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We study the interaction between gravitational waves and quantum matter such as Bose-Einstein
condensates, superfluid helium, or ultracold solids, explicitly taking into account the changes of the
trapping potential induced by the gravitational wave. As a possible observable, we consider the change of
energy due to the gravitational wave, for which we derive rigorous bounds in terms of kinetic energy and
particle number. Finally, we discuss implications for possible experimental tests.
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I. INTRODUCTION

Gravitational waves had been predicted shortly after the
publication of Einstein’s field equations of general rela-
tivity [1,2], but their experimental detection was thought
to be impossible for a long time in view of the smallness of
the expected signals. It took roughly half a century until
Weber constructed a detector for gravitational waves based
on resonant mass antennas known as Weber bars [3–5].
Although Weber’s initial results and claims of having
detected a signal could not be reproduced by other groups,
his endeavors should still be considered pioneering experi-
ments, paving the way for later developments.
A whole century after their prediction, gravitational

waves have been detected at LIGO [6,7], marking a major
breakthrough and the beginning of a new era in modern
physics. Note that one should distinguish two major
detection schemes for gravitational waves: At interferom-
eters such as LIGO, one measures the changes of the arm
lengths and the resulting interference patters during the
passage of the gravitational wave. In contrast, the resonant
excitation of a Weber bar can be measured after the
gravitational wave passed by.
In the following, we theoretically investigate detection

schemes of the second type, see also [8–10]. Instead of
Weber bars, we consider more general resonant mass
antennas represented by quantum matter such as Bose-
Einstein condensates, superfluid helium, or ultracold sol-
ids. To some extent, these studies are motivated by recent
and partly controversial discussions regarding the use of
Bose-Einstein condensates as gravitational wave detectors,
see, e.g., [11–20]. More generally, the weakness of the
interaction with gravitational waves and the resulting
smallness of the signal motivates a quantum description.
The aforementioned examples for quantum matter may
offer certain advantages, e.g., regarding temperature, purity,
or experimental control, see also [21–28].

As a typical observable, we consider the change in
energy induced by the gravitational wave. Note that matter-
wave interferometers, which have also been proposed as
gravitational wave detectors [29–35], are typically based
on detection schemes of the first type—and are thus not
considered here.

II. GRAVITATIONAL WAVES

For simplicity, we consider linearly polarized gravita-
tional waves propagating in a fixed direction. Other waves
can be written as linear combinations of such solutions. In a
suitable coordinate system, the metric reads (using natural
units ℏ ¼ c ¼ ε0 ¼ μ0 ¼ 1)

ds2 ¼ dt2 − ½1þ h�dx2 − ½1 − h�dy2 − dz2; ð1Þ

where the function hðt − zÞ describes the gravitational
wave. However, as its wavelength is much larger than
the characteristic length scales in the laboratory while its
period is shorter than the duration of the experiment, we
use the approximation hðt − zÞ ≈ hðtÞ in what follows.
Furthermore, since h is extremely small, h ¼ Oð10−22Þ, we
neglect quadratic terms Oðh2Þ in the following (as usual in
the linearized theory of gravitational waves). As a conse-
quence, the metric determinant can be approximated by
unity

ffiffiffiffiffiffi−gp ¼ 1þOðh2Þ.

A. Massive particles

Before investigating the implications of the metric (1) for
the quantum Hamiltonian in Sec. III, let us briefly discuss
the impact on classical point particles and electromagnetic
waves, which will also be relevant for changes of the
trapping potential.
Since the Christoffel symbols corresponding to Newton’s

gravitational acceleration vanish Γi
00 ¼ 0, massive particles
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at rest with respect to the coordinates (1), i.e., at constant
positions x, y, and z, are solutions to the geodesic equations.
As a result, the heavy mirrors used in LIGO, for example, do
not change their positions x, y, and z during the passage of
the gravitational wave. However, their physical distance (1)
changes, which can be measured by light rays, for instance.
For moving particles, on the other hand, the gravitational

wave does generate an effective force. Considering a
nonrelativistic motion in the x, y plane for simplicity, the
Christoffel symbols Γi

0i are given by �ḣ=2 and correspond
to the acceleration u̇x ¼ −ḣux and u̇y ¼ ḣuy in terms of the
four-velocity uμ. The Christoffel symbols Γ0

ij then yield the

change of energy u̇t ¼ ḣðu2y − u2xÞ=2.

B. Electromagnetic waves

Next, let us consider electromagnetic waves propagating
in the background metric (1) which are described by the
Maxwell equations ∇μFμν ¼ 0 with the electromagnetic
field-strength tensor Fμν ¼ ∂μAν − ∂νAμ and the vector
potential Aμ. Their dispersion relation can already be read
off the metric (1)

Ω2 ¼ −gijKiKj ¼ ½1 − h�K2
x þ ½1þ h�K2

y þ K2
z : ð2Þ

Since the changes of the amplitudes Ai induced by the
gravitational wave depend on their polarization, let us first
consider the cases of fixed polarizations along the coor-
dinate axes for simplicity.
First, the identity ∇μFμν ¼ ∂μð ffiffiffiffiffiffi−gp

FμνÞ= ffiffiffiffiffiffi−gp
leads to

the wave equation for the polarization Azðt; x; yÞ,

ð∂2t − ∂x½1 − h�∂x − ∂y½1þ h�∂yÞAz ¼ 0: ð3Þ

After a spatial Fourier transformation, this reduces to the
differential equation Äz þ Ω2Az ¼ 0 of a parametric har-
monic oscillator with the time-dependent frequency ΩðtÞ
given by Eq. (2) for Kz ¼ 0. Since the frequency Ω of
the electromagnetic waves (e.g., optical lasers) is much
larger than that of the gravitational waves ω ≪ Ω, we may
employ the WKB approximation and deduce a scaling of
the amplitude Az with 1=

ffiffiffiffi
Ω

p
. One way to obtain this result

is to consider the conserved Wronskian which reads W ¼
A�
z Ȧz − Ȧ�

zAz and thus simplifies to W ≈ −2iΩjA2
z j.

Second, let us consider the fixed polarization Axðt; y; zÞ,
for which we find the wave equation

ð∂t½1 − h�∂t − ∂
2
y − ∂z½1 − h�∂zÞAx ¼ 0: ð4Þ

In this case, the conserved Wronskian contains an addi-
tional metric factor W ¼ ½1 − h�ðA�

xȦx − Ȧ�
xAxÞ and thus

the amplitude Ax scales with 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½1 − h�Ωp

.
Obviously, the third case Ayðt; x; zÞ is completely analo-

gous to the second after replacing 1 − h by 1þ h. The

behavior of general polarizations Ai can be inferred from
the wave equation in temporal gauge A0 ¼ 0,

∂tðgij∂tAjÞ ¼ Kij
2 Aj; ð5Þ

where the matrix Kij
2 contains bilinear forms of the wave

numbers Ki as well as metric factors 1� h. In this case,
the conserved Wronskian reads W ¼ A�

i g
ijȦj − Ȧ�

i g
ijAj

which can again be used to infer the scaling of the
amplitude Ai. Note, however, that the transversality con-
dition KigijȦj ¼ 0 implies small changes of the polariza-
tion direction induced by the gravitational wave—unlessKi
or Aj are oriented along the eigenvectors of gij, i.e., the
coordinate axes.
In summary, both the frequency Ω as well as the

amplitudes Ai of the electromagnetic waves acquire small
corrections of the form 1þ ζh due to the gravitational
wave, where the various values of ζ depend on the
propagation and polarization directions of the electromag-
netic waves.

III. MATTER HAMILTONIAN

In flat space-time, i.e., without the gravitational wave,
we assume that the matter can be described by the standard
nonrelativistic many-body Hamiltonian

Ĥ0 ¼
Z

d3r

�
1

2m
ð∇Ψ̂†Þ · ð∇Ψ̂Þ þ V0ðrÞΨ̂†Ψ̂

�

þ 1

2

Z
d3rd3r0Ψ̂†ðrÞΨ̂†ðr0ÞWðr; r0ÞΨ̂ðr0ÞΨ̂ðrÞ; ð6Þ

with bosonic or fermionic field operators Ψ̂ and Ψ̂†, the
static trapping potential V0 and the interaction W.
In order to describe the response to a gravitational wave,

we first have to determine the corresponding changes in the
Hamiltonian. As already shown in [14,36], for example,
the kinetic term is modified quite intuitively by inserting the
metric gij into the scalar product between the field gradients,
i.e., ð∇Ψ̂†Þ · ð∇Ψ̂Þ is replaced by −ð∂iΨ̂†Þgijð∂jΨ̂Þ. The
change of the trapping potential V will be discussed
below. Assuming that the interaction W is isotropic and
short ranged, we neglect its modification due to the
gravitational wave.

A. Energy transfer

Now we are in the position to study how the energy of
the matter changes due to its interaction with the gravita-
tional wave. To this end, we employ the Heisenberg picture
where
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dĤ
dt

¼
�
∂Ĥ
∂t

�
expl

¼ ∂Ĥ
∂h

ḣ

¼ ḣ
Z

d3r

�
∂V
∂h

Ψ̂†Ψ̂þ ð∂yΨ̂†Þð∂yΨ̂Þ − ð∂xΨ̂†Þð∂xΨ̂Þ
2m

�
:

ð7Þ

Taking expectation values yields the change of the total
energy E ¼ hĤi. The very general expression (7) already
allows us to infer important consequences. In analogy to
time-dependent perturbation theory, we may replace the
expectation values (such as hΨ̂†Ψ̂i) in the above integrand
to lowest order in h by their undisturbed expressions (such
as hΨ̂†Ψ̂i0) in flat space-time because there is already a
factor of ḣ in front of the integral,

Ė ¼ ḣ
Z

d3r

�
∂V
∂h

Ψ̂†Ψ̂þ ð∂yΨ̂†Þð∂yΨ̂Þ − ð∂xΨ̂†Þð∂xΨ̂Þ
2m

�
0

þOðh2Þ: ð8Þ

As a result, if this undisturbed (i.e., initial) state is a
stationary state with respect to the Ĥ0-dynamics—such as
the ground state or a thermal equilibrium state—the above
expectation value would be independent of time. In this
case, the time integration of Eq. (8) becomes trivial and
thus there is no energy shift to linear order in h. In order to
obtain such a first-order energy shift, one should prepare a
nonstationary state (e.g., vibrating or oscillating) such that
the expectation values oscillate—ideally in resonance with
ḣ to maximize the energy transfer.
As another consequence of the general expression (7),

we may estimate the maximum amount of energy which
can be transferred. To this end, we exploit the non-
negativity of the operators Ψ̂†Ψ̂ and ð∂iΨ̂†Þð∂iΨ̂Þ which
allows us to derive the rigorous upper bound

Ė ≤ jḣjmax

�				 ∂V
∂h

				
max

hN̂i þ hÊkinimax

�
; ð9Þ

in terms of the total particle number hN̂i and the kinetic
energy hÊkini of the matter. Note that the former is
conserved, i.e., hN̂i is constant, while the latter hÊkini
may vary with time due to an exchange between kinetic,
potential and interaction energy.

B. Electromagnetic analogy

It might be illuminating to compare the energy transfer
by gravitational waves discussed above to the well-known
case of electromagnetic waves. Again assuming that our
quantum system is much smaller than the wavelength of
the electromagnetic field (dipole approximation), we may
effectively describe it by a purely time-dependent vector
potential AðtÞ. Then the Hamiltonian (6) becomes

Ĥ0 ¼
1

2m

Z
d3r



½∇þ iqA�Ψ̂†

�
·


½∇ − iqA�Ψ̂

�

þ
Z

d3rV0ðrÞΨ̂†Ψ̂

þ 1

2

Z
d3rd3r0Ψ̂†ðrÞΨ̂†ðr0ÞWðr; r0ÞΨ̂ðr0ÞΨ̂ðrÞ: ð10Þ

If we assume that the electromagnetic field does neither
affect the potential V0ðrÞ nor the interaction Wðr; r0Þ, the
analog of Eq. (7) reads

Ė ¼ Ȧ ·
Z

d3r

�
iq

Ψ̂†∇Ψ̂ − ð∇Ψ̂†ÞΨ̂
2m

þ q2
AΨ̂†Ψ̂
m

�
: ð11Þ

For a purely time-dependent vector potential AðtÞ, the
second term ∝ q2 yields the total particle number N̂. Since
N̂ is conserved, this term does not generate a net energy
shift. The same line of reasoning would apply to the term
∂V=∂h in Eq. (7) if ∂V=∂hwas purely time dependent. Still,
it is advantageous to keep this second term ∝ q2 in order to
retain gauge invariance.
Altogether, we find that Eq. (7) is analogous to the well-

known Poynting theorem in electrodynamics as the inte-
grand of Eq. (11) represents the current density j. Thus, Ė
can be bound in analogy to Eq. (9) by electric field jȦjmax,
current density jjjmax, and volume.

IV. TOY MODEL

In order to understand the above result (7) by means of a
simple toy model, let us consider two classical and non-
relativistic point particles of mass m on circular orbits
around their joint center of mass

r�ðtÞ ¼ �R

0
B@

cosðωrottÞ
sinðωrottÞ

0

1
CA: ð12Þ

Besides the force holding the masses on their circular
orbits, the gravitational wave induces a small additional
acceleration, as given by the geodesic equations already
discussed in Sec. II A, i.e., u̇x ¼ −ḣux and u̇y ¼ ḣuy as
well as u̇t ¼ ḣðu2y − u2xÞ=2. The resulting change in energy
is thus given by Ė ¼ ḣðEy

kin − Ex
kinÞ, in analogy to Eq. (8). If

the frequency ω of the gravitational wave equals twice the
rotational frequency ωrot, we obtain a resonant transfer of
energy, see Appendix B and [37,38] as well as [39] and
references therein.
It might be illuminating to insert some numbers and to

estimate the resulting orders of magnitude. Assuming a
gravitational wave with a frequency ω in the kHz regime
and an amplitude of h ¼ Oð10−22Þ, we may estimate the
energy ΔE transferred after an interaction time T of
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100 cycles, i.e., ωT ¼ Oð102Þ. Then, demanding that this
energy shift ΔE ¼ OðhωTEkinÞ corresponds to one exci-
tation quantum ℏω in the kHz regime, we would need an
initial kinetic energy of order 108 eV or 10−11 J.
Even though it would be easy to prepare such an initial

kinetic energy for mesoscopic or macroscopic matter
distributions, actually detecting an energy shift of one
excitation quantum ℏω on top of this huge background is
certainly extremely challenging. As a way around this
obstacle, one could consider the change in vibrational
energy Evib instead of rotational energy Erot. The accel-
eration induced by the gravitational wave has also compo-
nents in the radial direction, which lead to a change in
vibrational energy of order

ΔEvib ¼ O


hωT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EvibErot

p �
; ð13Þ

if an initial vibration of the barbell is present, i.e., Ṙ ≠ 0. In
order to obtain resonant energy transfer, the vibrational
frequency ωvib should match jω� 2ωrotj. In the following,
we assume that all three frequencies are in the kHz regime.
Then, if the initial quantum state of the vibrational mode
corresponds to a few excitation quanta (say, ten ℏωvib), an
energy shift of one excitation quantum ℏωvib would require
a rotational energy Erot ¼ 108 J.
Of course, this value is now much larger than in the

previous case (108 eV or 10−11 J), but it is not completely
out of reach. For example, a barbell with m ¼ Oð100 kgÞ
and R ¼ OðmÞ, rotating with ωrot ¼ OðkHzÞ, would have
such a rotational energy Erot ¼ Oð108 JÞ. Obviously, con-
trolling the vibrational modes to the desired accuracy
would still be very challenging and probably requires
a barbell levitating or suspended in ultrahigh vacuum etc.
On the other hand, the impressive experimental progress
regarding controlling and cooling down vibrational modes
of macroscopic objects (see, e.g., [40,41]) gives rise to the
hope that such an experiment may not be totally out
of reach.
As an alternative, one could envision two concentric

and corotating barbells at a right angle and consider the
scissorslike motion instead of the vibrational mode. In
doing so, one can find basically the same energy transfer as
given by Eq. (13).

V. BOSE-EINSTEIN CONDENSATES

A. Trapping potential

After this simple toy model, let us apply our results to
Bose-Einstein condensates. To this end, we first have to
determine how the trapping potential V changes. As already
mentioned, this will depend on its explicit physical reali-
zation in general. As an extreme case, if the shape of V is
only determined by the positions of effectively force-free
masses at rest (such as the mirrors in LIGO), it would not
change at all during the passage of a gravitational wave.

However, for more realistic scenarios, one would expect
V to vary. As a concrete example, let us consider optical
traps which are often used to confine Bose-Einstein
condensates. They may consist of a superposition of
standing laser beams in various directions. As discussed
in Sec. II B, these electromagnetic waves respond to
gravitational waves via modification factors of the form
1þ ζh in front of their frequencies and amplitudes where
the ζ values are typically of order unity and depend on
polarization and propagation direction.
The atoms in the Bose-Einstein condensate are then

polarized by the electromagnetic waves where their polar-
izability scales with 1=ðΩ2 −Ω2

resÞ in terms of the frequen-
cies Ω of the electromagnetic wave and the relevant atomic
resonance Ωres (blue or red detuned atoms). Assuming that
the Ωres do not change (see Appendix A), these polar-
izabilities get also modified by the gravitational wave via
the change in Ω. Actually, if Ω is close to the resonance
frequency Ωres, the response to gravitational waves is
enhanced, but going too close to resonance can be
problematic.
In addition to these effects already occurring for free

electromagnetic waves, one should also include their
sources and boundary conditions (i.e., mirrors) which
may induce further factors of 1þ ζh. Since these various
factors of 1þ ζh stem from different effects, their values of
ζ will typically be different and hence they will not cancel
each other in general.
In order to accommodate all these different factors of

1þ ζh, we employ the standard harmonic approximation
V0ðrÞ ¼ r ·M0 · r for the trapping potential V0 near its
minimum (which we set to r ¼ 0) with some matrix M0.
Then, in view of the above considerations, the most general
form for the modifications due to the gravitational wave can
be cast into the form

Vðt; rÞ ¼ r · ðM0 þ hM1Þ · rþ hF1 · rþ hV1: ð14Þ

The perturbationsM1, F1, and V1 account for all the factors
1þ ζh mentioned above and thus depend on the ampli-
tudes, polarizations, frequencies and propagation directions
of the various laser beams as well as the atomic resonances
(and the mirrors etc.).
In addition to the modification M1 of the shape of the

potential, which one would naturally expect from a
gravitational wave, one can also have a shift in position
F1 (in asymmetric scenarios) and in energy V1. Since the
total particle number N̂ commutes with the Hamiltonian,
the term V1 has no effect (unless we observe interference
between two Bose-Einstein condensates with different V1).

B. Excitations

In order to study the excitations in the Bose-Einstein
condensate induced by the gravitational wave, we employ
the standard mean-field approximation Ψ̂ → ψ c þ δψ ,

GRÄFE, ADAMIETZ, and SCHÜTZHOLD PHYS. REV. D 108, 064056 (2023)

064056-4



where ψ c denotes the undisturbed wave function of the
condensate (i.e., in the absence of the gravitational wave)
while δψ are the perturbations. Linearizing in δψ then
yields the Bogoliubov–de Gennes equations which now
acquire a source term due to the gravitational wave,

�
i∂t þ

∇2

2m
− V0 − 2gjψ cj2

�
δψ − gψ2

cδψ
�

¼ h

�
∂
2
y − ∂

2
x

2m
þ ∂V

∂h

�
ψ c: ð15Þ

Assuming rotational symmetry for the undisturbed con-
densate (i.e., for ψ c and V0), we find that the direct
interaction ∝ ð∂2y − ∂

2
xÞ in the first term of the second line

in Eq. (15) generates quadrupolar excitations δψ , as
expected from a gravitational wave. However, the indirect
interaction via changes in the trapping potential may also
generate other (e.g., dipolar) excitations δψ , provided that
such contributions (e.g., F1) occur in Eq. (14).
In order to make the connection to fluid dynamics more

apparent, we use the Madelung split ψ c ¼ ffiffiffi
ρ

p
eiS in terms

of condensate density ρ and phase Swhere the perturbation
δψ is then represented by δρ and δS. In this form, Eq. (15)
splits into two real equations,

ð∂t þ ∇ · vÞδρþ ∇ ·

�
ρ

m
∇δS

�
¼ h½∂yðρvyÞ − ∂xðρvxÞ�

ð16Þ

and (reinserting ℏ for the discussion below)

ð∂t þ v · ∇ÞδSþ gδρþ ℏ2

4m

δρ∇2 ffiffiffi
ρ

p − ρ∇2ðδρ= ffiffiffi
ρ

p Þ
ρ3=2

¼ h

�
m
2
ðv2y − v2xÞ −

∂V
∂h

þ ℏ2

2m

∂
2
x

ffiffiffi
ρ

p − ∂
2
y

ffiffiffi
ρ

p
ffiffiffi
ρ

p
�
; ð17Þ

where v ¼ ∇S=m is the condensate velocity.
For length scales much larger than the healing length, we

may neglect the “quantum-pressure” terms ∝ ℏ2 in Eq. (17)
such that the two first-order equations above can be
combined into one second-order equation,

ð∂t þ ∇ · vÞð∂t þ v · ∇ÞδS − ∇ ·

�
gρ
m

∇δS
�

¼
�
m
2
ð∂t þ ∇ · vÞðv2y − v2xÞ − ð∂t þ ∇ · vÞ ∂V

∂h

�
h

þ gh½∂xðρvxÞ − ∂yðρvyÞ�: ð18Þ

As an extremely simple example, we may consider homo-
geneous condensates at rest for which the above equation
simplifies to ð∂2t − c2s∇2ÞδS ¼ ḣ∂V=∂h with the speed of
sound c2s ¼ gρ=m. In this case, the generated fluctuations

δS ¼ OðhÞ can be obtained via the well-known retarded
Green function of the d’Alembertian. Note, however, that
these first-order fluctuations δS ¼ OðhÞ do not generate a
first-order energy shift because the background state is
stationary, as explained in Sec. III A.

C. Estimate of energy transfer

Finally, let us exemplify the rigorous bound (9) for a
general nonstationary state of a Bose-Einstein condensate.
As in Sec. IV, the first factor ḣ can be estimated by the
typical frequencies ω ¼ OðkHzÞ and amplitudes h ¼
Oð10−22Þ of gravitational waves.
In order to estimate the derivative ∂V=∂h, we may start

from the harmonic approximation (14). For optical traps,
the order of magnitude of the potential strength is set
by the recoil energy ER ¼ k2=ð2mÞ which is typically in
the μK regime. Here k ¼ 2π=λ is the momentum of the
photons forming the optical trap and m the mass of the
trapped atoms (e.g., rubidium). In the absence of further
large numbers, one would expect that M0 and M1 in
Eq. (14) scale with OðER=λ2Þ while F1 ¼ OðER=λÞ and
V1 ¼ OðERÞ. Of course, extending the harmonic approxi-
mation (14) to large distances r, the derivative ∂V=∂h
would grow formally without any bound. This artifact
can be avoided by limiting the maximum distance r to the
size of the condensate or the region of applicability of
the harmonic approximation (14). Both are set by the
optical wavelength λ ¼ O ðμmÞ such that we arrive at
∂V=∂h ¼ OðERÞ.
The remaining term in Eq. (9) is the kinetic energy

hÊkinimax of the condensate. Obviously, the maximum
kinetic energy per atom should not exceed the total
potential depth of order OðERÞ in order to stay trapped.
Thus, we have hÊkinimax ≤ OðNERÞ, where N ¼ hN̂i is the
total number of atoms in the condensate.
Altogether we arrive at the following order-of-magnitude

estimate for the energy shift:

ΔE ≤ OðhωTNERÞ; ð19Þ

where T is the interaction time (e.g., the duration of the
gravitational wave). Inserting a typical amplitude h ¼
Oð10−22Þ, a number of cycles ωT ¼ Oð102Þ, a rather large
atom number N ¼ Oð109Þ, and a characteristic potential
strength ER ¼ O ðμKÞ, we find an energy shift ΔE in the
atto-Kelvin regime—which is probably too small to be
measurable. Note that this is not the energy shift per
particle, but the energy shift for the whole condensate.
Turning this argument (19) around, an energy shift of

ΔE ¼ Oð10 nKÞ corresponding to the energy ℏω of a
single kHz phonon would require a characteristic potential
strength (and energy per atom) of order 10 Kelvin, which is
also beyond current experimental capabilities.
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VI. CONCLUSIONS

We study the interaction between gravitational waves
and quantum matter and find two major coupling mech-
anisms. First, the gravitational wave encoded in the metric
gij directly affects the kinetic term ð∇Ψ̂†Þ · ð∇Ψ̂Þ which is
replaced by −ð∂iΨ̂†Þgijð∂jΨ̂Þ. Second, the gravitational
wave may indirectly couple to matter by modifying its
trapping potential V (see Appendix A).
As a possible observable, we consider the energy transfer

ΔE between the gravitational wave and matter. For sta-
tionary initial states, we find that this energy transfer ΔE
vanishes to first order in the amplitude h of the gravitational
wave. For arbitrary initial states, we derive a general
rigorous bound for the energy transfer ΔE in terms of
particle number and initial kinetic energy.
As a first example, we discuss a simple toy model in the

form of a rotating barbell. For quite moderate rotational
energies Erot, the energy transfer ΔErot can exceed one
excitation quantum ℏω, but actually measuring this small
change on top of a huge background Erot is very challeng-
ing. As a possible remedy, one might consider the change
of the vibrational energy ΔEvib instead. Demanding that
this change Evib exceeds one excitation quantum ℏω then
requires a rotational energy Erot which is much larger
(assuming a reasonably small initial vibrational energy
Evib), but not necessarily out of reach.
As a second example, we apply our findings to Bose-

Einstein condensates, where we discuss the gravitationally
induced modifications of the trapping potential V for the
explicit example of optical traps. Assuming rotational
symmetry of the undisturbed condensate, we find that
the direct interaction mechanism involving the kinetic term
generates quadrupolar excitations (as expected) while the
indirect coupling via the potential V may also induce other
(e.g., dipolar) excitations—depending on the specific
realization of the trap.
Quite generally, inserting typical orders of magnitude of

Bose-Einstein condensates into the rigorous bound for the
energy transfer ΔE, we find that it is probably far too small
to be detectable with present-day technology—at least in
the absence of further large numbers which may enhance
the signal.

VII. OUTLOOK

As we may infer from the rigorous bound, one way to
increase the possible energy transfer ΔE could be to
consider other forms of matter such as superfluid helium
or ultracold solids containing more particles and thus
admitting higher kinetic energies. For example, one could
envisage levitating helium droplets or barbells which dis-
play quadrupolar vibrations or rotations in resonance with
the gravitational wave. In this case, it might be easier to
achieve an energy transfer ΔE corresponding to one

or more excitation quanta ℏω. Of course, detecting such
a small change of energy experimentally is another
challenge.
Let us provide a rough estimate for the associated orders

of magnitude in the case of superfluid helium [42,43].
Inserting a surface tension of σ ≈ 3.7 × 10−4 N=m and a
density of ρ ≈ 125 kg=m3, we find that vibrational modes
with frequencies ωvib in the kHz range translate to length
scales ðω2

vibρ=σÞ−1=3 in the millimeter regime. Lower
frequencies ωvib correspondingly translate to longer length
scales (e.g., droplet size). As another way of increasing the
length scale, one could envision a helium droplet around a
solid core which attracts the surrounding helium film and
thus generates an additional restoring force (similar to
gravity waves in water). In this way, it should be possible to
reach kinetic energies in the Oð10−11 JÞ range required for
transferring one excitation quantum ℏω from the gravita-
tional wave to the helium droplet, see Sec. IV. However, as
also discussed in Sec. IV, because measuring this single
excitation quantum ℏω on top of the huge background is
challenging, one could try to have a larger energy of
Oð108 JÞ in one mode (e.g., rotation) in order to obtain the
transfer of one excitation quantum ℏω into another mode
(e.g., vibration). Inserting the speed of (first) sound of
cs ≈ 240 m=s, this other mode could be a sound mode of
helium in a container with a size in the meter range.
Inserting the above density of ρ ≈ 125 kg=m3, such a
container could hold enough helium to reach the required
rotational energy of Oð108 JÞ, see Sec. IV. One possible
realization could then be a rotating barbell with two large
helium containers at its two ends. Nevertheless, even
though the orders of magnitude match quite nicely, it is
clear that such an experiment would still be very
challenging.
Going a bit further, let us discuss these scenarios in some

more detail. If the levitating helium droplets or barbells
display quadrupolar vibrations or rotations in resonance
with the gravitational wave, the sign of their energy shift
ΔE depends on the relative phase between the gravitational
wave and the quadrupolar vibration or rotation. If they are
in phase, the energy increases ΔE > 0 but if they are out of
phase (by a phase shift of Δφ ¼ π), the energy decreases
ΔE < 0. In analogy to photons as quanta of electromag-
netic waves, we may use the picture of gravitons as quanta
of gravitational waves. Then, the first case corresponds to
the absorption of gravitons, while the second scenario
describes the stimulated emission of gravitons. Such a
stimulated emission scenario may be our best chance
to actually emit gravitons in a controlled earth-bound
experiment—but it would still be a challenging experiment.
However, it would mark the important step from merely
observing a natural phenomenon to actually manipulating
it. Of course, detecting the gravitons emitted in this way
would then be yet another challenge.
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APPENDIX A: ATOMIC EIGENSTATES

For the sake of completeness and as another illustration
for the impact of gravitational waves, let us investigate
the induced modifications of the atomic eigenstates. For
simplicity, let us start with the nonrelativistic hydrogen
atom as described by the undisturbed Hamiltonian,

Ĥ0 ¼
p̂2

2m
þ Vðr̂Þ; ðA1Þ

where Vðr̂Þ ¼ −q2=ð4πr̂Þ denotes the Coulomb potential.
Then, in complete analogy to the Hamiltonian (6), the
impact of the gravitational wave can be encoded in the
perturbation Hamiltonian [44,45],

Ĥ1 ¼ h

�
p̂2
y − p̂2

x

2m
þ q2

x̂2 − ŷ2

8πr̂3

�
¼ Ĥkin

1 þ Ĥpot
1 : ðA2Þ

The deformation of the Coulomb potential can be derived
via replacing the flat space-time Laplace operator ∇2 in the
Poisson equation for VðrÞ by the Laplace-Beltrami operator
−∂igij∂j, see also [47].
Since h is slowly varying in comparison to the atomic

frequencies, we may estimate the lowest-order variations
of the eigenstates via stationary perturbation theory. The
first-order shift of the eigenenergies is determined by the
expectation values of the perturbation Hamiltonian (A2)
in the undisturbed eigenstates. Obviously, the expectation
value in the 1 s ground state vanishes in view of rotational
invariance h1sjĤ1j1si ¼ 0. More generally, matrix ele-
ments hn;l; mjĤ1jn0;l0; m0i can only yield nonvanishing
contributions if m0 ¼ m� 2. Thus, one might expect an
energy shift for px orbitals, for example, see also [46].
Indeed, the expectation value of Ĥkin

1 corresponds to the
difference between the average kinetic energies in the x and
the y direction and yields a nonzero result,

h2pxjĤkin
1 j2pxi ¼ −h

q2

80πaB
; ðA3Þ

where aB is the Bohr radius. Apart from the small prefactor
h, this energy shift is in the eV regime and thus one might

expect it to be measurable. However, one should not forget
the second contribution Ĥpot

1 . Calculating its expectation
value h2pxjĤpot

1 j2pxi, one finds that it precisely cancels
the above contribution (A3) leading to a vanishing energy
shift h2pxjĤ1j2pxi ¼ 0 to lowest order, consistent with the
results of [48–51].
This cancellation is perhaps not too surprising because

a constant h can be interpreted as a trivial change of
coordinates x → ½1þ h=2�x and y → ½1 − h=2�y, which
should not affect any physical quantities such as energies.
However, such a change of coordinates is consistent with
modifications of the wave functions and thus nondiagonal
matrix elements can be nonvanishing, such as

h1sjĤ1j3dx2−y2i ¼ h
q2

128πaB
; ðA4Þ

see also [52,53]. As a consequence, transition matrix
elements could also change (in those coordinates).
In view of the above argument based on coordinate

independence (i.e., general covariance), the cancellation of
the energy shifts to lowest order in h should remain valid in
the general case. As an example, let us briefly discuss the
Dirac equation. To lowest order in h, the metric (1) can be
incorporated by a modification of the Dirac matrices γx →
½1 − h=2�γx and γy → ½1þ h=2�γy while γz and γt remain
unchanged. Again using that h is slowly varying, we may
neglect the Fock-Ivanenko (spin connection) coefficients
because they scale with the derivative ḣ ¼ OðωhÞ and are
thus suppressed for small ω. As a consequence, the
Dirac perturbation Hamiltonian has a structure very similar
to the Schrödinger case (A2). The potential part Ĥpot

1

stemming from the deformation of the Coulomb potential
is basically the same, while the kinetic part Ĥkin

1 reads
h½αyi∂y − αxi∂x�=2, where the αi ¼ γ0γi are the velocity
matrices in the Dirac representation—in analogy to the
Schrödinger case (A2).

APPENDIX B: ROTATING FRAME

For studying rotating matter distributions such as the
barbell, it is often useful to transform into the rotating
frame. Assuming that potential V0 and interaction W are
isotropic, the Hamiltonian (6) in the rotating frame reads

Ĥrot
0 ¼

Z
d3r

�
1

2m



∇Ψ̂† − im½ωrot × r�Ψ̂†

�

·


∇Ψ̂þ im½ωrot × r�Ψ̂

�
þ V0ðrÞΨ̂†Ψ̂

−
m
2
ðωrot × rÞ2Ψ̂†Ψ̂

�

þ 1

2

Z
d3rd3r0Ψ̂†ðrÞΨ̂†ðr0ÞWðr; r0ÞΨ̂ðr0ÞΨ̂ðrÞ: ðB1Þ
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While the interaction term in the last line does not change
(due to the assumed isotropy), the first three lines now
contain the kinetic energy in the rotating frame Erot

kin plus
the effective potential VeffðrÞ ¼ V0ðrÞ −mðωrot × rÞ2=2.
In order to ensure stability, we assume that V0 is stronger
than the centrifugal potential mðωrot × rÞ2=2.
Quite importantly, the effective Hamiltonian (B1) is

independent of time. This allows us to prepare an initial
state which is stationary or even static in the rotating frame.
Furthermore, the well-known analogy to charged particles
in a magnetic field described by the effective vector
potential Aeff ∝ ωrot × r enables us to transfer many of
the concepts to the rotating case. For example, the con-
served current contains an additional term from Aeff :

ĵrot ¼
1

2mi

h
Ψ̂†∇Ψ̂ − H:c:

i
þ ðωrot × rÞΨ̂†Ψ̂: ðB2Þ

Now let us study the impact of the gravitational wave (1).
Assuming a rotation around the z axis for simplicity with an
angle of φðtÞ ¼ ωrott, the induced interaction Hamiltonian
becomes

Ĥint ¼ hðtÞ
Z

d3r

�
cosð2ωrottÞ

ð∂yΨ̂†Þð∂yΨ̂Þ− ð∂xΨ̂†Þð∂xΨ̂Þ
2m

− sinð2ωrottÞ
ð∂xΨ̂†Þð∂yΨ̂Þ þ ð∂yΨ̂†Þð∂xΨ̂Þ

2m

�
; ðB3Þ

where we have again omitted the changes of V0 and W
induced by the gravitational wave.
Now let us estimate the energy transfer in analogy to

Sec. III A. As an important difference to that section, the
terms such as ð∂yΨ̂†Þð∂yΨ̂Þ can no longer be directly bound
by the kinetic energy Erot

kin which now contains more
contributions and is given in the first two lines of
Eq. (B1). In order to place a bound on these additional
terms we assume that the initial (unperturbed) state is static
in the rotating frame which implies h ĵroti0 ¼ 0. Using this
assumption and the Cauchy-Schwarz inequality, we finally
arrive at

Ė ≤ jḣjmax

�
2Erot

kin þm
Z

d3r ðωrot × rÞ2hΨ̂†Ψ̂i0
�
þOðh2Þ:

ðB4Þ

Quite intuitively, apart from the kinetic energy within the
rotating frame, we also obtain a contribution from the
rotation itself—which can be bound by the total particle
number and the maximum spatial extent of the matter
distribution (e.g., barbell).
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