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Several rapid parameter estimation methods have recently been advanced to deal with the computational
challenges of the problem of Bayesian inference of the properties of compact binary sources detected in the
upcoming science runs of the terrestrial network of gravitational wave detectors. Some of these methods are
well-optimized to reconstruct gravitational wave signals in nearly real-time necessary for multimessenger
astronomy. In this context, this work presents a new, computationally efficient algorithm for fast evaluation
of the likelihood function using a combination of numerical linear algebra and meshfree interpolation
methods. The proposed method can rapidly evaluate the likelihood function at any arbitrary point of the
sample space at a negligible loss of accuracy and is an alternative to the grid-based parameter estimation
schemes. We obtain posterior samples over model parameters for a canonical binary neutron star system by
interfacing our fast likelihood evaluation method with the nested sampling algorithm. The marginalized
posterior distributions obtained from these samples are statistically identical to those obtained by brute
force calculations. We find that such Bayesian posteriors can be determined within a few minutes of
detecting such transient compact binary sources, thereby improving the chances of their prompt follow-up
observations with telescopes at different wavelengths. It may be possible to apply the blueprint of the
meshfree technique presented in this study to Bayesian inference problems in other domains.
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I. INTRODUCTION

The detection of gravitational waves (GW) from the
GW170817 [1] binary neutron star (BNS) system, followed
by the prompt multiwavelength (gamma rays to radio)
observation of its electromagnetic (EM) counterpart, has
led to several fundamental discoveries; and is hailed as a
significant breakthrough in astronomy. These discoveries
include the validation of long-held hypotheses that BNS
mergers are ideal sites for r-process nucleosynthesis and
produce short gamma ray bursts, the first GW-based
constraints on the equation of state of nuclear matter in
such stars, and the measurement of Hubble constant
independent of the cosmic distance ladder.
The inevitable improvement of the detectors’ sensitivity

in future observation runs is likely to have a twofold impact
on the prospects of multimessenger observations: Firstly,
the increased bandwidth of the detectors (especially
improved sensitivity at low frequencies) will result in a
tremendous increase in the computational cost of Bayesian

inference of source parameters, including sky localization
essential for prompt observation of EM counterparts.
Although the BAYESTAR [2] algorithm could be used to
produce rapid sky maps, it has been recently shown [3] that
coherent parameter estimation (PE) can localize the sources
better by an average reduction of 14 deg2 in the uncer-
tainty, underlining the importance of developing fast PE
algorithms. Second, the reach of the terrestrial network of
GW detectors will extend out to several Gpc to the effect
that one would have far too many detections of BNS/NSBH
signals to contend with whilst generating prompt sky-
location maps [4]; so much so that one may have to
prioritize the GW sources for EM follow-up based on
prospects of new science from a rapid estimation of their
mass and spin components as shown by Margalit and
Metzger [5], thereby helping EM observatories to use
resources optimally. Several fast PE algorithms have been
developed recently, such as the coherent multidetector
extension of the relative binning/heterodyne method by
Finstaad and Brown (2020) [3], which produces the
posterior within twenty minutes for BNS systems with
32 CPU cores. Well-trained machine learning PE methods
[6–8] can significantly reduce the runtimes and produce the
posteriors in nearly real-time. In the past, algorithms for
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accelerated parameter estimation have mainly focussed on
speeding up the overlap integral. These include reduced-
order models (ROMs) [9–11], machine-learning aided
ROMs [12], Gaussian process regression based interpola-
tion [13] and relative binning [3,14,15] algorithms. Our
approach takes inspiration from the grid-based likelihood
interpolation method [16] based on orthonormal
Chebyshev polynomials. The grid-based techniques have
a drawback in that the number of interpolation nodes grows
exponentially with the dimensionality of the parameter
space.
In this work, we propose a new and alternative approach

to grid-based likelihood interpolation method [16], a
computationally efficient method for evaluating the like-
lihood function (a key ingredient in Bayesian inference)
using meshfree interpolation methods with dimension
reduction techniques. We directly interpolate the likelihood
function over the parameter space, bypassing the gener-
ation of templates and brute-force computation of the
overlap integral altogether. Our scheme can quickly
approximate the log-likelihood function with high accuracy
and produce statistically indistinguishable posteriors over
source parameters. Further, both the GstLAL search
framework [17] and the meshfree method use the idea of
dimension reduction using singular value decompostion
(SVD) [18], it may be prudent to incorporate this method
with the low-latency GstLAL search pipeline for rapid,
automated follow-ups of the detected events.

II. BAYESIAN INFERENCE

Given data d ¼ hðΛ⃗trueÞ þ n recorded at a detector
containing an astrophysical GW signal hðΛ⃗trueÞ embedded
in additive Gaussian noise n, one is interested in solving the
inverse problem to estimate the source parameters.
Bayesian inference is a stochastic inversion method where
the posterior probability density pðΛ⃗jdÞ over the source
parameters is related to the likelihood function LðdjΛ⃗Þ of
observing the data through the Bayes’ theorem,

pðΛ⃗jdÞ ¼ LðdjΛ⃗ÞpðΛ⃗Þ
pðdÞ ; ð1Þ

where pðΛ⃗Þ is the prior distribution over the model
parameters Λ⃗≡ fλ⃗ext; λ⃗g. In our notation, λ⃗ denotes the
intrinsic parameters such as component masses and spins.
The set of extrinsic parameters is denoted by λ⃗ext. We are
particularly interested in estimating the extrinsic parameter
tc denoting the fiducial time of coalescence of the two
masses. tc will be mentioned explicitly wherever required,
as it is treated in a special way in our analysis.
The forward generative frequency-domain restricted

waveform model for nonprecessing compact binaries can
be expressed as hðΛ⃗Þ ¼ Ahþðfk; λ⃗Þ, where the complex

amplitude A depends only on the extrinsic parameters and
hþðfk; λ⃗Þ is the ‘þ’ polarization of the signal that depends
only on the intrinsic parameters [19]. Here ffkgNs=2

k¼0 defines
positive Fourier frequencies, and Ns

1 is the number of
sample points. A GW signal, observed by an interfero-
metric detector, can be considered as a linear combination
of the two polarizations weighted by the antenna pattern
function. The hþðfk; λ⃗Þ polarization is related to the
h×ðfk; λ⃗Þ polarization for nonprecessing GW signal as
hþðfk; λ⃗Þ ∝ ih×ðfk; λ⃗Þ [20]. This allows us to write the
detector response in terms of any one of the polarizations
alone [we have chosen the hþðfk; λ⃗Þ polarization]. Using
this model, the posterior pðΛ⃗jdÞ can be directly evaluated at
every point in Λ⃗ using Eq. (1). However, in view of the high
dimensionality of Λ⃗, it is more efficient to sample the
posterior using stochastic sampling algorithms such as
nested sampling [21], or Markov Chain Monte Carlo
(MCMC) [19]. From Eq. (1), it is evident that for a quick
estimation of the posterior distribution, it is imperative to
rapidly evaluate the likelihood function.
We work with the phase-marginalized log-likelihood

function [22],

lnLðΛ⃗; tcÞ ¼ ln I0½jAjzðλ⃗; tcÞ� − 1

2
khðΛ⃗Þk22; ð2Þ

where I0ð·Þ is the zeroth-order modified Bessel function of
the first kind, and zðλ⃗; tcÞ is the frequency-domain overlap-
integral,

zðλ⃗; tcÞ ¼ 4Δf
����
XNs=2

k¼0

d�ðfkÞhþðfk; λ⃗Þ
ShðfkÞ

e−2πifktc
����; ð3Þ

inversely by ShðfkÞ, the detector’s one-sided noise power
spectral density (PSD). The data and template vectors are
sampled at discrete frequencies ffkgNs=2

k¼0 .
The complexity of evaluating the overlap integral scales

directly with the number of data samples, which in turn,
scales with the seismic cutoff frequency (approximately) as
Ns ∼ f−8=3low . As we progress from the O4 observational run
(flow ¼ 20 Hz) to O5 at design sensitivity (flow ¼ 10 Hz),
evaluating pðΛ⃗jdÞ is likely to take at least ×6.3 longer. In
addition, additional costs will be incurred in constructing
longer templates at the proposal points. Therefore, the
likelihood calculation can be expensive. However, our
method is immune to this issue as our scheme directly
approximates the likelihoods at different sample points. In
this work, we have used nonorthonormal radial basis
functions (RBFs) (Gaussian kernels) centered at interpo-
lation nodes that can be randomly scattered over the volume

1Ns ¼ signal duration × sampling frequency.
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of the intrinsic parameter space. In this manner, we have
effective control of their number in higher-dimensional
parameter spaces.

III. MESHFREE LIKELIHOOD INTERPOLATION

The computational cost of Bayesian inference comprises
of two parts: the first is incurred in waveform generation
followed by likelihood evaluation at a point proposed by
the sampler. Typically, a sampler proposes a large number
(∼106–107) of points to adequately capture the posterior
distribution which makes this part computationally expen-
sive. The other part of the total computational cost can be
attributed to the overheads of the sampling method itself.
Since the latter cost depends on the efficiency of the
sampling algorithm used (and its software implementation)
and is significantly less in comparison to the overall cost of
PE, we shall ignore it in our discussions.
We assume that the parameter estimation is “seeded” by

the most significant trigger Λ⃗� from an upstream detection
pipeline [23,24]. The sampling algorithm draws new
proposals from a sample space which is taken to be a
moderate-sized “hyper-rectangle” in Λ⃗, centered around the
most significant search trigger.
From Eqs. (2) and (3), it is evident that we need to

interpolate two pieces, zðλ⃗; tcÞ and khþðλ⃗Þk22, and combine
them with the amplitude A to calculate the log-likelihood
ratio at a given ‘query’ point λ⃗q and a particularly givenvalue
of tc. For this purpose, a set of n unique interpolation nodes
λ⃗α; α ¼ 1;…; n are randomly chosen from a uniform dis-
tribution over the sample space.
The template norm khþðλ⃗Þk22 is a smoothly varying

scalar field over λ⃗. We can interpolate its value at a query
point λ⃗q by first evaluating the values explicitly at the
interpolation nodes λ⃗α, and then expressing khþðλ⃗qÞk22 at an
arbitrary point as a linear combination of Gaussian RBF
kernels centered at these nodes. The unknown coefficients
of this linear combination can be uniquely found by
enforcing the interpolation criteria as explained in the next
section.
On the other hand, as the overlap integral has to be

evaluated at an arbitrary point ðλ⃗q; tcÞ, it will turn out to be
more convenient to interpolate it as a vector. In this case, a
set of overlap-integral vectors z⃗α are first constructed at the
interpolation nodes, sampled on a uniform grid over tc. The
vectors z⃗α have elements zα½k�≡ zðλ⃗α; kΔtÞ, where Δt is
the sampling interval, k is an integer ∈ intð½t�c � τ�=ΔtÞ, t�c
represents the ‘reference’ coalescence time as triggered by
the search pipeline and 2τ is the dimension of the sample-
space (hyper-rectangle in Λ⃗) along the tc direction.
Since the bulk of the support for the posterior distribu-

tion comes from near the peak of these time series, we
choose its samples that are centered around the triggered
value. From Eq. (3) it is clear that z⃗α’s can be constructed

efficiently using FFT correlations. Once the set of vectors
fz⃗αg is available, they can be projected over a suitable set of
basis vectors fu⃗μg with linear coefficients fCμðλ⃗αÞg. As
each of the coefficients is smoothly varying scalar fields
over λ⃗ (sampled at the interpolation nodes), we can use
meshfree methods to interpolate their values at an arbitrary
query point. The meshfree scheme can be divided into two
stages: (i) a preparatory, startup stage where we explicitly
determine the RBF interpolating functions (interpolants)
from the precomputed likelihood values at the interpolation
nodes; and (ii) an online stage where these interpolants are
evaluated on the fly to ‘predict’ the likelihood values at
arbitrary query points in the sample space.

A. Start-up stage

In this stage, the nodes are randomly sprayed over the
sample space, and the meshfree interpolants are constructed;
(1) SVD basis: We are interested in finding a suitable set

of basis vectors that span the space of n input overlap
vectors fz⃗αg. This is conveniently performed by
stacking these vectors row-wise and performing a
SVD of the resultant matrix,

z⃗α ¼
Xn
μ¼1

Cα
μu⃗μ; ð4Þ

where Cα
μ are the coefficients for the set of ortho-

normal basis vectors u⃗μ in decreasing order of their
relative importance as determined from the spectrum
of singular values. A strong correlation between the
z⃗α’s implies that the overlap vectors lie in the span of
the top-l basis vectors (l ≪ n). A vector z⃗q at a
query point in the sample space can also be spanned
by the same set of basis vectors.
Note that for a fixed index μ, the coefficients Cα

μ

represent a surfacewhosevalues are knownonly at the
input nodes. Along with Eq. (4), this implies that the
interpolation of the inner-product vector at an arbi-
trary query point essentially boils down to interpolat-
ing the value of the coefficients Cq

μ ≡ Cμðλ⃗qÞ.
(2) Creating meshfree interpolants: In this step, we

create and explicitly determine the “meshfree”
interpolants for each of the coefficient surfaces [that
appear in Eq. (4)] independently. The interpolant for
the coefficient corresponding to the μth basis vector
can be expressed [25] as a linear combination of
RBF kernels centered on the scattered, distinct nodes
λ⃗α, augmented by monomials ranging up to a
specific order,

Cq
μ ¼

Xn
α¼1

rαϕðkλ⃗q − λ⃗αk2Þ þ
XM
j¼1

bjfjðλ⃗qÞ; ð5Þ
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where ϕ is the Gaussian kernel centered on λ⃗α ∈Rd,
and ffjg’s are monomials that span the space of
polynomials of some preset target degree ν in d
variables. Also, r ¼ ½r1; r2;…; rn�T and b ¼
½b1; b2;…; bM�T are the set of (nþM) coefficients
that need to be uniquely determined to determine the
interpolant.
Since Cq

μ are known at the interpolation nodes, it
allows us to enforce n interpolation conditions. M
additional conditions

P
n
k¼1 rkfjðλ⃗kÞ¼ 0;j¼ 1;…;M

are added to ensure a unique solution. Together, these
lead to a system of equations:

�
K F

FT O

��
r

b

�
¼

�
Cα
μ

0

�
; ð6Þ

where the matrices K and F have components Kij ¼
ϕðkλ⃗i − λ⃗jk2Þ andFij ¼ fjðλ⃗iÞ respectively;OM×M is
a zero matrix and 0M×1 is a zero vector. Equation (6)
can be solved uniquely for the unknown coefficients r
and b, thus completely determining the meshfree
interpolant in Eq. (5). The solution for r and b can
be shown to be unique if F has full column rank.
A minimum set of n ¼ ðνþd

ν Þ interpolation nodes
are required to be uniformly distributed over the d-
dimensional intrinsic parameter space to determine
the coefficients uniquely. Euclidean distances be-
tween pairs of points seem to work well, possibly
due to the small volume of the sample space in a
typical PE analysis. Parameter-space metric-based
distances could also be used.
A similar procedure is followed to create a separate

meshfree interpolant for khþðλ⃗qÞk22.
Note that by construction, the meshfree interpolation elim-
inates both the factors that contribute to the high computa-
tional cost, namely, (a) generating the forward signal model
and (b) explicitly calculating the overlap integral at every
query point proposed by the sampling algorithm.

B. Online stage

In this stage, the (lþ 1) interpolants (prepared in the
offline stage earlier) are evaluated on the fly at arbitrary
query points ðλ⃗q; tcÞ proposed by the sampling algorithm.
The interpolant for the square of the template norm can

be directly evaluated to get the interpolated value
khþðλ⃗qÞk22. Similarly, the l interpolants for SVD coeffi-
cients [Eq. (5)] are evaluated to get a set of interpolated
coefficients, which are then combined with the correspond-
ing top-l basis vectors u⃗μ [see Eq. (4)] to obtain the
interpolated overlap integral z⃗q.
By construction, z⃗q is uniformly sampled over the

interval ½t�c � τ�. As such, it is possible that the query tc
does not coincide with the discrete time samples of z⃗q.

In such a case, we use a one-dimensional cubic-spline
interpolation to evaluate zðλ⃗q; tcÞ using a few ‘nearby’ grid
samples of z⃗q as input. This implies that z⃗q has to be
reconstituted only at a few (∼10) consecutive sample
points, which considerably accelerates the matrix-vector
multiplication in Eq. (4).
Combining the interpolated values zðλ⃗q; tcÞ and

khþðλ⃗qÞk22 with the extrinsic parameter-dependent complex
amplitude A [see Eq. (2)], we finally obtain the log-
likelihood ratio lnL at the arbitrary point ðΛ⃗q; tcÞ.

IV. NUMERICAL EXPERIMENTS

To demonstrate the accuracy and speed of the meshfree
method in reconstructing the source parameters, we pre-
pared synthetic 360 s long data d, sampled at 4096 Hz. For
this, a simulated GW signal h from a canonical BNS system
with component masses m1;2 ¼ 1.4M⊙ and mass-weighted
effective dimensionless spin χeff ¼ 0.05 was injected
(using the IMRPhenomD [26] signal model) in colored
Gaussian noise using the noise power spectral density
model [27] of aLIGO detectors. The distance to the source
was adjusted for a moderate matched-filtering signal-to-
noise ratio (SNR) of 10. The seismic cutoff frequency was
chosen to be 20 Hz to mimic data from the upcoming O4
science run.
We performed Bayesian inference on this simulated data

using both (a) the direct likelihood calculation used in
PyCBC inference, and (b) by using the proposed meshfree
likelihood interpolation scheme outlined in earlier sections.
We used publicly available software [28] for radial basis
functions and the DYNESTY [29,30] nested sampling pack-
age for carrying out the Bayesian inference analysis. We
varied four intrinsic parameters (component masses and
aligned-spin magnitudes) and two extrinsic parameters
(luminosity distance and coalescence time), keeping other
parameters fixed.
For this exercise, we used n ¼ 800 random input nodes

over λ⃗. The top l ¼ 120 basis vectors and a polynomial
order ν ¼ 6 with a corresponding nominal median relative
error ∼10−5 across the sample space in approximating the
log-likelihood function. The accuracy trade-offs of like-
lihood reconstruction by varying basis size is shown in the
Appendix A.
The meshfree parameter reconstruction was completed

in 5.3 min in comparison to 31.7 h taken by the direct
calculation. The likelihood function was evaluated 676
times faster using the meshfree method.
Some of the estimated parameters have been compared

in Table I, which show identical values obtained by both
methods. The marginalized probability density function
(PDF) over three parameters M, η, and Δtc are shown in
the corner plot Fig. 1. The figure also contains cumulative
distribution function (CDF) profiles of these distributions
obtained from both PyCBC inference and the meshfree
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method plotted together. While both the PDF and CDF
profiles look virtually indistinguishable, we also calculate
statistical measures of similarity [31] using the PDFs
obtained from the two methods for further validation: both
the Kolmogorov-Smirnov statistic (0.0130) and the
Bhattacharyya distance (0.0006) between the chirp-mass
PDF profiles support the fact that the two distributions are
nearly identical. We get similar results for posterior dis-
tributions of other parameters.
This numerical example shows that the meshfree method

can generate a statistically indistinguishable replica of the
posterior distributions in a GWBayesian inference problem
at a small fraction of the total computational cost.

V. SPEED-UP ANALYSIS

We calculated the ratio of (average) time taken to
compute the log-likelihood by these techniques at a fixed
accuracy of reconstruction. Several simulated data sets
were used in this study, generated by injecting signals
having different parameters in colored Gaussian noise
using the aLIGO noise model at a fixed matched-filtering
SNR of 10. Seismic cutoff frequencies at 20 Hz (10 Hz)
were considered to mimic data from upcoming O4 (O5)
science runs.
There is an obvious trade-off between accuracy and

speed-up of the meshfree method, which are determined by
the choice of ðn;l; νÞ parameters. Larger values can lead to
more accurate likelihood estimates, albeit at a higher
computational cost and vice-versa. We used a heuristic
combination to guarantee median (relative) errors ≲9 ×
10−5 in the estimated log-likelihood values across the entire
sample space.
The log-likelihood function was evaluated and timed for a

large number of randompoints uniformly distributed over the
ðλ⃗; tcÞ space. Table II summarizes the speed-ups correspond-
ing to the two different seismic cutoff frequencies for three
compact binary systems with equal component masses. It is
further elucidated in Fig. 2, where the speed-up comparison
is drawn between a larger number of equal-mass binary
systems covering a wider range of parameters. From Table II
and Fig. 2, it is clear that the likelihood computation can be
sped up ∼4000 times faster for canonical BNS systems at a
nominal error of ∼10−5 using the meshfree method against
standard likelihood implementation in PyCBC inference.
However, this would not reflect the true benefit of our
proposed method, as PyCBC inference is not optimized to
calculate the fast posterior distribution for LIGO. Our
method computes the posterior within a few minutes for

FIG. 1. Marginalized PDF for chirp mass M, symmetric mass
ratio η, and Δtc parameters of a simulated BNS event at a seismic
cutoff of 20 Hz. The injection parameters are shown as red lines.
The 50% and 90% contours for meshfree method (dashed cyan
trace) and PyCBC (solid white trace) are also shown. The plot-
overlaid marginalized PDF obtained from the proposed meshfree
method (dashed orange trace) and standard PyCBC inference
(black line) are virtually indistinguishable.

TABLE I. Reconstruction of a canonical BNS event.

M=M⊙ η χeff SNR

Injection 1.2187 0.25 0.05 10.00
Standard 1.21871.21881.2185 0.24870.24980.2456 0.0500.0510.049 9.67

Meshfree 1.21871.21881.2185 0.24870.24980.2456 0.0500.0510.049 9.67

TABLE II. The first and second columns define the seismic cut-
off frequency and total mass of the injected GW signal,
respectively. The third and fourth columns show the median
time (in ms) taken for a single evaluation of the log-likelihood
function using the standard PyCBC method and our approach at a
nominal relative error of Oð10−5Þ. The last column provides the
relative speed-up of our method in comparison with the standard
likelihood calculation. Median time (in ms) taken for a single
evaluation of the log-likelihood function using standard PyCBC
method and the meshfree approach at a nominal relative error
of ∼10−5.

Seismic cutoff M=M⊙ tmf=ms tpycbc=ms Speed-up

flow ¼ 10 Hz 2.8 0.90 3604.76 4005.2
4.0 1.06 1405.84 1326.2

20.0 0.88 29.27 33.2
flow ¼ 20 Hz 2.8 0.67 452.93 676.0

4.0 0.81 207.35 256.0
20.0 0.63 3.32 5.3
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BNS system. Thus, our proposed scheme has the potential to
perform rapid reconstruction of source parameters in upcom-
ing observation runs foraLIGO detectors similar to the other
existing optimized methods.
The low-mass systems with a large number of in-band

cycles would benefit most from the meshfree method. In
contrast to the standard method, the time taken by the
meshfree method is relatively unaffected by the chirp time
of the signals. All the tests were performed on a single-core
AMD EPYC 7542 CPU@2.90GHz CPU.

VI. CONCLUSION AND OUTLOOK

We have presented an alternative approach to the grid-
based method [16], which is computationally efficient for
accurately evaluating the log-likelihood function. Our
meshfree method can be easily integrated into well-known
sampling algorithms (e.g., MCMC, nested sampling) to
substantially accelerate the Bayesian inference of source
parameters of coalescing compact binary sources, trigger-
ing prompt observation of their EM counterparts in the
future. Using synthetically generated data of a GW signal
from a merging BNS system, we have demonstrated that
the posterior distributions are statistically identical to those
obtained using the standard PyCBC inference [32]. For BNS
systems, the likelihood function can be calculated ∼4000
times faster at any point proposed by the sampling
algorithm than the direct likelihood calculation imple-
mented in PyCBC inference. At this point, we want to
remind the readers that we made the comparison of our
scheme against PyCBC inference only to verify the robust-
ness of our scheme. PyCBC inference is not used for the fast
PE run by LVK. Therefore, for a fair speed-up comparison,

we must compare our methods against those schemes
[3,6,7,9–11,13–15] computing the real-time posterior dis-
tribution. However, the comparison with the optimized
schemes is beyond the scope of the current work. In the
follow-up works, we will compare our method against
those schemes in detail.
Numerical experiments with a coherent, multidetector

implementation of the meshfree algorithm suggest that we
can solve the coherent BNS PE problem (over a ten-
dimensional parameter space) in ∼164 seconds using
64 CPU cores. Further optimizations and runs over the
full parameter space are underway. These details will be
available in a follow-up paper [33]. It may be prudent to
incorporate this method with the low-latency GstLAL [23]
search pipeline for rapid, automated follow-ups of the
detected events since both use the idea of dimension
reduction using SVD. In the current implementation of
this algorithm, we need to create meshfree RBF interpo-
lants from scratch for each new event triggered by the
search pipelines. However, this task is embarrassingly
parallel and can benefit from multiple CPU cores to
expedite the preparatory stage. Future refinements could
involve using the Fisher matrix [34,35] as a guide to
identifying the sample space volume and using sophisti-
cated interpolation node distribution algorithms [36].
Finally, the techniques of dimension reduction and mesh-
free approximation could be applied to situations where the
likelihood function varies smoothly over the sample space.
It is thus possible to adapt this idea to Bayesian inference in
fields as diverse as cosmology, biochemical kinetic proc-
esses, and systems biology.
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systems. The shaded region denotes BNS systems. The combi-
nation of ðn; l; νÞ parameters were tuned for a median error
of ∼10−5.
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APPENDIX A: ACCURACY TRADE-OFFS:
EFFECT OF VARYING BASIS SIZE

We present the results of a simulation to demonstrate the
accuracy of the mesh-free method on the basis size. We
inject a GW signal from a compact binary system with
component masses (1.4M⊙, 1.4M⊙) in simulated noise
generated using the advanced LIGO design sensitivity
curve with a lower seismic cut-off frequency of 10 Hz.
On one hand, we compute the log-likelihood-ratio (LLR)
using the standard functions available in the PyCBC
package (considered to be the ‘ground truth’ for this
simulation) and compare it with the approximate value
using the mesh-free interpolation method as outlined in our
manuscript. The meshfree method uses 103 randomly
chosen initial nodes over the sample space. We vary the
number of the basis vectors for reconstructing the like-
lihood and estimate the difference between interpolated
likelihood and the ‘ground-truth’ likelihood value. For

these simulations, we observe that the top 20 basis vectors
are sufficient to approximate the likelihood with sufficient
accuracy. However, we demonstrated the absolute error
between the true and approximated value for 5, 7, 20, 50,
100, and 200 basis vectors, respectively. Fig. 3 shows the
probability distribution function (PDF) of the difference
between true and estimated likelihood, and the Fig. 4 shows
the corresponding cumulative distribution function (CDF).
It is clear from these figures that as we increase the number
of basis vectors, the error distribution becomes more
concentrated around zero as compared to the relatively
flattened distribution for smaller basis sizes.

APPENDIX B: SCALING OF THE SPEED-UP
FACTOR WITH WAVEFORM DURATION

The meshfree likelihood evaluation has no dependence
on the length of the waveform. On the other hand, in the
standard method, a significant time is spent on the wave-
form generation, followed by the evaluation of the like-
lihood integral. The latter depends on the length of the
waveform. As shown in Table II, the speed-up ratios
decrease with higher masses (shorter waveforms).
To verify this, we calculated the likelihood evaluation

time using both PyCBC (tpycbc) and meshfree method (trbf )
and also evaluated the waveform generation time (twfeval)
for the four compact binary sources at 104 points each. As
shown in the plot below (Fig. 5), the waveform generation
part is the dominant cost in traditional calculations. For a
BNS system, it takes about ∼7 times longer to generate the
waveform as compared to the time for evaluating the
likelihood integral. As we go towards heavy CBC systems,
the speed-up ratio decreases as expected.

FIG. 3. The likelihood reconstruction error has been shown by
varying the number of basis vectors.

FIG. 4. The CDFs with different number of basis vectors has
been plotted for the same likelihood reconstruction error shown in
Fig. 3.

FIG. 5. The relative speed-up between the likelihood evaluation
using PyCBC and the proposed meshfree method is shown (blue).
Also, The ratio of overall time for generating waveforms (total
mass: 2.8M⊙–10M⊙) using PyCBC and the likelihood evaluation
via meshfree scheme has been compared (red). The dominant cost
in the traditional likelihood calculation arises from the generation
of long duration waveforms.
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