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Massive black holes (MBHs) are crucial in shaping their host galaxies. How the MBH co-evolves with its
host galaxy is a pressing problem in astrophysics and cosmology. The valuable information carried by the
binary MBH is encoded in the gravitational waves (GWs), which will be detectable by the space-borne GW
detector LISA. In theGWdata analysis, usually only the dominant (2,2)mode of theGW signal is considered
in the parameter estimation for LISA. However, including the higher harmonics in parameter estimation can
break the degeneracy between the parameters, especially for the inclination angle and luminosity distance.
This may enable the identification of GW signals without electromagnetic counterparts, known as “dark
sirens.” Thus, incorporating higher harmonics will be beneficial to resolve the Hubble tension and constrain
the cosmologicalmodel. In this paper, we investigate the role of higher harmonics in the parameter estimation
for GWs emitted by binary MBHs. We demonstrate that including the (3,3) mode can lead to a 103-times
improvement in angular resolution and a 104-times improvement in luminosity distance. Meanwhile, our
results indicate that considering higher harmonics increases the probability of identifying over 70% host
galaxies from 10−2 Gpc3 cosmological volume threshold (corresponding 105 host galaxies), while the
probability is less than 8% for only the (2,2) mode. Thus, our results underscore the importance of including
higher modes in the GW signal from binary MBHs, for LISA at least (3,3) mode.

DOI: 10.1103/PhysRevD.108.064046

I. INTRODUCTION

Properties of massive (∼104–108M⊙) black holes
(MBHs) are crucial to understanding the evolution of their
hosts [1–3] and are relevant to open problems in astro-
physics and cosmology, such as dark matter, vacuum
energy, and the early Universe [4]. Gravitational waves
(GWs) provide a valuable tool for constraining the Hubble
constant (H0), referred to as “sirens,” by inferring distance
directly from the signals, and the redshift z is from the host
galaxy or the electromagnetic (EM) counterpart [5,6].
The Laser Interferometer Space Antenna (LISA), a

space-borne GW detector building on the success of
LISA Pathfinder and other ground-based detectors, will
target these GW sources from tens of microhertz up to
decihertz [7–9]. By observing these sources, LISA will
provide insights into the evolution of MBHs from the early
Universe through to the peak of the star formation era,

offering key information for future studies in astrophysics
and cosmology.
LISA is sensitive to a different frequency band compared

to existing ground-based detectors, such as the Laser
Interferometer GW Observatory (LIGO) [10], Virgo [11],
and KAGRA [12]. Signals from MBHs will last several
months to years in the lifetime of LISA, which will lead to
signal modulation effects as LISA changes its orientation
and position during observations [9,13]. The signal-to-
noise ratio (SNR), a measure of the strength of the signal
relative to the noise, of the signal detected by ground-based
detectors is typically Oð10Þ at present [14–17]. However,
signals from MBHs detected by LISA will have much
higher SNRs of Oð103Þ [13,18], almost 100-fold louder. It
makes LISA an invaluable tool for studying these elusive
sources of GWs and opens up new opportunities for
insights into their properties and evolution.
The signal modulation effect caused by LISA motion

will break the parameter degeneration, resulting in a high-
precision source parameter extraction. Incorporating higher*junjiezhao@bnu.edu.cn
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harmonics into GW data analysis will further break the
parameter degeneration, which may lead to a higher
precision parameter extraction. For GWs emitted by com-
pact binary coalescences (CBCs), the waveform can be
expressed as a linear superposition of spin-weighted
spherical harmonic functions and the waveform component
of each harmonic [19,20]. The dominant mode of the GW
signal is the ðl; jmjÞ ¼ ð2; 2Þmode. Subdominant harmon-
ics such as ðl; jmjÞ ¼ ð3; 3Þ, (4,4), or (2,1) can usually have
amplitudes up to ∼10% of the dominant mode [21].
However, the subdominant harmonics are usually ignored
in the data analysis for LISA.
Incorporating higher harmonics into GW data analysis

has become increasingly important in recent years. There
are several binary black hole (BBH) events detected by GW
observatories that show evidence of higher harmonics.
Notably, GW190412 [22] is the first event with significant
evidence for higher harmonics, featuring a mass ratio of
approximately 3.57 and a total SNR of about 19. The
ðl; jmjÞ ¼ ð3; 3Þ harmonic mode contributes about 3 to the
SNR. Another event, GW190814 [23], also shows evidence
of the ðl; jmjÞ ¼ ð3; 3Þ harmonic mode, with a mass ratio
of approximately 8.93 and a total SNR of about 25. This
event is particularly asymmetric in masses. These two
events, along with GW170729 (slightly weaker evidence)
[14,24], point towards the potential for higher harmonics to
improve parameter estimation. This means that these higher
harmonics can be detectable in GW signals with large
SNRs, and their inclusion in waveform models can improve
parameter estimation. Because of the high SNR of LISA
data, higher harmonics are indispensable in LISA data
analysis.
Higher harmonics are essential for accurately estimating

orbit precession [25], and can also help to constrain
alternative gravity theories [26,27]. Ignoring higher har-
monics can lead to significant systematic errors in parameter
estimation [28,29]. Several recent studies have investigated
the effects of including higher harmonics onLISAparameter
estimation. When considering the inspiral phase, using
higher post-Newtonian (PN) orders that include higher
harmonics can improve LISA angular resolution by a factor
of about 102 [30–32]. Higher harmonics of the ringdown
phase may be detected by LISA through analysis of the
ringdown waveform, and subdominant harmonics play a
critical role in source localization [33]. When analyzing full
waveforms, incorporating higher harmonics can improve the
precision of luminosity distance estimation by a factor of
around 50 [26], and sky angular resolution by a factor of
approximately 103 in certain specific systems [34,35].
Many other recent studies also support the conclusion
that including higher harmonics can improve parameter
estimation [36–38].
The precision of localization and distance inference is a

crucial factor to achieve a high-precision H0 measurement.
However, EMcounterparts to GWevents aremuch rarer than

events without counterparts, which would lead to poor
localization. To date, only one GW event, GW170817, has
provided a H0 measurement using an EM counterpart
[39–43]. Because of the degeneracy between the luminosity
distance and the inclination angle, the measurement of H0

fromGW170817 is not good enough. TheGWmeasurement
is broadly consistent with the results from Plank [44] and
SH0ES [45] Collaborations, while these two results are
inconsistent at the ≥ 3σ level. GWs without EM counter-
parts, referred to as “dark sirens,” can also be used to
constrain H0 in a statistical way [46–50], but the constraint
on H0 is limited by the uncertainty in the source location.
Incorporating higher harmonics into data analysis is prom-
ising to resolve this conundrum. The considerable improve-
ment in localization and distance inference provided byGWs
makes them a more powerful tool for investigating cosmol-
ogy by locating the host galaxy and a promising avenue for
resolving the existing H0 tension problem [44,45].
Recently, Yang et al. [51] found GWs emitted by the

eccentric compact binaries in the decihertz band can signifi-
cantly improve the angular resolution, potentially leading to
new opportunities for probing cosmology. However, the
question of the probability of achieving such a dramatic
improvement in the source location—a crucial factor for
studying H0 and cosmology—remains unanswered.
In this paper, we investigate how the parameters such as

binary masses, source location, and higher harmonics
impact LISA parameter estimation. When considering a
face-on or face-off MBH binary with the total mass of
∼106M⊙, we find the varying mass ratio only lightly
impacts the parameter extraction. Meanwhile, including
higher harmonics will significantly enhance the precision
of luminosity distance and angular resolution by a factor of
104 and 103, respectively. In the meantime, higher har-
monics will improve the ability to localize the host galaxies
of MBH binaries, compared to only involving the (2,2)
mode. For instance, if the threshold volume is 10−2 Gpc
(excepted number of host galaxies within this volume is
105), including the (3,3) mode will increase this probability
from less than 8% to 70%. Thus, our results suggest
including higher modes for LISA data analysis, at least
the (3,3) mode.
The rest of this paper is organized as follows. In Sec. II,

we review the GW waveform including higher harmonics.
Meanwhile, we also review the Fisher matrix method to
estimate the measurement precision. In Sec. III, we exhibit
the effect caused by higher harmonics. In Sec. IV, we make
a summary of our work and provide some concluding
remarks. The geometrized units G ¼ c ¼ 1 are used
throughout this paper.

II. GRAVITATIONAL WAVES DETECTED
BY LISA

The frequency-domain GW strain h̃ðfÞ measured by
LISA is [13,52]
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h̃ðfÞ ¼
ffiffiffi
3

p

2
ðFþðfÞh̃þðfÞ þ F×ðfÞh̃×ðfÞÞe−iϕDðfÞ; ð1Þ

where h̃þðfÞ and h̃×ðfÞ are two orthogonal polarizations of
GWs, “plus” and “cross” modes in the transverse-traceless
gauge; FþðfÞ and F×ðfÞ are the pattern functions of the

detector and there is a factor
ffiffi
3

p
2
because of the equilateral

triangle shape. ϕDðfÞ is the Doppler effect phase caused by
LISA motion [see Eq. (7)].
In this paper, we employ the IMRPhenomHM [21]

waveform template to generate h̃þðfÞ; h̃×ðfÞ.
IMRPhenomHM is an inspiral-merger-ringdown waveform
with the higher harmonics ðl; jmjÞ ¼ ð3; 3Þ; ð4; 4Þ; ð3; 2Þ;
ð2; 1Þ; ð4; 3Þ. For simplicity, we only consider the non-
spinning BBHs with seven physical parameters to generate
the waveform template. They are the source-frame com-
ponent masses m1 and m2, the inclination angle ι, the
reference orbit phase ϕ0, the time to coalescence tc, the
luminosity distance DL, and the corresponding cosmologi-
cal redshift z. The binaries’ chirp mass M and symmetric
mass ratio η are defined as

η ¼ m1m2=M2; ð2aÞ

M ¼ η3=5M: ð2bÞ

Here M ¼ m1 þm2 is the total mass of the binary, and the
mass ratio is q≡m1=m2 ≥ 1.
Moreover, we use the Λ cold dark matter cosmology

model to obtain the luminosity distance DL from the
redshift z,

DLðzÞ ¼
1þ z
H0

Z
z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þΩmð1þ z0Þ3

p : ð3Þ

Here, we take this cosmology model with the Hubble
constant H0 ¼ 67.4 km s−1Mpc−1, the matter density
parameterΩm ¼ 0.315, and the dark energy density param-
eter ΩΛ ¼ 0.685 [44].
In this paper, we fix all the BBH sources located at z ¼ 1

for illustration.

A. LISA pattern functions

The pattern functions depend on the sky location in the
detector frame ðθ̂S; ϕ̂SÞ and the polarization angle of GWs
ðψ̂Þ of the GW source [13],

Fþ
A ðθ̂S; ϕ̂S; ψ̂Þ ¼

1

2
ð1þ cos2θ̂SÞ cos 2ϕ̂S cos 2ψ̂

− cos θ̂S sin 2ϕ̂S sin 2ψ̂ ; ð4aÞ

F×
Aðθ̂S; ϕ̂S; ψ̂Þ ¼

1

2
ð1þ cos2θ̂SÞ cos 2ϕ̂S sin 2ψ̂

þ cos θ̂S sin 2ϕ̂S cos 2ψ̂ ; ð4bÞ

Fþ
B ðθ̂S; ϕ̂S; ψ̂Þ ¼ Fþ

A ðθ̂S; ϕ̂S − π=4; ψ̂Þ; ð4cÞ

F×
Bðθ̂S; ϕ̂S; ψ̂Þ ¼ F×

Aðθ̂S; ϕ̂S − π=4; ψ̂Þ: ð4dÞ

Here, a triangle GW detector like LISA can be equivalent to
two L-shaped detectors like LIGO denoted as detectors “A”
and “B.” The “hatted” coordinate implies it is tied to the
LISA’s detector frame while the “unhatted” one is tied to
the ecliptic frame. The unit vector of the GWs propagation
direction N and unit vector of CBCs orbital angle momen-
tum L can be described by ðθS;ϕSÞ and ðθL;ϕLÞ in the
ecliptic frame, respectively. Following the method in
Ref. [13], we can relate fθ̂S; ϕ̂S; ψ̂g in Eq. (4) to the
ecliptic coordinates fθS;ϕS; θL;ϕLg through the following:

cosθ̂S¼
1

2
cosθS−

ffiffiffi
3

p

2
sinθScosϕ̄S; ð5aÞ

ϕ̂S¼
2πt
T

−
π

12
þ tan−1

� ffiffiffi
3

p
cosθSþsinθScosϕ̄S

2sinθSsinϕ̄S

�
; ð5bÞ

tan ψ̂ ¼ ẑ · p
ẑ · q

; ð5cÞ

L ¼ ðsin θL cosϕL; sin θL sinϕL; cos θLÞ; ð5dÞ

N ¼ ðsin θS cosϕS; sin θS sinϕS; cos θSÞ; ð5eÞ

ẑ ¼
�
−

ffiffiffi
3

p

2
cos ϕ̄;−

ffiffiffi
3

p

2
sin ϕ̄;

1

2

�
; ð5fÞ

where ẑ is the unit vector in the ẑ direction, ϕ̄S ¼ ϕ̄ − ϕS,
and ϕ̄ ¼ 2πt=T is the coordinate of the detector at time t
with the LISA orbit period T ¼ 1 yr.
For a GW signal, we can obtain tðfÞ from the GW phase

evolution ΦðfÞ at 0PN order approximately [53]

tðfÞ ¼ 1

2π

dΦðfÞ
df

¼ tc − 5ð8πfÞ−8=3M−5=3: ð6Þ

Note that this relation is derived from the inspiral stage
with the stationary phase approximation [53]. However,
this is still a good approximation for the entire stage of GW
due to the rapid evolution during the merger and ringdown
stages.
Space-borne GW detector LISA moves along an orbit

that lays on the Sun’s equator during the observation
period, so there is a phase modulation in the signal, the
so-called Doppler phase ϕD,

ϕDðtÞ ¼ 2πfR sin θS cos ½ϕ̄ðtÞ − ϕS�; ð7Þ

where R ¼ 1 au is the distance between LISA and the Sun.
We can easily combine ϕDðtÞ and Eq. (6) to obtain ϕDðfÞ
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in Eq. (1). In addition, we can also obtain the inclination
angle ι by

cos ι ¼ L · N: ð8Þ

B. Higher harmonic waveforms

The time-domain plus and cross components hþðtÞ and
h×ðtÞ can be decomposed into higher harmonics [20,54]:

hþðtÞ− ih×ðtÞ¼
X
l;m

−2Ylmðι;ϕ0Þhlmðt;M;η;DL; tcÞ; ð9Þ

−2Ylmðι;ϕ0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
dlm−2 ðιÞeimϕ0 : ð10Þ

Here, −2Ylmðι;ϕ0Þ is spin-weighted spherical harmonic
function with weight −2, and dlm−2 is a specific of Wigner d
function, l ≥ 2 and jmj ≤ l, leading to significant con-
tributions for different harmonics. Here, we illustrate the
amplitude ratio of −2Ylmðι;ϕ0Þ relative to that of ðl; mÞ ¼
ð2; 2Þ in Fig. 1. When considering a face-on or face-off
ðι ¼ 0; πÞ CBC, there are only two harmonics ðl; mÞ ¼
ð2; 2Þ and (3,2) included in the waveform. For an edge-on
ðι ¼ π=2Þ system, the relative contributions from higher
harmonics are large.
The frequency domain waveforms h̃þðfÞ and h̃×ðfÞ can

be obtained from the time-domain GW strain by Fourier
transform,

h̃þ;×ðfÞ ¼
Z

∞

−∞
hþ;×ðtÞe2πiftdt: ð11Þ

Since hþðtÞ and h×ðtÞ are real functions of time, from
Eq. (9) we can show that

hþ ¼ 1

2

X
l;m

½−2Ylmðι;ϕ0Þhlm þ −2Y
�
lmðι;ϕ0Þh�lm�; ð12aÞ

h× ¼ i
2

X
l;m

½−2Ylmðι;ϕ0Þhlm − −2Y
�
lmðι;ϕ0Þh�lm�: ð12bÞ

For a nonprecessing BBH, there exists a useful
symmetry property for higher harmonics: h�lmðtÞ ¼
ð−1Þlhl;−mðtÞ. With the symmetry property of time-
domain waveforms and by performing Fourier transform,
we can obtain

h̃þ;×ðfÞ ¼
X
lm

Yþ;×
lm h̃lmðfÞ; ð13Þ

where

Yþ
lm ¼ 1

2
½−2Ylmðι;ϕ0Þ þ ð−1Þl−2Y�

l;−mðι;ϕ0Þ�; ð14aÞ

Y×
lm ¼ i

2
½−2Ylmðι;ϕ0Þ − ð−1Þl−2Y�

l;−mðι;ϕ0Þ�: ð14bÞ

Based on the discussion in Sec. II A and this section,
nine parameters can characterize the GW signal in LISA.
We list them in Table I, with μS ≡ cos θS and μL ≡ cos θL.
The parameters’ range means the value used in this
investigation. And for convenience, we use the notation
in Table II to indicate which harmonics are used.
We investigate the characteristic strain for the two BBH

systems and compare the individual harmonics strain and
the total strain. Figure 2 shows the each harmonics of GWs
withM ¼ 104M⊙ andM ¼ 108M⊙. We can find that when
M is relatively small, only (3,3) and (4,4) modes are
significant. But when M is relatively large, more higher-
order modes are visible, and the effect may not be
neglected. It is mainly because the higher-order modes
contribute more to the strain amplitude in the merger and

FIG. 1. The amplitude ratio of the spin-weighted spherical
harmonic to −2Y22ðι;ϕ0Þ, where ϕ0 ¼ 0. Each line corresponds to
a different harmonic mode.

TABLE I. Parameters that characterize the GW signal. Here, we
fix the redshift z ¼ 1 and the luminosity distance DL ¼
6791.27 Mpc. The direction of sources’ angular momentum is
fixed to be ðμL;ϕLÞ ¼ ð0.3; 2.0Þ. The time to coalescence tc ¼ 0
and ϕ0 ¼ 0.

Notation Range Unit

μS ½−1; 1� 1
μL 0.3 1
ϕS ½0; 2π� rad
ϕL 2.0 rad
M ½Mmin;Mmax� M⊙
η ½ηmin; ηmax� 1
DL 6791.27 Mpc
tc 0 s
ϕ0 0 rad
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ringdown stages. For the space-borne GW detector LISA,
MBH binary systems need to include higher modes to
extract more information from the observed data.

C. SNRs

We adopt the matched-filtering method [55] to estimate
the SNR of GWs. For a given GW strain h̃ðfÞ, the optimal
SNR is defined as

ρ≡ ðh̃ðfÞjh̃ðfÞÞ1=2; ð15Þ

where operator ðÃjB̃Þ is the noise-weighted inner product
between two signals ÃðfÞ and B̃ðfÞ,

ðÃjB̃Þ ¼ 2

Z
fhigh

flow

ÃðfÞB̃�ðfÞ þ Ã�ðfÞB̃ðfÞ
SnðfÞ

df: ð16Þ

In this paper, we set fhigh ¼ 1 Hz for LISA and deduce
flow by

flow ¼
�ð8πÞ8=3Tobs

5M5=3 − f−8=3high

�−3=8
: ð17Þ

SnðfÞ is the one-sided power spectrum density of noise. We
adopt the LISA sensitivity curves in Ref. [56], with L ¼
2.5 × 109 m as the arm length of LISA, and an observation
span Tobs ¼ 4 yr.
From Fig. 2, we show the effect of higher harmonics

relating to the total mass M. The corresponding SNRs are
illustrated in Fig. 3, which the sources located at z ¼ 1,
the total mass M varies from 104M⊙ to 108M⊙, and the
other parameters of the sources are q ¼ 10, μS ¼ −0.25,
ϕS ¼ 2.31, μL ¼ 0.3, ϕL ¼ 2.0, ϕ0 ¼ 0, and tc ¼ 0 s. The
deviations between the (2,2) mode and other scenarios
increase as M increases, as implied in Fig. 2. Meanwhile,
our analysis indicates that LISA is most sensitive to
M ∼ 106M⊙, and SNRs exhibit oscillatory behavior as M
increases. This is due to SNRs being the inner product of
hðfÞwith itself, where hðfÞ is a linear superposition of each
harmonic. The cross term of different harmonics can cause
constructive or destructive interference, which has been
noted byMarsat et al. [34] andMills andFairhurst [57]. So in

Fig. 3, the SNRs curve is smooth when only involving the
(2,2) mode and oscillations appear when higher harmonics
are involved. Additionally, with respect to the relatively
small mass source, compared with the (2,2) mode, the effect
of higher harmonics is not so significant (see Fig. 2);

FIG. 2. The characteristic strains 2fjh̃þðfÞj of different BBHs
in the LISA 4-yr observation. We set their physical parameters
q ¼ 10; ι ¼ π=2; z ¼ 1 with total mass M ¼ 108M⊙ (solid lines)
andM ¼ 104M⊙ (dashed lines). The solid black line in the figure
is the characteristic strain of the detector noise,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSnðfÞ

p
. Each

colored line represents a single harmonic component of GWs.
Red stars denote the innermost stable circular orbit frequency,
and the thick gray line is the total strain of all harmonics in the
figure.

TABLE II. Different scenarios for investigating the effects from
higher harmonics in data analysis for LISA.

Notation ðl; jmjÞ
I (2,2)
II (2,2), (3,3)
III (2,2), (3,3), (4,4)
IV (2,2), (3,3), (4,4), (3,2)
V (2,2), (3,3), (4,4), (3,2), (2,1)
VI (2,2), (3,3), (4,4), (3,2), (2,1), (4,3)

FIG. 3. The SNRs as a function of total mass M. The sources
are located at z ¼ 1, mass ratio q ¼ 10, ϕ0 ¼ 0, tc ¼ 0 s, and
angular parameters ðμS;ϕS; μL;ϕLÞ ¼ ð−0.25; 2.31; 0.3; 2.0Þ.
Each curve corresponds to a different scenario and adopts the
same notation as Table II. Since the SNRs of the different
scenarios are close, several curves overlap. With the increasing
M, the oscillation increases, which means the effect of higher
harmonics increases.
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therefore, the oscillatory behavior is not notable for the
scenarios which incorporate higher harmonics.
Besides, we also investigate the effect of varying mass

ratio q in Fig. 4. The sources’ parameters are the same as
Fig. 3 except total mass M ¼ 1.1 × 106M⊙, and the mass
ratio q varies from 2 to 10. The oscillations also result from
constructive or destructive interference of different har-
monics, the same as Fig. 3. As expected, the SNR deviation
between different scenarios becomes more significant as q
increases, as the BBH becomes more asymmetric. When
the total mass is fixed, a larger q leads to a smaller SNR,
which is related to a smaller M. In other words, Figs. 3
and 4 imply that higher harmonics are more significant for a
heavier and asymmetric BBH. Moreover, the oscillations
that appear in Figs. 3 and 4 will reappear in the subsequent
parameter estimation for the same reason.
In Fig. 1, we show that the higher harmonics strongly

depend on the inclination angle ι, i.e., the BBH orbital
angular momentum and location. Thus, investigating the
effect of location is promising. To visualize the inclination
angle ι, we fix μL ¼ 0.3;ϕL ¼ 2.0 in this paper, let μS vary
from −1 to 1, and ϕS varies from 0 to 2π. The j cos ιj is
presented in Fig. 5. We denote cos ι ¼ 1 as the face-on case,
cos ι ¼ −1 as the face-off case, and cos ι ¼ 0 is the edge-on
case. Then we investigate the effect of sources’ location and
higher harmonics on SNRs, which are shown in Fig. 6.
Moreover, we show the effect of source location ðμS;ϕSÞ

on SNRs in Fig. 6 as well. The sources are still located
at z ¼ 1, with m1 ¼ 106M⊙, m2 ¼ 105M⊙, μL ¼ 0.3,
ϕL ¼ 2.0, ϕc ¼ 0, tc ¼ 0 s, μS varies from −1 to 1, and
ϕS varies from 0 to 2π (all information has been shown in
Table I). Here, we only show the SNR results from the

scenario that only includes the (2,2) mode. The SNRs for
this particular scenario are approximately 102–103. Note
that the loudest area is not the face-on or face-off areas,
but slightly offset. When we consider a face-on or face-off
binary system, indeed, h̃þðfÞ and h̃×ðfÞ reach their
maximum values. However, it does not mean that h̃ðfÞ
reaches its maximum value as well because of the different
pattern functions. Furthermore, the SNRs in the edge-on
area are much smaller, only about 10% of the loudest areas.
This substantial SNR difference will lead to better param-
eter extraction near the face-on and face-off areas than at
the edge-on areas, where the higher modes are prominent.
Additionally, we have also investigated the results with
different binary masses, which are consistent with the
behaviors in Fig. 6, and we do not show them here.

D. Parameter estimation

Bayesian inference is used to acquire the posterior
distribution of the source parameters in GW transient data
under the assumption that noise is Gaussian and stationary
[14–17,58]. In principle, we should perform massive
computational inference to obtain the posterior distribution
of the binary parameters to investigate the higher harmonic
effects. However, it seems to be improper to perform such a

FIG. 4. The SNRs as a function of mass ratio q. The sources’
parameters are the same as Fig. 3 except total mass M ¼
1.1 × 106M⊙. Each curve corresponds to a different scenario
and adopts the same notation as Fig. 3. Since we adopt a system
with total massM ¼ 1.1 × 106M⊙, the effect of higher harmonics
modes is significant (cf. Fig. 2), so the oscillations of SNRs
appear when incorporating higher harmonics.

FIG. 5. The sky map of j cos ιj in which μL ¼ 0.3;ϕL ¼ 2.0.
The red star denotes cos ι ¼ 1, i.e., the face-on case, and the red
circle denotes cos ι ¼ −1, i.e., the face-off case. We can see the
edge-on cases as the white curve.

FIG. 6. The SNRs sky map of a binary with m1 ¼ 106M⊙,
m2 ¼ 105M⊙, z ¼ 1, and angular parameters ðμS;ϕS; μL;ϕLÞ ¼
ð−0.25; 2.31; 0.3; 2.0Þ, where only the ðl; jmjÞ ¼ ð2; 2Þ mode is
involved. The red star and red circle denote the face-on case and
face-off cases, respectively.
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task. Thanks to the large SNR of most GW signals we
considered,1 the sufficient and computationally cheap
method, the Fisher information matrix [55,61], can be
easily employed to estimate the parameters of the sources.
To demonstrate how to use the Fisher matrix, we use P

to denote the set of these parameters, and P̂ to denote the
parameters set that maximizes the likelihood function Λ,
where

Λ ¼ exp

�
ðd̃ðfÞjh̃ðfÞÞ − 1

2
ðh̃ðfÞjh̃ðfÞÞ

�
; ð18Þ

where d̃ðfÞ is the Fourier transform result of dðtÞ and dðtÞ
is the strain detected in the detector. Given the strain dðtÞ,
the probability density function of the physical parameters
P is [55,61]

pðPjdÞ ∝ exp

�
−
1

2

X
i;j

ΓijΔPiΔPj

�
; ð19Þ

where Γij is the Fisher information matrix (the inverse of

the covariance matrix) of ΔP ¼ P − P̂. The elements of
Γij can be obtained by

Γij ¼
�
∂h̃ðf;PÞ

∂Pi

���� ∂h̃ðf;PÞ
∂Pj

�
: ð20Þ

For the detector LISA, there are two equivalent L-shaped
detectors A and B, so we can obtain the final Fisher matrix
by linear superimposing the individual Fisher matrix,

Γij ¼ ΓA
ij þ ΓB

ij: ð21Þ

For the parameters flnDL; tc;ϕ0g, we can yield the
analytic partial derivatives of them directly,

∂h̃
∂ lnDL

¼ −h̃; ð22Þ

∂h̃
∂tc

¼ i2πfh̃; ð23Þ

∂h̃
∂ϕ0

¼ i
X
l;m

mðFþYþ
lm þ F×Y×

lmÞh̃lme−iϕD: ð24Þ

For the angular parameters, fμS; μL;ϕS;ϕLg, we can use
the chain rule to obtain their analytic partial derivatives.
However, their derivatives are too lengthy and uninspiring,
so we do not show them here.

For the parameters M and η, we use central difference
method to gain their derivatives,

∂h̃ðf;PÞ
∂Pi ≃

h̃ðf;P þ δPiÞ − h̃ðf;P − δPiÞ
2δPi : ð25Þ

To estimate the numerical error, we compare the result
from the central difference method with that from JAX [62],
a Python package performing the high-precision automatic
differentiation algorithm to obtain the derivatives. The
relative errors between our numerical method and JAX

are under 1%.

III. RESULTS AND DISCUSSION

In this paper, we focus on the higher-harmonic effect on
the parameter estimations of the chirp mass, symmetric
mass ratio, luminosity distance, and sky location. Besides,
we also investigate how the total massM, mass ratio q, and
source location impact the parameter estimations.
The angular resolution ΔΩ can be expressed as [13,63]

ΔΩ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔμSΔϕSÞ2 − ½ðΓ−1ÞμSϕS

�2
q

: ð26Þ

To make the results organized, we present effects from
the total mass M and the mass ratio q in Sec. III A, and the
impact of the sources’ location in Sec. III B.

A. The effect of total mass and mass ratio

The effects of varying total massM and higher-harmonic
impact parameter estimation are illustrated in Fig. 7, which
take the same sources’ parameters as in Fig. 3. There exists
an oscillatory behavior of SNRs (see Fig. 3). Such an
oscillation is caused by the interference of each harmonic.
In Fig. 7, a similar phenomenon reappears. This is because
the parameters’ variances are the diagonal elements of the
ðΓ−1Þij, and Γij are the inner product of waveform h̃ðfÞ
derivatives. Meanwhile, the derivatives can be regarded as
a linear superposition of each harmonic derivative since
the h̃ðfÞ can be regarded as a linear superposition of each
harmonic, which will lead to parameter extraction oscil-
lation as M increases.
When higher harmonics are involved, the precisions on

M and η increase by factors of ∼2 and ∼3 at most,
respectively. As expected, the effect of higher harmonics
becomes visible forM and η resolution with increasingM.
The angular and DL resolutions increase by factors of
∼3000 and ∼300 at most, respectively. Refer to Fig. 3;
roughly speaking, the effect of higher harmonics beyond
(3,3) can be neglected in this case, and a higher SNRmeans
higher parameter estimation precision. However, Fig. 2
implies the higher harmonics are more significant for the
heavier BBH. Our result shows significant improvement
for DL and Ω, as shown in Fig. 7, appears at M ∼ 106M⊙,

1Note that, the Fisher matrix method is only valid in the linear
signal approximation (or high-SNR approximation). More details
can be found in Refs. [59,60].
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where their merger frequencies correspond to the most
sensitive frequency ∼2 × 10−3 Hz for LISA.
In Fig. 7, we notice whether or not we are including

higher modes into data analysis, the M and η estimations
are highly precise. This is because the parametersM and η
mainly contribute to the GW phase ΦðfÞ, which can be
detected at a highly precise level with a long-lived signal.
As the M increases, the inspiral of the MBH binary
becomes shorter, resulting in a decrease in precisions on
M, and η. In addition, the estimations of coalescence time
tc and ϕ0 are also at a highly precise level for the same
reason. However, for the inference ofDL and Ω, we mainly
rely on two effects: one is the Doppler effect ϕDðθS;ϕSÞ
[see Eq. (7)]; the other one is the LISA pattern factor
functions Fþ;×ðθ̂S; ϕ̂S; ψ̂Þ [see Eq. (4)]. When the merger
frequencies of MBH systems are in the most sensitive band
of LISA, these GW features with higher modes will be well
monitored by LISA. The interference of higher harmonics
will be significant and easily be extracted from the data,
resulting in breaking theDL-ι degeneracy, [see Eqs. (9) and
(10)]. and reach a highly precise level.
Therefore, in Fig. 7, we will find that including higher

harmonics only slightly affects M and η estimations but
significantly impact DL and Ω resolutions. Furthermore, it
implies that the impact of including higher harmonics, for
DL and Ω resolution, is positively correlated to SNRs. This
is the result that demonstrates that, compared with higher-
harmonic itself, the higher-harmonics effect is more sig-
nificant with the larger SNRs.

Wealso show the effects of varyingmass ratioq andhigher
harmonics in Fig. 8, which takes the same sources’ param-
eters as in Fig. 4. Similar to Fig. 7, whether or not we are
includinghighermodes into data analysis, the estimations for
M and η estimations are similar for the different scenarios,
which are at the order 10−5 and 10−4, respectively. However,
the resolutions of DL and Ω are at the order of 10% and
10 deg2 precisions with only the (2,2) mode, respectively.
When including higher modes, even with only the (3,3)
mode, the estimations forDL andΩ are improvedmassively.
The results are consistent with the studies for varying M.
Refer to Fig. 4, the oscillation is significant, and a similar

phenomenon reappears. Figure 8 shows the increases ofM
and η resolutions are tiny (a factor of ∼1.2 at most) when
incorporating the higher harmonics. The angular and DL

resolutions increase dramatically by factors of ∼103 and
∼102 at most, respectively. Meanwhile, the increase in q
leads to less improvement for the angular andDL resolution
since SNRs decrease. In addition to the (3,3) mode, we find
that the (4,4) mode also has a slight impact on parameter
extraction [see Fig. 8(b)]. This also is implied in Fig. 7 but
is not significant.
In other words, the higher harmonics slightly affect M

and η resolutions but impact dramatically on DL and Ω
resolutions. And the larger SNRs mean a better DL and Ω
resolution improvement. This is to be expected as we
explained for Fig. 7.
In addition, Baibhav et al. [33] found that the errors of

DL and ι will diverge at q ≃ 4. This is because they used the

FIG. 7. The constraints on the chirp mass [panel (a)], the symmetric mass ratio [panel (b)], the luminosity distance [panel (c)], and
the angular resolution [panel (d)] with the varying total mass M. We fix the mass ratio q ¼ 10 and angular parameters
ðμS;ϕS; μL;ϕLÞ ¼ ð−0.25; 2.31; 0.3; 2.0Þ. Each curve represents a different scenario in Table. II.
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analytic MBH ringdown waveform to estimate the param-
eters, whereas we use the full waveform.

B. The effect of source location

The impact of the sources’ location is illustrated in
Figs. 9 and 10. We do not show the sky maps for scenarios
III–VI because the results of them are similar to scenario II.

Figure 9 shows the M and η resolution based on the
ðl; jmjÞ ¼ ð2; 2Þ mode only (denoted with I as indicated
in Table II) and the effect of the ðl; jmjÞ ¼ ð3; 3Þ mode
(denoted with II as indicated in Table II). The sources’
parameters are the same as Fig. 6. We find that in scenario I,
the M and η resolutions are precise, at the order of
10−4. Furthermore, in the face-on and face-off areas, the

FIG. 8. Same as Fig. 7 with the varying mass ratio q. We fix the total mass 1.1 × 106M⊙.

FIG. 9. The skymaps ofM and η resolutions for the binary systems with the same source parameters as Fig. 6. The superscripts I and
II denote the different scenarios in Table II. The top panel shows log10ðΔM=MÞI [panel (a)] and log10ðΔη=ηÞI [panel (b)] which are only
incorporating the (2,2) harmonic mode, and the bottom panel shows ΔMI=ΔMII [panel (c)] and ΔηI=ΔηII [panel (d)], the ratio of
scenario I to scenario II for M and η resolutions. The red star and red circle denote the face-on case and face-off case, respectively.
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resolution is better than the edge-on area by factors of ∼4
and ∼8 for M and η, respectively. The better resolution of
the face-on and face-off area is due to the larger SNR in this
area. When the (3,3) mode is involved, the M resolution
can be improved by up to ∼1.7, but in most regions, there is
no improvement. The η resolution can be improved by up to
∼1.4. As expected, the improvement caused by including
higher harmonics for the M and η resolution is marginal.
To clarify, we have listed the probabilities of precision
improvement in Table III, with the source parameters
consistent with Fig. 6. The inclusions of higher modes
do not significantly improve the precisions of these two
parameters, M and η. Overall, we cannot expect a huge
improvement in estimatingM and η by considering higher
harmonics. Nevertheless, if only considering the (2,2)
mode, the degeneracy among parameters in the Fisher
matrix is very strong near the face-on and face-off area, but
higher harmonics will break it. Even if we consider the
face-on or face-off MBH systems that theoretically do not
contain higher modes (see Fig. 1), the inclusion of higher
modes can help us better parameter estimations as well. In
other words, the absence of a particular piece of informa-
tion (mode) is also information in the data analysis.

We also illustrate the angular and luminosity distance
resolution of scenario I and the ðl; jmjÞ ¼ ð3; 3Þ mode
effect in Fig. 10. The inclusion of the ðl; jmjÞ ¼ ð3; 3Þ
mode results in a dramatic increase in resolution in most

FIG. 10. Same as Fig. 9, but for angular and luminosity distance resolution, Ω and DL. The top panel shows log10ΔΩI [panel (a)] and
log10ðΔDL=DLÞI [panel (b)], i.e. the logarithmic Ω and DL resolution of scenario I. The middle panel shows log10ΔΩII [panel (c)]
and log10ðΔDL=DLÞII [panel (d)], the logarithmic resolutions of scenario II. The bottom panel shows log10ðΔΩI=ΔΩIIÞ [panel (e)] and
log10ðΔDI

L=ΔDII
LÞ [panel (f)], the logarithmic ratio of scenario I to scenario II for both Ω and DL resolutions.

TABLE III. Probability of the typical value of improvements
for chirp mass (M) and symmetric mass ratio (η) by including
higher harmonics compared with scenario I.

Improvement 1.2 (%) 1.4 (%) 1.6 (%) 1.8 (%)

M
II 77.83 12.21 3.12 0
III 86.36 14.71 4.52 0
IV 86.62 14.81 4.59 0
V 87.11 15.46 4.79 0
VI 87.34 15.33 4.85 0

η
II 54.07 0 0 0
III 67.12 26.33 0 0
IV 67.51 28.78 0 0
V 68.23 35.84 0 0
VI 69.08 33.60 0 0

GONG, CAO, ZHAO, and SHAO PHYS. REV. D 108, 064046 (2023)

064046-10



areas except for the near edge-on areas, as which can be
foreseen from Figs. 7 and 8. The Ω and DL resolutions can
be improved by factors ∼103 and ∼105, respectively. Even
though the inclusion of the (3,3) mode can significantly
increase the angular resolution in most areas, the most
sensitive resolution of scenario II is almost the same as
scenario I. In other words, the (3,3) mode significantly
improves the resolution where scenario I is poor.
Nevertheless, the degeneration between parameters is
strong near the face-on and face-off areas, and we take
the results as an optimistic case.
While the DL resolution improvement can reach a factor

of 104, which is more than 10 times better thanΩ resolution
improvement, Fig. 10 indicates the improvement in Ω
resolution is more promising. To better address it, we list
the probability of the typical value for precision improve-
ments in Table IV. The sources’ parameters are consistent
with Fig. 6 since it comes from Fig. 10. Besides the (3,3)
mode, the (4,4) mode contributes the most to the precision
improvement, and other higher harmonics contribute only
slightly. Half of theDL resolution improvements exceed 10,
with approximately 3% surpassing over 103. For the
angular resolution, over 70% of the improvements exceed
10, with around 10% surpassing over 103. Apart from the
(3,3) mode, the other modes also have a slight effect,
particularly when it comes to angular resolution.

C. The implication for the dark sirens

In Sec. III B, we show the improvement of the angular
and luminosity distance resolution by including higher
harmonics. These improvements can greatly enhance the
probability of identifying the host galaxy of MBH.
Meanwhile, such a dramatic improvement will substan-
tially reduce the error caused by DL in constraining H0 and
probe cosmology.
The localization of MBH can be mainly searched

through the dark siren with the information of host

galaxies. However, usually, the information derived from
parameter estimation is not enough to identify them.
To investigate the probability of precise source locali-

zation, we define the volume ΔV by

ΔV ≃ ΔΩ
ΔDL

DL
D3

L: ð27Þ

Here, ΔV denotes the uncertainty volume of the host
galaxies’ location. With the assumption that the host
galaxies are homogeneous and isotropic, the host galaxy
can be identified in the threshold volume, and then the
probability of identifying the host galaxy can be regarded
as a function of the threshold volume, i.e. the probability
that ΔV is smaller than the threshold volume. Note that the
average number density of the Milky-Way-like galaxy is
∼0.01 Mpc−3 [64–66]. Therefore, the expected number of
host galaxies in the threshold volume can be roughly
estimated by ΔV × 0.01 Mpc−3. The probability is pre-
sented in Fig. 11 for the same sources’ parameter as Fig. 6.
Figure 11 shows that the inclusion of the (3,3) mode will

substantially enhance the probability of identifying the host
galaxy, and the (4,4) mode contributes a visible improve-
ment on this basis, while the rest modes do not. If the
threshold is 10−2 Gpc3 (the expected number of host
galaxies is 105), considering only the (2,2) mode, the
probability of identifying the host galaxy ∼8%, while
considering higher harmonics, is over 70%. When the
threshold is 10−4 Gpc3 (the expected number of host
galaxies is 103), the probability is ∼7% if only considering
the (2,2) mode, while including higher harmonics it is over

TABLE IV. Same as Table III, but for luminosity distance ðDLÞ
and angular resolution (Ω).

Improvement 10 (%) 102 (%) 103 (%) 104 (%)

DL
II 47.62 20.08 3.39 0.26
III 51.13 21.81 3.45 0.26
IV 51.36 21.48 3.35 0.26
V 52.70 21.45 3.48 0.26
VI 51.53 21.29 3.48 0.26

Ω
II 68.35 46.03 8.56 0
III 71.97 50.39 9.67 0
IV 72.33 50.39 9.05 0
V 73.50 51.66 10.12 0
VI 72.43 50.81 10.32 0

FIG. 11. The probability of identifying the host galaxy as a
function of the threshold volume for the same parameters as in
Fig. 6. Each curve corresponds to a different scenario, which is
consistent with Table II. The top axis represents the expected
number of host galaxies within the threshold volume, given an
assumed number density of galaxies of 0.01 Mpc−3.
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50%. Even if the threshold is 10−6 Gpc3 (the expected
number of host galaxies is 10), the probability is around
20% if higher harmonics are involved. The (3,3) mode is
vital for helping identify the host galaxy, while the (4,4)
mode contributes slightly, and the other higher harmonics
can be omitted in this sense. Moreover, the precise location
is also helpful for early warning and EM counterparts’
search. Thus, it is necessary to include the (3,3) mode at
least into GW data analysis for MBH systems.

IV. CONCLUSION

BH in the Universe is the window to its host and the key
to the treasure chest of cosmology. In this paper, we
investigate the impact of various parameters such as mass,
mass ratio, and source location. Moreover, we highlight the
significant effect of higher harmonics on parameter esti-
mation. The (3,3) mode is the most significant subdominant
mode of GWs, the (4,4) mode has a slight effect on
parameter extraction, and the other higher harmonics can
be omitted for LISA.
The main conclusions are summarized in the following,
(i) For face-on or face-off MBH systems, in principle,

their GW waveforms can be regarded almost as a
(2,2)-mode composition (see Fig. 1). However, the
inclusion of the (3,3) mode is still necessary for
these systems to break the degeneracy in the
parameter estimation. The information about the
absence of a particular mode also contributes to
the parameter estimation.

(ii) Including the (3,3) mode in the data analysis only
has a slight effect on the M and η estimation. The
improvements for those parameters are more related
to the SNRs other than the inclusion of higher
modes. Specifically, including the (3,3) mode leads
to the measurements of M and η improved by a
factor ∼2, roughly.

(iii) Including the (3,3) mode in data analysis signifi-
cantly affects theDL andΩ estimation. Including the
(3,3) mode causes improvements in most of the 103

times in angular resolution and 104 times in lumi-
nosity distance resolution. When fixed, the redshift
z ¼ 1, relative to the (2,2) mode only, the precisions
on luminosity distance and angular resolution from
50% MBH binary systems are improved by factors
of 10 and 102, respectively.

(iv) Including the (3,3) mode will dramatically enhance
the probability of source localization. When the
threshold volume is 10−2 Gpc3 (the expected num-
ber of host galaxies is 105), including the (3,3) mode
will raise the probability up to 70%, while it will be
less than 8% when only considering the (2,2) mode.

Higher harmonics have a great performance in extracting
DL and Ω. The great improvement in source localization
may constrain H0 precisely to arbitrate the existing H0

tension problem. GWs emitted from CBCs are proposed as
“sirens” to probeH0. To precisely probe theH0, preciseDL
and source localization are vital. DL inference is directly
from GWs, and source localization is for identifying the
host galaxy and obtaining z. However, the “standard sirens”
are relatively rare in the Universe, which will limit the
effect on probing H0. Besides, the “dark sirens” will face
the degeneration between parameters, which typically
becomes severe near the face-on and face-off areas. This
will significantly weaken the effect of probing H0 by the
dark sirens. Therefore, the H0 measurement by “sirens” is
not precise enough at present, and even the number of
detected dark sirens is nearer to 2 orders of magnitude than
that of standard sirens. For now, the contribution of
constraining H0 is dominated by only one standard siren,
GW170817 [49,67].
Our study focuses on the effect of higher harmonics. We

find the effect of the (3,3) mode is the most significant and
leads to a significant improvement in the inferring source
localization, which may identify the unique host galaxy of
the dark sirens. Thus it may play a pivotal role in black hole
physics, astronomy, and cosmology. Moreover, our analy-
sis can be applied to other similar space-borne GW
detectors, such as Taiji [68], TianQin [69], and DECIGO
[70]. In the future, we expect that the inclusion of
eccentricity and precession may enhance breaking degen-
eration further and increase the probability of identifying
the host galaxies. Multiband and multidetector analysis
may also have a visible effect.
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