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The gravitational and electromagnetic multipole moments of the charged rotating disc of dust, which is
an axisymmetric, stationary solution of the Einstein-Maxwell equations in terms of a post-Newtonian
expansion, are calculated and discussed. It turns out that the individual mass, angular momentum, electric
and magnetic moments are ordered in the sense that higher moments have a lower absolute value. There is
an interesting conjecture stating that the absolute values of all higher multipole moments of a uniformly
rotating perfect fluid body are always greater than those of the corresponding Kerr spacetime, which we
generalize to include charged bodies. We find that for the charged rotating disc of dust, the conjecture holds
(within the limits of accuracy of the post-Newtonian expansion).
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I. INTRODUCTION

The exterior spacetime of an astrophysical body can be
characterized by its multipole moments. In 1970, Geroch
introduced multipole moments in a coordinate indepen-
dent way for static, asymptotically flat, vacuum space-
times [1], and Hansen later generalized them to stationary
(asymptotically flat, vacuum) spacetimes [2]. In case of
axisymmetry, Hansen further showed that the multipole
moment tensors can be represented by scalars Pn [2].
Relying on an asymptotic expansion of the Ernst potential
on the symmetry axis, Fodor, Hoenselaers and Perjés
presented, in 1989, an explicit algorithm to compute those
scalar multipole moments [3].
A generalization to stationary, electro-vacuum spacetimes

with gravitational and electromagnetic multipole moments,
Pn and Qn, respectively, was published by Simon [4], and a
corresponding calculation scheme, in the axisymmetric
case, was given by Hoenselaers and Perjés [5]. As it turned
out, [5] contained two nontrivial mistakes, however. The
first one was corrected by Sotiriou and Apostolatos [6] and
the second one recently, in 2021, by Fodor et al. [7].
In the present paper we calculate and discuss the

gravitational and electromagnetic multipole moments of
the charged rotating disc of dust (with constant angular
velocity and constant specific charge) using the latest
calculation procedure by Fodor et al. [7]. The charged
rotating disc of dust is an axisymmetric, stationary and
physically reasonable solution of the Einstein-Maxwell
equations expressed in terms of a post-Newtonian expan-
sion up to tenth order [8–10]. An exact solution to this
problem is not available so far; in particular it is not

contained in the solution classes discussed in [11]. A study
of the multipole moments of the exact solution of the
uncharged disc of dust [12–14] was published by
Kleinwächter et al. [15].
We additionally formulate a generalized version of the

multipole conjecture by Filter and Kleinwächter [16] and
test it using the multipole moments of the charged rotating
disc of dust. The conjecture states that the absolute values
of all higher multipole moments of an axisymmetric,
stationary, physically well-defined body are always greater
than those of the corresponding multipole moments of the
Kerr-Newman spacetime with the same mass, angular
momentum and charge. We show that the generalized
multipole conjecture holds for the charged rotating disc
of dust.

II. CHARGED ROTATING DISC OF DUST

In general relativity it is rather easy to construct purely
mathematical solutions without any physical meaning,
however, the charged rotating disc of dust is also physically
relevant. We model the disc by an infinitesimally thin
equilibrium configuration of dust with constant specific
charge ϵ∈ ½−1; 1� (electric charge density over baryonic
mass density) that is rigidly rotating around the axis of
symmetry with constant angular velocityΩ. Dust is a perfect
fluid with vanishing pressure. The disc is axisymmetric,
stationary, and it obeys reflection symmetry [8,9,17].
Using axisymmetry and stationarity, the corresponding

metric can be expressed globally in terms of Weyl-Lewis-
Papapetrou coordinates1:

*david.rumler@uni-jena.de 1We use units in which c ¼ G ¼ 4πϵ0 ¼ 1.
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ds2 ¼ f−1½hðdρ2 þ dζ2Þ þ ρ2dφ2� − fðdtþ adφÞ2: ð1Þ

The electromagnetic four-potential Aa takes the form:

Aa ¼ ð0; 0; Aφ; AtÞ: ð2Þ

In axistationary spacetimes, the coupled Einstein-
Maxwell equations in electro-vacuum can be reduced to
the Ernst equations [18]:

ðℜE þ jΦj2ÞΔE ¼ ð∇E þ 2Φ̄∇ΦÞ ·∇E; ð3Þ

ðℜE þ jΦj2ÞΔΦ ¼ ð∇E þ 2Φ̄∇ΦÞ ·∇Φ; ð4Þ

where

E ¼ ðf − jΦj2Þ þ ib and Φ ¼ αþ iβ ð5Þ

are the Ernst potentials. Here, α ≔ ℜΦ ¼ −At, and the
potentials β and b are defined by

β;ρ ¼
f
ρ
ðAφ;ζ − aAt;ζÞ; β;ζ ¼ −

f
ρ
ðAφ;ρ − aAt;ρÞ; ð6Þ

and

b;ρ ¼ −
f2

ρ
a;ζ − 2ðβAt;ρ − Atβ;ρÞ;

b;ζ ¼
f2

ρ
a;ρ − 2ðβAt;ζ − Atβ;ζÞ: ð7Þ

With the help of reflection symmetry, one can formulate
a well-defined boundary value problem to the Ernst
equations for the charged rotating disc of dust, which
was solved in terms of a post-Newtonian expansion up to
eighth order by Palenta and Meinel [8] and up to tenth by
Breithaupt et al. [9]:

f ¼ 1þ
X10
k¼1

f2kg2k; b ¼
X10
k¼1

b2kþ1g2kþ1; ð8Þ

α ¼
X10
k¼1

α2kg2k; β ¼
X10
k¼1

β2kþ1g2kþ1: ð9Þ

The coefficient functions f2k, b2kþ1, α2k, and β2kþ1 are
functions of the elliptic coordinates η∈ ½−1; 1� and
ν∈ ½0;∞�, defined via

ρ ¼ ρ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − η2Þð1þ ν2Þ

q
; ζ ¼ ρ0ην: ð10Þ

Here, g ≔ ffiffiffi
γ

p
and γ is the relativity parameter, originally

introduced by Bardeen and Wagoner [19], defined by:

γ ≔ 1 −
ffiffiffiffiffi
fc

p
; with fc ≔ fðρ ¼ 0; ζ ¼ 0Þ: ð11Þ

Note that the metric function f can also be written as
f ¼ e2U, where U can be interpreted as a generalized
Newtonian potential. Equivalently, the relativity parameter
can be expressed in terms of the redshift Zc of a photon
traveling from the center to infinity:

γ ¼ Zc

1þ Zc
: ð12Þ

The parameter space of the disc solution is therefore
given by g∈ ½0; 1�, ϵ∈ ½0; 1� and the coordinate radius ρ0.
For g ≪ 1, one obtains a Newtonian solution, and g → 1
corresponds to the ultra-relativistic limit in which we
assume black hole formation. Without loss of generality,
we restrict to positive charges and ρ0 serves as a scaling
parameter. All multipole moments defined in the sub-
sequent section are functions of g, ϵ, and ρ0 only.

III. MULTIPOLE MOMENTS

In order to derive multipole moments, we introduce new
potentials

Ξ ≔
1 − E
1þ E

and Λ ≔
2Φ

1þ E
: ð13Þ

Those can be expressed as an asymptotic expansion on the
upper symmetry axis:

Ξþ ¼ 1

ζ

X∞
n¼0

mn

ζn
; Λþ ¼ 1

ζ

X∞
n¼0

qn
ζn

: ð14Þ

According to Fodor et al. [7], the gravitational and
electromagnetic multipole moments, Pn and Qn, respec-
tively, of an axisymmetric and stationary spacetime can be
obtained from the coefficients mn and qn by the following
procedure:

P0 ¼ m0; ð15Þ

P1 ¼ m1; ð16Þ

P2 ¼ m2; ð17Þ

P3 ¼ m3 þ
1

5
q̄0S10; ð18Þ

P4 ¼m4 −
1

7
m̄0M20þ

3

35
q̄1S10þ

1

7
q̄0ð3S20− 2H20Þ; ð19Þ
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P5 ¼ m5 −
1

21
m̄1M20 −

1

3
m̄0M30 þ

1

21
q̄2S10

þ 1

21
q̄1ð4S20 − 3H20Þ þ

1

21
q̄0ðq̄0q0S10

−m̄0m0S10 þ 14S30 þ 13S21 − 7H30Þ ð20Þ

and

Q0 ¼ q0; ð21Þ

Q1 ¼ q1; ð22Þ

Q2 ¼ q2; ð23Þ

Q3 ¼ q3 −
1

5
m̄0H10; ð24Þ

Q4 ¼ q4þ
1

7
q̄0Q20−

3

35
m̄1H10−

1

7
m̄0ð3H20−2S20Þ; ð25Þ

Q5 ¼ q5 þ
1

21
q̄1Q20 þ

1

3
q̄0Q30 −

1

21
m̄2H10

−
1

21
m̄1ð4H20 − 3S20Þ þ

1

21
m̄0ðm̄0m0H10

−q̄0q0H10 − 14H30 − 13H21 þ 7S30Þ; ð26Þ

where

Mij ¼mimj −mi−1mjþ1; Qij ¼ qiqj − qi−1qjþ1; ð27Þ

Sij ¼miqj −mi−1qjþ1; Hij ¼ qimj −qi−1mjþ1: ð28Þ

Higher multipole moments become increasingly compli-
cated. The gravitational and electromagnetic multipole
moments are closely related to each other. In fact, by
interchanging mn ↔ qn and m̄n ↔ −q̄n (correspondingly
Mij ↔ Qij and Sij ↔ Hij), Pn transforms into Qn.
As mentioned in Sec. II, the disc of dust additionally

obeys reflection symmetry. Expressed on the upper sym-
metry axis, reflection symmetry is equivalent to [20–24]

EþðζÞĒþð−ζÞ ¼ 1; ΦþðζÞ ¼ −Φ̄þð−ζÞEþðζÞ; ð29Þ

or in terms of the new potentials to

ΞþðζÞ ¼ −Ξ̄þð−ζÞ; ΛþðζÞ ¼ −Λ̄þð−ζÞ: ð30Þ

This means that Pn and Qn are real for even n and
imaginary for odd n. The real and imaginary parts of Pn
are called mass and angular momentum moments and those
of Qn are referred to as electric and magnetic moments.
We denote:

Pn ¼ Mn þ iJn; ð31Þ

Qn ¼ En þ iBn; ð32Þ

where due to reflection symmetry,

for evenn∶ Pn ¼ Mn; Qn ¼ En; ð33Þ

for odd n∶ Pn ¼ iJn; Qn ¼ iBn: ð34Þ

Note that on the upper symmetry axis η ¼ 1, ζ ¼ ρ0ν,
and thus

Ξþ ¼ 1

ν

X∞
n¼0

m⋆
n

νn
; Λþ ¼ 1

ν

X∞
n¼0

q⋆n
νn

; ð35Þ

with dimensionless m⋆
n ≔ mn

ρnþ1
0

and q⋆n ≔ qn
ρnþ1
0

. In order to

obtain coordinate independent expressions for the multi-
pole moments, we normalizemn and qn by the disc’s proper
radius R0 ≔

R ρ0
0

ffiffiffiffiffiffigρρ
p dρ, where gρρ ¼ f−1h, see also [25]:

m∘
n ≔

mn

Rnþ1
0

; q∘n ≔
qn

Rnþ1
0

: ð36Þ

The first multipole moments are the gravitational mass,
P0 ¼ M0 ¼ M, the angular momentum, P1=i ¼ J1 ¼ J,
the electric charge, Q0 ¼ E0 ¼ Q, and the magnetic dipole
moment, Q1=i ¼ B1 ¼ D.
Inserting the potentials f, b, α, and β, Eqs. (8) and (9),

into Ξ and Λ, Eq. (13), and applying the above mentioned
procedure reveals the multipole moments of the charged
rotating disc of dust in terms of a post-Newtonian expan-
sions up to tenth order. The first multipole moments,
normalized by the disc’s proper radius R0, up to third
order (k ¼ 3), read2:

M∘ ¼ 4g2

3π
−
4ðϵ2 − 1Þg4

45π

þ 1

30240π3
ðð2790ϵ4 − 23699ϵ2 þ 20464Þπ2

−35840ϵ4 þ 247296ϵ2 − 211456Þg6 þOðg8Þ; ð37Þ

J∘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p �
8g3

15π
−
2ð34ϵ2 − 7Þg5

315π

þ 1

453600π3
ðð59894ϵ4 − 40131ϵ2 − 126312Þπ2

−322560ϵ4 þ 207872ϵ2 þ 1189888Þg7 þOðg9Þ
�
;

ð38Þ

2Note that the notation with the circle superscript introduced
here, i.e., P∘

n ≔
Pn

Rnþ1
0

and Q∘
n ≔

Qn

Rnþ1
0

, has a different meaning than
that in [9].
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Q∘ ¼ ϵ

�
4g2

3π
−
16ðϵ2 − 1Þg4

45π

þ 1

30240π3
ðð5862ϵ4 − 32147ϵ2 þ 25840Þπ2

−35840ϵ4 þ 247296ϵ2 − 211456Þg6 þOðg8Þ
�
; ð39Þ

D∘ ¼ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p �
4g3

15π
−
ð34ϵ2 − 115Þg5

315π

þ 1

907200π3
ðð58614ϵ4 − 177091ϵ2 − 200232Þπ2

−322560ϵ4 − 867328ϵ2 þ 3340288Þg7 þOðg9Þ
�
:

ð40Þ

Below, we also list the normalized gravitational and
electromagnetic quadrupole and octupole moments (up
to k ¼ 3) of the charged rotating disc of dust:

P°
2 ¼ M°

2

¼ −
4g2

15π
þ 4ð5ϵ2 þ 8Þg4

105π

þ 1

453600π3
ðð−46258ϵ4 þ 23337ϵ2 − 71376Þπ2

þ107520ϵ4 þ 68096ϵ2 − 175616Þg6 þOðg8Þ; ð41Þ

P°
3

i
¼ J°3

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p �
−
8g3

35π
þ 2ð68ϵ2 þ 171Þg5

945π

−
1

4989600π3
ðð449242ϵ4 þ 1015547ϵ2 − 256536Þπ2

−1520640ϵ4 − 4764672ϵ2 þ 10543104Þg7 þOðg9Þ
�
;

ð42Þ

Q°
2 ¼ E°

2

¼ ϵ

�
−
4g2

15π
þ 4ð4ϵ2 þ 9Þg4

105π

−
1

453600π3
ðð36018ϵ4 − 26537ϵ2 þ 84816Þπ2

−107520ϵ4 − 68096ϵ2 þ 175616Þg6 þOðg8Þ
�
; ð43Þ

Q°
3

i
¼ B°

3

¼ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p �
−
4g3

35π
þ ð62ϵ2 þ 51Þg5

945π

−
1

9979200π3
ðð394522ϵ4 þ 54107ϵ2 − 2568216Þπ2

−1520640ϵ4 − 9022464ϵ2 þ 19058688Þg7 þOðg9Þ
�
:

ð44Þ

The mass, angular momentum, electric and magnetic
moments are alternating positive and negative, to be more
precise,

for l ¼ 0; 2; 4;…∶
M2l ≥ 0; J2lþ1 ≥ 0;

E2l ≥ 0; B2lþ1 ≥ 0;
ð45Þ

for l ¼ 1; 3; 5;…∶
M2l ≤ 0; J2lþ1 ≤ 0;

E2l ≤ 0; B2lþ1 ≤ 0:
ð46Þ

It should be emphasized that the global prefactors,
whereby

Jn ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
; En ∼ ϵ; Bn ∼ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
; ð47Þ

ensure that for vanishing charge, i.e., ϵ ¼ 0, all electro-
magnetic multipole moments Qn become zero, and for
vanishing rotation, i.e., ϵ ¼ 1, all angular momentum and
magnetic moments, Jn and Bn, respectively.

3

Note that disc configurations with ϵ ¼ 0 rotate with
maximal angular velocity and ones with ϵ ¼ 1 have no
rotation at all. This becomes obvious in the Newtonian limit
where each dust particle in the disc is in an equilibrium of
gravitational, electric and centrifugal force.
The influence of the global prefactors is also reflected in

Figs. 1–4. There, the dependence of the multipole moments
normalized by the proper radius,M∘

n, J∘n, E∘
n, and B∘

n, on the
specific charge ϵ is depicted for n ¼ 0;…; 7. The relativity
parameter is set to g ¼ 0.6.
Figures 5 and 6 show the dependence of the normalized

gravitational multipole moments on the relativity parameter
g, where ϵ ¼ 0.3. As can be seen there, in the limit g → 0, all
gravitational multipole moments P∘

n vanish, and with
increasing g the first ones (to be more precise, n ≤ 1 for
all ϵ) grow monotonically. The electromagnetic multipole
moments Qn show a completely analogous behavior.

3Additionally, mass and electric moments contain only even
powers of g and angular momentum and magnetic moments only
odd, due to a symmetric and antisymmetric transformation
behavior, respectively, under a change of sense of rotation. For
further details, see [8] or [25].
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Remarkably, as can be seen in Figs. 1–6, all multipole
moments are perfectly ordered:

jMnj ≥ jMnþ2j; ð48Þ

jJnj ≥ jJnþ2j; ð49Þ

jBnj ≥ jBnþ2j; ð50Þ

jEnj ≥ jEnþ2j: ð51Þ

Notice that this ordering as well as the alternating sign
can also be observed for the (exact) gravitational multipole
moments of the uncharged disc of dust [15].
Interesting are also the ratios P∘

n
P∘
n−2

and Q∘
n

Q∘
n−2

of

the individual moments. According to Figs. 7 and 8, the
absolute values of the ratios are greater, the higher the
gravitational multipole moments are. The corresponding
plots of the ratios of the electromagnetic multipole
moments look almost identical to those of the gravitational
moments and in fact agree at g ¼ 0.4 In addition, there is a

FIG. 2. Normalized angular momentum moments J∘n for n ¼
f1; 3; 5; 7g as functions of the specific charge ϵ plotted for g ¼ 0.6.

FIG. 1. Normalized mass moments M∘
n for n ¼ f0; 2; 4; 6g as

functions of the specific charge ϵ plotted for g ¼ 0.6.
FIG. 3. Normalized electric moments E∘

n for n ¼ f0; 2; 4; 6g as
functions of the specific charge ϵ plotted for g ¼ 0.6.

FIG. 4. Normalized magnetic moments B∘
n for n ¼ f1; 3; 5; 7g

as functions of the specific charge ϵ plotted for g ¼ 0.6.

4This is not a coincidence, as in the Newtonian limit Λ ¼ ϵΞ
holds.
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pairwise agreement at g ¼ 0: P°
3

P°
1

¼ P°
4

P°
2

¼ − 3
7
ð¼ Q°

3

Q°
1

¼ Q°
4

Q°
2

Þ
and

P°
5

P°
3

¼ P°
6

P°
4

¼ − 5
9
ð¼ Q°

5

Q°
3

¼ Q°
6

Q°
4

Þ.
The decision to restrict our discussion to the first

eight multipole moments Pn and Qn and the relativity
parameter to g ≤ 0.65 is based on the convergence
behavior of the multipole moments. As an example, to
estimate the convergence of the electric moments, we
calculate the resulting change by adding the Kth order to
the post-Newtonian expansion at order K − 1 relative to
the solution at Kth order:

δE∘
njK ≔

jE∘
njK − E∘

njK−1j
jE∘

njKj
; ð52Þ

where E∘
njK ≔

XK
k¼1

E∘
n2kg

2k: ð53Þ

According to Fig. 9, the relative change by adding the
last order is for all E∘

n (n ¼ 0;…; 6) less than or equal to
2.2 × 10−4 for g ¼ 0.65. (In this case, ϵ ¼ 0 shows the
worst convergence behavior.) Moreover, as can already
be guessed from the calculation scheme, the higher
the multipole moments, the less good the convergence.

FIG. 5. Normalized mass moments M∘
n for n ¼ f0; 2; 4; 6g as

functions of the relativity parameter g plotted for ϵ ¼ 0.3.

FIG. 6. Normalized angular momentum moments J∘n for
n ¼ f1; 3; 5; 7g as functions of the relativity parameter g plotted
for ϵ ¼ 0.3.

FIG. 7. Ratios P∘
n

P∘
n−2

for n ¼ f2; 3;…; 7g as functions of the

specific charge ϵ plotted for g ¼ 0.6.

FIG. 8. Ratios P∘
n

P∘
n−2

for n ¼ f2; 3;…; 7g as functions of the
relativity parameter g plotted for ϵ ¼ 0.3.
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For the mass, angular momentum and magnetic moments,
we get an even better, but otherwise analogous conver-
gence behavior.5

A direct comparison of the derived multipole moments
(in terms of the post-Newtonian expansion) in the limit
ϵ ¼ 0 with the exact solutions of the uncharged rotating
disc of dust [15] shows an excellent agreement. In Table I,
we compare the sixth and seventh gravitational multipole
moments for different values of the relativity parameter.

In particular, the relative error of the multipole moments of
the charged rotating disc of dust in the limit ϵ ¼ 0 with
respect to the exact solutions at g ¼ 0.65 is 6.1 × 10−7 for
M°

6 and 1.9 × 10−5 for J°7.

IV. MULTIPOLE CONJECTURE

Filter and Kleinwächter [16] formulated an interesting
conjecture about the multipole moments of (uncharged)
rigidly rotating perfect fluid bodies: The absolute values of
all higher multipole moments Pn (n ≥ 2) of an axista-
tionary, rigidly rotating, perfect fluid body, surrounded by
vacuum, are always greater than those of the corresponding
moments of the Kerr spacetime with the same mass and
angular momentum.
An obvious question now is whether this conjecture can

be extended to more general, particularly charged, bodies.
The multipole moments of the Kerr-Newman spacetime,

with mass MKN, angular momentum JKN and charge QKN,
are given by [6]:

PKN
n ¼ mKN

n ¼ MKN

�
i
JKN

MKN

�
n

; ð54Þ

QKN
n ¼ qKNn ¼ QKN

�
i
JKN

MKN

�
n

: ð55Þ

With these we state:
Generalized multipole conjecture. For the gravita-

tional and electromagnetic multipole moments, Pn and Qn,
of an isolated, axisymmetric, stationary, physically well-
defined body of ordinary matter, with mass M, angular
momentum J, and charge Q, holds for all n ≥ 2:

jPnj ≥
���� Jn

Mn−1

����; jQnj ≥
����QJn

Mn

����: ð56Þ

Furthermore, in case of J ≠ 0, equalities apply if and only
if the body reaches a black hole limit.
The goal of this section is to test the generalized

multipole conjecture using the charged rotating disc of
dust as a concrete and physically meaningful candidate that

FIG. 9. Convergence estimate of the normalized multipole
moments E°

0, E
°
2, E

°
4, and E°

6 at order k ¼ K plotted for g ¼
0.65 and ϵ ¼ 0.

FIG. 10. Xn for n ¼ f2; 3;…; 7g as functions of the relativity
parameter g plotted for ϵ ¼ 0.

TABLE I. Normalized multipole momentsM°
6, J

°
7: charged disc

in the limit ϵ ¼ 0 (post-Newtonian expansion up to tenth order)
versus uncharged disc (exact solution).

Charged discjϵ¼0 Uncharged disc

g ¼ 0.55 jM∘
6j 1.6286550 × 10−3 1.6286551 × 10−3

jJ∘7j 8.0663923 × 10−4 8.0663952 × 10−4

g ¼ 0.6 jM∘
6j 1.4875997 × 10−3 1.4876000 × 10−3

jJ∘7j 7.3636251 × 10−4 7.3636450 × 10−4

g ¼ 0.65 jM∘
6j 1.3141025 × 10−3 1.3141033 × 10−3

jJ∘7j 6.3590588 × 10−4 6.3591807 × 10−4

5For ϵ ¼ 0 and g ¼ 0.65, one gets: δM∘
6j10 ¼ 7.5 × 10−5,

δJ∘
7j10 ¼ 1.9 × 10−4, δB∘

7j10 ¼ 9.7 × 10−5.
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satisfies the requirements of the conjecture.6 To this end, we
plot the quantities Xn and Yn that have to be less than or
equal to 1 if the conjecture is valid:

Xn ≔
���� Jn

Mn−1Pn

���� ≤ 1; Yn ≔
���� QJn

MnQn

���� ≤ 1: ð57Þ

Notice that due to the global prefactors of Pn and Qn the
quantities Xn and Yn stay regular in the limits ϵ → 1 and
ϵ → 0. In fact, Xn and Yn vanish for ϵ → 1 and take finite
values in the limit ϵ → 0 (see also Figs. 12 and 13).
In the limit ϵ → 1, the angular momentum J vanishes

and therefore also all Kerr-Newman multipole moments,
PKN
n and QKN

n , with n ≥ 1. Since the multipole moments of
the disc, Pn and Qn, become zero only for odd, but not for
even n, the disc spacetime clearly does not attain the
Reissner-Nordström solution in this limit.
As can be seen in Figs. 10–13, indeed all Xn and Yn are

smaller than 1 in the region g∈ ½0; 0.65�. Furthermore, there
is a similar ordering as for the individual moments:

Xn ≥ Xnþ1; Yn ≥ Ynþ1: ð58Þ

Therefore, most critical are X2 and Y2, and for increasing n,
the conjecture is even better fulfilled.
On the other hand, the first Xn and Yn are also the

quantities with the best convergence behavior. As n
becomes larger, the convergence ofXn and Yn (as it contains
Pn and Qn, respectively) becomes less and less good. The
relative change [as defined in Eq. (52)] by adding the last
order is δX7j10 ¼ 1.9 × 10−2 and δY7j10 ¼ 9.7 × 10−3,
where g ¼ 0.65 and ϵ ¼ 0.7

FIG. 11. Yn for n ¼ f2; 3;…; 7g as functions of the relativity
parameter g plotted for ϵ ¼ 0.

FIG. 13. Yn for n ¼ f2; 3;…; 7g as functions of the specific
charge ϵ plotted for g ¼ 0.6.

FIG. 12. Xn for n ¼ f2; 3;…; 7g as functions of the specific
charge ϵ plotted for g ¼ 0.6.

6Note that the Kerr-Newman spacetime furnished with the
mass M, angular momentum J, and charge Q of the charged
rotating disc of dust does not describe a black hole but a
hyperextreme solution (Q2 þ J2

M2 > M2).

7Specifically for X7 and Y7, the convergence gets slightly
worse for higher ϵ: δX7j10 ¼ 4.1 × 10−2 and δY7j10 ¼ 3.4 × 10−2,
for ϵ ¼ 1 and g ¼ 0.65. However, as Xn and Yn for high n are not
decisive for the verification of the conjecture, this is not
problematic.
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The good convergence of X2 and Y2 allows verification of
the conjecture for slightly higher values of the relativity
parameter until g ≈ 0.8 and g ≈ 0.75, respectively.8 The
conjecture remains true there. For the limit g → 1,
Breithaupt et al. [9] provided strong evidence that the
multipole moments of the charged rotating disc of dust
converge to those of the (extreme) Kerr-Newman spacetime.
Additionally, one can observe from Figs. 12 and 13 that

all values of Xn and Yn decrease equally with increasing ϵ.
This fact is very convenient for our purposes, since for the
most critical case, ϵ ¼ 0, the exact multipole moments [15]
of the uncharged disc of dust [12–14] are available. The
relative error of X2jϵ¼0 with respect to the corresponding
exact value of the uncharged disc of dust is 1.3 × 10−2 for
g ¼ 0.8. For the gravitational multipole moments of the
uncharged disc of dust, Filter and Kleinwächter showed
that the conjecture is fulfilled [16].
In summary, the conjecture holds at least up to g ≈ 0.8

for the gravitational and up to g ≈ 0.75 for the electro-
magnetic multipole moments. In the limit g → 1, the
quantities Xn and Yn converge to 1 according to
Breithaupt et al., and for the most critical case, ϵ ¼ 0,
by means of the exact solution of the uncharged disc of
dust, it was proven that Xn ≤ 1. All this taken together, we
conclude that (within the scope of accuracy of the post-
Newtonian expansion) the generalized multipole conjecture
stated above is fulfilled for the multipole moments of the
charged rotating disc of dust.

V. CONCLUSIONS AND OUTLOOK

The individual mass, angular momentum, electric and
magnetic moments of the charged rotating disc of dust, in

agreement with the uncharged disc [15], follow an ordering
in which the higher they are, the less they contribute to the
gravitational and electromagnetic field. This effect is in
addition to the suppression of higher orders in the asymp-
totic expansions. Therefore, primarily the first multipole
moments are relevant for the far field behavior of the
gravitational and electromagnetic field of the charged
rotating disc of dust.
Of course, it would be desirable to have a proof of the

generalized multipole conjecture. This would first require a
precise notion of physical well-definedness.9 In case of
nonvanishing angular momentum, the conjecture could
serve as a powerful tool to distinguish ordinary physical
bodies from black holes by measuring their multipole
moments in the far field. In fact, if the necessary condition
Q2 þ J2

M2 ≤ M2 for a black hole is satisfied, the measure-
ment of the multipole moments for n ¼ 2 would already
make the difference.
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