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We compute the leading order contribution to radiative losses in the case of spinning binaries with aligned
spins due to their spin-orbit interaction. The orbital average along hyperboliclike orbits is taken through an
appropriate spin-orbit modification to the quasi-Keplerian parametrization for nonspinning bodies, which
maintains the same functional form, but with spin-dependent orbital elements. We perform consistency
checks with existing post-Newtonian-based and post-Minkowskian (PM)-based results. In the former case,
we compare our expressions for both radiated energy and angular momentumwith those obtained in [G. Cho
et al., From boundary data to bound states. Part III. Radiative effects, J. High Energy Phys. 04 (2022) 154] by
applying the boundary-to-bound correspondence to known results for ellipticlike orbits, finding agreement.
The linear momentum loss is instead newly computed here. In the latter case, we also find agreement with the
low-velocity limit of recent calculations of the total radiated energy, angular momentum and linear
momentum in the framework of an extension of the worldline quantum field theory approach to the classical
scattering of spinning bodies at the leading PM order [G. U. Jakobsen et al., Gravitational Bremsstrahlung
and Hidden Supersymmetry of Spinning Bodies, Phys. Rev. Lett. 128, 011101 (2022), M.M. Riva et al.,
Gravitational bremsstrahlung from spinning binaries in the post-Minkowskian expansion, Phys. Rev. D 106,
044013 (2022)]. We get exact expressions of the radiative losses in terms of the orbital elements, even if they
are at the leading post-Newtonian order, so that their expansion for large values of the eccentricity parameter
(or equivalently of the impact parameter) provides higher-order terms in the corresponding PM expansion,
which can be useful for future crosschecks of other approaches.
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I. INTRODUCTION

The importance of including spin effects in the descrip-
tion of the dynamics of a two-body system has been known
for a long time. In the pioneering work of Kidder [1] it was
shown that the effects of spin-orbit and spin-spin inter-
actions on the inspiral of a coalescing binary system of
spinning compact objects may be relevant for rapidly
rotating bodies, since they induce post-Newtonian (PN)
corrections which are comparable with those of the non-
spinning counterparts.
The presence of non-negligible spins can strongly affect

the binary dynamics. In particular, spin vectors not aligned
with the orbital angular momentum cause the orbital plane
to precess, leading to modulations in the observed shape of
the waveform (see also Ref. [2]). In addition, the spins of
the bodies modify the radiative multipole moments, so that
they directly contribute to the amplitude and accumulated
phase of the waveform as well as to the losses of energy,
angular momentum and linear momentum from the system.
In the present paper we focus on spin-orbit effects,

which are linear in the spins of the binary. The study of the

spin-orbit coupling was already carried out at the leading
PN order in Ref. [1], later extended to the next-to-
leading order in Refs. [3–8] by using different approaches
(including effective-field-theory-based [9,10] and ampli-
tude-based [11] methods), also taking into account radia-
tion-reaction effects [12–15]. Higher-order extensions have
also been obtained over the years [16–23].
Most of the efforts have been devoted so far to the case of

quasicircular motion, since the emission of gravitational
radiation tends to circularize the orbits of the binary. The
spin-orbit contributions to the radiative losses have been
computed first by Kidder at the leading PN order for
general orbits, further specialized to circular motion. These
contributions turn out to be 1.5PN order relative to the
leading Newtonian order in the case of the energy and
angular momentum, and 0.5PN order in the case of the
linear momentum. Next-to-leading order corrections have
been then obtained in Ref. [24] (see also Ref. [25]). The
state of the art for ellipticlike orbits is the next-to-next-to-
leading order spin-orbit and spin-spin corrections to the
energy loss at 4PN level, while 3PN for both angular
momentum and linear momentum losses [18,26–28].
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We compute here the contributions to the orbital average
of the energy, angular momentum and linear momentum
fluxes along hyperboliclike orbits of a two-body system
due to their leading-order spin-orbit interaction in the
simplest case of spins with constant magnitude and
orthogonal to the orbital plane. This special situation allows
for using a minimal modification to the quasi-Keplerian
parametrization of the orbit for nonspinning bodies [29]
(see Refs. [30–32] for the case of ellipticlike motion). Our
results are in agreement with the low-velocity limit of
recent calculations of the total radiated energy, angular
momentum and linear momentum obtained in Refs. [33,34]
by using an extension of the worldline quantum field theory
approach to the classical scattering of spinning bodies at the
leading post-Minkowskian (PM) order. Although valid at
the leading PN order our expressions for the radiative losses
are exact functions of the orbital elements. Therefore, they
can be expanded in PM sense as series expansions in the
large-eccentricity parameter (or equivalently large-impact
parameter), which give higher-order PM terms useful for
crosschecking companion amplitude-based and PM-based
computations.
We will use a mostly positive signature of the metric

ð−þþþÞ. The two bodies have masses m1 and m2 (with
m1 > m2) and spin vectors S1 and S2. Standard mass ratio
notations will be used for the total massM ¼ m1 þm2, the
reduced mass μ ¼ m1m2=M, the symmetric mass-ratio
ν ¼ μ=M, mass difference δm ¼ m1 −m2, as well as for
the two symmetric combinations of spins

S ¼ S1 þ S2; S� ¼
m2

m1

S1 þ
m1

m2

S2: ð1Þ

We work in harmonic coordinates such that the orbital
plane is the x–y plane, and the direction of the spins (as well
as orbital angular momentum) is the z-axis

S ¼ Sez; S� ¼ S�ez: ð2Þ

The spin vectors also have constant magnitude. To simplify
expressions we mostly work in units of G,M, and c, except
for comparison with existing results.

II. SPIN-MODIFIED QUASI-KEPLERIAN
PARAMETRIZATION OF THE ORBIT

In the case of a spinningbinary system the finite size of the
bodies introduces an ambiguity in the definition of the center
of mass of each body, corresponding to different choices of
spin supplementary conditions (see, e.g., Appendix A of
Ref. [1]). It is customary to assume the so called covariant
supplementary conditions SμνA uAν ¼ 0, where uAν (with
uAμu

μ
A ¼ −1) denotes the four velocity of the center-of-

mass worldline of body A, and SμνA the associated (anti-
symmetric) spin tensor. To linear order in spin (which is the
case we are interested in) the kinematical four momentum is

aligned with the four velocity, pA ¼ mAcuA þOðs2AÞ, and
the spin magnitudes s2A ¼ 1

2
SμνA SAμν remain constant as a

consequence of the spin evolution equations if higher-order
multipole couplings are neglected. The spin vector SA
associated with the spin tensor is defined by spatial duality
with respect to uA, SμA ¼ 1

2
uAνηνμαβSAαβ, so that it is

orthogonal to uA, and has only spatial components in a
frame adapted to uA. One can then define a constant-
magnitude 3-dimensional spin vector Sc

A which satisfies

an ordinary precession equation dScA
dt ¼ ΩA × Sc

A [5,17]. The
angular velocity ΩA vanishes at the Newtonian order, i.e.,
starts at 1PN order, and is directly computable from the
spacetime metric. The transformation from the original spin
variables to those with constant magnitude is also 1PN [4],
so that at the leading PN order we are working with they
coincide. We further assume that the spins are initially
aligned with the orbital angular momentum, implying that
dSA
dt ¼ 0 [see Eq. (2.4) of Ref. [1]], so that their direction does
not change during the evolution.
Up to 2.5PN order the motion is conservative, and the

energy and total angular momentum are conserved.
The leading-order spin-orbit acceleration is 1.5PN beyond
the Newtonian one. The equations of motion in harmonic
coordinates in the center of mass frame are given by [see
Eqs. (2.1) and (2.2) of Ref. [1]]

a ¼ aN þ 1

c2
a1PN þ 1

c3
aSO; ð3Þ

with

aN ¼ −
M
r2

n;

a1PN ¼ −
M
r2

ðA1PNnþ B1PNṙvÞ;

aSO ¼ 6

r3
½ðn × vÞ · ðSþ S�Þ�n −

1

r3
v × ð4Sþ 3S�Þ

þ 3ṙ
r3

n × ð2Sþ S�Þ; ð4Þ

where x ¼ rn and v ¼ dx
dt , with r ¼ jxj and ṙ ¼ v · n, and

A1PN ¼ ð1þ 3νÞv2 − 3

2
νṙ2 − 2ð2þ νÞM

r
;

B1PN ¼ −2ð2 − νÞ: ð5Þ
The spin-orbit acceleration then reduces to aSO ¼
axSOex þ aySOey, with

axSO ¼ 2

r3

�
r cosϕϕ̇

�
Sþ 3

2
S�

�
þ sinϕṙS

�
;

aySO ¼ 2

r3

�
r sinϕϕ̇

�
Sþ 3

2
S�

�
− cosϕṙS

�
; ð6Þ

for constant spin vectors aligned with the z-axis, Eq. (2).
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It is easy to show that in the special case considered here
one can still have a quasi-Keplerian parametrization of the
hyperboliclike orbit (which is currently known up to the
3PN order [35,36]), i.e.,

n̄t ¼ et sinh v − v;

r ¼ ārðer cosh v − 1Þ;

ϕ ¼ 2K arctan

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
eϕ þ 1

eϕ − 1

s
tanh

v
2

!
; ð7Þ

where the orbital elements n̄, K, ār, et, er, and eϕ have
1.5PN spin corrections. Expressing the orbital elements in
terms of er and ār we find

K ¼ 1þ 3

ārðe2r − 1Þ η
2 −

4Sþ 3S�
½ārðe2r − 1Þ�3=2 η

3;

n̄ ¼ 1

ā3=2r

−
ν − 9

2ā5=2r

η2 −
3

2

2Sþ S�
ā3rðe2r − 1Þ1=2 η

3;

et ¼ er −
erð3ν − 8Þ

2ār
η2 −

erð2Sþ S�Þ
ā3=2r ðe2r − 1Þ1=2

η3;

eϕ ¼ er −
νer
2ār

η2 þ erS�
ā3=2r ðe2r − 1Þ1=2

η3; ð8Þ

with η ¼ 1=c a place-holder, and S; S� ∼ S
M2 ;

S�
M2 are adi-

mensionalized by using the total mass of the system. The
corresponding relations for ellipticlike motion have been
obtained in Ref. [31] in Arnowitt, Deser, and Misner-type
coordinates and for arbitrary spin orientations (see also
Ref. [32]). In a sense, at this order, the spin structure of the
bodies manifests itself as an additional structure of the orbit,
i.e., modifies the eccentricities too, besides (as expected) the
various gauge-invariant quantities as the periastron preces-
sion, the radial period, etc. This effect can be interpreted
qualitatively in terms of the equivalence principle.
The conserved energy and total angular momentum are

given by [see Eqs. (2.6)–(2.9) of Ref. [1]]

E ¼ EN þ 1

c2
E1PN þ 1

c3
ESO; ð9Þ

with

EN ¼ μ

�
1

2
v2 −

M
r

�
;

E1PN ¼ μ

�
3

8
ð1 − 3νÞv4 þ 1

2
ð3þ νÞ v

2

r

þ 1

2
ν
M
r
ṙ2 þ 1

2

�
M
r

�
2
�
;

ESO ¼ LN

r3
S�; ð10Þ

and

J ¼ Lþ S; ð11Þ
where

L ¼ LN þ 1

c2
L1PN þ 1

c3
LSO; ð12Þ

with LN ¼ μx × v, and

L1PN ¼ LN

�
1

2
ð1 − 3νÞv2 þ ð3þ νÞM

r

�
;

LSO ¼ μ

M

�
−
M
r
ð2Sþ S�Þ þ

1

2
S�v2

�
; ð13Þ

respectively. Since the spins are nonprecessing, the orbital
angular momentum does not precess too, and is conserved
as well.
The orbital elements can then be expressed in terms of

the conserved energy and orbital angular momentum by
using the relations

ār ¼
1

2Ē

�
1þ 1

2
η2ð7 − νÞĒ − η3

2Ē
L

ð2Sþ S�Þ
�
;

er ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ĒL2

p
þ η2

Ē½−6þ νþ 5
2
ð−3þ νÞĒL2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ĒL2
p

þ η3
2Ē½4Sþ 2S� þ ð4Sþ S�ÞĒL2�

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ĒL2

p ; ð14Þ

with Ē ¼ ðE −MÞ=μ being the binding energy and L the
dimensionless orbital angular momentum (rescaled byMμ).

III. SPIN-ORBIT CORRECTIONS TO THE
RADIATIVE LOSSES

According to the multipolar-post-Minkowskian (MPM)
formalism the radiative fluxes of energy, linear momentum
and angular momentum can be expressed in terms of the
radiative multipole moments, which can be then deter-
mined in terms of the source multipole moments [37–42].
The leading-order spin-orbit corrections to the needed mass
and current multipole moments have been computed by
Kidder himself [1]. The resulting expressions for the fluxes
dX
dt ¼ FX are then given by

FE ¼ FN
E þ η2F 1PN

E þ η3F SO
E ;

F J ¼ FN
J þ η2F 1PN

J þ η3F SO
J ;

FPi
¼ FN

Pi
þ ηF SO

Pi
: ð15Þ

We list below only the spin-orbit corrections to the
fluxes, which are of fractional 1.5PN order for energy and
angular momentum, and 0.5PN order for linear momentum
[see Eqs. (3.25), (3.28), and (3.31) of Ref. [1]]
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F SO
E ¼−

8

15

M5

r4
ν2ϕ̇

�
v2ð37Sþ43S�Þ− ṙ2ð27Sþ51S�Þþ

4M
r

ð3S−S�Þ
�
;

F SO
J ¼−

8

15

M4

r3
ν2
�
v4ð9Sþ11S�Þ−3ṙ2v2ð3Sþ8S�Þþ

M
r
ð25Sþ11S�Þv2þ15S�ṙ4−

M
r
ð25Sþ13S�Þṙ2þ

M2

r2
ð3S−S�Þ

�
;

F SO
Pi

¼−
8

15

M3

r5
ν2ϵijz½−2v2njþ4ṙvj�M

δm
ðS−S�Þ; ð16Þ

with

S − S�
δm

¼ S1
m1

−
S2
m2

: ð17Þ

Integrating the fluxes over time along the hyperboliclike
orbit (7) then gives the total energy, angular momentum and
linear momentum radiated in gravitational waves during the
scattering process

ΔX ¼
Z

∞

−∞
dtFXðtÞ: ð18Þ

At the leading PN order the spin-orbit corrections to the
orbital averages of the radiative losses turn out to be

ðΔEÞSO ¼ −
ν2

½ārðe2r − 1Þ�5
�
ðAE

SSþ AE
S�S�Þarcos

�
−

1

er

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2r − 1

q
ðBE

SSþ BE
S�S�Þ

�
; ð19Þ

with

AE
S ¼ 269

15
e6r þ

1388

5
e4r þ

1552

3
e2r þ

1744

15
;

AE
S� ¼

244

15
e6r þ

1517

5
e4r þ

2612

5
e2r þ

496

5
;

BE
S ¼ 31901

225
e4r þ

119938

225
e2r þ

19072

75
;

BE
S� ¼

11084

75
e4r þ

127951

225
e2r þ

50582

225
; ð20Þ

and

ðΔJÞSO ¼ −
ν2

½ārðe2r − 1Þ�7=2
�
ðAJ

SSþ AJ
S�S�Þarcos

�
−

1

er

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2r − 1

q
ðBJ

SSþ BJ
S�S�Þ

�
; ð21Þ

with

AJ
S ¼

198

5
e4r þ

928

5
e2r þ

1552

15
;

AJ
S� ¼

554

15
e4r þ

2696

15
e2r þ 80;

BJ
S ¼

64

5
e4r þ

5834

45
e2r þ

1676

9
;

BJ
S� ¼

48

5
e4r þ

6098

45
e2r þ

1364

9
; ð22Þ

and

ðΔPxÞSO ¼ 0;

ðΔPyÞSO ¼ −
4

15

ν2

½ārðe2r − 1Þ�9=2
�
erð3e4r þ 39e2r þ 28Þ

× arcos

�
−

1

er

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2r − 1

p
ð71e4r þ 133e2r þ 6Þ

3er

�
S − S�
δm

: ð23Þ

One can equivalently express the orbital elements ār and er
in terms of gauge-invariant variables, i.e., the conserved
energy and orbital angular momentum parameters Ē (or
even initial momentum at infinity, p∞) and L through
Eq. (14). For what concerns comparison with PN-based
results, we have checked that the expressions for
ðΔEÞSOðĒ; LÞ and ðΔJÞSOðĒ; LÞ agree with the linear-in-
spin terms (at the leading PN order) of the corresponding
ones obtained in Ref. [27], Section 5.4, by applying the
boundary-to-bound map to existing results for ellipticlike
orbits (see also Refs. [43,44]). ðΔPyÞSO instead is com-
puted here for the first time.
In order to compare with available PM-based results the

radiative losses should then be written as series expansion
in the large angular momentum parameter or equivalently
impact parameter by using the relation [45,46]

L ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
Mh

þ h − 1

2

�
S

�
1 −

1

h

�
þ S�

h

�
; ð24Þ

where h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðγ − 1Þp ¼ E=M ¼ 1þ νĒη2, and

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

∞η
2

p
.
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We finally obtain the following PM-like relations [either in terms of spin variables ðS; S�Þ or ðS1; S2Þ]

ðΔEÞSO ¼ −ν2
�
πp2

∞

b4

�
13

2
Sþ 69

10
S�

�
þ 1

b5

�
4864

25
Sþ 40832

225
S�

�
þ π

p2
∞b6

�
537

2
Sþ 455

2
S�

�
þO

�
1

b7

��

¼ −ν2
(
πp2

∞

b4

��
13

2
þ 69

10

m2

m1

�
S1 þ

�
13

2
þ 69

10

m1

m2

�
S2

�
þ 1

b5

��
4864

25
þ 40832

225

m2

m1

�
S1 þ

�
4864

25
þ 40832

225

m1

m2

�
S2

�

þ π

p2
∞b6

��
537

2
þ 455

2

m2

m1

�
S1 þ

�
537

2
þ 455

2

m1

m2

�
S2

�
þO

�
1

b7

�)
; ð25Þ

and

ðΔJÞSO ¼ −ν2
�
32

5
ðSþ S�Þ

p3
∞

b2
þ 99

5

�
Sþ 277

297
S�

�
πp∞

b3
þ 12512

45

�
Sþ 328

391
S�

�
1

p∞b4
þO

�
1

b4

��

¼ −ν2
�
p3
∞

b2

�
32

5

�
1þm2

m1

�
S1 þ

32

5

�
1þm1

m2

�
S2

�
þ πp∞

b3

��
99

5
þ 277

15

m2

m1

�
S1 þ

�
99

5
þ 277

15

m1

m2

�
S2

�

þ 1

p∞b4

��
12512

45
þ 10496

45

m2

m1

�
S1 þ

�
12512

45
þ 10496

45

m1

m2

�
S2

�
þO

�
1

b5

��
; ð26Þ

and

ðΔPyÞSO ¼ −
ν2ðS − S�Þ
ðm1 −m2Þ

�
2p∞π

5b4
þ 64

9p∞b5
þ 31π

5p3
∞b6

þO

�
1

b7

��

¼ −ν2
�
S1
m1

−
S2
m2

��
2p∞π

5b4
þ 64

9p∞b5
þ 31π

5p3
∞b6

þO

�
1

b7

��
: ð27Þ

for the spin-orbit corrections to the radiated energy, angular
momentum and linear momentum, respectively, at the
corresponding leading PN order. Recalling the nonspinning
results [47–51], one sees that at each PM level of accuracy
(i.e., each power of b) when nonspinning terms contain a π
the spinning ones do not and vice versa.

IV. CHECK WITH EXISTING PM RESULTS

The total radiated energy, angular momentum and linear
momentum from spinning binaries have been recently
computed in Refs. [33,34] in the framework of the world-
line quantum field theory at the leading PM order.
Therefore, these results are valid for arbitrary values of
the velocity, but limited to the leading order in G. We can
then compare our results with the leading order term of the
low-velocity limit of those expressions. In addition, we can
provide higher-order PM terms which can be used for
future crosschecks.
The radiated energy was first computed in Ref. [33]

Eq. (31), as a low-velocity expansion. Ref. [34] then
generalized this result by obtaining for it an exact expres-
sion valid for all orders in the velocity (see also Ref. [52] for
an independent computation, with results in complete
agreement with [34]). Reference [34] also calculated the
radiated four momentum at the leading PM level. However,

no explicit expressions were given there, even if the
associated Supplemental Material contains all necessary
information. Therefore, we include below a short derivation
useful for the comparison.
In the spinless case the four momentum at the 3PM level

has the following simple form

ΔPμ ¼ π

�
GM
b

�
3

Mν2
ÊðγÞ
γ þ 1

ðuμ1 þ uμ2Þ; ð28Þ

stating that ΔPμ is aligned with the (timelike) center-of-
velocities vector of u1 and u2, Ucv (Ucv · Ucv ¼ −1),
namely

ΔPμ ¼ EðUcvÞUμ
cv; ð29Þ

where

Uμ
cv ¼ uμ1 þ uμ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ γÞp ; ð30Þ

and

EðUcvÞ ¼ π

�
GM
b

�
3

Mν2
ffiffiffi
2

p
ÊðγÞffiffiffiffiffiffiffiffiffiffiffi
γ þ 1

p : ð31Þ
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The energy function ÊðγÞ is exactly known as a function of
γ ¼ ð1 − v2Þ−1=2 [see Eq. (7.39) of Ref. [53]], and has the
following low-velocity expansion

ÊðγÞ ¼ 37

15
vþ 2393

840
v3 þ 61703

10080
v5 þOðv7Þ: ð32Þ

For the state of the art for the PM scattering of spinless
bodies including radiation-reaction effects see, e.g.,
Refs. [36,54] and references therein.
The radiated four-momentum for spinning bodies at the

lowest PM order up to quadratic order in the (arbitrarily
oriented) spins has the following general form [see Eq. (18)
of Ref. [34]]

ΔPμ ¼ −π
�
GM
b

�
3

Mν2ðCu1 ǔ
μ
1 þ Cu2 ǔ

μ
2 þ Cb̂b̂

μ þ Cl̂l̂
μÞ;

ð33Þ

where1

ǔ1 ¼
u1 − γu2
γ2 − 1

¼ Pðu2Þu1
γ2 − 1

;

ǔ2 ¼
u2 − γu1
γ2 − 1

¼ Pðu1Þu1
γ2 − 1

; ð34Þ

with PðuAÞ ¼ I þ uA ⊗ uA the projector orthogonal to the
timelike direction uA, and b̂ and l̂ denote the unit vectors
aligned with the directions of the impact parameter and
orbital angular momentum, respectively. In the case of
spins aligned with the orbital angular momentum we are
considering here the system radiates momentum only along
the direction of the relative velocity of the two bodies, just
as in the nonspinning case. The above expression (33) thus
reduces to

ΔPμ ¼ −π
�
GM
b

�
3

Mν2ðCu1 ǔ
μ
1 þ Cu2 ǔ

μ
2Þ;

¼ π

�
GM
b

�
3

Mν2ðĈu1u
μ
1 þ Ĉu2u

μ
2Þ; ð35Þ

with (see Table I of Ref. [34])

Cu1 ¼ fIðγÞ þ
1

b
½fIIðγÞS1 þ fIIIðγÞS2�;

Ĉu1 ¼ −
Cu1 − γCu2

γ2 − 1
: ð36Þ

These coefficients are dimensionless functions of γ ¼ −u1 ·
u2 and the spins S1 and S2, and are symmetric under the

interchange 1 ↔ 2, i.e., Cu1 ¼ Cu1ðγ; S1; S2Þ and Ĉu1 ¼
Ĉu1ðγ; S1; S2Þ, with Cu2 ¼ Cu1 j1↔2 and Ĉu2 ¼ Ĉu1 j1↔2. In

absence of spin Ĉu1 ¼ ÊðγÞ=ðγ þ 1Þ, so that fIðγÞ ¼ ÊðγÞ.
In the PN expansion limit γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

∞
p

¼ 1þ 1
2
p2
∞−

1
8
p4
∞ þOðp6

∞Þ, and

fIIðγÞ ¼
13

2
p2
∞ þ 1951

448
p4
∞ þ 9413

2688
p6
∞ þOðp8

∞Þ;

fIIIðγÞ ¼
69

10
p2
∞ þ 8917

2240
p4
∞ þ 8761

2688
p6
∞ þOðp8

∞Þ: ð37Þ

Let us reexpress u1 and u2 in the incoming c.m. frame
defined byU ¼ ðm1u1 þm2u2Þ=E, E ¼ E1 þ E2 ¼ Mh ¼
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðγ − 1Þp

and the spatial vectors b̂, n ¼
1
p∞

ðE2

m2
u1 −

E1

m1
u2Þ (in the orbital plane) and ez, with b̂

and n related to the harmonic-gauge x and y axes adapted to
the quasi-Keplerian representation of the orbit by Eq. (3.49)
of Ref. [47] as

b̂ ¼ cos
χcons
2

ex − sin
χcons
2

ey;

n ¼ sin
χcons
2

ex þ cos
χcons
2

ey; ð38Þ

such that

u1 ¼
E1

m1

U þ Pcm

m1

n;

u2 ¼
E2

m2

U −
Pcm

m2

n; ð39Þ

with Ea ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a þ P2
cm

p
, Pcm ¼ m1m2p∞=E. The four

momentum (35) thus becomes

ΔPμ ¼ π

�
GM
b

�
3

Mν2
��

Ĉu1

E1

m1

þ Ĉu2

E2

m2

�
Uμ

þ Pcm

�
Ĉu1

m1

−
Ĉu2

m2

�
nμ

�
; ð40Þ

so that

ΔP ·U ¼ −π
G3

b3
m2

1m
2
2

�
Ĉu1

E1

m1

þ Ĉu2

E2

m2

�
¼ −ΔE;

ΔP · n ¼ π
G3m3

1m
3
2p∞

b3E

�
Ĉu1

m1

−
Ĉu2

m2

�

¼ sin
χcons
2

ΔPx þ cos
χcons
2

ΔPy: ð41Þ

To linear order in spin and at the leading PM level the spin-
dependent terms of the previous relations turn out to be

1Our notation for ǔA differs by a sign with respect to that of
Ref. [34]. This implies an extra minus sign in front of CuA in
Eq. (33).
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ðΔEÞSO ¼ π
G3

b3
m2

1m
2
2

�
ĈSO
u1

E1

m1

þ ĈSO
u2

E2

m2

�
þO

�
1

b5

�
;

ðΔPyÞSO ¼ π
G3m3

1m
3
2p∞

b3E

�
ĈSO
u1

m1

−
ĈSO
u2

m2

�
þO

�
1

b5

�
; ð42Þ

where (using the coefficients Cs1
uA and Cs2

uA given in the Supplemental Material of Ref. [34])

ĈSO
u1 ¼ Ĉs1

u1
S1
m1

þ Ĉs2
u1

S2
m2

¼ 1

b

��
2

5
þ 689

224
p2
∞

�
S1
m1

þ
�
−
2

5
þ 4059

1120
p2
∞

�
S2
m2

þOðp4
∞Þ
�
;

ĈSO
u2 ¼ Ĉs1

u2
S1
m1

þ Ĉs2
u2

S2
m2

¼ 1

b

��
−
2

5
þ 4059

1120
p2
∞

�
S1
m1

þ
�
2

5
þ 689

224
p2
∞

�
S2
m2

þOðp4
∞Þ
�
: ð43Þ

The leading terms in the PN expansion of the energy and linear momentum losses are then given by

ðΔEÞSO ¼ ν2
π

b4

���
13

2
þ 69

10

m2

m1

�
S1 þ

�
13

2
þ 69

10

m1

m2

�
S2

�
p2
∞

þ
��

1951

448
−
13

4
νþ

�
8917

2240
−
69

20
ν

�
m2

m1

�
S1 þ

�
1951

448
þ 13

4
νþ

�
8917

2240
−
69

20
ν

�
m1

m2

�
S2

�
p4
∞

þ
��

39

16
ν2 −

1223

896
νþ 9413

2688
þ
�
207

80
ν2 −

5053

4480
νþ 8761

2688

�
m2

m1

�
S1

þ
�
39

16
ν2 −

1223

896
νþ 9413

2688
þ
�
207

80
ν2 −

5053

4480
νþ 8761

2688

�
m1

m2

�
S2

�
p6
∞ þOðp8

∞Þ
�
þO

�
1

b5

�
; ð44Þ

and

ðΔPyÞSO ¼ ν2
π

b4

�
2

5

�
S1
m1

−
S2
m2

�
p∞

þ
��

−
4059

1120
−
1

5
νþ

�
689

224
−
1

5
ν

�
m2

m1

�
S1 −

�
−
4059

1120
−
1

5
νþ

�
689

224
−
1

5
ν

�
m1

m2

�
S2

�
p3
∞

þ
��

3

20
ν2 þ 4171

2240
ν −

4321

2688
þ
�
3

20
ν2 −

3333

2240
νþ 11899

13440

�
m2

m1

�
S1

−
�
3

20
ν2 þ 4171

2240
ν −

4321

2688
þ
�
3

20
ν2 −

3333

2240
νþ 11899

13440

�
m1

m2

�
S2

�
p5
∞ þOðp7

∞Þ
�
þO

�
1

b5

�
; ð45Þ

respectively, which agree with our PN-based results, Eqs. (25) and (27), at the leading PM-PN level, provided taking into
account different conventions for the spins.
Finally, the angular momentum has been computed in Ref. [33], Eq. (29). To linear order in spin the PN expansion of the

spin-dependent part reads

ðΔJÞSO ¼ ν2

b2

�
32

5
p3
∞ þ

�
−
16

5
νþ 16

35

�
p5
∞ þ

�
12

5
ν2 þ 4

7
ν −

172

315

�
p7
∞ þOðp9

∞Þ
��

S1
m1

þ S2
m2

�
þO

�
1

b3

�
; ð46Þ

in the aligned-spin case, and agrees with the leading order
term of our result, Eq. (26).

V. BENCHMARKS FOR FUTURE PM
COMPUTATIONS

Under the approximations done in the present work,
namely leading spin-orbit interaction between spinning

bodies with constant-in-magnitude spin vectors aligned
with the orbital angular momentum, we find it convenient
to summarize our results in order to provide ready-to-use
expressions for consistency checks with future PM-based
computations. The radiative losses can be written as a
combined PM-PN expansion series, which at the leading
PN order reads
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ðΔEÞSO¼−ν2
X∞
n¼4

1

bn
p−2nþ10
∞

�
ESO
n

�
m2

m1

�
S1

þESO
n

�
m1

m2

�
S2

�
;

ðΔJÞSO¼−ν2
X∞
n¼2

1

bn
p−2nþ7
∞

�
JSOn

�
m2

m1

�
S1þJSOn

�
m1

m2

�
S2

�
;

ðΔPyÞSO¼−ν2
X∞
n¼4

1

bn
p−2nþ9
∞

�
PSO
yn

�
m2

m1

�
S1−PSO

yn

�
m1

m2

�
S2

�
;

ð47Þ

where ESO
n , JSOn , and PSO

yn are linear functions of the ratio
m1=m2 (and m2=m1 when exchanging 1 ↔ 2). The first
few coefficients are listed in Table I.

VI. CONCLUDING REMARKS

We have studied the gravitational radiation emitted from
a spinning binary system undergoing a scattering process
due to the leading-order spin-orbit interaction, in the special
case of constant spins aligned with the orbital angular

momentum, and at the leading PN approximation level. We
have used a leading-PN order spin-modified quasi-
Keplerian parametrization of the hyperboliclike orbit,
which in the case of constant and aligned spins results
in a modification of the orbital elements by linear-in-spin
corrections. We have then computed the energy, angular
momentum and linear momentum losses by the system at
their LO in the spin-orbit coupling within the PN-MPM
approach to gravitational radiation by assuming the balance
between radiative losses in the near zone of the source and
radiation fluxes in the far zone.
We found agreement with existing PN-based results [27],

where the radiated energy and angular momentum
were obtained by using the boundary-to-bound correspon-
dence with ellipticlike orbits. The leading PN expression
for the linear momentum loss is instead given here
for the first time. For what concerns PM-based results,
we have confirmed recent accomplishments obtained in
Refs. [33,34] by using a worldline quantum field approach
for the radiated energy, angular momentum and linear
momentum a the lowest PM level. We have also provided
higher-order PM corrections as possible benchmarks for
future computations nowadays at hands. Finally, extensions
of these results including, e.g., higher-order terms in the
leading-order PN expansion, and next-to-leading order
terms in the spin-orbit and higher-order spin-spin couplings
are straightforward, and will be considered in forthcom-
ing works.
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