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We present a new family of exact vacuum solutions to Pfeifer and Wohlfarth’s field equation in Finsler
gravity, consisting of Finsler metrics that are Landsbergian but not Berwaldian, also known as unicorns due to
their rarity. Interestingly, we find that these solutions have a physically viable light cone structure, even
though in some cases the signature is not Lorentzian but positive definite. We furthermore find a promising
analogy between our solutions and classical Friedmann-Lemaître-Robertson-Walker cosmology. One of our
solutions, in particular, has cosmological symmetry, i.e., it is spatially homogeneous and isotropic, and it is
additionally conformally flat, with the conformal factor depending only on the timelike coordinate. We show
that this conformal factor can be interpreted as the scale factor, we compute it as a function of cosmological
time, and we show that it corresponds to a linearly expanding (or contracting) Finsler universe.
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I. INTRODUCTION

The interest in Finsler-geometric modified theories of
gravity has picked up in recent years and rightly so. It has
become clear that small, natural modifications in the classic
axiomatic approach by Ehlers, Pirani and Schild (EPS) [1]
naturally lead to Finsler spacetime geometry [2–4]; it
has also become clear that modified dispersion relations,
usually discussed in the context of quantum gravity
phenomenology [5], generically induce a Finsler geometry
on spacetime [6–9] and it has been conjectured that Finsler
spacetime geometry describes the gravitational field of a
kinetic gas more accurately compared to its usual treatment
in the Einstein-Vlasov system [10,11]. These results, to
name just a few, show clearly that, in certain situations, for
instance, in Planckian regimes or for certain types of matter,
it is to be expected that Finsler geometry should be the
proper way to model spacetime. In addition to the appli-
cations in gravitational physics, see also [12], there are
several other instances in physics, such as the description of
the propagation of waves in media, where Finsler geometry
seems to be the appropriate tool [13].

Various physical subclasses of Finsler spacetimes can be
distinguished, and two particularly important ones are the
class of Berwald spacetimes and the class of Landsberg
spacetimes that may be thought of as incrementally non
(pseudo)-Riemannian, respectively (precise definitions will
follow later). Every Berwald spacetime is also Landsberg,
but whether or not the opposite is true has been a long-
standing open question in Finsler geometry. In fact,
Matsumoto has stated in 2003 that this question represents
the next frontier of Finsler geometry [14], and as a token of
their elusivity, Bao [14] has called these non-Berwaldian
Landsberg spaces “[…] unicorns, by analogy with those
mythical single-horned horselike creatures for which no
confirmed sighting is available.” Since 2006, some exam-
ples of unicorns have been obtained by Asanov [15],
Shen [16], and Elgendi [17] by relaxing the definition of
a Finsler space. Even such examples of so-called y-local
unicorns are still exceedingly rare.
Here we present a new family of exact solutions to

Pfeifer and Wohlfarth’s Finslerian extension of Einstein’s
field equations [18,19], which is precisely such a unicorn.
It falls into one of the classes introduced by Elgendi.
Our solutions extend the very short list of known exact
solutions in Finsler gravity. Indeed, to the best of our
knowledge, the only ones currently known in the literature
are the (m-Kropina type) Finsler pp-waves [20] and their
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generalization as very general relativity spacetimes [21],
the Randers pp-waves [22], and the pp-waves of general
ðα; βÞ-metric type [23].
Interestingly, we find that these solutions have a physi-

cally viable light cone structure, even though in some cases
the signature is not Lorentzian but positive definite. In fact,
the Finslerian light cone turns out to be equivalent to that
of the flat Minkowski metric. The set of unit timelike
directions (technically the indicatrix inside the light cone),
on the other hand, has either a hyperbolic or a spherical
nature, depending of the signature within the timelike cone,
as expected.
Furthermore, we find a natural cosmological interpre-

tation of one of our solutions and a promising analogy
with classical Friedmann-Lemaître-Robertson-Walker
(FLRW) cosmology. In particular, our solution has
cosmological symmetry, i.e., it is spatially homogeneous
and isotropic, and it is additionally conformally flat,
with the conformal factor depending only on the timelike
coordinate. We show that this conformal factor can be
interpreted as the scale factor, we compute the scale factor
as a function of cosmological time, and we show that it
corresponds to a linearly expanding (or contracting)
Finslerian universe.

II. FINSLER GEOMETRY

Before we recall the basic notions of Finsler geometry,
we first introduce some notation. Given a (spacetime)
manifold M, which we assume to be four dimensional,
and given some coordinates onM, we will always consider
the natural induced coordinates on its tangent bundle TM.
More precisely, given a coordinate chart ðU; xÞ on M,
U ⊂ M, we obtain a coordinate chart ðTU; ðx; yÞÞ on TM,
TU ⊂ TM of TM, where a point Y ¼ yμ∂μ ∈TM is labeled
by ðx; yÞ. By a slight abuse of notation, we will generally
identify any point in M with its expression in coordinates,
and similarly for points in TM, i.e., Y ¼ y. We denote the
coordinate basis vectors of the tangent spaces of TM by
∂μ ¼ ∂=∂xμ and ∂μ ¼ ∂=∂yμ, where μ ¼ 0;…; 3.
A Finsler space is a smooth manifoldM endowed with a

Finsler metric, i.e., a smooth map F∶TMn0 → R such that
(i) F is (positively) homogeneous of degree 1 with

respect to y,

Fðx; λyÞ ¼ λFðx; yÞ; ∀ λ > 0; ð1Þ

(ii) the “fundamental tensor”

gμν ¼ ∂μ∂ν

�
1

2
F2

�
ð2Þ

is nondegenerate.
The fundamental tensor gμν depends generally on both x
and y. When F2 is quadratic in y or, equivalently, when gμν

depends only on x, then gμν is a (pseudo-)Riemannian
metric and the theory reduces to (pseudo-)Riemannian
geometry.
In order to describe spacetime geometry, one usually

demands that the signature of gμν be Lorentzian, at least in
some conic open subset of TM, which one might hope to
identify with the cone of timelike directions. Moreover, in
applications one very often encounters Finsler structures1

that are only properly defined (smooth, nondegenerate) on
a subset of TMn0. Such Finsler metrics are sometimes
referred to as y-local, as opposed to y-global [14]. In
particular, the unicorn solution that we will present here is
of y-local type.

A. The nonlinear connection and geodesic spray

The “Cartan nonlinear connection” is the unique homo-
geneous (in general nonlinear) Ehresmann connection
on TM that is smooth on TMnf0g, torsion-free, and
compatible with F. It may therefore be viewed as a
generalization of the Levi-Civita connection. For details,
we refer, e.g., to [28]. Its connection coefficients are
given by

Nμ
ν ¼ 1

4
∂ν

�
gμρðyσ∂σ∂ρF2 − ∂ρF2Þ�: ð3Þ

The nonlinear connection induces the horizontal derivatives

δμ ¼ ∂μ − Nν
μ∂ν; ð4Þ

that, together with the ∂μ, span each tangent space
Tðx;ẋÞTM. The (geodesic) spray coefficients can then be
defined as

Gμ ≡ Nμ
νyν ¼ 1

2
gμρ
�
yσ∂σ∂ρF2 − ∂ρF2

�
; ð5Þ

where the second equality follows from Euler’s theorem
for homogeneous functions. It immediately follows that
we also have Nμ

ν ¼ 1
2
∂νGμ. The importance of the spray

coefficients comes from the fact that the geodesics of F are
given by

ẍμ þ Gμðx; ẋÞ ¼ 0; ð6Þ

which coincidentally is also the autoparallel equation of the
nonlinear connection Nμ

ν .

1In the literature, one finds various other, more stringent,
definitions of Finsler spacetimes, going back to the original
definition by Beem [24]. They vary in their precise
technical details, depending on the scope of the application;
see, e.g., [25–27] and references therein.
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The curvature of the nonlinear connection is defined via
Rρ

μν∂ρ ¼ −½δμ; δν�, which implies that

Rρ
μν ¼ δμN

ρ
ν − δνN

ρ
μ: ð7Þ

From the nonlinear curvature one may define the Finsler
Ricci scalar and Ricci tensor as follows:

Ric ¼ Rρ
ρμyμ; Rμν ¼

1

2
∂μ∂νRic: ð8Þ

A Finsler space is said to be “Ricci flat” if Ric ¼ 0 or,
equivalently, Rμν ¼ 0. We remark that the Finsler Ricci
scalar is not to be confused with the scalar curvature usually
defined in (pseudo-)Riemannian geometry as R ¼ gμνRμν,
also sometimes called the Ricci scalar.

B. The Chern-Rund connection

In addition to the canonical nonlinear connection,
various canonical linear connections can be introduced.
However, the price one has to pay for linearity is that the
linear connections do not, in general, live on the vector
bundle TM but rather on its pullback π�TM by the
canonical projection π∶ TM → M. The pullback bundle
π�TM is considered as a vector bundle over TMn0 and
sections of this vector bundle may be thought of simply as
vector fields on M with a dependence on both x and y ≠ 0.
Since the manifold TMn0 has dimension 2n, we get, in
general, two sets of linear connection coefficients, namely,

∇δμ∂ν ¼ Γρ
νμ∂ρ; ∇

∂μ
∂ν ¼ Γ̄ρ

νμ∂ρ: ð9Þ

The Chern-Rund connection is the unique linear connection
on π�TM that is torsion-free and almost metric compatible.
For details we refer the reader, e.g., to [29]. These
conditions imply that Γ̄ρ

μν ¼ 0 and

Γρ
μν ¼ 1

2
gρσðδμgσν þ δνgμσ − δσgμνÞ: ð10Þ

Notice the similarity to the formula for the Levi-Civita
Christoffel symbols of a (pseudo-)Riemannian metric.
From this, it is immediately clear that the Chern-Rund
connection reduces to the Levi-Civita connection when F is
(pseudo-)Riemannian.

C. Berwald and Landsberg spaces

Next we introduce two important classes of Finsler
spaces: Berwald spaces and Landsberg spaces. First, if
the spray is quadratic in y, i.e., ∂μ∂ν∂σGρ ¼ 0, then F is said
to be of Berwald type. What this means geometrically is
that the Chern-Rund connection may be understood as
an affine connection on M, i.e., equivalently, a space is

Berwald if and only if the connection coefficients Γρ
μν of

the Chern connection depend only on x.
And second, introducing the Landsberg curvature

Sμνσ ¼ −
1

4
yρ∂μ∂ν∂σGρ; ð11Þ

and the mean Landsberg curvature Sσ ¼ gμνSσμν, we say
that a space is (weakly) Landsberg if the (mean) Landsberg
curvature vanishes identically. The geometrical signifi-
cance of the Landsberg tensor is somewhat more difficult
to state in simple terms without introducing more machi-
nery, so instead we refer the reader, e.g., to [14].
It is immediately obvious from the definitions that any

Berwald space is a Landsberg space. Also, a (pseudo-)
Riemannian space is always Berwald, hence, in particular,
any (pseudo-)Riemannian space is Landsberg.

D. Unicorns in Finsler geometry

As observed above, we have the following inclusions:

ðpseudo-ÞRiemannian ⊂ Berwald ⊂ Landsberg:

It has been a long-standing open question whether the
last inclusion is strict. Do there exist Landsberg spaces that
are not Berwald? In the y-global case, the answer is
unknown. For y-local spaces, some examples are known,
but these are exceedingly rare. As such, non-Berwaldian
Landsberg spaces are referred to as “unicorns” [14]. We
recommend [14,30] for reviews on the unicorn problem.
The first unicorns were found by Asanov [15] in 2006

and his results were generalized by Shen [16] a few years
later. These were the only known examples of unicorns
until Elgendi very recently provided some additional
examples of unicorns [17]. One of the families of unicorns
introduced by Elgendi will be central in this work.

III. THE FINSLERIAN FIELD EQUATIONS

Although various proposals for Finslerian field equations
in vacuum can be found in the literature [18,31–40],
it seems fair to say that Pfeifer and Wohlfarth’s field
equation [18] has the most robust foundation. It is obtained
as the Euler-Lagrange equation of the natural Finsler
generalization of the Einstein Hilbert action [18,19], and
furthermore, it has been shown recently that the equation
is the “variational completion” of Rutz’s equation [31],
Ric ¼ 0. The latter is arguably the simplest and cleanest
proposal, and well physically motivated, but it cannot be
obtained by extremizing an action functional, complicating
the coupling of the theory to matter. For reference,
Einstein’s vacuum equation in the form Rμν − 1

2
gμνR ¼ 0

is also precisely the variational completion of the simpler
equation Rμν ¼ 0 [41]. While in the general relativistic case
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the completed equation happens to be equivalent to the
former, this is not true any longer in the Finsler setting.
Pfeifer and Wohlfarth’s field equation in vacuum reads

Ric−
F2

3
gμνRμν−

F2

3
gμνð∂μṠν−SμSνþ∇δμSνÞ ¼ 0; ð12Þ

where Ṡν≡yρ∇δρSν. For (pseudo-)Riemannian metrics, (12)
reduces to Einstein’s field equation in vacuum. From the
general expression (12), it becomes immediately apparent
that, for weakly Landsberg spaces, characterized by the
defining property that Si ¼ 0, the field equation in vacuum
attains the relatively simple form

Ric −
F2

3
gμνRμν ¼ 0: ð13Þ

Recalling the definition (8) of Rμν, we have the following
immediate result:
Proposition 1.—Any Ricci-flat, Ric ¼ 0, weakly

Landsberg space is a solution to the field equations (12).
In other words, any weakly Landsberg solution to the

Rutz equation is automatically a solution to (12).

IV. AN EXACT UNICORN SOLUTION
TO FINSLER GRAVITY

A. Elgendi’s class of unicorns

Elgendi recently introduced a class of unicorns [17] with
Finsler metric given by

F ¼
�
aβ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − β2

q �
e

aβ

aβþ
ffiffiffiffiffiffiffiffi
α2−β2

p
; ð14Þ

in terms of a real, nonvanishing constant a and

α ¼ fðx0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0Þ2 þ ϕðŷÞ

q
; β ¼ fðx0Þy0; ð15Þ

where f is a positive real-valued function and ϕðŷÞ ¼
ϕijŷiŷj ¼ ϕijyiyj is a nondegenerate quadratic form on the
space spanned by ŷ ¼ ðy1; y2; y3Þ, with constant, symmet-
ric coefficients ϕij. Here and in what follows, indices
i; j;… will run over 1, 2, 3, whereas greek induces μ; ν;…
will run over 0, 1, 2, 3. From a gravitational physics
perspective, the only degree of freedom of these Finsler
metrics is the function fðx0Þ. The geodesic spray of F is
given by

G0¼
�
2fðx0Þ2ðy0Þ2−α2

fðx0Þ2 þa2−1

a2
α2−β2

fðx0Þ2
�
f0ðx0Þ
fðx0Þ ; ð16Þ

Gi ¼ Pyi; ð17Þ

where

P ¼ 2

�
y0 þ 1

afðx0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − β2

q �
f0ðx0Þ
fðx0Þ ; ð18Þ

and the Landsberg tensor vanishes identically. This shows
that these metrics are indeed Landsberg, but not Berwald,
since the i components of the spray are not quadratic in y.
Note that our Gk is twice the Gk in Elgendi’s paper [17],
due to a difference in convention. Explicitly then, Elgendi’s
unicorns have the form

F ¼ fðx0Þ
�
y0 þ

ffiffiffiffiffiffiffiffiffiffi
ϕðŷÞ

p �
e

y0

y0þ
ffiffiffiffiffi
ϕðŷÞ

p
; ð19Þ

where we have absorbed the constant a into a redefinition
of x0. For our purposes, we will modify this expression
slightly though.

B. The modified unicorn metric

The expression (19) defining the unicorn metric is only
well defined whenever ϕðŷÞ ≥ 0. If ϕ is positive definite,
this is necessarily the case, but in other signatures this is not
always true. In order to extend the domain of definition
of F, an obvious first approach would naturally be to
replace ϕ by its absolute value jϕj, i.e.,

F ¼ fðx0Þ
�
y0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
jϕðŷÞj

p �
e

y0

y0þ
ffiffiffiffiffiffi
jϕðŷÞj

p
: ð20Þ

From the physical point of view, this is still not
completely satisfactory, however. This can be seen by
considering the light cone corresponding to such a
Finsler metric F, given by the set of vectors for which
F ¼ 0, and interpreted as the set of propagation directions
of light rays. Indeed, barring some potential problems
with the exponent to which we will come back later,
the light cone would be given by those vectors satisfying
y0 ¼ −

ffiffiffiffiffiffijϕjp
, which would imply that the light cone is

contained entirely within the half-space y0 < 0.
Interpreting y0 for the moment as a time direction, this
would have the result that light rays can only propagate
“backward in time” (with regard to their parametrization).
Alternatively, one might interpret this as saying that light
can only be received, not emitted. This would mean
that we could not describe radar signals or use radar
methods [23,42–44], which we certainly can in the physical
world. If, on the other hand, y0 is a spacelike coordinate, the
situation becomes even worse, as this would mean that light
cannot propagate in the spatial y0 direction (in contrast to
the −y0 direction).
To obtain a viable light cone structure, which allows

for emission and reception of light rays in all spatial
directions at each x∈M, we consider a modified unicorn
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metric, inspired by the construction of modified Randers
metrics in [23].
Thus, our starting point will be the following Finsler

metric:

F0 ¼ fðx0Þ
�
jy0j þ sgnðϕÞ

ffiffiffiffiffiffi
jϕj

p �
e

jy0 j
jy0 jþsgnðϕÞ

ffiffiffi
jϕj

p
; ð21Þ

from which we define the “modified unicorn metric” as

F ¼
(
F0 if jy0j þ sgnðϕÞ ffiffiffiffiffiffijϕjp

≠ 0;

0 if jy0j þ sgnðϕÞ ffiffiffiffiffiffijϕjp ¼ 0:
ð22Þ

It will be confirmed in Sec. IV C that such a metric is still of
unicorn type, i.e., Landsberg but not Berwald.
The case distinction is necessary since the metric (21)

is ill defined at vectors satisfying jy0j þ sgnðϕÞ ffiffiffiffiffiffijϕjp ¼ 0,
because of the division by the same number in the
exponent. F0 does not have a well-defined limit to such
vectors either, because the exponent does not stay negative
in such a limit. This issue was already present for Elgendi’s
unicorn (19), yet from a purely mathematical point of view,
this is not necessarily a problem, as one can simply opt to
exclude this set of vectors from the domain of F. From a
physics perspective, however, we want to interpret the set
F ¼ 0 as directions in which light propagates.
Our definition of F as in (22) ensures the existence of a

well-defined light cone and preserves the unicorn property,
which is why we will work with this throughout this article,
even though it leads to a discontinuity at the light cone,
which we discuss in a little more detail in Sec. IV B 2.
Next, we will determine the cone structure and signature

of the fundamental tensor, which will turn out to depend
on the signature of ϕ. In Sec. IV C, we determine the free
function fðx0Þ in (22) by solving the Finsler gravity
equation. Afterward, we discuss the interpretation of the
deformed unicorn in the context of cosmology and we
conclude.

1. Cone structure

First we observe that, regardless of the exact form or
signature of ϕ, our modified unicorn metrics have a light
cone structure F ¼ 0 that is equivalent to that of a pseudo-
Riemannian metric.
Proposition 2.—The light cone of the modified unicorn

metric (22) is given by

ðy0Þ2 þ ϕ ¼ 0: ð23Þ

Proof.—The result follows from the following sequence
of equivalences:

F ¼ 0 ⇔ sgnðϕÞ
ffiffiffiffiffiffi
jϕj

p
þ jy0j ¼ 0; ð24Þ

⇔ sgnðϕÞ
ffiffiffiffiffiffi
jϕj

p
¼ −jy0j; ð25Þ

⇔ jϕj ¼ ðy0Þ2 and ϕ ≤ 0; ð26Þ

⇔ ϕ ¼ −ðy0Þ2; ð27Þ

⇔ ϕþ ðy0Þ2 ¼ 0: ð28Þ

▪
Depending on the signature of ϕ, we can make a more

precise statement.
Proposition 3.—Let F be the modified unicorn metric

(22) corresponding to some some nondegenerate quadratic
form ϕij. Then the following holds:

(i) For ϕij of signature ðþ;þ;−Þ the null structure of F
is identical to the Minkowski metric spacetime light
cone structure of signature ðþ;þ;þ;−Þ.

(ii) If ϕij is negative definite, i.e., of signature ð−;−;−Þ,
then the light cone of F is identical to the Minkowski
metric spacetime light cone of signature
ðþ;−;−;−Þ.

(iii) If ϕij is positive definite, i.e., of signature ðþ;þ;þÞ,
then the light cone of F is given by yμ ¼ 0.

(iv) For ϕij of signature ð−;−; xÞ the null structure of F
is identical to the one of a pseudo-Riemannian
metric manifold with signature ðþ;−;−;þÞ.

This singles out the ðþ;þ;−Þ and ð−;−;−Þ signatures
of ϕij as the ones that are physically reasonable. Using the
light cone structure, it is natural to interpret the interior
of the future and past pointing light cone as cones of
future and past pointing timelike directions, respectively. In
the ðþ;þ;−Þ case, this leads to the interpretation of the
coordinate x3 as timelike coordinate, while in the ð−;−;−Þ
case, x0 would be the timelike coordinate.

2. Signature of the fundamental tensor

Next we investigate the signature of our modified
unicorn metrics.
Proposition 4.—Consider a modified unicorn metric F as

in (22) and let SðϕÞ be the set of all ŷ ¼ ðy1; y2; y3Þ that are
ϕ-spacelike and T ðϕÞ be the set of all ŷ that are ϕ timelike.

(i) If ϕ is positive definite or negative definite, then
gμνðx; yÞ is positive definite on its entire domain of
definition.

(ii) If ϕ is Lorentzian, then gμνðx; yÞ is of Lorentzian
signature ðþ;þ;þ;−Þ for all y∈R × SðϕÞ and
gμνðx; yÞ is of signature ðþ;−;−;þÞ for all
y∈R × T ðϕÞ.

The proof of this proposition can be found in the
Appendix. Let us discuss here some interesting observations.
Consider the two physically reasonable scenarios we

identified below Proposition 3 as a result of their good light
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cone structure, i.e., ϕ having ðþ;þ;−Þ or ð−;−;−Þ
signature. In both cases, the light cone is equivalent to
that of Minkowski space.
Surprisingly, inside the interior of this cone, it is easy

to see from the previous proposition that the signature of
g is not Lorentzian. Indeed, if ϕ has signature ðþ;þ;−Þ,
then g has signature ðþ;−;−;þÞ inside the cone, while if
ϕ is negative definite, then g is positive definite inside
the cone. In the latter case, this does not contradict the
existence of the light cone structure due to the reduced
smoothness and continuity of the Finsler metric F (22).
Indeed,

lim
jy0 jþsgnðϕÞ

ffiffiffi
jϕj

p
→0

jy0 jþsgnðϕÞ
ffiffiffi
jϕj

p
≤0

F0 ¼ 0; ð29Þ

whereas

lim
jy0 jþsgnðϕÞ

ffiffiffi
jϕj

p
→0

jy0 jþsgnðϕÞ
ffiffiffi
jϕj

p
>0

F0 ¼ ∞: ð30Þ

In other words, for ϕ being negatively definite, F extends
continuously to the light cone from the spacelike direc-
tions, but not from the timelike directions. For ϕ being of
signature ðþ;þ;−Þ, the situation is reversed.
In several alternative definitions of Finsler spacetimes

[25,27], one requires that there exists a cone inside which
the fundamental tensor has Lorentzian signature, in order to
guarantee (among other things) the existence of a physical
light cone structure. Here, however, we found that there
exist Finsler geometries that do have a satisfactory light
cone structure, even without this property. This is an
interesting new observation about Finsler geometry in its
own right: apparently, even in positive definite signature,
a light cone structure may arise due to irregularities (e.g.,
discontinuities) of the Finsler metric.
We note, however, that the signature anomaly of the

Finsler metric in the physically relevant ð−;−;−Þ case
leads to the fact that the future and past pointing unit-
normalized timelike directions each do not lie on a
deformed hyperboloid, but on a deformed sphere with
one point removed, the zero vector. Moreover, as a
result of the discontinuity in the Finsler metric, the
norm of the timelike directions do not tend to zero
when one approaches the light cone from the interior
of the cone. Whether this is acceptable or poses a
fundamental problem in the application of these metrics
in spacetime physics is not immediately clear. At the
very least, the clock postulate (the fact that the time an
observer measures between two events is given by the
length of its worldline connecting these events, inde-
pendent of the parametrization of the worldline) is still

perfectly valid, due to the 1-homogeneity of the
Finsler metric.

C. Solving the Finsler gravity equation

Next, we seek to determine the form of the free function
fðx0Þ of (22) from the Finsler gravity equation (13). The
geodesic spray of F is given explicitly by

G0 ¼ �ðy0Þ2 − jϕj� f0ðx0Þ
fðx0Þ ; ð31Þ

Gi ¼ Pyi; i ¼ 1; 2; 3; ð32Þ

where

P ¼ 2
�
jy0j þ sgnðϕÞ

ffiffiffiffiffiffi
jϕj

p �
sgnðy0Þ f

0ðx0Þ
fðx0Þ : ð33Þ

As for the original unicorn metrics (19), this geodesic spray
is not quadratic in y, so our modified unicorn metrics (22)
are not Berwald. Before actually solving the field equa-
tions, we will also confirm that the Landsberg tensor
still vanishes, even after our modification, justifying the
name unicorn. To this end, we employ the definition (11)
of the Landsberg tensor and note that only the Gi terms
(i ¼ 1, 2, 3) can give a nontrivial contribution. For these
terms, we compute that

∂μ∂ν∂σGi ¼ ∂μ∂ν∂σ

ffiffiffiffiffiffi
jϕj

p
yi þ 3δiðμ∂ν∂σÞ

ffiffiffiffiffiffi
jϕj

p
: ð34Þ

To find the Landsberg tensor, we need to contract this
with yi ¼ giμyμ ¼ 1

2
∂iF2, and it can be checked in a

straightforward way that the latter can be written as
some function times ∂i

ffiffiffiffiffiffijϕjp
. It thus suffices to show

that ∂i

ffiffiffiffiffiffijϕjp
∂μ∂ν∂σGi ¼ 0. Indeed, whenever μ ≠ 0, it

follows from the homogeneity of
ffiffiffiffiffiffijϕjp

that the latter is
equal to (for μ ¼ 0 it vanishes immediately since ϕ does not
depend on y0)

∂i

ffiffiffiffiffiffi
jϕj

p �
∂μ∂ν∂σ

ffiffiffiffiffiffi
jϕj

p
yi þ 3δiðμ∂ν∂σÞ

ffiffiffiffiffiffi
jϕj

p �
ð35Þ

¼
ffiffiffiffiffiffi
jϕj

p
∂μ∂ν∂σ

ffiffiffiffiffiffi
jϕj

p
þ 3∂ðμ

ffiffiffiffiffiffi
jϕj

p
∂ν∂σÞ

ffiffiffiffiffiffi
jϕj

p
ð36Þ

¼ 1

2
∂μ∂ν∂σ

� ffiffiffiffiffiffi
jϕj

p �
2 ¼ 1

2
∂μ∂ν∂σjϕj ¼ 0; ð37Þ

which vanishes because ϕ is quadratic. Hence our modified
unicorns are indeed non-Berwaldian Landsberg metrics,
justifying their name.
Proposition 5.—F is Ricci flat if and only if f has the

form fðx0Þ ¼ c1 exp ðc2x0Þ.
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Proof.—By definition, and using homogeneity and the fact
that Nμ

ν ¼ 1
2
∂νGμ, we have

Ric ¼ Rμ
μνyν ¼ ðδμNμ

ν − δνN
μ
μÞyν ð38Þ

¼ yνðð∂μ − Nρ
μ∂ρÞNμ

ν − ð∂ν − Nρ
ν∂ρÞNμ

μÞ ð39Þ

¼ yν∂μN
μ
ν − yν∂νN

μ
μ; ð40Þ

−yνNρ
μ∂ρN

μ
ν þ yνNρ

ν∂ρN
μ
μ ð41Þ

¼ 1

2
ðyν∂μ∂νGμ − yν∂ν∂μGμÞ; ð42Þ

−
1

4
ðyν∂μGρ

∂ρ∂νGμ − yν∂νGρ
∂ρ∂μGμÞ ð43Þ

¼ ∂μGμ −
1

2
yν∂ν∂μGμ; ð44Þ

−
1

4
ð∂μGρ

∂ρGμ − 2Gρ
∂ρ∂μGμÞ: ð45Þ

Using the identities

∂0P ¼ 2f0=f; ∂0G0 ¼ 2y0f0=f;

∂
2
0G

0 ¼ 2f0=f; ∂0∂iG0 ¼ ∂0∂iP ¼ ∂
2
0P ¼ 0;

yi∂iG0 ¼ −2jϕjf0=f; yi∂iP ¼ 2sgnðϕy0Þ
ffiffiffiffiffiffi
jϕj

p
f0=f;

ð46Þ

one finds after some slightly tedious manipulations that the
last two terms in the expression for the Ricci tensor can
both be expressed as

∂μGρ
∂ρGμ ¼ 2Gρ

∂ρ∂μGμ ¼ nP2; ð47Þ

where n ¼ dimM ¼ 4 in our case; hence these terms
cancel each other out precisely. Denoting G0 ¼ Ḡ0f0=f
and P ¼ P̄f0=f, so that Ḡ0 and P̄ do not depend on xμ, and
using the fact that ∂μGμ ¼ nP, one finds furthermore that

∂μGμ ¼ ð∂20 log jfjÞḠ0; ð48Þ

yν∂ν∂μGμ ¼ ny0ð∂20 log jfjÞP̄: ð49Þ

Consequently, we have

Ric ¼ ∂μGμ −
1

2
yν∂ν∂μGμ ð50Þ

¼ þð∂20 log jfjÞ ð51Þ

×
�
ð1 − nÞðy0Þ2 − njy0jsgnðϕÞ

ffiffiffiffiffiffi
jϕj

p
− jϕj

�
; ð52Þ

which in dimension n ¼ 4 reduces to

Ric ¼ −ð∂20 log jfjÞ ð53Þ

×
�
3ðy0Þ2 þ 4jy0jsgnðϕÞ

ffiffiffiffiffiffi
jϕj

p
þ jϕj

�
: ð54Þ

If Ric ¼ 0, then we must, in particular, have

0 ¼ ∂
2
0Ric ¼ −6ð∂20 log jfjÞ: ð55Þ

It thus follows that Ric ¼ 0 if and only if ∂20 log jfj ¼ 0,
the general solution to which is given by the stated form
of f. ▪
This shows that the following family of Finsler metrics

are exact vacuum solutions to Pfeifer and Wohlfarth’s field
equations in Finsler gravity:

F ¼ c1ec2x
0
�
jy0j þ sgnðϕÞ

ffiffiffiffiffiffi
jϕj

p �
exp

� jy0j
jy0j þ sgnðϕÞ ffiffiffiffiffiffijϕjp �

; ð56Þ

where ϕ ¼ ϕðŷÞ ¼ ϕijyiyj, with ϕij being a three-
dimensional nondegenerate, symmetric bilinear form
with constant coefficients and signature ðþ;þ;−Þ or
ð−;−;−Þ.
In fact, it turns out that any solution of the type (22) must

have this form.
Proposition 6.—A Finsler metric of the form (22) is a

solution to the Finslerian field equations in vacuum (13), if

and only if it can be written as (56).
Before we give a sketch of the proof, it is important to

point out the exact meaning of the word “locally” in the

proposition, as it will have essential consequences for the
physical viability of such solutions. Of course, the word
applies first and foremost to the x-coordinates in the usual
sense, but it also applies to the tangent space coordinates yi:
there is a priori no reason why one could not pick, at some
point xμ, say, a certain ϕij in a certain subset of TxM and a
different ϕij in a different subset of TxM. Of course, this
could, in general, result in not having smoothness across
the interface of the two regions, but this does not neces-
sarily have to be a problem, unless one sets very strict
smoothness requirements.
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For consistency, the different parts of TM must satisfy
some conditions. It is most natural to require that any such
part be a conic subbundle, i.e., an open conic subset with
nonempty fiber at each point in M.
Proof.—In four spacetime dimensions, the proof is

straightforward and most easily performed in convenient
coordinates in which ϕ is diagonal with all nonvanishing
entries equal to þ1 or −1. From (22) one can directly
compute gμν and then its inverse gμν. From (54) together
with (8), one can immediately compute Rμν. We omit the
intermediate expressions because they are somewhat
lengthy, but plugging all of this into the field equation (13)
leads to

−∂20 log jfj
3
ffiffiffiffiffiffijϕjp �

−4sgnðϕÞjy0j3 − 5y0
ffiffiffiffiffiffi
jϕj

p
þ jϕj3=2

�
¼ 0:

ð57Þ

Clearly this equation can only be satisfied for all yμ in an
open set where the fundamental tensor has Lorentzian
signature if ∂20 log jfj ¼ 0, in which case (the last sentence
in the proof of) Proposition 5 shows that F is, in fact, Ricci
flat and therefore must have the form (56). ▪
With this we found an exact solution to the Finsler

gravity equations (56), starting from a generalized version
of Elgendi’s unicorns (22).

D. Physical interpretation:
A linearly expanding universe

Having analyzed the mathematical properties of the
unicorn Finsler spacetimes (22) and found the exact
unicorn vacuum solution (56) of the Finsler gravity vacuum
equations (13), we now turn to the physical interpretation of
this solution. We find that these Finsler gravity vacuum
solutions yield a vacuum cosmology with linear time
dependence of the scale factor.
To arrive at this conclusion, we highlight the following

properties of the unicorn Finsler spacetimes (22):
(i) Conformal flatness, with a conformal factor that is

only spacetime dependent,

Fðx; yÞ ¼ fðxÞF0ðyÞ: ð58Þ

(ii) Cosmological symmetry, for the case when ϕij has
signature ð−;−;−Þ, since then, by introducing
spatial spherical coordinates ðr; θ;ϕÞ, we can write

Fðx; yÞ ¼ Fðx0; y0; wÞ; ð59Þ

w2 ¼ ðy1Þ2 þ ðy2Þ2 þ ðy3Þ2 ð60Þ

¼ ðyrÞ2 þ r2
�ðyθÞ2 þ sin2 θðyϕÞ2�; ð61Þ

which is precisely of the form of a spatial flat
homogeneous and isotropic Finsler geometry [45].
This construction does not work for ϕij with
signature ðþ;þ;−Þ, since then y3, and not y1 would
be the timelike direction.

Combining these observations, we find that the unicorn
Finsler spacetimes (22) are of the form

Fðx0; y0; wÞ ¼ fðx0ÞF0ðy0; wÞ: ð62Þ
This form reminds one immediately of classical flat FLRW
spacetimes in conformal time η, which we identify here
with the x0 coordinate. When written in the language of
Finsler geometry, they are of the form (62) with

F0FLRW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
−ðy0Þ2 þ ðy1Þ2ðy2Þ2 þ ðy3Þ2�q

: ð63Þ

A redefinition of the time coordinate via ∂x̃0

∂x0 ¼ fðx0Þ, which
implies that ỹ0 ¼ fðx0Þy0, then leads to the standard form
of flat FLRW geometry

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
−ðỹ0Þ2 þ fðx̃0Þ2ððy1Þ2 þ ðy2Þ2 þ ðy3Þ2Þ�q

; ð64Þ

where the conformal factor is nothing but the usual
cosmological scale factor and x̃0 is the usual cosmological
time t.
For the Finsler metric (22), we employ the coordinate

change ∂x̃0

∂x0 ¼ fðx0Þ, implying that ỹ0 ¼ fðx0Þy0, so that

F ¼
�
jỹ0j þ sgnðϕÞfðx̃0Þ

ffiffiffiffiffiffi
jϕj

p �
e

jỹ0 j
jỹ0 jþsgnðϕÞfðx̃0Þ

ffiffiffi
jϕj

p
: ð65Þ

Hence, as in the classical FLRW geometry case, the
conformal factor can be interpreted as a scale factor of
the spatial universe, x0 as conformal time η, and x̃0 as
cosmological coordinate time t. For now, we will adopt this
classical cosmology notation.
To be a solution of the Finsler gravity equations, we

found that fðηÞ ¼ c1eηc2 , which implies from the coor-
dinate change between η and t that

dt ¼ c1eηc2dη ⇔ ηðtÞ ¼ 1

c2
ln

�
c2
c1

ðt − c3Þ
�
; ð66Þ

where c3 is a constant of integration. Thus, in cosmological
time, the scale factor of the vacuum Finsler cosmology we
find is

fðtÞ ¼ c2ðt − c3Þ: ð67Þ

Interestingly, it turns out that these solutions are not only
Ricci flat and conformally flat (by their explicit form),
but flat, in the sense that all components of the nonlinear
curvature tensor Ra

bc¼δbNa
c−δcNa

a vanish. Nevertheless,
the spacetime has nontrivial geometric features.
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V. DISCUSSION

The solutions that we have presented above are, to the
best of our knowledge, the first non-Berwaldian exact
solutions to Pfeifer and Wohlfarth’s field equation. Known
exact solutions are scarce since, in particular, the Landsberg
tensor terms in the field equations are difficult to under-
stand. Employing a unicorn ansatz, i.e., non-Berwaldian
Landsberg spaces, makes our solutions particularly special.
We have shown that there is a subclass of our solutions for
which the light cone structure is physically viable. In fact, it
is equivalent to the light cone of the flat special relativistic
Minkowski metric. Moreover, we have shown that one of
the solutions has cosmological symmetry, i.e., it is spatially
homogeneous and isotropic. Additionally, it is conformally
flat, with the conformal factor depending only on the
timelike coordinate; we have shown that this conformal
factor can be interpreted as the scale factor, which then
turns out to be a linear function of cosmological time,
leading to the natural interpretation of a linearly expanding
(or contracting) Finslerian universe.
As an additional curiosity, we have found that the

requirement of a physically light cone structure does
not, strictly speaking, necessitate Lorentzian signature,
as is widely assumed. This is illustrated by one of our
solutions, which has positive definite signature, and yet has
a light cone that is equivalent to the light cone of flat
Minkowski space. It is interesting and surprising that such
things are apparently possible in Finsler geometry, and this
paper shows the first explicit example of a (positive
definite) Finsler metric with this property, which seems
to be closely related to lack of smoothness of the Finsler
metric in certain nontrivial subsets of TM.
On the other hand, when the interior of the light cone is

interpreted as the set of timelike directions, the future
and past pointing unit-normalized timelike directions each
form a deformed sphere with one point removed (the zero
vector), rather than a deformed hyperboloid. We expect that
this will affect relativistic time dilation between different
observers in an interesting way and this should be further
investigated in the future.
The results obtained in this paper motivate us to

begin a systematic search for cosmological Landsberg
spacetimes that solve the field equations, using recent
results characterizing cosmological symmetry in Finsler
spacetimes [45] and Elgendi’s machinery for constructing
unicorns using conformal transformations [17,46]. Since
(properly Finslerian) cosmological solutions of Berwald
type are necessarily static [45], any interesting such
Landsberg spacetime must necessarily be a unicorn.
The exciting next step in the study of Finsler gravity, is to

study unicorn solutions of the field equation sourced by
the one-particle distribution function of a kinetic gas,
in homogeneous and isotropic symmetry. This scenario
describes a realistic universe, filled with a kinetic gas with a
nontrivial velocity distribution. As we already obtained a

nontrivial solution for vacuum Finsler unicorn cosmology,
more realistic matter-sourced solutions will help us to
further investigate the conjecture that an accelerated
expansion of the Universe is caused by the contribution
of the velocity distribution of the cosmological gas, which
sources a Finslerian spacetime geometry.
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APPENDIX: PROOF OF PROPOSITION 4

Proof.—We may choose coordinates such that ϕ ¼
ϕðŷÞ ¼ ε1ðy1Þ2 þ ε2ðy2Þ2 þ ε3ðy3Þ2. Since the spacetime
dimension is fixed to 4, wherever F is sufficiently differ-
entiable, the calculation of the determinant of the funda-
mental tensor is, in principle, a straightforward exercise.
It is given by

det g ¼ sgn
�
ϕðŷÞ�ε1ε2ε3fðx0Þ8 exp

 
8jy0j

jy0j þ sgnðϕÞ ffiffiffiffiffiffijϕjp
!
:

ðA1Þ

The determinant already gives us a pretty good idea of what
the possible signature of gμν can be. In particular, since gμν
is a four-dimensional matrix, it has Lorentzian signature,
either of type ðþ;−;−;−Þ or ð−;þ;þ;þÞ, if and only if its
determinant is negative.
(a) Suppose that ϕij is positive definite; then all ϵi and

sgnðϕðŷÞÞ are positive, and hence det g is positive.
(b) Suppose that ϕij is negative definite; then all ϵi and

sgnðϕðŷÞÞ are negative, and hence det g is positive.
(c) Suppose that ϕij is of Lorentzian signature ðþ;þ;−Þ;

then det g is negative whenever sgnðϕðŷÞÞ > 0, i.e., on
SðϕÞ, and det g is positive whenever sgnðϕðŷÞÞ < 0,
i.e., on T ðϕÞ.

(d) Suppose that ϕij is of Lorentzian signature ð−;−;þÞ;
then det g is negative whenever sgnðϕðŷÞÞ < 0, i.e., on
SðϕÞ, and det g is positive whenever sgnðϕðŷÞÞ > 0,
i.e., on T ðϕÞ.

This already shows that gμν is Lorentzian if and only if ϕ
is Lorentzian and y∈R × SðϕÞ. But the sign of the
determinant does not suffice to determine whether this
signature is mostly plus or mostly minus. Similarly, it does
not tell us much about the signature of gμν when ϕ is
positive or negative definite. In order to found, we will
distinguish the following cases.
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1. Case 1: ϕ Lorentzian and y∈R × SðϕÞ
We first consider the case that ϕ is Lorentzian. Without

loss of generality (WLOG), we set ϕðŷÞ ¼ ϵðy1Þ2 þ
ϵðy2Þ2 − ϵðy3Þ2, where ϵ ¼ �1. The choice of the sign ϵ
selects if we are in case c or d from above.
Now note that, given a vector y∈TxM that is ϕ-space-

like, it follows from the symmetries of the Finsler metric
and, in particular, from the three-dimensional Lorentz
symmetry of ϕ that we may always change coordinates,
without changing the form of ϕ (and F), such that
y2 ¼ y3 ¼ 0.
For any choice of epsilon, by direct calculation we find,

using that ϵ2 ¼ 1 and jϵj ¼ 1, that gμν is of the form

gμν ¼ e
2jy0 j

jy0jþεjy1jfðx0Þ2
0
B@

M 0 0

0 1 0

0 0 −1

1
CA; ðA2Þ

where M is an (ε-dependent) positive definite 2 × 2
matrix.2 Hence, we conclude that gμν is of the mostly plus
type ðþ;þ;þ;−Þ.

2. Case 2: ϕ Lorentzian and y∈R × T ðϕÞ
In this case, we may WLOG choose coordinates such

that ϕðŷÞ ¼ −ϵðy1Þ2 þ ϵðy2Þ2 þ ϵðy3Þ2, where ϵ ¼ �1,
and such that y2 ¼ y3 ¼ 0. Again, by direct calculation,
we find that gμν is of the form

gμν ¼ e
2jy0 j

jy0jþεjy1jfðx0Þ2
0
B@

M 0 0

0 −1 0

0 0 −1

1
CA; ðA3Þ

where M is a positive definite 2 × 2 matrix. Hence, we
conclude that gμν is in this case of signature ðþ;−;−;þÞ.

3. Case 3: ϕ positive or negative definite

In this case, we may WLOG choose coordinates such
that ϕðŷÞ ¼ ϵðy1Þ2 þ ϵðy2Þ2 þ ϵðy3Þ2, where ϵ ¼ �1, and
such that, for any given y∈TxM, we have y2 ¼ y3 ¼ 0.
Again, by direct calculation, we find that gμν is of the form

gμν ¼ e
2jy0 j

jy0jþεjy1jfðx0Þ2
0
B@

M 0 0

0 1 0

0 0 1

1
CA; ðA4Þ

where M is a positive definite 2 × 2 matrix. Hence, we
conclude that gμν is positive definite. ▪
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