explained using the
same combination of Starobinsky’s stochastic formalism
and the renormalization group that worked for the old
model (5). We begin by deriving the curvature-dependent
effective potential and showing that it explains the evolu-
tion of the background. We next apply our explicit results
for the 1-loop counterterms to work out the curvature-
dependent renormalization group corrections.

A. Curvature-dependent effective potential

The shift symmetry of the field B(x) evident in (8)
prevents it from developing an effective potential.
However, A(x) does acquire one from integrating out the
differentiated B fields from the A field equation in the
presence of a constant A(x) = A, background,

5S[A, B
SA(x)

l_ 0, {\/_—ggﬂ”ayA} —% (1 + %A)3

x 0d,B0,Bg"\/—g = 0. (54)

One can see from the Lagrangian (8) that a constant A(x) =
A, background just renormalizes the B field strength,

iA(x; x')

(QIT[B(x)B(X)]|Q)4-4, = 42407 (55)

Hence the A equation can be recognized as that of a scalar
potential model,

5;[‘/4(;; I, 9, [\/—_gg’”’avA] —% (1 + %A)3
\/_gg””d O iA(x; x| v,
(1 + iA) %6)
(%)Akhﬂ\/:g
=0, [v=ag0.A] + Ty
=3, [V=a9"a.4] - Viy(4)v=7. (57

Note that we have employed expression (16) to evaluate the
coincidence limit of the doubly differentiated propagator.
This is free of divergences, so we can set D = 4 to find

Vi (A) = —
eff() 4

3H* A

3AH* A \7!

We see that the new model’s curvature-dependent effective
potential (58) is almost the same as the old model’s result of

=3 In(1 +4A) [15].

Starobmsky long ago showed how to sum the leading
logarithms of a scalar potential model like (57) [13,14]. The
leading logarithms contained in correlators of the quantum
field A(z, X) turn out to agree, to all orders [9], with those of
stochastic random field \A(¢, X) which obeys the Langevin
equation

HIA = ] = Vig(A). (59)
The “stochastic jitter” in this equation is supplied by the

time derivative of the infrared-truncated, free field expan-
sion of A(t,X),

atl d3k H
Ao (t,%) = /

(k). o' (K')] =

a(lg)e”;‘f—i— aT(E)e_i/:‘f},
(2n 353(1{ K ). (60)

If we turn off the stochastic jitter, then Eq. (59) is simple to
solve, adopting the initial condition .4(0, X) = 0 and noting
that In(a) = Hr,

4 J2H?1n(a)

£ g = |41 Yy
Al 9)a-0 = 3 T

~ AH? In(a)
T 16x?

/13H41n2(a)
- 1T 4 +0(/15>~ (61)

Because it is easier to fluctuate down the potential than up,
we expect that the effect of adding stochastic jitter is to
accelerate the evolution of .4 down its potential. Solving
(59) perturbatively gives

AH? In(a) A*H3 ,
A=At g 262/‘”“40( )
BH*In*(a ) BH3

o [ AR + 00 (62

2117.[4

By taking the expectation value of the previous equation,
and using the mode sum (60) to conclude,

065001-8
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2 1n(a
@A) =0, (@40 =5 (6
we find
2 In(a
<MAQEMﬁJ£££J+OM% (64)

This is exactly the result (26) we got by explicit compu-
tation, which is impressive confirmation of the stochastic
prediction.

B. Curvature-dependent renormalization group

In a theory with derivative interactions not all of the large
logarithms derive from stochastic effects. Some of them
arise instead from the incomplete cancellation between
primitive divergences—which have no D-dependent
powers of the scale factor—and counterterms—which
inherit a a” from the measure factor /=g,

<gi_:> - <”D[;4fz_4> — I (’%) +O(D—4). (65)

These logarithms can be recovered using the renormaliza-
tion group, which follows factors of In(x). Because we are
only interested in cases where the factors of In(a) are not
suppressed by inverse powers of the scale factor, the
counterterms of concern are those that can be viewed as
curvature-dependent renormalizations of bare parameters
[15]. Of the four counterterms (11) required to renormalize
the vertex function at 1-loop order we have already seen
that the contribution proportional to Cy4 52 can be viewed as
a curvature-dependent renormalization of the bare vertex,
and we used this to compute the associated beta function
(36). Of the four counterterms (10) required to renormalize
the 1-loop self-masses it is the contributions proportional to
C, 42 and C,p that can be regarded as curvature-dependent
field strength renormalizations,

Zy=1+ Cye x R+ 0(2%),

Zg =1+ Cype x R+ O(2%). (66)

Our explicit results (30) and (35) give the associated
gamma functions,

_oln(z,) A H?

= ) =—+ 00",

7a 3272

dln(y?) 64

_0 In(Zp)

A2H?
YB = -

>+ 0(1%).

(67)

We are ready to investigate the Callan-Symanzik equa-
tions for the n-goint Green functions G, (x1; x; ...; X3 43 )
of the field A,

0 0

This equation can be solved using the method of character-
istics. We first find a running coupling constant 4(u) which
obeys the differential equation and initial condition,

oA

di oL
oA

M@——ﬁ(/_l(ﬂ))v Mpo) = 2= p(A) > =p(2).  (69)

We can then write the solution as

G (1303 5 X5 A p) = G (X43%03 .3 %,5 A1) o)

<exp |- / B0 o

0

The 1PI n-point functions obey a similar equation with the
last term replaced by —ny,.

[
Inserting the f function (53) into (69), and ignoring higher
loop corrections yields

- A
Alp) = :
MH?
1-— P In <ﬁ>

Substituting (71) and (67) into (70), and again ignoring
higher loop corrections, gives

(71)

G, (0132053 A ) = G (X133 6, A1) o)

2172
X [1 —/1 H In <ﬁ>r
32722 u

Similar results could be derived for Green’s functions,

which also, or even exclusively, involve the field B(x).
Having a negative beta function traditionally means that
the theory runs toward weak coupling in the ultraviolet
because logarithms of the scale p are associated with
inverse factors of some characteristic momentum in the
process. In cosmology we are interested in how things
behave at late times, and we note from expression (65) that
the scale u is associated with the scale factor a(t) in the
form In[ua/H]. It should therefore be that having a negative

(72)
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beta function means the theory evolves toward strong
coupling at late times.

V. CONCLUSION

In this work, we examined a nontrivial nonlinear sigma
model (defined in Sec. IT) whose loop corrections on the de
Sitter background show the same large logarithms as have
been reported from inflationary gravitons [3-8]. Previous
work [15,16] on nonlinear sigma models which can be
reduced to free theories has shown that these large
logarithms can be resummed by combining a variant of
Starobinsky’s stochastic formalism [13,14]—based on
curvature-dependent effective potentials—with a variant
of the renormalization group—based on the subset of
counterterms that can be viewed as curvature-dependent
renormalizations of bare parameters. Our analysis confirms
that these techniques continue to apply for models whose
S-matrix is nontrivial. In Sec. III A, we explicitly computed
the evolution of the background (26) at 1-loop and 2-loop
orders. In Sec. IVA we showed that the resummation
techniques correctly predict these results.

One significant difference associated with a nontrivial
S-matrix is that the beta function does not vanish. The
1-loop beta function (53) was derived in Sec. III C. The
1-loop gamma functions (67) were derived in Sec. 111 B,
and combined with the beta function in Sec. IV B, to solve
the Callan-Symanzik equation for n-point Green’s func-
tions (72). Because the beta function (53) is negative, the
running coupling constant A(x) grows with the scale y as
shown in Eq. (71). From (65) we see that logarithms of u
are associated with the scale factor a(f) in the form
In[ua(t)/H]. This implies that the model becomes strongly
coupled at late times.

An interesting higher loop phenomenon is that there can
be mixing of large stochastic logarithms with large loga-
rithms from the renormalization group. We speculate that
the correct way to include these is to use the renormalization
group to improve the curvature-dependent effective poten-
tial and then use that, without any extra RG corrections.
From (67) we observe that, because y, ~4%, an RG
improvement to the effective potential (58) will include
lowest order corrections of the form A3A. Those would not
engender any changes in the background evolution at
leading logarithm order.

We should comment on how this work can be extended
to slow-roll inflation models, in particular to ultra-slow-
roll inflation in which a nearly flat region of the potential
causes the scalar to almost stop rolling [26]. One must be
clear that neither of the nonlinear sigma model scalars A (x)
and B(x) serves as the inflaton; they are just spectators to
inflation driven by some other scalar field.” In this case

3To make A or B the inflaton would require the introduction of
a potential for them, which is a very substantial modification of
the model.

exact calculations are no longer possible because we lack
the propagators for a general inflationary background.
However, the great thing about the resummation technique
described in Sec. IV is that it can be implemented on a
general inflationary background. The stochastic formalism
described in Sec. IVA relies on a curvature-dependent
effective potential whose effective force (56) derives from
the coincidence limit of the doubly differentiated free scalar
propagator d,0,iA(x;x") in the appropriate background.
Although we do not have exact expressions for this quantity,
very good analytic approximations have been developed
[17], and one can use them to solve the resulting Langevin
equation (59) numerically for any cosmological background
which has experienced primordial inflation [18]. If the
analytic approximations should happen to become unreli-
able for a particular expansion history, they can easily be
improved [27]. The situation for the curvature-dependent
renormalization group described in Sec. IV B is even better
because the coefficients of the counterterms are universal,
independent of the background geometry.

The infrared modes that engender the large logarithms
which we have studied are fascinating, but experience with
gravity [28-32] shows that one must employ a resummation
technique which goes beyond linearized order in order to
understand what happens when perturbation theory breaks
down. Although our 1-loop and 2-loop results are obviously
perturbative, we emphasize that they were made merely to
check the validity of the resummation technique of Sec. IV,
which is fully nonperturbative. One can see that the
technique includes nonlinear effects from the form (58)
of the curvature-dependent effective potential. Note also that
its field dependence of In(1 + %A) applies to any cosmo-
logical background; only the multiplicative coefficient of
- i—’g changes when the geometry is no longer de Sitter. The
solution (61) that results from ignoring stochastic jitter is
similarly nonperturbative—and it should generally be true
that jitter merely serves to accelerate the rate at which the A
background rolls down the effective potential. Finally, the
renormalization group formalism sums logarithms that
result from renormalization (65) to all orders in perturbation
theory.
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APPENDIX A: REDUCTION OF THE 1-LOOP
VERTEX FUNCTION

The aim of this appendix is to reduce the last line of
Eq. (41) for —iV . (x;y;2),
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3

105 :2) = 7 0] (ay0.) P iA (s )53 ) [ =) + 87 )| . (A1)

Note that 0,iA(y; z)d5iA(y; z) is quadratically divergent, so extracting just the divergent part of /(x; y; z) requires only the
two terms given on the first line of expansion (14) for each propagator,

") fo- ; 20 -
. y—2) a,Hé Daya.H*(y — 2)
aylA(y;Z):_ D D P+ L ' Ly ’ (AZ)
g 2a%(aya,)* ! (v =2)P 20y -2)"7? 8(y —z)P2
r®) 7 2(y -
. Y- Z)a azH§9z DayazH (y Z)a i|
0%iA(y;2) = —— | — + - 4+ A3
) = )T T 0=0? 20— 077 T 8- 2P (A3)
Multiplying (A2) and (A3), and retaining only potentially divergent terms yields
PE) [Lo-o6- 0 -
, . y=2),(0=2),  a:Ha(y—2)
iA(y;z) X 0%iA(y;z) = — P + P
e N L B U TR
B ayHSS(y —2), ayaZH25252 B DayaZHZ(y —2),(y =2 L (Ad)
2y —2)?P2 " 4(y - 7)0* 4(y — )02 :

The first four terms and the last term inside the curly bracket in (A4) require separate reductions which
we give below.
We first extract two derivatives from the first four terms of expression (A4),

2 (D
CB) [ 0-20-2 aHR0-2), aHRt-2), ot
167°(aya,)P~?

(y—2)* 20y -2 2y—2)P?  A(y—z)?Pt
rE-nyf ! 0308 — 1) |
~ oA {a;a,, L%%)D_z (y- Z)ZD“‘] e 1)(aya, )P~ {(y - Z)ZD“‘] } (45)

The denominator (y — z)*?~* is logarithmically divergent so we can extract a local divergence from it by adding the flat

space propagator equation [24,25]

1 pP=t 4ntisP(y—z) & [ln[uz(y -2)%

(y—2)2*  2(D-3)(D-4) l"(%_l) 4 (y-2p } +0(D~4). (A6)

Substituting (A6) in (AS), and retaining only the divergences, reduces the first four terms of expression (A4) to

r <%> _ (y - Z)p(y - Z)a + aZHé(o)l(y - Z)p _ ayHég(y - Z)a ayasz(S/O)ég
167" (a,a.)P~ (y—2)* 20y =P 20y-2)P? Ay -2

F@ - 1)”0_4 18P = 2)] | (09 = 1,e03]i8" (y = 2) .
D {a’ﬁa“ el o e } +(Fmie) 7
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We now extract derivatives from the last term
in (A4),

TArEG+H> (y—=2),(0—2)a
87" (aya,)P= ~ (y—z2)?P2
rG- D@+

327 (aya,)P3

90 Npa®y 1
[2([) -3) 2(D-3)(D- 4)] (y—z)?P-6" (A8)

Of the two terms inside the square brackets at the end of
(A8), only the one proportional to npa()f is divergent. Using
|

[a,?’% - ﬂ/)aaﬂﬁl) (y - Z)

the same reduction as (A6) we therefore reduce the last
term of expression (A4) to

TG+ DH? (v=2),(=2),
87" (aya )P (y—z)2P-2
CTB+1) uPn HPisP (y—2)

— 1672 (D—3)(D_4)(ayaz)p_3 + (Finite).

(A9)

We are now ready to employ expressions (A7) and (A9)
in (A1). Note that the transverse projection operator in the
second term of (A7) vanishes upon canceling the scale
factors and exploiting the i6” (y — z) to reflect derivatives
where necessary,

2, L2 -1)uP*
oo (a2
Rt X el O
C12823(D = 1)(D = 3)(D — 4)

[0 = 1] 97 - ) x87(- ) =0

(D - 1)(aya,)P

-3+ |

(A10)

The divergent part of /(x; y; z) comes from the first term of (A7) and from (A8). After some judicious partial integrations it

can be written as

iBuP=T(E - 1)

d”_lzsn%(D—s)(D—4){ ! Z{

D-2 aD—2

y

P (x=y)8°(x=2)] [6°(y—2)9i8"(x —2)
el Rt

IPH*a2pPT (2 + 1)

6P (x — )23 (x — 7).

D2 [5D(y —2)08° (x - y)] }

D-2
a;

APPENDIX B: PARAMETERS AND VARIABLES

The aim of this appendix is to list all the parameters and
variables used in the paper.

In Sec. I, we introduce scale factor a(f), Hubble
parameter H(¢), and first slow-roll parameter e(¢) in (1).
In the same section, variables 7, r, and k are comoving time,
comoving coordinate distance to a point source, and plane
wave number, respectively, given in (2) and (3). Moreover,
G denotes Newton’s constant of gravitation. In Sec. II, we
introduce our model. A and B denote two scalar fields, and
the model is given in (8). 4 denotes the dimensionful
coupling constant of our model. In (10) and (11), the
coefficients C 42, Cyp2, Cip2, Copz, Ciap2,Conp2s Cappe, and
Cype are counterterms. Also, D denotes the spacetime
dimension and p is the scale of the dimensional regulari-
zation. In the same section, we define the kinetic operator D
in (12), and provide the scalar propagator iA(x:x’) for

32D -3)(D-4)

M (A11)

fields A and B in (13). It should be noted that k does not
denote the wave number in the rest of the paper, but is
defined as a function of the Hubble parameter in (13). The
notation adopted in the paper is summarized in the last
paragraph of this section. In Sec. II, the contribution of each
diagram in Fig. 4 to the expectation value of A is labeled
A,, through A,;, and the results are given in (24) and (25).
Furthermore, we provide the explicit form of 3-point and
4-point contributions to 1PI 2-loop functions —iM3 (x; x')
and —iMIZ; (x; ") in (27) through (33). In the same section, 3
denotes the beta function for the field A, and it is defined in
(36). Last, in Sec. IV, A denotes the stochastic random
field. In (66) and (67), we provide the expressions for field
strength renormalizations and gamma functions. They are
denoted by Z and y, respectively. G(x;;xo;...5%,54; 1)
denotes the n-point Green function, the first time appearing
in (68).
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