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Scalar-tensor theories are a natural alternative to general relativity, as they may provide an effective dark
energy phenomenology on cosmological scales while passing local tests, but their black hole solutions are
still poorly understood. Here, we generalize existing no-hair theorems for spherical black holes and specific
theories in the scalar-tensor class. We show that shift symmetry prevents the appearance of scalar hairs in
rotating (asymptotically flat, stationary, and axisymmetric) black holes for all theories in the Horndeski/
beyond Horndeski/DHOST classes, but for those with a coupling between the scalar and the Gauss-Bonnet
invariant. Our proof also applies to higher dimensions. We also compute the values of the scalar hair
charges if shift symmetry and asymptotic flatness are violated by a time growth of the scalar field at infinity,
under suitable regularity conditions at the event horizon.
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I. INTRODUCTION

Scalar-tensor theories of gravity are the simplest and
oldest extension of general relativity (GR). In their basic
form, they date back to the pioneering work by Fierz [1],
Jordan [2], and Brans and Dicke [3], who suggested
supplementing the tensor gravitons of GR with a scalar
degree of freedom conformally coupled to matter. This
Fierz-Jordan-Brans-Dicke (FJBD) theory, and generaliza-
tions of it in which the conformal coupling to matter is
expanded to nonlinear orders [4,5], have been for decades
the paradigmatic extensions of GR when performing
experimental tests in the Solar System [6] and binary
pulsars [7]. This has resulted in very tight bounds on these
theories [8].
The observational evidence for a dark sector in cosmol-

ogy [9–12] and the direct detection of gravitational waves
by LIGO and Virgo [13] have spurred a resurgence of
interest in scalar-tensor theories. It was realized that FJBD-
like theories are not the most general ghost-free theories
allowing for a scalar degree of freedom in addition to the
tensor ones. Indeed, FJBD-like theories are just a special
case of more general effective field theories (EFTs), where
all possible scalar-tensor operators are organized in a
derivative expansion. Higher derivative operators typically
provide subleading corrections on a given solution at low
energies; however there are cases where they can be as
important as the ones with fewer derivatives, within the
domain of validity of the low energy expansion. This
property can be made robust by the presence of exact or
approximate symmetries, which determine different sets of
power-counting rules for the coupling constants in the

effective Lagrangian, even in the absence of an explicit UV
completion [14–16]. The simplest realization of these
effective theories belongs to the Horndeski class [17],
described by the following action1:

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

M2
Pl

2

�
Kðψ ; XÞ −G3ðψ ; XÞ□ψ

þ G4ðψ ; XÞRþ G4Xðψ ; XÞ½ð□ψÞ2 − ð∇μ∇νψÞ2�

þ G5ðψ ; XÞGμν∇μ∇νψ −
G5Xðψ ; XÞ

6
½ð□ψÞ3

− 3ð□ψÞð∇μ∇νψÞ2 þ 2ð∇μ∇νψÞ3�
�
þ Sm½gμν;Ψm�

ð1Þ

where g, ∇, R and Gμν andMPl are the metric determinant,
Levi-Civita connection, Ricci scalar, Einstein tensor and
reduced Planck mass; K, G3, G4, and G5 are arbitrary
functions of X ≡ −∇μψ∇μψ=2 and the scalar field ψ ;
GiX ≡ ∂Gi=∂X, □≡∇μ∇μ, ð∇μ∇νψÞ2 ≡∇μ∇νψ∇ν∇μψ
and ð∇μ∇νψÞ3 ≡∇μ∇ρψ∇ρ∇νψ∇ν∇μψ ; and Ψm are the
matter fields. The class of theories given by Eq. (1) can
be further generalized to the beyond Horndeski [18,19]
and degenerate-higher-order-scalar-tensor (DHOST)
theories [20–25] (see [26] for a review). The latter is

1In Eq. (1) we are not explicit about the energy scales
associated with the derivative operators, which are absorbed in
the definitions of K and Gi; we will restore them later on when
needed.
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defined as the most general class of scalar-tensor
theories with no propagating ghost degrees of freedom,
although only a subset of those can be considered as
“robust” EFTs [15,16,27].
The coincident detection of gravitational waves and

gamma rays from the neutron star merger GW170817
[28], as well as the requirement that gravitational waves do
not decay into dark energy [29,30] and that the scalar mode
be nonlinearly stable [31], have already placed very strong
constraints on DHOST, under the assumption that the
theory provides a dark energy like phenomenology on
cosmological scales. With this assumption, the only the-
ories still viable are described by the action [32],

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

M2
Pl

2

�
ΦRþ Kðψ ; XÞ

þ 3Φ2
X

2Φ
∇μψ∇μρψ∇ρνψ∇νψ

�
þ Sm½gμν;Ψm�; ð2Þ

where Φ and K are functions of ψ and X (with ΦX ≡
∂Φ=∂X). With a conformal transformation from the “Jordan
frame” to the “Einstein frame”, i.e. gμν → Φ−1gμν, the
action can be rewritten (redefining the function K) as the
“K-essence” action,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ Kðψ ; XÞ

�
þ Sm

�
gμν

Φðψ ; XÞ ;Ψm

�
:

ð3Þ

The conformal coupling to matter Φðψ ; XÞ can poten-
tially be tested with observations of neutron stars (in
isolation [5] or in binaries [33,34]). The kinetic function
Kðψ ; XÞ also has important consequences for the
dynamics of matter systems. For instance, specific kinetic
functions can give rise to self-accelerated solutions in
cosmology [35], or to nonlinear screening mechanisms
that “hide” the deviations from GR on local scales (at least
in quasistatic situations [36–39]). However, the cleanest
probes of the kinetic term Kðψ ; XÞ are provided by vacuum
systems (e.g. black holes), since for those the effect of
the conformal coupling function Φðψ ; XÞ vanishes. This is
particularly interesting in light of the several black binary
systems detected by LIGO and Virgo [40].
The deviations of the gravitational-wave signal (and

more generally of the geometry) of black holes in scalar-
tensor theories from their GR counterparts is parametrized
in terms of scalar hairs (also referred to as sensitivities
[41,42] or scalar charges [4,5]). These parameters model
the effective coupling between black holes and the scalar
graviton in these theories, and are therefore absent in GR.
In fact, these charges can also be thought of as quantifying
violations of the no-hair theorem [43–46] and of the strong
equivalence principle [6], which are satisfied in GR but not
necessarily in more general gravitational theories.

The appearance of scalar hairs, however, is not inevi-
table. In FJBD-like theories, with or without a scalar
field mass, no-hair theorems exist and dictate that black
hole solutions must match the GR ones if one assumes
asymptotically flat boundary conditions [47].2 This theo-
rem also applies to black holes in K-essence, under the
same asymptotically flat boundary conditions and pro-
vided that the kinetic function satisfies suitable “stability”
conditions [50].
Black hole hairs, however, generically appear, even in

K-essence and FJBD-like theories, if the scalar field grows
with time far from the black hole [51–54], as would be
expected if one were to match to a cosmological solution on
large scales. Moreover, if one does not require the scalar
field to provide an effective dark energy phenomenology,
the aforementioned bounds on the DHOST class (coming
from gravitational-wave propagation, the decay of gravi-
tational waves into the scalar mode, and the nonlinear
stability of the latter) are no more applicable. No-hair
theorems exist for subsets of the DHOST class in spherical
symmetry [55], but they rely on shift symmetry and on the
assumption that the free functions appearing in the DHOST
action are analytic. Therefore, not only are scalar charges
generically expected for DHOST theories that break shift
symmetry in vacuum, but these theorems also do not apply
to actions including interactions between the scalar field
and the Gauss-Bonnet invariant [56,57] (which corresponds
to a nonanalytic G5 ∝ ln jXj [58,59]). These couplings are
known to produce black hole charges that can be even
nonperturbatively large (black hole scalarization) in both
the spherical [60,61] and rotating [62,63] case.
In this paper, we generalize existing no-hair theorems in

the context of scalar-tensor gravity and review the situa-
tions where these theorems can be violated. In more detail,
in Sec. II, we provide the proof of a no-hair theorem for
stationary asymptotically flat black holes, holding for any
shift-symmetric scalar-tensor theory (including Horndeski
and DHOST). In Sec. III, we show that this result can be
generalized to an arbitrary number d of spacetime dimen-
sions, under suitable assumptions on the topology of the
horizon. In Sec. IV, we provide examples which violate
the no-hair theorems, explaining which assumptions of our
proof are violated. We also compute the scalar charge
associated with a linear time dependence of the scalar field,
under suitable regularity conditions at the event horizon.
Finally, in Sec. V, we further comment on possible
extensions of the existing theorems dropping the shift-
symmetry assumption.
Notation and conventions: We will work in natural

units c ¼ ℏ ¼ 1 and in the mostly plus signature of the
metric, ð−;þ;þ;…Þ. In the main text, we will use greek
indices μ; ν;α;… for the spacetime coordinates on the d

2Note that introducing a matter content, one can derive also
no-hair theorems for stars [48,49].
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dimensional geometry, lowercase latin indices i; j; k;…
(from the middle of the alphabet) for the d − 1 spatial
coordinates only, and lowercase latin indices a; b; c;…
(from the beginning of the alphabet) to label the angular
coordinates associated with the rotational Killing vectors of
the metric (see e.g. Sec. III). (A slightly different con-
vention is adopted though in Appendix A.)

II. NO-HAIR THEOREM FOR ROTATING
BLACK HOLES

In this section, we prove a no-hair theorem for rotating
black holes in four spacetime dimensions, which we general-
ize to arbitrary spacetime dimensions in Sec. III. In par-
ticular, we show that asymptotically flat, axisymmetric and
stationary black holes in shift-symmetric scalar-tensor the-
ories cannot develop a term ∝ 1=r in the scalar profile at
large distances. This is equivalent to saying that black holes
cannot have a scalar charge [4,5]. In the language of the
point-particle effective theory, this corresponds to a vanish-
ing hair coupling g in the tadpole operator gψ localized on
the worldline of the point particle; see e.g. [64–66].
The fundamental assumptions that we make are the

following:
(i) the metric is circular; i.e. it has two commuting

Killing vectors associated respectively to the
invariance under shifts in the time coordinate t

(stationarity) and in the azimuthal angle ϕ (axisym-
metry), and it is invariant under the reflection
isometry ft → −t;ϕ → −ϕg;

(ii) the spacetime is asymptotically flat, reducing at
large radii to the Minkowski metric ημν, plus sub-
leading corrections hμν ∼Oð1=rÞ;

(iii) The action and the field equations for the scalar field
ψ are invariant under shifts ψ → ψ þ c, with c a
constant;

(iv) if a nontrivial solution for the scalar field exists, it
has the same symmetries as the spacetime; i.e., it
does not depend on the coordinates associated with
the Killing vectors of the metric;

(v) the squared norm JμJμ of the conserved Noether
current Jμ associated with the shift symmetry
ψ → ψ þ c is regular at the horizon;

(vi) the current Jμ reduces asymptotically to that of a
free massless scalar field, i.e. Jμ ¼ −∂μψ at large
distances.

Note that the latter condition is expected to hold in any
standard effective theory for a scalar coupled to gravity,
where derivative interactions computed on the background
are more suppressed by powers of 1=r at large distances.3

To be concrete, we will sometimes refer below to the
explicit Horndeski action in Eq. (1), with shift current Jμ
given by

Jμ ¼ −∇μψ
n
KX − G3X□ψ þ G4XRþ G4XX½ð□ψÞ2 − ð∇α∇βψÞ2� þG5XGαβ∇α∇βψ

−G5XX½ð□ψÞ3 − 3□ψð∇α∇βψÞ2 þ 2ð∇α∇βψÞ3�
o
− ∂

νX

�
−gμνG3X þ 2G4XXð□ψgμν −∇μ∇νψÞ þG5XGμν

−
1

2
G5XX½gμνð□ψÞ2 − gμνð∇α∇βψÞ2 − 2□ψ∇μ∇νψ þ 2∇μ∇σψ∇σ∇νψ �

�

þ 2G4XRμσ∇σψ þ G5Xð−□ψRμσ∇σψ þ Rα
ν
β
μ∇α∇βψ∇νψ þ Rα

β∇αψ∇μ∇βψÞ: ð4Þ

However, our result is more general, as it relies only on
assumptions (i)–(vi) and does not depend on the explicit
form of the (shift-symmetric) scalar action. We will discuss
in Sec. IVA the possibility of relaxing some of the
assumptions above.
Let us start by noting that, thanks to the shift symmetry,

the scalar’s equations of motion can be expressed, in absence
of matter, in the form of a (covariant) conservation law,

∇μJμ ¼ 0; ð5Þ
where∇μ is the covariant derivative. Integrating Eq. (5) over
the spacetime outside the horizon and using Stokes’ theo-
rem, one gets

I
∂M

dΣμgμνJν ¼ 0; ð6Þ

where ∂M is the three-dimensional boundary of the black
hole exterior region and dΣμ is the element of the hyper-
surface ∂M. Introducing a radial coordinate r constant on
the horizon (r ¼ rH)—which can be done without loss of
generality if we assume that the horizon has the topology of a
sphere [67]—and a time coordinate t, the boundary ∂M
includes four contributions: two with fixed radius (r ¼ rH or
r ¼ rout → ∞) and variable t ∈ ½t0; t1� (with t0 and t1 two
constants), and two with t ¼ t0 or t ¼ t1 and r ∈ ½rH; rout�.
See Fig. 1 for a sketch of the domain of integration.
Let us focus first on the horizon contribution to the

boundary integral in Eq. (6). The Cotton-Darboux theorem
[68,69] ensures that it is always possible to recast the
metric of a three-manifold into diagonal form via a local

3In particular, it holds for the Horndeski Lagrangian (1) and
more in general for the DHOST class [20–25].
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coordinate transformation. In particular, in d ¼ 4 dimen-
sions, under the assumptions of stationarity and axisym-
metry, we can always choose coordinates such that the
line element for the exterior geometry takes the Weyl-
Papapetrou form [70,71],

ds2 ¼ −Pdt2 þ 2QdtdϕþHdϕ2 þWðdρ2 þ dz2Þ; ð7Þ

where the only off diagonal component of the metric is
gtϕ ¼ Q. As a result, dΣt ¼ dΣϕ ¼ dΣt ¼ dΣϕ ¼ 0 on the
horizon hypersurface r¼ rH. In addition, using the assump-
tions (iii)–(iv), one can show in general that Jt ¼ Jϕ ¼ 0,
and thus also Jt ¼ Jϕ ¼ 0, everywhere, and in particular
at the horizon. This can be checked explicitly for the
Horndeski current in Eq. (4), while a general proof holding
for any theory that satisfies the above requirements can be
found in Appendix A. Thus, we can write

dΣμgμνJν ¼ dΣigijJj ð8Þ

as an inner product in a three-dimensional space.
Using Eq. (7), one obtains, more explicitly,

ðdΣigijJjÞ2 ¼ W−2ðdΣρJρ þ dΣzJzÞ2
≤ W−2ðdΣ2

ρ þ dΣ2
zÞðJ2ρ þ J2zÞ

¼ ðJigijJjÞðdΣkgkldΣlÞ; ð9Þ

where we have used the Cauchy-Schwarz inequality.
From the regularity of JigijJj, which follows from the
assumption (v) and the fact that Jt ¼ Jϕ ¼ 0, and from the
vanishing of dΣkgkldΣl at r ¼ rH by definition of null
hypersurface, it follows that the right-hand side of Eq. (9)
vanishes at the horizon. As a consequence, the left-hand
side of Eq. (9) must vanish as well. This proves that in

d ¼ 4 there is no flux at the horizon contributing to the
integral in Eq. (6).4

Let us now focus on the constant-time boundaries of
the region in Fig. 1. On the hypersurfaces t ¼ t0, or t ¼ t1,
one has dΣμ ∝ δtμ [71]. Therefore, since Jt ¼ Jϕ ¼ 0,
dΣμgμνJν ¼ 0 at both t ¼ t0 and t ¼ t1.

5

We are therefore left only with the boundary contribution
at large radii. Choosing the boundary to be at
r ¼ rout → ∞, the flux reads

I
∂M

dΣμgμνJν ¼
Z
fr→∞g

dΣrgrrJr: ð10Þ

At large distances, we can express the scalar profile
as ψ ¼ P

l ψlðrÞPlðcos θÞ, where Pl are the Legendre
polynomials and ψl (because of asymptotic flatness) go at
leading order as6

ψl ∼
al
rlþ1

; ð11Þ

for constant al. In particular, the coefficient a0 of the
monopole term with l ¼ 0 is related to the scalar charge,
or “hair”, QS via a0 ¼ QSGM, where M is the black
hole mass [34,38,74]. Let us now use assumption (vi) and
write [4,7]

Jr ∼ −∂rψ ; ð12Þ

at large distances from the black hole. Furthermore, from
assumption (ii) we have grr ¼ 1þOð1=rÞ. Computing the
integral (10) using spherical polar coordinates one gets

Z
fr→∞g

dΣrgrrJr ¼ lim
r→∞

r2
Z

dtdΩS2Jr

¼ ðt1 − t0Þ4πGMQS ¼ 0; ð13Þ

which implies QS ¼ 0.
Hence, we have shown that under the assumptions

(i)–(vi) above, the scalar charge is always zero in four
dimensions. This result is independent of the particular
form of the (shit-symmetric) scalar action and can be
generalized to arbitrary dimensions, as we will discuss

FIG. 1. Schematic representation of the boundary ∂M appear-
ing in Eq. (6).

4The vanishing of this contribution can also be proven, in
d ¼ 4 dimensions and for Horndeski theories, by assuming that
the surface gravity of the horizon is constant and the scalar field is
regular [72,73].

5It is actually not necessary that Jt and Jϕ vanish. It is enough
that they are independent of t and ϕ, as required by stationarity
and axisymmetry. In fact, dΣμ points in opposite directions at
t ¼ t0 and t ¼ t1; thus, for Jt and Jϕ independent of t and ϕ, the
fluxes at the time boundaries are guaranteed to cancel each other.

6We are using here the assumption that the scalar equations of
motion reduce, at large distances from the black hole, to those of a
free scalar field, and we are disregarding the other independent
solution with falloff ∼rl.
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in the next section. In this sense, it is a generalization of the
no-hair theorem of Ref. [55]—which applies to nonrotating
black holes in shift-symmetric scalar-tensor theories—as
well as of the theorem of Refs. [50,71,75]—which applies
to rotating black holes, but which holds only in theories
with at most single derivatives acting on the scalar field.
However, our result is weaker because it rules out only
the monopole scalar hair, but does not exclude the
possibility of nonvanishing subleading multipole terms
in the scalar profile.

III. GENERALIZATIONTOHIGHERDIMENSIONS

Wewill now generalize the results of the previous section
to arbitrary spacetime dimensions d > 4. The landscape
of vacuum solutions in higher-dimensional GR is richer
than in four dimensions. In d > 4 there exist black objects
with extended horizons, such as black strings and black
p-branes, as well as solutions presenting horizons with
nontrivial topology, such as black rings. See, e.g., Ref. [76]
for a review. For simplicity, we will focus here on space-
times with horizons that have the topology of a sphere and
restrict our analysis to the class of Myers-Perry black holes
(with single or multiple spins) [76,77], leaving the gener-
alization to different types of solutions for future work.
The fundamental assumptions will be the same as in the

previous section, properly generalized. In particular, we
will assume that (i) the metric has nþ 1 commuting Killing
vectors given by ∂t and ∂ϕa

, for a ¼ 1;…; n, with
n ≤ d − 2, and is invariant under the symmetry trans-
formation ft → −t;ϕ1 → −ϕ1;…;ϕn → −ϕng. In addi-
tion, we require (ii) asymptotic flatness, with subleading
corrections scaling now as 1=rd−3 for hμν and ψ . The
assumptions (iii)-(vi) of Sec. II are instead unchanged, with
the only obvious remark that (iv) should be now understood
to apply to all nþ 1 Killing vectors of the metric.
Note that Eqs. (5) and (6) (where now ∂M is the

generalization of the boundary hypersurface in Fig. 1 to
higher dimensions) hold in any spacetime dimension.
Therefore, the first part of the argument is identical up
to Eq. (6). Let us thus reconsider the different contributions
to the flux in Eq. (6). First, notice that the contribution from
the boundaries at fixed t0 and t1 vanishes for the same
reason discussed above. Regarding the boundary at r ¼ rH,
one can define the null directed surface element dΣμ

orthogonal to the horizon, where dΣt ¼ dΣϕa
¼ 0 because

of (i). Hence Eq. (8) also remains true. However, showing
that gij is positive-definite requires slightly adjusted con-
siderations, because one cannot generically guarantee that
gij can be put in diagonal form. We shall thus proceed as
follows. First, from the positivity of the spatial line element
dl2 ¼ gijdxidxj, where latin indices here denote the n − 1

spatial coordinates, it follows that gij with lower spatial
indices is positive-definite everywhere in the black hole
exterior. Furthermore, one can choose the coordinates in

such a way that the only off diagonal terms in the metric
tensor are those that mix time with the angles ϕa associated
with the spin direction(s). In reference to this, see e.g.
the explicit form of the Myers–Perry line element in
Appendix B. Hence, the metric can be expressed as

ðgμνÞ ¼
�
gtt uj
ui γij

�
; ð14Þ

where the only nonvanishing components of the vector u
are those corresponding to the coordinates ϕi, and where γ
is a positive-definite ðd − 1Þ × ðd − 1Þ matrix, defined as
γij ¼ gij. Note that the spatial indices of the metric blocks
are raised/lowered as

ui ¼ γijuj; γikγ
kj ¼ δji : ð15Þ

Using the inversion rule for a block matrix, we get the
spatial part of the inverse metric as

gij ¼ γij þ γikukulγlj

gtt − ukγklul
: ð16Þ

From the symmetries of the black hole solution, it follows
that γ−1 is block diagonal and does not mix the ϕa
directions with the other spatial coordinates. Therefore,
dΣiγ

ikuk ¼ Jiγikuk ¼ 0. Furthermore, dΣt ¼ dΣϕa
¼ Jt ¼

Jϕa
¼ 0 (see Appendix A). Hence, in analogy with the

d ¼ 4 case, we have

dΣαgαβJβ ¼ dΣiγ
ijJj: ð17Þ

At this point, since γ−1 is positive definite, we can safely
apply the Cauchy–Schwarz inequality,

ðdΣiγ
ijJjÞ2 ≤ ðJiγijJjÞðdΣkγ

kldΣlÞ: ð18Þ

From the regularity of JμJμ at the horizon [assumption (v)]
and Jt ¼ Jϕa

¼ 0, the right-hand side of Eq. (18) is zero, as
dΣ is null and has therefore vanishing norm at the horizon.7

This shows that the contribution to the integral (6) from this
boundary is zero, just like in the d ¼ 4 case.
At large distances, we can decompose the scalar field

as ψ ¼ P
L ψ̃LðrÞYLðθÞ, where YL are hyperspherical

harmonics, θ is a shorthand for the angles on the
(d − 2)-dimensional hypersphere (see, e.g., Ref. [66]),
and ψL scale at leading order as

ψ̃L ∼
aL

rLþd−3 ; ð19Þ

7Actually, one needs to apply the argument slightly away from
the horizon, and a limit must be taken.
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for constant aL. The scalar charge can be defined via
a0 ¼ QSμ, where μ is the d-dimensional mass parameter
defined in Appendix B, which reduces to 2GM in four
dimensions.
Computing the flux at spatial infinity yields

Z
fr→∞g

dΣrgrrJr ¼ lim
r→∞

rd−2
Z

dtdΩSd−2g
rrJr

¼ ðt1 − t0Þ
8π

ðd − 2ÞGMQS ¼ 0; ð20Þ

which generalizes (13) to higher dimensions.

IV. EVADING THE NO-HAIR THEOREM

In this section, we study how the no-hair theorem
formulated in Sec. II is affected if we drop some of its
underlying assumptions. We will consider in particular two
cases: a linear time dependence in the scalar profile, and a
coupling to the Gauss–Bonnet operator, which violate the
conditions (iv) and (v) respectively. We will also mention
the possibility that assumption (i) is violated.

A. Introducing a linear time dependence

Let us start by relaxing the condition (iv). It is in general
not strictly necessary for the scalar field solution ψ to have
the same symmetries as the background metric: one can
in fact allow for a linear dependence in t and/or ϕa while
keeping the isometries of the spacetime unchanged. In
practice, this happens because the shift symmetry ensures
that the stress energy tensor depends on ψ only through
its derivatives. Said differently, although time translations
and/or rotations in ϕa are spontaneously broken, it is
possible to find, for each broken generator, a “diagonal”
combination with a suitable shift in ψ that is unbroken on
the background solution.
It has been shown in [78] that a linear time dependence in

the scalar profile is actually not allowed around stationary
asymptotically flat black holes in the context of K-essence.
However, the proof assumes a field ψ that is backreacting
on the metric through its energy-momentum tensor, while it
is possible to find counterexamples to this statement in the
test field limit. The simplest and most notable example of
this is given by Jacobson’s solution [51] (see also [52]),
where the scalar field carries a linear dependence on time.
More general examples of such “stealth” solutions beyond
K-essence have been later found also in the context of e.g.
Schwarzschild-(A)dS black holes [79–83] and Lorentz-
violating gravity [84].
Given these preliminary considerations, let us consider a

scalar profile of the form,8

ψ ¼ Sðr; θÞ þ Et; ð21Þ

where we have included a linear dependence on time, and
where we have denoted generically with θ the angles that
do not correspond to Killing directions. Note that at large r,
S admits the multipole expansion given by Eq. (19).
Let us start again from Eq. (6). The contributions to the

integral from the fluxes through the hypersurfaces at t ¼ t0
and t ¼ t1 cancel out for the same reason as in the previous
sections. A crucial difference is instead arising from the
contribution at the horizon. To understand why, let us focus
on the inequality in Eq. (18). In Sec. III it was crucial that
Jt ¼ Jϕa

¼ 0 to be able to use the assumption (v) and
conclude that JigijJi is finite at the horizon. This is no
longer true now, as a profile of the form in Eq. (21) will in
general induce a nonzero Jt, allowing JigijJi to be singular
at r ¼ rH without invalidating the regularity of JμJμ.
An example of this is given by Ref. [51]. That solution is

valid in the limit in which the scalar field backreaction on
the geometry is neglected; i.e. it is an exact solution of the
Klein–Gordon equation□ψ ¼ 0 on a Schwarzschild back-
ground. It reads explicitly

ψðt; rÞ ¼ QS

�
t
rH

þ ln

�
1 −

rH
r

��
; ð22Þ

where rH denotes the Schwarzschild radius. The conserved
shift-symmetry current in this case is simply Jμ ¼ ∂

μψ.
The squared norm JμJμ is thus just the standard kinetic
term ∂μψ∂

μψ , which is regular at r ¼ rH, as can easily be
verified using Eq. (22). However, computing the left-hand
side of Eq. (18) explicitly, we see that it does not vanish
at r ¼ rH. In fact,

Z
r¼rH

dΣrgrrJr ¼ −4πrHQS; ð23Þ

which is nonzero, as a result of the linear time depend-
ence in Eq. (22). Furthermore, the surface integral at
rout → ∞ yields a contribution equal in magnitude but
with opposite sign. Therefore, Stokes’ theorem is trivially
satisfied and cannot be used to constrain the scalar
charge QS. There are cases in which one can also have
nontrivial contributions from the linear time dependence
at r ¼ rout. To see this, let us study the asymptotic
behavior of the current at large radii, keeping in mind
the asymptotic expansion of the metric introduced in
assumption (ii). The kinetic term now reads

X ¼ −
1

2

�
−E2 þ ð∂rSÞ2 þ

ð∂θSÞ2
r2

þ hαβ∂αψ∂βψ

�

¼ −
1

2

�
−E2 þ hαβ∂αψ∂βψ þO

�
1

r2d−4

��
; ð24Þ

8For simplicity, we considered only a linear term in t. Adding
linear terms in the angles ϕa would not formally change our
conclusions.
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and its derivative is given by

∂rX ¼ −
1

2
∂r

�
−ð1 − httÞE2 þO

�
1

r2d−4

��

¼ −
E2

2
∂rhtt þO

�
1

r2d−3

�
: ð25Þ

Regardless of its full expression, the metric component
htt at large distances must yield the Newtonian potential
in d-dimensions, i.e.,

∂rhtt ∼O
�

1

rd−2

�
: ð26Þ

It is thus clear that another important difference with the
time-independent case [c.f. Eq. (12)] is showing up at
large radii: the gradient of the kinetic term now yields an
additional contribution of the same order as the gradient
of the scalar field. Note that this effect can arise if the
theory includes a cubic Galileon interaction. In the case
of (4), the current is given asymptotically by

Jr ¼ −∂rSðKX þOð1=rd−1ÞÞ − ∂rXðG3X þOð1=rd−1ÞÞ
þOð1=rdþ1Þ: ð27Þ

The Stokes’ theorem then yields

I
∂M

dΣμgμνJν ¼ 0

¼
Z
r¼rH

dΣrgrrJr þ
Z
fr→∞g

dΣrgrrJr

¼
Z
r¼rH

dΣrgrrJr

−
Z
fr→∞g

dΣrð∂rSKX þ ∂rXG3XÞ: ð28Þ

Let us now specialize to d ¼ 4 dimensions and assume

KX → 1

G3X → g3 ð29Þ

at large distances, as expected from asymptotic flatness
[85], where g3 is the coupling associated with the cubic
Galileon interaction. Then, Eq. (28) provides one with a
general expression for the scalar charge,

QS ¼ g3E2 −
1

4πGMM2
Pl

Z
r¼rH

dΣrgrrJr: ð30Þ

Depending on the specific model, this constraint can be
verified trivially (as in the case of Jacobson’s solution), or
it can yield nontrivial relations between the scalar charge

and the scalar time gradient E. In particular, this
second possibility can give rise to hairy solutions in
the presence of cubic Galileon interactions, if the horizon
contribution vanishes.

B. Coupling to Gauss-Bonnet

It is well known that a linear coupling of the scalar
field ψ to the Gauss-Bonnet invariant G≡ RμνρσRμνρσ −
4RμνRμν þ R2 can source a nontrivial hair around spheri-
cally symmetric black hole solutions in d ¼ 4, while
preserving the shift symmetry [58]. In this case, the
assumption that is violated is (v). In fact, the squared
norm JμJμ of the shift-symmetry current diverges at the
horizon. This is however not an issue since Jμ is not a
diffeomorphism-invariant current in the presence of the
Gauss–Bonnet term, and therefore JμJμ is not a physical
scalar quantity [86].
The same conclusion is expected to hold for rotating

solutions. Note that the divergence of JμJμ at the horizon
prevents one from claiming that the right-hand side of
Eq. (9) is zero at r ¼ rH, invalidating our no-hair theorem
of Sec. II.

C. Deviations from circularity

We conclude this section with an additional cautionary
note. The first assumption that we made was circularity;
i.e. we required that besides possessing two Killing vectors,
the metric is also reflection symmetric. The existence of
physically meaningful noncircular stationary, asymptoti-
cally flat rotating black holes seems to be excluded for a
wide class of theories [87]. In an EFT context, Ref. [88]
showed that black hole solutions must be circular if they
reduce to GR solutions in a proper limit (in other words, if
there are no separate branches).
In principle, however, in theories beyond GR one should

not take circularity for granted [89]. Evidence for devia-
tions from circularity is found numerically by Ref. [54]
in cubic Galileon gravity. Other cases can be found for
instance in DHOST theories [90,91]. These solutions
involve a stealth time dependence of the scalar field, which
does not show up in the Einstein equations. Furthermore,
separate branches of solutions could exist in the presence of
a coupling between the scalar and a curvature invariant like
the Gauss-Bonnet term. (We will discuss this case in more
detail in Sec. V.)
In summary, while examples of hairy black holes that

violate our assumption (i) do exist, they also seem to violate
our assumptions (iv) or (v).

V. NO-HAIR THEOREM FOR
QUASI-K-ESSENCE THEORY

In this section, we review the no-hair theorem of
Ref. [50], which shows that in K-essence theories the
scalar field must be trivial and generalize it to generic
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spacetime dimensions d. For simplicity, we again restrict
the analysis to the class of Myers-Perry black holes, with
single or multiple spins. We stress that the proof is stronger
than the one discussed so far, in the sense that it rules out
not only a nonvanishing scalar charge at infinity, but also a
nontrivial scalar profile. It is, however, less general, as it
applies only to K-essence theories, i.e. ones with first-order
derivative self-interactions. In more general theories, the
presence of higher derivative operators may invalidate the
proof, as it will become clear later on. Nevertheless, we will
show that if the higher derivative operators provide per-
turbative corrections to the K-essence action, the proof can
be generalized (with some subtle caveats). We will discuss
this aspect at the end of the section.
Let us start from the action,9

S ¼
Z

ddx
ffiffiffiffiffiffi
−g

p M2
Pl

2
½Rþ Kðψ ; XÞ�; ð31Þ

where X ≡ − 1
2
∇μψ∇μψ . Let us assume that there may

exist a stationary black hole solution with nontrivial scalar
profile, sharing the same symmetries as the geometry. The
scalar equations of motion are

∇αðKX∂
αψÞ þ Kψ ¼ 0: ð32Þ

Now, let us multiply Eq. (32) by ψ and integrate it over the
volume of the black hole exterior region M. Then,
integrating by parts and using Stokes’ theorem, we obtain

Z
M

ddx
ffiffiffiffiffiffi
−g

p ðKX∂αψ∂
αψ − ψKψÞ ¼

Z
∂M

dΣαVα; ð33Þ

where we have introduced the vector,

Vα ≡ KXψ∂
αψ : ð34Þ

Let us focus first on the right-hand side of Eq. (33). The
treatment of the surface terms is analogous to our previous
discussion in Sec. II: the flux at the horizon is zero because
of the vanishing of dΣαdΣα and the regularity of VαVα at
r ¼ rH; the contributions from the integral over the time
boundaries cancel out because Vα is time independent; the
flux across the hypersurface r ¼ rout → ∞ is zero because
we are considering asymptotically flat solutions and hence
ψ → 0 at large radii. As a result, the right-hand side of
Eq. (33) vanishes.
Let us then focus on the terms on the left-hand side of

Eq. (33). For a ψ solution that has the same symmetries as
the geometry, we can write ∂αψ∂αψ ¼ ∂iψgij∂jψ , which is
positive definite outside the horizon [see the discussion

around Eqs. (14)–(16)]. Furthermore, the energy-
momentum tensor of the scalar field is Tμν ¼
KX∂μψ∂νψ þ Kgμν. Assuming the null energy condition,
i.e. nμTμνnν ≥ 0 for any null vector nμ [92,93], one obtains
KX ≥ 0, which means that the term KX∂αψ∂

αψ in Eq. (33)
is positive (semi)definite. Then, unless ψKψ in Eq. (33)
is also positive (semi)definite,10 the left-hand side of
Eq. (33) can vanish only if ψ is the trivial solution [50].
Now, starting from this result, let us add a cubic Galileon

term to the Lagrangian,

ΔLffiffiffiffiffiffi−gp ¼ −
M3

Pl

Λ3
G3ðψ ; XÞ□ψ : ð35Þ

Note that in Eq. (1) the energy scales MPl and Λ are
absorbed in the definition of G3, while we show them
explicitly here. With this definition, G3 has the dimensions
of an energy squared, like X and K.
The dynamics of the system is associated with a

characteristic scale, set by the mass of the black hole, M.
Let us therefore rescale the coordinates as xμ → xμM2

Pl=M.
The scalar equation of motion then reads

∇αðKX∂
αψÞ þ

�
M
M2

Pl

�
2

Kψ

¼ ε

�
∇αðG3X□ψ∂αψ þ G3X∂

αXÞ þ
�

M
M2

Pl

�
2

G3ψ□ψ

�
:

ð36Þ

where we defined the dimensionless parameter,

ε≡ M5
Pl

M2Λ3
: ð37Þ

By requiring that the Galileon strong coupling scale Λ is
relevant for the cosmological dynamics, one gets
Λ3 ∼MPlH2, with H the Hubble parameter.11 Then, the
parameter ε becomes the ratio of the Hubble and black hole
radii. This is of course a huge number for astrophysical
black holes. Therefore, considering Galileon-like inter-
actions in the scalar sector with a cutoff scale producing
a non-negligible dynamics on cosmological scales, we can
expect highly nonperturbative corrections to the K-essence
solution ψ ¼ 0.
However, one may consider the same interaction with a

cutoff Λ large enough to make ε ≪ 1 [27]. In this case,

9As opposed to the previous sections, we relax here the
assumption of shift symmetry, allowing K to be a function of
both X and ψ .

10Note that, for K ¼ X − VðψÞ, requiring ψKψ ¼ −ψVψ to be
positive semidefinite is equivalent to having a potential V that is
unbounded from below.

11This can be found heuristically by equating the kinetic and
Galileon energies, and estimating the derivatives with the Hubble
rate ∂ ∼H.
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we will have small perturbative corrections to the
K-essence scalar solution; i.e. we can write

ψ ¼
X∞
n¼1

εnψ ðnÞ: ð38Þ

Plugging this ansatz into Eq. (36), at OðεÞ one obtains

∇αðKXðψ ¼ 0Þ∂αψ ð1ÞÞ ¼ 0; ð39Þ

while the backreaction of the scalar field onto the metric
through the Einstein equations is subleading. From this
equation, one can conclude that ψ ð1Þ ¼ 0. The procedure
can be carried out iteratively for successive orders in ε. In
more detail, at OðεnÞ one has

∇αðKXðψ ¼ 0Þ∂αψ ðnÞÞ þ Cðψ ð1Þ;…;ψ ðn−1ÞÞ ¼ 0; ð40Þ

where the corrections C vanish, as lower order corrections
are zero.
Therefore, we can conclude that adding the Galileon

term (35) in the action does not spoil the no-hair theorem
proven for K-essence, as long as the coupling is perturba-
tive. This holds straightforwardly also for the higher order
Galileon interactions in the action (1).
The situation is different if we introduce, e.g., a coupling

of the form,

ΔLffiffiffiffiffiffi−gp ¼ αfðψÞI ð41Þ

where I is a curvature invariant. The only invariants which
can be relevant are the Ricci and the mth order Euler
density, where m ¼ d=2, d being the dimension of the
manifold. The former is zero on the trivial K-essence
solution, and therefore it can induce deviations from that
solution only at order α2. However, the latter is generally
nonzero, even in vacuum, and can yield nontrivial con-
tributions to the perturbative calculation. In d ¼ 4, the
m ¼ 2 Euler density is the Gauss–Bonnet invariant,

G ¼ R2 − 4RαβRαβ þ RαβμνRαβμν: ð42Þ

In the following we will focus for simplicity on the case
I ¼ G in d ¼ 4, but the argument in a generic higher
dimensional manifold would be completely analogous.
The contribution to the scalar equation is

δ

δψ

�
ΔLffiffiffiffiffiffi−gp

�
¼ αGBfψG: ð43Þ

One can rescale the coordinates as done earlier and define
the dimensionless parameter α̃ ¼ αGBðM2

Pl=MÞ2. Carrying
out the perturbative expansion with this parameter, one can
see that the contribution to the equation of motion can be

Oðα̃Þ if fψ ¼ ∂f=∂ψ ¼ Oðα̃0Þ. This is the case for shift-
symmetric and dilatonic scalar-Gauss–Bonnet coupling
functions, i.e.,

fShift-Symm ∼ ψ ;

fDilatonic ∼ eψ : ð44Þ

In these cases, one finds perturbative corrections to the
K-essence solution ψ ¼ 0 at all orders. For instance, at first
order, one has

∇αðKXðψ ¼ 0Þ∂αψ ð1ÞÞ ¼ −G: ð45Þ

This result is not surprising, as these coupling functions do
not admit GR solutions, and the formation of a scalar hair is
already evident at the perturbative level.
There are, however, examples of coupling functions

fðψÞ admitting GR solutions, alongside “scalarized”
ones [62,63,94,95]. Consider for instance black holes in
scalar-Gauss-Bonnet gravity, with fðψÞ ¼ ψ2 and a
canonical kinetic term KðXÞ ¼ X. The scalar field obeys
the Klein-Gordon equation,

ð□þm2
effÞψ ¼ 0; ð46Þ

with the effective mass m2
eff ¼ 2αGBG. The trivial GR

configuration ψ ¼ 0 is clearly a solution, but nontrivial
solutions can also exist. In fact, G > 0 for the
Schwarzschild solution and G < 0 for the Kerr one (at
large spins). Therefore, depending on the sign of αGB, the
effective mass can become tachyonic, in which case the GR
solution is unstable. The instability’s endpoint is a scalar-
ized nontrivial solution.
This solution is missed by our perturbative argument,

which formally does apply to a theory with fðψÞ ¼ ψ2 and
KðXÞ ¼ X (predicting incorrectly that scalarized solutions
should not exist). The reason is that the scalarized solution
is a nonperturbative correction of the GR one; i.e. it lives
on a different branch of solutions. For this reason, our
perturbative proof, which assumes a small deviation from
the K-essence solution, does not apply.
Another important caveat is that black holes can

dynamically evolve away from the GR configuration (even
in the presence of no-hair theorems). This is the case for
instance for a nontachyonic mass term (produced by a
quadratic coupling to the Gauss–Bonnet invariant, or
simply by a scalar potential). For rotating black holes, a
mass term can give rise to superradiant instabilities; i.e.
highly spinning GR solutions which, while allowed by no-
hair theorems, may be unstable to superradiance [96–100].

VI. CONCLUSIONS

We proved a no-hair theorem for stationary, asymptoti-
cally flat black holes in shift-symmetric scalar-tensor
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theories. The theorem prevents the black holes from
developing a scalar charge, defined as the coefficient of
the 1=r falloff at large distances in the scalar profile. The
proof is based on six fundamental assumptions and holds
for general shift-symmetric theories, including Horndeski
and DHOST theories as particular examples.12 Our result
extends the no-hair theorem of Ref. [55] to rotating black
holes, as well as the results of Refs. [50,71,75], which
apply only to theories with at most single derivatives acting
on the scalar field.
Under the assumption that the higher-derivative oper-

ators in the theory provide only perturbative corrections to
the solution, we showed, following [50], that there exists a
stronger version of the theorem forbidding not only the
scalar charge, but any nontrivial scalar profile.
Moreover, we discussed loopholes to the theorem,

revisiting, in the context of rotating black holes, some
known results in the literature. In particular, we discussed
the case of a scalar field with linear dependence in time, and
a coupling to the Gauss-Bonnet operator.
In addition, we showed how our no-hair theorem can be

extended to higher spacetime dimensions in the class of
Myers-Perry black holes with one or multiple spins. In this
context, it would be interesting to study to what extent the
theorem applies also to rotating black holes with nontrivial
topologies, which exist in d > 4 [76]. We leave this
research direction for future work.
We conclude the discussion with a few remarks about the

phenomenological implications of this result. Our theorem,
unlike those of Refs. [50,55,71,75], does not exclude
possible subleading falloff terms in the scalar profile,
unless we assume perturbative couplings. However, the
absence of a scalar charge automatically proves that no
deviations from GR are to be expected in the gravitational
wave fluxes at leading (i.e., dipole) order [103].
Furthermore, given the structure of Eq. (30), it would be

interesting to find models of hairy black holes with linear
time growth yielding a vanishing horizon term. In this case,
the scalar charge would be independent of the geometry,
and it would allow one to constrain the coupling g3,
assuming a growth rate for the scalar field at infinity
comparable to the Hubble rate.
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APPENDIX A: CONSERVED CURRENT
AND CIRCULAR SPACETIMES

We claimed in Sec. II that the components Jt and Jϕ of
the Noether current Jμ, associated with the shift symmetry
in the scalar action, are zero in our setup. Although not
obvious, due to the presence in Jμ of possible higher
derivative operators involving the curvature, it is not hard
to show that this is in fact the case as long as the conditions
(i) and (iv) are fulfilled.
We can express the shift-symmetry current in full

generality as

Jμ ¼ Fμν∇νψ ; ðA1Þ

where the tensor Fμν is a function of ψ , gμν and their
derivatives. The idea of the proof, which we formalize
better in the following, consists simply in showing that,
given ∇tψ ¼ ∇ϕψ ¼ 0, it is not possible to construct
(using only the building blocks ψ , g and ∇) any nontrivial
Fμν with an odd number of indices r or θ if the spacetime
has the isometries in (i).13

Consider an open subset U of a four-dimensional
spacetime, which has a continuous isometry group asso-

ciated with two commuting Killing vectors, labeled as ξðaÞμ ,
where a ¼ 1, 2. We define surface of transitivity [106] a
privileged two-dimensional hypersurface, which is every-
where tangent to the Killing vectors. A spacetime is circular
if it has a set of Killing vectors and it admits hypersurfaces
of conjugate dimension 2, which are everywhere orthogo-
nal to their transitivity surfaces (orthogonal transitivity
condition). For a stationary circular black hole, we have
the Killing vectors ξðaÞ ¼ ∂t; ∂ϕ. We can then define the
surfaces of transitivity with the coordinates i ¼ r, θ and
choose the coordinates in such a way that the components
of the metric gia ¼ grt; grϕ; gθt; gθϕ vanish.
We then need a further step. Let us define ζðiÞ to be a set

of independent vectors orthogonal to the transitivity sur-
face. A tensor T is said to be invertible at a point if all
the quantities,

Tμ1;…μp
ν1;…νqξμ1ða1Þ…ξ

μp
ðapÞζ

ði1Þ
ν1 …ζ

ðiqÞ
νq ; ðA2Þ

are zero for odd p.
It can be showed [88] that the circularity of the subset U

implies the invertibility of the Riemann and Ricci tensors
on it. Furthermore, it can also be proven that the12In the simplest case of a massless, noninteracting scalar field,

note that the theorem is consistent with the symmetry arguments
of [101,102]. 13A similar construction can be found, e.g., in Refs. [104,105].
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invertibility property of a tensor is preserved when one
takes its covariant derivative.
Now consider Eq. (A1). Given ∇tψ ¼ ∇ϕψ ¼ 0 and the

symmetries of the Riemann tensor, it is easy to check
that the only way of having a nonvanishing Jt is to have
nonzero tensors constructed from R and covariant deriv-
atives of R and ψ , with an odd number of indices running
over ðr; θÞ. In other words, we should be able to construct a
noninvertible Fμν on U. However, this cannot happen,
thanks to the invertibility of the building blocks.
The same can be shown for Jϕ. Hence, as long as the

condition (iv) is verified, the only nonvanishing compo-
nents of the current are Jr and Jθ.
Note that the situation is different if we drop the

assumption (iv) and allow the scalar field to linearly depend
on time. In this case, it is easy to verify that a non-vanishing
Jt is not incompatible with circularity anymore.
The same considerations can be extended to higher

dimensions for the class of black holes discussed in Sec. III.

APPENDIX B: MYERS-PERRY BLACK HOLES
IN d-DIMENSIONS

The generalization of the Kerr metric in d > 4 dimen-
sions for a black hole rotating in a single plane is given
by the Myers–Perry line element [77] (see Ref. [76] for a
review),

ds2 ¼ −dt2 þ μ

rd−5Σ
ðdt − asin2θdϕÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ ðr2 þ a2Þsin2θdϕ2 þ r2cos2θdΩ2
d−4: ðB1Þ

Besides the angles θ and ϕ defined in the usual way,
we have d − 4 additional angles in dΩ2

d−4. The functions
appearing in the metric are generalizations of the well-
known Kerr ones,

Σ≡ r2 þ a2 cos2 θ; Δ≡ r2 þ a2 −
μ

rd−5
; ðB2Þ

with the mass and spin parameters being

M≡ ðd − 2ÞΩd−2

16πG
μ; J ≡ 2M

d − 2
a: ðB3Þ

In d > 4, rotation around more independent planes is
allowed. In the most general case, the number of planes
can be up to N ¼ ðd − 1Þ=2. The metric is different for odd
and even d. In particular, we have for odd d,

ds2 ¼ −dt2 þ ðr2 þ a2i Þðdμ2i þ μ2i dϕiÞ

þ μr2

ΠF
ðdt − aiμ2i dϕiÞ2 þ

ΠF
ðΠ − μr2Þ dr

2; ðB4Þ

where i ¼ 1;…; N, ai is the spin associated to the i-th
rotation plane and μi the corresponding direction cosine.
Summation over i is assumed and μ2i ¼ 1.
For even d we have instead,

ds2 ¼ −dt2 þ r2dα2 þ ðr2 þ a2i Þðdμ2i þ μ2i dϕiÞ

þ μr2

ΠF
ðdt − aiμ2i dϕiÞ2 þ

ΠF
ðΠ − μr2Þ dr

2: ðB5Þ

where the functions Π and F are defined as

ΠðrÞ ¼
YN
I

ðr2 þ a2i Þ;

Fðr; μiÞ ¼ 1 −
a2i μ

2
i

r2 þ a2i
; ðB6Þ

and μ2i þ α2 ¼ 1.
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[48] A. Lehé bel, E. Babichev, and C. Charmousis, A no-hair
theorem for stars in Horndeski theories, J. Cosmol.
Astropart. Phys. 07 (2017) 037.

[49] K. Yagi, L. C. Stein, and N. Yunes, Challenging the
presence of scalar charge and dipolar radiation in binary
pulsars, Phys. Rev. D 93, 024010 (2016).

CAPUANO, SANTONI, and BARAUSSE PHYS. REV. D 108, 064058 (2023)

064058-12

https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevD.79.064036
https://doi.org/10.1103/PhysRevD.79.064036
https://doi.org/10.1088/1475-7516/2015/09/007
https://doi.org/10.1088/1475-7516/2015/09/007
https://doi.org/10.1007/JHEP08(2018)118
https://doi.org/10.1007/BF01807638
https://doi.org/10.1007/BF01807638
https://doi.org/10.1103/PhysRevLett.114.211101
https://doi.org/10.1103/PhysRevLett.114.211101
https://doi.org/10.1103/PhysRevD.89.064046
https://doi.org/10.1088/1475-7516/2016/02/034
https://doi.org/10.1088/1475-7516/2016/07/016
https://doi.org/10.1088/1475-7516/2016/07/016
https://doi.org/10.1088/1475-7516/2016/03/038
https://doi.org/10.1088/1475-7516/2016/03/038
https://doi.org/10.1007/JHEP12(2016)100
https://doi.org/10.1103/PhysRevD.93.124005
https://doi.org/10.1103/PhysRevD.93.124005
https://doi.org/10.1088/1475-7516/2016/04/044
https://doi.org/10.1088/1475-7516/2016/04/044
https://doi.org/10.1142/S0218271819420069
https://doi.org/10.1103/PhysRevD.101.084049
https://doi.org/10.1103/PhysRevD.101.084049
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.1088/1475-7516/2018/12/025
https://doi.org/10.1088/1475-7516/2019/10/072
https://doi.org/10.1088/1475-7516/2019/10/072
https://doi.org/10.1088/1475-7516/2020/05/002
https://doi.org/10.1088/1475-7516/2020/05/002
https://doi.org/10.1103/PhysRevD.107.044019
https://doi.org/10.1103/PhysRevD.87.081506
https://doi.org/10.1103/PhysRevD.89.044024
https://doi.org/10.1103/PhysRevLett.85.4438
https://doi.org/10.1142/S0218271809016107
https://doi.org/10.1103/PhysRevLett.126.091102
https://doi.org/10.1103/PhysRevD.104.044022
https://doi.org/10.1103/PhysRevD.104.044022
https://doi.org/10.1103/PhysRevLett.128.091103
https://doi.org/10.1103/PhysRevLett.128.091103
https://arXiv.org/abs/2111.03606
https://doi.org/10.1086/181744
https://doi.org/10.1086/181744
https://doi.org/10.1086/168016
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1063/1.1704350
https://doi.org/10.1103/PhysRev.174.1559
https://doi.org/10.1103/PhysRevLett.34.905
https://doi.org/10.1103/PhysRevLett.34.905
https://doi.org/10.1007/BF01877518
https://doi.org/10.1088/1475-7516/2017/07/037
https://doi.org/10.1088/1475-7516/2017/07/037
https://doi.org/10.1103/PhysRevD.93.024010


[50] A. A. Graham and R. Jha, Nonexistence of black holes
with noncanonical scalar fields, Phys. Rev. D 89, 084056
(2014).

[51] T. Jacobson, Primordial Black Hole Evolution in Tensor-
Scalar Cosmology, Phys. Rev. Lett. 83, 2699 (1999).

[52] C. Charmousis, M. Crisostomi, R. Gregory, and N.
Stergioulas, Rotating black holes in higher order gravity,
Phys. Rev. D 100, 084020 (2019).

[53] K. Takahashi and H. Motohashi, General relativity sol-
utions with stealth scalar hair in quadratic higher-order
scalar-tensor theories, J. Cosmol. Astropart. Phys. 06
(2020) 034.

[54] K. V. Aelst, E. Gourgoulhon, P. Grandclément, and C.
Charmousis, Hairy rotating black holes in cubic galileon
theory, Classical Quantum Gravity 37, 035007 (2020).

[55] L. Hui and A. Nicolis, No-Hair Theorem for the Galileon,
Phys. Rev. Lett. 110, 241104 (2013).

[56] D. Glavan and C. Lin, Einstein-Gauss-Bonnet Gravity in
Four-Dimensional Spacetime, Phys. Rev. Lett. 124,
081301 (2020).

[57] P. G. S. Fernandes, P. Carrilho, T. Clifton, and D. J.
Mulryne, The 4d einstein–gauss–bonnet theory of gravity:
A review, Classical Quantum Gravity 39, 063001 (2022).

[58] T. P. Sotiriou and S.-Y. Zhou, Black Hole Hair in Gener-
alized Scalar-Tensor Gravity, Phys. Rev. Lett. 112, 251102
(2014).

[59] T. P. Sotiriou and S.-Y. Zhou, Black hole hair in general-
ized scalar-tensor gravity: An explicit example, Phys. Rev.
D 90, 251102 (2014).

[60] P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E.
Winstanley, Dilatonic black holes in higher curvature
string gravity, Phys. Rev. D 54, 5049 (1996).

[61] M. Gürses, Some solutions of the Gauss Bonnet gravity
with scalar field in four dimensions, Gen. Relativ. Gravit.
40, 1825 (2008).

[62] C. A. Herdeiro, E. Radu, H. O. Silva, T. P. Sotiriou, and N.
Yunes, Spin-Induced Scalarized Black Holes, Phys. Rev.
Lett. 126, 011103 (2021).

[63] A. Dima, E. Barausse, N. Franchini, and T. P. Sotiriou,
Spin-Induced Black Hole Spontaneous Scalarization,
Phys. Rev. Lett. 125, 231101 (2020).

[64] W. D. Goldberger and I. Z. Rothstein, An effective field
theory of gravity for extended objects, Phys. Rev. D 73,
104029 (2006).

[65] R. A. Porto, The effective field theorist’s approach to
gravitational dynamics, Phys. Rep. 633, 1 (2016).

[66] L. Hui, A. Joyce, R. Penco, L. Santoni, and A. R. Solomon,
Static response and Love numbers of Schwarzschild black
holes, J. Cosmol. Astropart. Phys. 04 (2021) 052.

[67] J.M. Bardeen, Rapidly rotating stars, disks, and black holes.,
in Black Holes (Les Astres Occlus) (1973), pp. 241–289.

[68] G. Darboux, Leçons sur les systémes orthogonaux et les
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