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In the gravitational theory containing the second-order interaction of gravity with the scalar and
electromagnetic fields at most, the black hole entropy obeying the linearized second law of black
hole thermodynamics has been obtained. To generally study the linearized second law of black hole
thermodynamics, we extend the gravitational theory to include higher-order interactions of gravity with the
scalar and electromagnetic fields. We derive the general expression of black hole entropy satisfying the
linearized second law, which is expressed as the Wald entropy with correction terms. It is worth noting that
the correction terms consist of both the minimal and nonminimal coupling interactions between gravity and
the scalar field, and the contribution of the electromagnetic field is not involved. Since the black hole
entropy satisfying the linearized second law is determined only by the nonminimum coupling interactions
in gravity according to the previous perspective, this result upends our understanding of the linearized
second law in general gravitational theory.
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I. INTRODUCTION

Black holes as particular spacetime structures have been
predicted by general relativity. For black holes in classical
general relativity, the singularity lies at the center of black
holes and is surrounded by a specific null hypersurface.
The null hypersurface is called the event horizon and is
regarded as the boundary of black holes. The event horizon
plays a critical role in the investigation of black hole
physics because many essential properties of black holes,
especially black hole thermodynamics, are reflected by the
event horizon in an equilibrium state or a state of dynamic
evolution. The area law of black holes was suggested first
by Hawking [1], which states that the area of the event
horizon of black holes never decreases along the direction
of time evolution. Based on the area law of black holes,
Bekenstein [2] proposed that the area of the event horizon
of black holes could be identified with the entropy of the
classical adiabatic thermodynamic system directly because
the evolution tendency of the area of the event horizon is
similar to the evolution of the entropy constrained by the
second law of thermodynamics. Utilizing the quantum field
theory in curved spacetime, Hawking [3] first proved that
the entropy and the temperature of black holes are defined,
respectively, by the area of the event horizon and the
surface gravity of black holes. The entropy and the area of
the event horizon of black holes satisfy a simple propor-
tional relationship, i.e., SBH ¼ A=4, where A is the area of

the event horizon of black holes. The black hole
entropy satisfying the proportional relationship is called
Bekenstein-Hawking entropy. According to the definitions
of the temperature and the entropy of black holes, the four
laws of black hole thermodynamics are established [4–6].
Since the four laws of black hole thermodynamics are
identical to the four laws of thermodynamics satisfied by
the classical thermodynamic system, black holes can be
regarded as thermodynamic systems rather than pure
spacetime structures. In the four laws of black hole
thermodynamics, the two profound laws for black holes
are the first and second laws of black hole thermodynamics,
respectively. If black holes are regarded as thermodynamic
systems, these two laws of black hole thermodynamics
should be seen first as robust features of black holes.
Although black holes in classical general relativity auto-
matically satisfy the two laws of black hole thermodynam-
ics, the two laws are not necessarily guaranteed to hold
for black holes in an arbitrary diffeomorphism invariant
gravitational theory. An issue of whether the first and
second laws of black hole thermodynamics are still the
best features of black holes in general gravitational theory
is raised naturally. Starting with this issue, Wald and
Iyer [7,8] proposed the Noether charge method to inves-
tigate black hole thermodynamics in general diffeomor-
phism invariant gravitational theory. The result shows that
the first law of black hole thermodynamics is generally
suitable for black holes in an arbitrary gravitational theory
and that the entropy always obeying the first law of black
hole thermodynamics is called the Wald entropy rather
than Bekenstein-Hawking entropy. Although it has been
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demonstrated that the Wald entropy is generally suitable
for the first law of black hole thermodynamics in general
diffeomorphism invariant gravitational theory, whether it
always satisfies the second law of black hole thermody-
namics has not been investigated enough. Therefore, we
will mainly discuss the matching relationship between
Wald entropy and the second law of thermodynamics.
So far, a suitable scheme to quantize the gravitational

theory has not been established faultlessly. If the self-
interactions of gravity or the interactions between gravity
and matter fields are included in the gravitational theory,
the two categories of interactions are not studied rigorously
under the complete quantum regime. One of the most
fruitful methods is to construct the low-energy efficient
gravitational theory corresponding to quantum gravity to
investigate the two categories of interactions in the frame
of quantum gravity approximately. This method introduces
higher curvature terms and minimal or nonminimal cou-
pling interaction terms between gravity and matter fields
essentially, which correspond to two categories of inter-
actions and are called the quantum correction terms, into
the effective Lagrangian of the quantum gravity theory at a
low-energy scale. In other words, when the low-energy
efficient scheme is adopted to deal with the issue of the
quantization of gravity, some quantum correction terms,
which are the higher curvature terms and the minimal or
nonminimal coupling interaction terms between gravity
and matter fields, should be added to the Lagrangian of the
gravitational theory [9–11].
The expression of the Wald entropy is closely dependent

on the Lagrangian of the gravitational theory according
to the definition. When the quantum correction terms
that correspond to the two categories of interactions are
included in the Lagrangian, the nonminimal coupling
interaction terms in these quantum correction terms will
sufficiently influence the expression of the Wald entropy.
We can infer that a substantial change in the specific
expression of the Wald entropy will inevitably affect the
matching relationship between the Wald entropy and the
second law of black hole thermodynamics. Therefore, to
investigate whether the Wald entropy generally satisfies the
second law of black hole thermodynamics in any diffeo-
morphism invariant gravity, one should first consider the
effect of each quantum correction term describing non-
minimal coupled interactions in the Lagrangian of the
gravitational theory on the matching relationship between
the Wald entropy and the second law before finding a
general research method. For the gravitational theory
containing the first category of interactions, only higher
curvature terms in quantum correction terms are involved
in the Lagrangian. Considering a perturbation process
caused by matter fields in spacetime, the second law of
black hole thermodynamics under the linear-order approxi-
mation, called the linearized second law in the following, in
the Gauss-Bonnet gravity and the Lovelock gravity are

investigated [12–14]. The results show that the entropy of
black holes that obeys the linearized second law in two
gravitational theories is the Jacobson-Myers entropy rather
than the Wald entropy. Subsequently, a general research
technique that can investigate the linearized second law in
the higher curvature gravity is proposed by Wall [15]. The
expression of the black hole entropy that always satisfies
the linearized second law in the gravitational theory with
partial higher curvature terms is further obtained, which can
be written as the Wald entropy with correction terms. It
indicates that the Wald entropy does not always obey the
linearized second law for an arbitrary higher curvature
gravity. When the gravitational theory contains the second
category of interactions, the minimal and nonminimal
coupling terms between gravity and matter fields in
quantum correction terms appear in the Lagrangian. The
linearized second law has not been investigated enough in
this theory of gravity, and the general expression of the
black hole entropy that satisfies the linearized second law
has not been obtained yet. In previous works, we have
mainly focused on the linearized second law in gravity with
the second category of interactions. For the Horndeski
gravity and the general quadric corrected Einstein-Maxwell
gravity, we have shown that the Wald entropy obeys the
linearized second law of thermodynamics during the matter
field perturbation [16,17]. However, when investigating the
linearized second law in the general second-order scalar-
tensor gravity, we found that the evolution of Wald entropy
during the perturbation process no longer satisfies the
requirements of the linearized second law. The expression
of black hole entropy obeying the linearized second law
can also be written as the Wald entropy with relevant
correction terms [18]. According to this result, we can infer
that the Wald entropy also does not always obey the
linearized second law for an arbitrary diffeomorphism
invariant gravitational theory with the second category of
interactions. Although the linearized second law in the
Horndeski gravity, the general quadric corrected Einstein-
Maxwell gravity, and the general second-order scalar-
tensor gravity have been investigated in previous works,
these three gravitational theories involve the second-order
interactions of gravity with matter fields at most. To
adequately study the linearized second law in general
diffeomorphism invariant gravity, one should further con-
sider the higher-order interactions between gravity and
matter fields in the gravitational theory.
The scalar field in gravitational theory has been a topic

of great interest in recent years because the scalar field
dynamics can help us understand some detailed features of
the Universe. From an empirical motivation mainly related
to astronomical observations, the scalar field can be
regarded as a powerful tool to explain many phenomena
at the Galactic and cosmological scales. It means that the
gravitational theories incorporating scalar fields may help
us understand these phenomena, such as the origin of the
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early Universe and its late-time accelerated expansion, as
well as the presence of dark matter and dark energy [19].
Meanwhile, the properties of these phenomena also con-
firm that the scalar field is a suitable candidate to solve
these unknown phenomena in the Universe. Therefore,
many gravitational theories containing the scalar field, such
as Brans-Dicke theory [20], inflation theory, and several
other cosmological models [21–24], are gradually estab-
lished. Additionally, from the perspective of astronomical
observations again, many celestial bodies in our Universe
commonly take electric charge, and outside spacetime fills
with the electromagnetic field rather than the vacuum. It
implies that the electromagnetic field should be considered
in the theory of gravity. Therefore, according to the above
facts and gravitational theories used to study the linearized
second law in our previous works, we will further consider
a more general gravity, which contains partial higher
curvature terms, the scalar field with its derivatives, and
the electromagnetic field. It means that the gravitational
theory includes higher-order interactions of gravity with the
scalar and electromagnetic fields rather than only limiting
to second-order interactions of gravity with the scalar and
electromagnetic fields. In the following, this gravitational
theory is abbreviated as the gravitational theory with
higher-order interactions for simplification. From the
gravitational theory, we will investigate the linearized
second law of black holes and derive the general expression
of the black hole entropy always obeying the linearized
second law during the matter fields perturbation process.
The organization of the paper is as follows. In Sec. II,

the gravitational theory with higher-order interactions is
introduced, and the definition of the Wald entropy of black
holes is given. In Sec. III, a perturbation process is further
considered, which comes from the additional matter fields
outside black holes in spacetime, to investigate the linear-
ized second law. From the Wald entropy of black holes
in the gravitational theory with higher-order interactions,
based on the assumptions that the matter fields should
satisfy the null energy condition and that a regular
bifurcation surface exists in the background spacetime,
we will derive the expression of black hole entropy
commonly obeying the linearized second law in the
gravitational theory during the perturbation process. The
paper ends with discussions and conclusions in Sec. IV.

II. GRAVITATIONAL THEORY WITH
HIGHER-ORDER INTERACTIONS

AND THE WALD ENTROPY

We will consider a diffeomorphism invariant gravita-
tional theory with higher-order interactions to investigate
the linearized second law of black hole thermodynamics
and derive the expression of the black hole entropy
commonly satisfying the second law in the gravitational
theory. The Lagrangian of the diffeomorphism invariant
gravitational theory can be expressed formally as

L ¼ Lðgab; Rabcd; Fab;ϕ;∇aϕ;∇a∇bϕÞ: ð1Þ

To investigate the linearized second law in this gravitational
theory with higher-order interactions, the additional matter
fields, which are minimal coupling with gravity, in space-
time should be introduced. Moreover, a quasistationary
process is further involved, which states that the matter
fields existing outside black holes pass through the event
horizon and fall into the interior of black holes. The
spacetime configuration of black holes can be perturbed
through the matter fields during the process. This point of
view indicates that the matter fields and the spacetime of
black holes can be regarded as a complete dynamical
system, and the perturbation process is an evolutionary
process of the dynamical system. Therefore, when the
additional matter fields appear in spacetime, the Lagrangian
of the gravitational theory with higher-order interactions
can be expanded as

L ¼ Lðgab; Rabcd; Fab;ϕ;∇aϕ;∇a∇bϕÞ þ Lmt; ð2Þ

where Lmt represents the Lagrangian of the additional
matter fields in spacetime. After calculating the variation of
the expanded Lagrangian with respect to the metric gab, the
equation of motion of the gravitational part can be formally
expressed as

Hab ¼ 8πTab: ð3Þ

The left-hand side of Eq. (3) can be further written as a
linear combination of four components,

Hab ¼ H1
ab þH2

ab þH3
ab þH4

ab: ð4Þ

The first component corresponds to the derivative of the
Lagrangian to the Riemann curvature Rabcd. The second
component comes from the derivative of the Lagrangian to
the first-order covariant derivative of the scalar field ∇aϕ.
The third component is derived from the derivation of the
Lagrangian to the second-order covariant derivative of the
scalar field ∇a∇bϕ. The fourth component is the derivative
of the Lagrangian to the electromagnetic field Fab. The
specific expressions of four terms on the right-hand side of
Eq. (4) are expressed, respectively, as

H1
ab ¼ ðERÞcdea Rbcde þ 2∇c∇dðERÞacbd;

H2
ab ¼

1

2
ðE1Þa∇bϕ;

H3
ab ¼ −∇cðE2Þcb∇aϕþ 1

2
∇cðE2Þab∇cϕ

þ 1

2
ðE2Þab∇c∇cϕ;

H4
ab ¼ ðEFÞacFbc; ð5Þ

LINEARIZED SECOND LAW OF BLACK HOLE … PHYS. REV. D 108, 064053 (2023)

064053-3



where

ðERÞabcd ¼
∂L

∂Rabcd
; ðE1Þa ¼

∂L
∂∇aϕ

;

ðE2Þab ¼
∂L

∂∇a∇bϕ
; ðEFÞab ¼

∂L
∂Fab

: ð6Þ

In addition, Tab on the right-hand side of Eq. (3) is the
stress-energy tensor of the theory of gravity, which only
contains the stress-energy tensor of the minimal coupling
additional matter fields Tmt

ab. From the physical perspective,
we assume that the minimal coupling matter fields
should satisfy the null energy condition. According to
the assumption and the fact that the total stress-energy
tensor of the theory of gravity only contains the stress-
energy tensor of the additional matter fields, for any null
vector field na in spacetime, the null energy condition can
be expressed as

Tmt
abn

anb ¼ Tabnanb ≥ 0: ð7Þ

In the (nþ 2)-dimensional diffeomorphism invariant
gravitational theory with higher-order interactions described
by the Lagrangian in Eq. (2), theWald entropy of black holes
in stationary background spacetime of the gravitational
system can be defined as

SW ¼ 1

4

Z
s
dny

ffiffiffi
γ

p
ρW; ð8Þ

where γ is the determinant of the induced metric on any slice
of the event horizon, y is introduced to label the transverse
coordinates on the cross section of the event horizon, and ρW
is the entropy density of the Wald entropy. The entropy
density is further given as

ρW ¼ −8π
∂L

∂Rabcd
ϵabϵcd; ð9Þ

in which L is the Lagrangian of the gravitational theory,
Rabcd is the tensor of the Riemann curvature, and ϵab is the
binormal on any cross section of the event horizon.
The quantum correction terms in the Lagrangian of the

low-energy efficient gravitational theory corresponding to
quantum gravity can be divided into two types. These two
types of quantum correction terms are the higher curvature
terms and minimal or nonminimal coupling interaction
terms between gravity and matter fields and correspond to
the self-interactions and the interactions between gravity
and matter fields in quantum gravity. According to the
definition of the Wald entropy, one can see that only the
higher curvature terms and nonminimal coupling interac-
tion terms in the quantum correction terms can sufficiently
influence the expression of the Wald entropy, and the
minimal interaction terms do not affect the Wald entropy

because it does not include the Riemann curvature terms.
It means that some new higher curvature or nonminimal
coupling terms introduced into the Lagrangian of the
gravitational theory will affect the expression of the
Wald entropy. Although the Wald entropy commonly obeys
the first law of black hole thermodynamics, whether the
expression of the Wald entropy that contains the influence
of the new higher curvature or nonminimal coupling terms
in the Lagrangian of gravity still satisfies the second law of
black hole thermodynamics should be further examined.
So far, the general expression of the black hole entropy
always obeying the linearized second law in the gravita-
tional theory with partial higher curvature terms has been
given, which can be written as the Wald entropy with
correction terms. The result shows that the Wald entropy
should be corrected to satisfy the linearized second law
when only the self-interaction of gravity is involved in the
gravitational theory. However, the general expression of
black hole entropy that obeys the linearized second law in
an arbitrary diffeomorphism invariant gravity with only the
interactions between gravity and matter fields has not been
given until now. Since the scalar field in spacetime plays an
essential role in the research of cosmology and quantum
gravity, while celestial bodies in our Universe are always
taking the electric charge based on the perspective of
astronomical observations, we would like to investigate
the linearized second law in an arbitrary diffeomorphism
invariant gravitational theory with higher-order interactions
and derive the general expression of the black hole entropy
always obeying the linearized second law in the gravita-
tional theory.

III. LINEARIZED SECOND LAW OF BLACK
HOLE THERMODYNAMICS FOR THE
GRAVITATIONAL THEORY WITH
HIGHER-ORDER INTERACTIONS

As mentioned above, a physical quasistationary accre-
tion process of black holes is introduced to investigate
the linearized second law of black hole thermodynamics.
The accretion process describes the dynamical process
where the additional matter fields that are minimal coupling
to gravity fall into black holes and perturb the spacetime
geometry of black holes. To obtain the expression of the
black hole entropy commonly satisfying the linearized
second law in diffeomorphism invariant gravitational theory
with higher-order interactions, we should further assume that
black holes will finally settle down to a stationary state after
the matter field perturbation process. This assumption is
called the stability assumption for simplicity.
For the (nþ 2)-dimensional diffeomorphism invariant

gravitational theory described by the Lagrangian in Eq. (2),
the event horizon of black holes that is (nþ 1)-dimensional
null hypersurface in spacetime is denoted as H. A param-
eter “u” is introduced as an affine parameter to parametrize
the event horizon. Furthermore, a null vector field
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ka ¼ ð∂=∂uÞa can be chosen to generate the event horizon
and satisfies the geodesic equation kb∇bka ¼ 0. Any
specific value of the parameter u corresponds to an
n-dimensional cross section on the event horizon. We
can establish coordinates with two null vectors, i.e.,
fka; la; yag, on the cross section of the event horizon. In
the coordinates, the null vector la is another null vector
different from ka, and another parameter “v” is chosen to
represent the null vector la as la ¼ ð∂=∂vÞa. These null
vectors in the coordinates satisfy the following two
relationships:

kaka ¼ lala ¼ 0; kala ¼ −1: ð10Þ

According to the two null vector fields, the binormal on any
cross section is defined as ϵab ¼ 2k½alb�, and the induced
metric on any slice of the event horizon is defined as

γab ¼ gab þ 2kðalbÞ: ð11Þ

From the induced metric and the null vector fields ka, the
extrinsic curvature of the event horizon can be defined by

Bab ¼ γa
cγb

d∇ckd: ð12Þ

Using the definition of the induced metric and the expres-
sion of the extrinsic curvature in Eqs. (11) and (12), the
evolution of the induced metric along the direction of the
future event horizon can be given as

γa
cγb

dLkγcd ¼ 2

�
σab þ

θ

n
γab

�
¼ 2Bab; ð13Þ

where σab and θ represent the shear and the expansion of
the event horizon during the evolutionary process, respec-
tively. Moreover, the evolution of the extrinsic curvature is
obtained as

γa
cγb

dLkBcd ¼ BacBb
c − γa

cγb
dRecfdkekf: ð14Þ

Utilizing the evolution property of the extrinsic curvature,
the Raychaudhuri equation can be further given as

dθ
dλ

¼ −
θ2

n − 2
− σabσ

ab − Ruu; ð15Þ

where the quantity Ruu is the abbreviation of kakbRab.
In the following, we will use some latin letters at the
beginning of the alphabet, i.e., a; b; c;…, to represent the
abstract index in any tensor and will use some latin letters
that start from the letter i, i.e., i; j; k;…, to represent the
spatial index in any tensor. Meanwhile, a convention will be
further introduced to simplify the expressions of equations,
which can be stated as follows.

(1) An index in any tensor can be replaced by the
parameter u or v directly when the index contracts
with the null vector ka or la.

(2) An index in any tensor can be replaced by one of the
spatial indices, i.e., i; j; k;…, when the index con-
tracts with the induced metric on the cross section of
the event horizon.

For any tensor Xa1b1���a2b2���a3b3���, the first category of indices
in the tensor, a1; b1…, contracts with the null vector field
ka; the second category of indices in the tensor, a2; b2;…,
contracts with the vector field la; and the third category of
indices in the tensor, a3; b3;…, contracts with the induced
metric on the cross section of the event horizon. According
to the above convention, the tensor contracting all indices
with two null vector fields, ka and la, and the induced
metrics can be simplified as

ka1kb1 � � � la2lb2 � � � γ a3
c3ðiÞγ

b3
d3ðjÞ � � �Xa1b1���a2b2���a3b3���

¼ Xuu���vv���ij���: ð16Þ

To explicitly depict the perturbation process caused by
the additional matter fields outside black holes, a sufficient
small parameter ϵ is introduced to represent the order of
approximation of the perturbation. We can assume that
the three quantities, which are the extrinsic curvature, the
expansion, and the shear of the event horizon, contribute
only under the first-order approximation of the matter field
perturbation. Based on the small parameter ϵ, the relation-
ship of the three quantities under the first-order approxi-
mation can be written as Bab ∼ θ ∼ σab ∼OðϵÞ. Since we
hope to find out the expression of the black hole entropy
commonly obeying the linearized second law, the symbol
“≃” will be used to represent the identity under the first-
order approximation of the perturbation process. According
to the above conventions, the extrinsic curvature of the
event horizon and the evolution of the extrinsic curvature
along the future event horizon, which have been given in
Eqs. (12) and (14), can be rewritten as

Bij ≃Dikj; LkBij ≃ −Ruiuj; ð17Þ

under the linear-order approximation, where the
derivative operator Da is the pure spatial derivative oper-
ator. For any tensor Xa1a2���, the spatial derivative operator
can be defined as

DaXa1a2��� ¼ γa
bγa1

b1γa2
b2 � � �∇bXb1b2���: ð18Þ

The linearized version of the Raychaudhuri equation can be
further written as

dθ
dλ

≃ −Ruu: ð19Þ
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According to the induced metric and the null vector fields
la, a new quantity Cij can be defined as Cij ¼ Dilj.
Following the calculation method of the evolution of the
extrinsic curvature along the future direction of the event
horizon, the evolution of Cij along the same orientation on
the background spacetime can be given as

LkCij ¼ −Riujv: ð20Þ

Additionally, from the definition of the Wald entropy
and the above conventions, the density of the Wald entropy
ρW in coordinates with two null vectors ka and la can be
written as

ρW ¼ −2ðERÞuvuv: ð21Þ

The null energy condition of the total stress-energy tensor
of the gravitational theory with higher-order interactions in
the same coordinates can be rewritten as

Tabkakb ¼ Tuu ≥ 0: ð22Þ

Next, we will investigate the linearized second law of
black holes in the diffeomorphism invariant gravitational
theory with higher-order interactions. Starting with the
definition of the Wald entropy, we ultimately expect to
derive the expression of the black hole entropy always
satisfying the linearized second law in the gravitational
theory. If the linearized second law holds, in other words,
the value of the black hole entropy monotonously increases
under the first-order approximation of the matter fields
perturbation process, the expression of the entropy should
satisfy the following relationship under the linear-order
approximation [13], i.e.:

L2
kS ≃ −

1

4

Z
s
ϵ̃Huu ¼ −2π

Z
s
ϵ̃Tuu ≤ 0; ð23Þ

where S on the left-hand side of Eq. (23) represents the
black hole entropy. The equation of motion of the gravi-
tational part and the null energy condition of the stress-
energy tensor in Eqs. (3) and (22) have been used in the
second and the third steps. The stability assumption
requires that the rate of change of the black hole entropy
gradually decreases to zero after the perturbation process.
It implies that the variation tendency of the rate of change
of the entropy can be expressed equivalently, as the second-
order Lie derivative of the entropy is always negative
during the perturbation process, i.e., L2

kS ≤ 0. Combining
the negative second-order Lie derivative of the entropy with
the stability assumption, one can infer that the first-order
Lie derivative of the entropy should always be positive
during the perturbation process, LkS ≥ 0. It indicates that
the value of the entropy is monotonously increasing with
the perturbation process. Therefore, if the black hole

entropy obeys the relationship in Eq. (23), the entropy
will always satisfy the linearized second law of black hole
thermodynamics under the perturbation process. Therefore,
according to the relationship, to obtain the general expres-
sion of the black hole entropy satisfying the linearized
second law in the gravitational theory with higher-order
interactions, we should calculate the specific expression of
Huu under the linear-order approximation first.
So far, two assumptions have been suggested. The first

is that the total stress-energy tensor should obey the
null energy condition, and the second is the stability
assumption. However, the third assumption should be
introduced before calculating the expression of Huu under
the linear-order approximation, which states that a regular
bifurcation surface exists in the background spacetime.
The regularity property means that all physical quantities
are smooth and finite on the whole Killing horizon, even on
the bifurcation surface. According to the coordinates with
two null vectors ka and la, i.e., fka; la; yag, an arbitrary
vector zai can be introduced, which represents one of the
two null vectors in the coordinates and can be expressed
as zai ∈ fka; lag. Considering a quantity written as a
contraction of all indices in any tensor Xa1���ak with the
vectors fzaii ; i ¼ 1 � � � kg, i.e., Xa1���akz

a1
1 � � � zakk , the third

assumption indicates that the quantity will vanish on the
background spacetime if the number of ka including in the
vector zaii is larger than the number of la including in
the vector zaii . Hence, in this case, the quantity on the
background spacetime can be written as

Xa1���akz
a1
1 � � � zakk ¼ 0: ð24Þ

On the other hand, the quantity is still finite and smooth
over the whole Killing horizon with the bifurcation surface
on the background spacetime if the number of the null
vector ka in zaii is less than or equal to the null vector la in
zaii [18,25]. In other words, the quantity Xa1���akz

a1
1 � � � zakk is

a quantity on the background spacetime when the number
of ka in its expression is less than or equal to the number
of la; the quantity is a quantity under the first-order
approximation when the number of ka in its expression
is larger than the number of la. This result can be regarded
as a criterion to judge whether any quantity in Huu is
contributed under the zeroth-order approximation or only
under the first-order approximation. For simplicity, the
quantity under the zeroth-order approximation (or on the
background spacetime) is called the background quantity,
and the quantity under the linear-order approximation is
called the first-order quantity directly. Moreover, in the
following calculations, we will use the symbols ð Þn or ½ �n;
(n ¼ 0, 1), to label every quantity in Huu during the
calculation process, where n ¼ 0 and n ¼ 1 represent
the background quantity and the first-order quantity,
respectively.
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After contracting two null vectors ka and kb with the first
component on the left-hand side of the equation of motion,
the first identity in Eq. (5) can be expressed as

H1
uu ¼ kakbðERÞacdeRb

cde þ 2kakb∇c∇dðERÞacbd: ð25Þ

Expanding the repeated indices by using the definition of
the induced metric on the cross section of the event horizon,
the specific expression of the first term of Eq. (25) under the
first-order approximation is given as

kakbðERÞacdeRb
cde

¼ ½ðERÞuijk�1ðRu
ijkÞ1 − 2½ðERÞuivj�0ðRvivjÞ1

− 2½ðERÞuiuj�1ðRviujÞ0 þ 2½ðERÞuivu�1ðRuvu
iÞ1

≃ −2ðERÞuivjRvivj − 2ðERÞiujuRviuj: ð26Þ

From the Lagrangian of the gravitational theory, the
quantity ðERÞiuju under the first-order approximation can
be further calculated as

ðERÞiuju ≃ 4
∂
2L

∂Rvkvl
∂Ruiuj R

kvlv þ ∂
2L

∂ð∇u∇uϕÞ∂Ruiuj∇u∇uϕ

≃ LkPij; ð27Þ

where

Pij ¼ −4
∂
2L

∂Rvkvl
∂Ruiuj B

kl þ ∂
2L

∂ð∇u∇uϕÞ∂Ruiuj Lkϕ: ð28Þ

Using the identities in Eqs. (27) and (20), the result of
Eq. (26) under the linear-order approximation can be
further simplified as

kakbðERÞacdeRb
cde ≃ 2LkðPijLkCijÞ − 2ðERÞuivjRvivj:

ð29Þ

Utilizing Leibniz’s law, the second term of Eq. (25) can be
expanded as

2kakb∇c∇dðERÞacbd
¼ 2ka∇cðkb∇dðERÞacbdÞ − 2ðka∇ckbÞ∇dðERÞacbd:

ð30Þ

Since we discuss the linearized second law of black hole
thermodynamics in the more general diffeomorphism
invariant gravitational theory with higher-order inter-
actions, the specific expression of the quantity ðERÞabcd
cannot be written directly. It means that we cannot further
derive the expression of the first term on the right-hand side
of Eq. (30) obviously under the first-order approximation
of the matter fields perturbation. Therefore, a significant
identity should be involved first to effectively obtain the

expression of this term under the linear-order approxima-
tion. From any two-form tensor Xab, we can demonstrate
that the identity can be written as

Z
s
ϵ̃kb∇aXab ¼ 1

2
Lk

Z
ϵaba1���anX

ab: ð31Þ

Using this identity twice and Leibniz’s law, while accord-
ing to the density of the Wald entropy in Eq. (21), the
integral form of the second term in Eq. (25) on the cross
section of the event horizon can be further given as

2

Z
s
ϵ̃kakb∇c∇dðERÞacbd

¼ −L2
k

Z
s
ϵ̃ρW − 2

Z
s
ϵ̃ðka∇ckbÞ∇dðERÞacbd

þ 2Lk

Z
s
ϵ̃½ðkb∇dlaÞkcðERÞcabd�

þ 2Lk

Z
s
ϵ̃½ðkb∇dkcÞlaðERÞcabd�: ð32Þ

Before calculating the above expression under the linear-
order approximation, three practical identities are intro-
duced to simplify the calculation process, and these
identities have been demonstrated in our previous research
work [17]. The three identities in the background spacetime
can be expressed as

∇ula ¼ 0; ∇ika ¼ 0; ∇aki ¼ 0: ð33Þ

Meanwhile, the three identities also indicate that each
quantity on the left-hand side of each identity is a first-
order quantity.
For the integrand of the second integral in Eq. (32), using

the three identities in Eq. (33), we can expand the repeated
indices and calculate the specific expression under the first-
order approximation as

ðka∇ckbÞ∇dðERÞacbd
¼ −½∇uðERÞuivd�1ð∇ikdÞ1 − ½∇vðERÞuiud�1ð∇ikdÞ1
− ðla∇ikaÞ1½∇jðERÞuiju�1 þ ðBijÞ1½∇kðERÞuikj�1

≃ 0: ð34Þ

The integrand in the third integral of Eq. (32) can be further
calculated as

ðkb∇dlaÞkcðERÞcabd
¼ −½ðERÞuiuv�1ð∇uliÞ1 þ ½ðERÞuiuj�1ðCijÞ0
þ ½ðERÞuvui�1ðla∇ikaÞ1 −

1

2
ρWka∇ula

≃ ðERÞuiujCij; ð35Þ
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under the linear-order approximation of the matter fields
perturbation. The last term in the first step of Eq. (35) is
equal to zero directly according to the geodesic equation
kb∇bka ¼ 0. Since the integrand in the fourth integral of
Eq. (32) under the first-order approximation is

ðkb∇dkcÞlaðERÞcabd
¼ −½ðERÞviuj�0ðBijÞ1 − ½ðERÞuvui�1ðlc∇ikcÞ1
≃ −ðERÞviujBij; ð36Þ

the fourth integral in the result of Eq. (32) can be finally
written as

2Lk

Z
s
ϵ̃½ðkb∇dkcÞla ðERÞcabd�≃2

Z
s
ϵ̃Rivjv ðERÞviuj; ð37Þ

where the second identity in Eq. (17) is used in the last step.
In conclusion, utilizing the results in Eqs. (29), (34),

(35), and (37), the result of the integral of H1
uu on the cross

section under the linear-order approximation can be finally
obtained as

Z
s
ϵ̃H1

uu ≃ −L2
k

Z
s
ϵ̃ρW þ 2Lk

Z
s
ϵ̃ðERÞuiujCij þ 2Lk

Z
s
ϵ̃ðPijLkCijÞ þ 2

Z
s
ϵ̃RivjvðERÞviuj − 2

Z
s
ϵ̃ðERÞuivjRvivj

¼ −L2
k

Z
s
ϵ̃ρW þ 2Lk

Z
s
ϵ̃ðLkPijÞCij þ 2Lk

Z
s
ϵ̃ðPijLkCijÞ

¼ −L2
k

Z
s
ϵ̃ðρW − 2PijCijÞ; ð38Þ

where we have used Eq. (27) in the second step.
For the second identity in Eq. (5), after contracting two

null vectors ka and kb with the expression of H2
ab, the

expression ofH2
uu under the linear-order approximation can

be directly calculated as

H2
uu ¼

1

2
kakbðE1Þa∇bϕ ¼ 1

2
½ðE1Þu�1ðLkϕÞ1 ≃ 0: ð39Þ

Since H2
uu is vanishing under the first-order approximation

of the perturbation, its integral on the cross section of the
event horizon does not contribute to the final result.

Contracting two null vectors ka and kb with the third
identity in Eq. (5), the expression of H3

uu can be given as

H3
uu ¼ −kakb∇cðE2Þcb∇aϕþ 1

2
kakb∇cðE2Þab∇cϕ

þ 1

2
kakbðE2Þab∇c∇cϕ: ð40Þ

After expanding the repeated indices using the definition
of the induced metric on the cross section as well, the
expression of H3

uu under the first-order approximation can
be further expressed as

H3
uu ¼ −½ðE2Þuu�1ð∇v∇uϕÞ0 þ ðLkϕÞ1½∇uðE2Þuv�1 þ

1

2
ðDiϕÞ0½∇iðE2Þuu�1 þ

1

2
ðLkϕÞ1½∇vðE2Þuu�1 − ðLkϕÞ1½∇iðE2Þui�1

−
1

2
½∇uðE2Þuu�1ð∇vϕÞ0 þ

1

2
½ðE2Þuu�1ðDiDiϕÞ0

≃
1

2
ðDiϕÞ∇iðE2Þuu þ

1

2
ðE2ÞuuðDiDiϕÞ − ðE2Þuuð∇v∇uϕÞ −

1

2
ð∇vϕÞ∇uðE2Þuu: ð41Þ

The first term of the result in Eq. (41) is further calculated as

1

2
ðDiϕÞ∇iðE2Þuu ¼

1

2
ðDiϕÞ0Di½ðE2Þuu�1 −

1

2
ðDiϕÞ0½ðE2Þuj�1 ðBijÞ1 þ

1

2
ðDiϕÞ0½ðE2Þuu�1ðld∇ikdÞ1

−
1

2
ðDiϕÞ0½ðE2Þju�1ðBijÞ1 þ

1

2
ðDiϕÞ0½ðE2Þuu�1ðld∇ikdÞ1

≃
1

2
ðDiϕÞDi½ðE2Þuu� ð42Þ
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under the first-order approximation. Combining the
result of Eq. (42) with the second term of the result in
Eq. (41), we have

1

2
ðDiϕÞDi½ðE2Þuu�þ

1

2
ðE2ÞuuðDiDiϕÞ¼

1

2
Di½ðDiϕÞðE2Þuu�:

ð43Þ

When the topology of the event horizon of black holes in
the general gravitational theory with higher-order inter-
actions is assumed to be compact, the spatial total deriva-
tive term in the integrand, namely, the spatial boundary
term of the integral, does not contribute to the final result.
Therefore, the result of Eq. (43) can be neglected directly.
According to the Lagrangian of the gravitational theory, the
expression of ðE2Þuu under the first-order approximation
can be further given as

ðE2Þuu ≃
∂
2L

∂ð∇u∇uϕÞ∂ð∇v∇vϕÞ
∇u∇uϕ

þ 4
∂
2L

∂Rvivj
∂ð∇v∇vϕÞ

Rivjv ≃ LkN ; ð44Þ

where

N ¼ ∂
2L

∂ð∇u∇uϕÞ∂ð∇v∇vϕÞ
Lkϕ − 4

∂
2L

∂Rvivj
∂ð∇v∇vϕÞ

Bij:

ð45Þ

Using the identity in Eq. (44), the third and fourth terms in
the result of Eq. (41) under the linear-order approximation
can be further simplified as

− ½ðE2Þuu�ð∇v∇uϕÞ −
1

2
½∇uðE2Þuu�ð∇vϕÞ

≃ −L2
k

�
1

2
N ð∇vϕÞ

�
: ð46Þ

Therefore, the expression of the integral ofH3
uu on the cross

section under the first-order approximation is given as

Z
s
ϵ̃H3

uu ≃ −L2
k

Z
s
ϵ̃

�
1

2
N ð∇vϕÞ

�
: ð47Þ

Finally, after contracting two null vectors ka and kb with
the fourth identity in Eq. (5) and expanding the repeated
index by the induced metric, the expression of H4

kk under
the first-order approximation of the perturbation process is
directly given as

H4
uu ¼ kakbðEFÞacFb

c ¼ ½ðEFÞui�1ðFu
iÞ1 ≃ 0: ð48Þ

The result shows that the electromagnetic field part in the
gravitational theory with higher-order interactions does not

contribute to the expression of the black hole entropy
obeying the linearized second law.
Therefore, combining the results in Eqs. (38), (39), (47),

and (48), and supplementing the coefficient 1=4, while
utilizing the equation of motion of the gravitational part in
Eq. (3), the definition of the Wald entropy in Eq. (8), and
the null energy condition in Eq. (21), we have

L2
kðSW þ SctÞ ≃ −

1

4

Z
s
ϵ̃Huu ¼ −2π

Z
s
ϵ̃Tuu ≤ 0; ð49Þ

where

Sct ¼
1

4

Z
s
ϵ̃

�
−2PijCij þ 1

2
N ð∇vϕÞ

�
: ð50Þ

The result shows that the black hole entropy, which always
obeys the linearized second law, in the diffeomorphism
invariant gravitational theory with higher-order interactions
during the matter fields perturbation process can be written
as the Wald entropy with two correction terms eventually.
The two correction terms include the contributions from the
self-interactions of gravity and the minimal and nonmini-
mal coupling interactions between gravity and the scalar
field. The contribution of the minimal coupling interactions
is only contained in the expression ofN in the second term
of Eq. (50). The electromagnetic part in the gravitational
theory does not contribute to the expression of the black
hole entropy obeying the linearized second law. According
to the result in previous literature, the expression of the
black hole entropy that always satisfies the linearized
second law in gravitational theory with partial higher
curvature terms can be expressed as the form of the
Wald entropy with relevant correction terms. These cor-
rection terms only come from the contribution of the
nonminimal coupling self-interactions of gravity. In addi-
tion, for the gravitational theory with matter fields used to
study the linearized second law in our previous research
works, the black hole entropy always obeying the linear-
ized second law can be expressed as the Wald entropy
or the Wald entropy with correction terms as well. These
correction terms also only come from the nonminimal
coupling interaction terms between gravity and matter
fields, while the minimal coupling interactions do not
influence the specific expression of the black hole entropy.
However, when considering the diffeomorphism invariant
gravity with higher-order interactions, the minimal and
nonminimal coupling interactions between gravity and the
scalar field contribute to the correction terms of the Wald
entropy at the same time. This result overturns our previous
understanding of the expression of the black hole entropy
satisfying the linearized second law of thermodynamics in
general diffeomorphism invariant gravitational theory.
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IV. DISCUSSION AND CONCLUSIONS

For an arbitrary diffeomorphism invariant gravitational
theory, the first law of black hole thermodynamics is
constructed generally in a thermodynamic equilibrium
state, and the black hole entropy in the first law is the
Wald entropy. It means that the Wald entropy is the black
hole entropy when the gravitational system is in the
thermodynamic equilibrium state. However, when a proc-
ess of thermodynamic evolution is considered, the black
holes will be in a thermodynamic evolution state rather than
staying in an equilibrium state. In this situation, the actual
black hole entropy should be further required to satisfy the
second law of black hole thermodynamics. Since the Wald
entropy only commonly obeys the first law of black hole
thermodynamics, one can reasonably infer that the black
hole entropy satisfying both the first and second laws of
black hole thermodynamics could be expressed as the Wald
entropy with some correction terms. If this inference is
correct, it indicates sufficiently that the Wald entropy
cannot satisfy the second law of black hole thermodynam-
ics in the dynamic evolution process. In other words, the
Wald entropy of black holes cannot fully describe the actual
black hole entropy in the gravitational theory, and its
expression has a degree of arbitrariness. The degree of
arbitrariness of theWald entropy can be decreased when the
Wald entropy with correction terms satisfies the second law
of black hole thermodynamics, and the Wald entropy with
correction terms will be closer to the actual expression of
black hole entropy in the gravitational theory. This infer-
ence has been examined according to results in previous
works. In the general gravitational theory with partial
higher curvature terms, the black hole entropy, which
always satisfies both the first and linearized second laws
of black hole thermodynamics, can be commonly written
as the Wald entropy with correction terms. However, the
expression of the black hole entropy, which generally obeys
two thermodynamics laws, in the gravitational theory
with interactions between gravity and matter fields has
not been obtained until now. Therefore, in our research, we
investigate the linearized second law in the gravitational
theory with higher-order interactions and derive the general
expression of black hole entropy that satisfies both the first
and linearized second laws of black hole thermodynamics.
The result shows that the black hole entropy that meets

the first and linearized second laws can also be expressed
as the Wald entropy with two correction terms. The first
correction term in Eq. (50) arises from two categories of
interaction in the gravitational theory. These interactions
are the self-interaction of gravity and the nonminimal
coupling interaction between gravity and the scalar field.
The second correction term in Eq. (50) also comes from the
contributions of two categories of interaction in the
gravitational theory. The first category of interaction is
the higher-order correction term of the self-interaction of
the scalar field in gravitational context, i.e., the minimal

coupling interaction between gravity and the scalar field.
The second category of interaction is the nonminimal
coupling interaction between gravity and the scalar field.
From the expression of black hole entropy, one can find
that the correction terms in the expression of black hole
entropy only obviously appear when black holes in the
theory of gravity are in a thermodynamic evolution process.
It indicates that the correction terms only describe how the
black hole entropy evolves with the dynamical process,
while it also ensures that the black hole entropy always
meets the requirements of the linearized second law during
the evolution process. The black hole will stay in a new
equilibrium state at the end of the thermodynamic evolu-
tion. At this moment, the correction terms will disappear in
the expression of black hole entropy because they only
involve the thermodynamic evolution process of black
holes, and the expression of black hole entropy will
degenerate the Wald entropy automatically. It means that
the Wald entropy can only describe the black hole entropy
in the equilibrium state, and it cannot describe the black
hole entropy when the black hole is in a thermodynamic
evolution process. It also shows that the Wald entropy has a
degree of arbitrariness and cannot adequately describe the
entropy of black holes in the gravitational theory with
higher-order interactions. When considering the linearized
second law of black hole thermodynamics, the entropy, i.e.,
the Wald entropy with correction terms, can describe the
black hole entropy in both the equilibrium and dynamic
evolution state and satisfies the first and linearized second
laws of black hole thermodynamics. Therefore, the correc-
tion terms decrease the degree of arbitrariness of the Wald
entropy, and the Wald entropy with correction terms is
approaching the complete expression of black hole entropy
in the gravitational theory with higher-order interactions.
The first law of black hole thermodynamics in an

arbitrary diffeomorphism invariant gravitational theory
has been constructed generally by Wald and Iyer [7,8].
Unlike the first law of black hole thermodynamics in
classical general relativity, the entropy in the expression
of the first law for the general gravitational theory is called
the Wald entropy rather than Bekenstein-Hawking entropy.
It indicates that the Wald entropy is commonly suitable
for the first law of black hole thermodynamics in general
diffeomorphism invariant gravitational theory. However, to
deeply understand black hole thermodynamics and further
reveal the thermodynamic properties of black holes,
whether the Wald entropy is commonly suitable for the
second law of black hole thermodynamics should be further
investigated. When two categories of interactions, which
mainly contain the self-interactions of gravity and the
interactions between gravity and matter fields, in the
quantum gravitational theory, some relevant quantum
correction terms describing the two categories of inter-
actions present to the Lagrangian of the low-energy
efficient gravitational theory corresponding to the quantum
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gravity. Among these quantum correction terms, those
describing nonminimal coupling interactions will substan-
tially influence the expression of the Wald entropy accord-
ing to the definition. Therefore, to generally investigate
whether the Wald entropy satisfies the second law of black
hole thermodynamics in an arbitrary gravitational theory,
we should examine whether the Wald entropy in the general
gravitational theory that contains the two categories of
interactions, respectively, commonly obeys the requirement
of the second law. For the gravitational theory with partial
higher curvature terms, the black hole entropy that always
satisfies the linearized second law is obtained, which can
be written as the Wald entropy with correction terms. It
indicates that the Wald entropy does not commonly obey
the linearized second law in general higher curvature
gravity. Although the linearized second law in the higher
curvature gravity has been investigated adequately, the
general expression of the black hole entropy satisfying the
linearized second law in the gravitational theory with
matter fields has not been obtained yet. According to
our previous research, the linearized second law of black
holes in Horndeski gravity, the general quadratic corrected
Einstein-Maxwell gravity, and the general second-order
scalar-tensor gravity has been investigated. The results
show that the Wald entropy no longer commonly satisfies
the linearized second law in these gravitational theories,
and the black hole entropy obeying the linearized second
law can also be expressed as the Wald entropy with some
correction terms. However, in previous research, the theory
of gravity that involves the second-order interactions of
gravity with scalar and electromagnetic fields at most is
heavily considered to investigate the linearized second law
of black hole thermodynamics. To generally study the
linearized second law, we should generalize the gravita-
tional theory containing the second-order interactions of
gravity with the scalar and electromagnetic fields at most to
the more general gravitational theory that includes higher-
order interactions of gravity with the scalar and electro-
magnetic fields. Furthermore, we investigate the linearized
second law in the gravitational theory and obtain the
general expression of the black hole entropy satisfying
the linearized second law.
Considering the gravitational theory with higher-order

interactions, starting with the definition of theWald entropy
again, we would like to derive the general expression of the
black hole entropy that always satisfies the linearized
second law in the gravitational theory. A quasistationary

accreting process should be introduced first under the
linear-order approximation, which states that the additional
matter fields that are minimal coupling with gravity outside
black holes pass through the event horizon and fall into
black holes. It means that the matter fields can perturb the
spacetime configuration of black holes during the accreting
process. Furthermore, two assumptions are introduced to
investigate the linearized second law. The first is that the
additional matter fields obey the null energy condition,
and the second is the stability assumption. Additionally, to
ensure that all physical quantities are smooth and finite on
the whole Killing horizon, the third assumption that a
regular bifurcation surface exists in the background space-
time is also introduced. From the Raychaudhuri equation,
according to the regularity of the bifurcation surface and the
null energy condition, we derive the general expression of
the black hole entropy commonly obeying the linearized
second law in the gravitational theory with higher-order
interactions. This entropy can also be written as the Wald
entropy with two correction terms. In the expression of
black hole entropy, the contribution of the minimal cou-
pling interaction between gravity and the scalar field is also
included in one of the two correction terms. This result
implies that, when an arbitrary matter field is involved
in the gravitational theory, we should consider both the
minimal and nonminimal coupling interactions between
gravity and the matter field to derive the expression of black
hole entropy that obeys the first and linearized second laws
of black hole thermodynamics. Therefore, the result over-
turns our previous cognition of the black hole entropy and
gives us a new understanding of the black hole entropy that
satisfies the first and linearized second laws in general
diffeomorphism invariant gravitational theory.
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