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We study the evolution of close triple black hole system with full numerical relativity techniques. We
consider an equal mass non spinning hierarchical system with an inner binary ten orbits away from merger
and study the effects of the third outer black hole on the binary’s merger time and its eccentricity evolution.
We find a generic time delay and an increase in the number of orbits to merger of the binary, that can be
modeled versus the distance D to the third black hole as ∼1=D2.5. On the other hand, we find that the
orientation of the third black hole orbit has little effect on the binary’s merger time when considering a
fiducial initial distance of D ¼ 30M to the binary (with initial orbital separation d ¼ 8M). In those
scenarios the evolution of the inner binary eccentricity presents a steady decay, roughly as expected, but in
addition shows a modulation with the timescale of the outer third black hole orbital semiperiod around the
binary, resembling a beating frequency.
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I. INTRODUCTION

Triple black hole systems have a renewed interest since
the observation that some of the gravitational waves signals
detected by the LIGO-Virgo collaboration may be the
product of highly eccentric black hole mergers [1] and
that one of the scenarios for creating those eccentricities
may be the product of three body Lidov-Kozai interactions
[2]. In this scenario, a tertiary companion on a sufficiently
inclined outer orbit could drive the inner binary to extreme
eccentricities, leading to efficient gravitational radiation
and orbital decay. Also see [3] for a formation scenario of
GW190521 via three-body encounters in young massive
star clusters.
The triple channel predicts a distinct region of the total

mass, mass ratio, and spin parameter space for merging
binary black holes, which can be used to disentangle the
triple contribution to the overall observed gravitational wave
sources. For a detailed study of the mass ratio distribution of
binary black hole mergers induced by tertiary companions in
triple systems see Ref. [4]. Close encounters of stars with
stellar-mass black hole binaries have been studied in [5] and
massive black hole triplets in galactic nuclei in [6–8].
Close encounters of three black holes require numerical

relativity techniques. Full numerical evolution of triple
systems are challenging due to the need to track three black
holes and the different scales of time-integration involved
in the solution. In Refs. [9,10] we have performed
prototypical evolutions of such systems and evaluated its
accuracy compared to Newtonian and post-Newtonian
evolutions [11].
In this paper we will revisit this scenario and evolve

triple systems using full numerical techniques to assess the

prompt or delayed merger and eccentricity evolution of a
binary in a hierarchical triple system.

II. APPROXIMATE INITIAL DATA

In Ref. [10] we have performed the three black holes
prototypical studies from approximate initial data, based on
[12] and extended to include terms of the sort S⃗i × P⃗i
representing interactions of spin with linear momentum in
an expansion to leadingorder on those intrinsic parameters of
the holes. In [13] a similar study wasmade using exact initial
data and found (when using the same raw 3BH parameters)
some deviations in the long term evolutions when compared
to the corresponding approximate initial data. Here we will
introduce two sets improvements to the approximate initial
data for multi black hole configurations. As already pointed
out in [10], a normalization for the parameters makes notable
improvements in, for instance, the resulting waveforms of
2BH (See Fig. 1 in [10]). To that end we will normalize data
to the initial (sum of) horizon masses as computed fully
numerically. The second improvement is to compute the next
order expansion in the solutions to the Bowen-York [14]
initial dataset. We will test those improvements by direct
comparison with the “exact” initial data for 2BH.
Here we provide some details on how we find a

perturbative solution of the Hamiltonian constraint equa-
tion, since in the Bowen-York approach [14] the momen-
tum constraint is solved exactly. Hence, the scope of this
section is to solve perturbatively the partial differential
equation for the 3-metric ϕ4 conformal factor

Δϕ ¼ −
1

8
ϕ−7ÂijÂij; ð1Þ
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with Δ the flat Laplacian and

Âij ¼
XNBHs

a

�
3

2r2a
½2Pði

a n
jÞ
a þ ðnianja − ηijÞPaknka�

þ 6

r3a
nðia ϵjÞklJaknal

�
; ð2Þ

where we label the momentum and the spin of the holes as
Pi and Ji, following the notation of [10].
For this purpose we start from the analytical solution at

order 0th given by

ϕ0 ¼ 1þ
XNBHs

a

ma

2ra
; ð3Þ

which solves

Δϕ0 ¼ 0: ð4Þ
To find the first perturbative order u of the solution,

defined as ϕ ¼ ϕ0 þ u, we consider the equation

Δu1 ¼ −
1

8
ϕ−7
0 ÂijÂij: ð5Þ

A. One black hole

Let us consider Eq. (5) for a single black hole. The term
ÂijÂij is given by

ÂijÂij ¼
18J2

r6
ð1− x2JÞ þ

9P2

2r4
ð2x2P − 1Þ þ 18

r5
xP×JkP× Jk;

ð6Þ
where xJ, xP, and xP×J are respectively cos θJ, cos θP, and
cos θP×J and θJ is the angle between J and r (analogously
we can define θP and θP×J).
Since Eq. (5) is linear, the solution can be written as

u1 ¼ Fðr; xPÞP2 þGðr; xJÞJ2 þHðr; xP×JÞkJ × Pk: ð7Þ
In this way we can solve the equation separately for the

functions Fðr; xPÞ, Gðr; xJÞ, Hðr; xP×JÞ.
In particular, it is convenient to write the source term in

terms of Legendre polynomials. By doing so, we can solve
the angular part of the equations algebraically

ΔFðr; xPÞ ¼
3

2r4
ð5P0ðxPÞ þ 4P2ðxPÞÞ;

ΔGðr; xJÞ ¼
12J2

r6
ðP0ðxJÞ − P2ðxJÞÞ;

ΔHðr; xP×JÞ ¼
18

r5
P1ðxP×JÞ: ð8Þ

Thus the solution to first order is

ϕ1 ¼ ϕ0 þ Fðr; xPÞP2 þGðr; xJÞJ2 þHðr; xP×JÞkJ × Pk;
ð9Þ

where the functions Fðr; xPÞ, Gðr; xJÞ, Hðr; xP×JÞ are
explicitly given by

Fðr; xPÞ ¼
1

160ðμþ 1Þ5 ½μ
4ð3x2P − 1Þð84μ5 þ 378μ4

þ 658μ3 þ 539μ2 þ 192μ

þ 84ðμþ 1Þ5μ logðμÞ
− 84ðμþ 1Þ5μ logðμþ 1Þ þ 15Þ�

þ μ2

32

�
1 −

1

ðμþ 1Þ5
�
;

Gðr; xJÞ ¼
μ5ð1 − 3x2JÞ
40ðμþ 1Þ5

þ ðμ4 þ 5μ3 þ 10μ2 þ 5μþ 1Þμ3
40ðμþ 1Þ5 ;

Hðr; xP×JÞ ¼ −
μ4ðμ2 þ 5μþ 10ÞxP×J

80ðμþ 1Þ5 ; ð10Þ

where μ ¼ m
2r and this solution agrees with the one given

in [10].
Thus when we want to solve the second order perturba-

tion equation for a single BH we have

Δϕ2 ¼ −
1

8
ϕ−7
0

�
1 − 7

u1
ϕ0

�
ÂijÂij; ð11Þ

where we used the fact that ϕ−7
1 ≈ ϕ−7

0 ð1 − 7 u1
ϕ0
Þ and hence

Δu2 ¼
7

8
ϕ−8
0 u1Â

ijÂij ð12Þ

Using the same expansion reasoning we used for the 1st
order case we can write

u2 ¼ FP4ðr; xPÞP4 þ FJ4ðr; xJÞJ4
þ FðP×JÞ2ðr; xP×JÞkP × Jk2
þ FPðP×JÞðr; xP;ϕPÞPkP × Jk
þ FJðP×JÞðr; xJ;ϕJÞJkP × Jk
þ FJ2P2ðr; xP;ϕPÞJ2P2: ð13Þ

Note that in Eq. (13) there are terms that involve
combinations of the vectors P, J, P × J. For example,
when solving for the term FJðP×JÞðr; xJ;ϕJÞ we need to
write xP×J in terms of xJ and ϕJ, as described in the
Appendix. At this point, we can solve for the single
functions in Eq. (13) as we did for Eq. (5) with the only
difference that we need a decomposition in spherical
harmonics and then solve the resulting ordinary differential
equation in the variable r.
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B. Two black holes

When we want to consider two BHs we proceed in the
following way. First, let us assume that our system is bound
so that we can then assume the virial theorem to hold
approximately true, P2 ≈ 1

r12
where r12 is the distance

between the two BHs. Then we treat the solution as a
superposition of the solutions for single black holes, where
we also add a term due to the interaction between the two.
Under this assumptions let us solve Eq. (5) for two BHs
considering the perturbation of the second black hole on the
first one. In this case we have

1

r2
¼ 1

r12
þO

�
1

r12

�
2

; ð14Þ

here r2 is the distance from the second black hole.
Hence we get

ÂijÂ
ij ¼ 18J21

r61
ð1 − x2J1Þ þ

9P2
1

2r41
ð2x2P1

− 1Þ

þ 18

r51
xP1×J1P1 × J1 þO

�
1

r12

�
2

ð15Þ

and

ϕ0 ¼ 1þ m1

2r1
þ m2

2r2
¼ 1þ m1

2r1
þ m2

2r12
þO

�
1

r12

�
2

; ð16Þ

Thus we can write

ϕ−7
0 ÂijÂ

ij ¼
�
1þ m1

2r1

�
−7
�
18J21
r61

ð1 − x2J1Þ

þ 9P2
1

2r41
ð2x2P1

− 1Þ þ 18

r51
xP1×J1P1 × J1

�

þO
�
P2

r12

�
þO

�
J2

r12

�
þO

�
P × J
r12

�
: ð17Þ

As a result we can see that to first order the solution of
Eq. (5) for two BHs is the superposition of the solutions for
single black holes.
To second order we have

ϕ−7
1 ÂijÂ

ij ¼
�
1þ m1

2r1
þ m2

2r2
þ u11 þ u21

�
−7
½Â1ijÂ1

ij þ Â2ijÂ2
ij þ 2Â1ijÂ2

ij�

¼
�
1þ m1

2r1

�
−7
Â1ijÂ1

ij − 7ϕ−7
01 u

1
1Â1ijÂ1

ij − 7ϕ−7
01

m2

2r12
Â1ijÂ1

ij þO
�
P4

r12

�
þO

�
J4

r12

�

þO
�
J2P2

r12

�
þOðJ6Þ þOðP6Þ þOðP5JÞ þOðJ5PÞ þOðJ4P2Þ þOðJ3P3Þ þOðJ2P4Þ: ð18Þ

In this case we considered the second black hole as a perturbation of the first one, but the opposite is also true, so that the
complete source term at second order is given by

ϕ−7
1 ÂijÂ

ij ¼
�
1þ m1

2r1
þ m2

2r2
þ u11 þ u21

�
−7
½Â1ijÂ1

ij þ Â2ijÂ2
ij þ 2Â1ijÂ2

ij�

¼
�
1þ m1

2r1

�
−7
Â1ijÂ1

ij − 7ϕ−7
01 u

1
1Â1ijÂ1

ij − 7ϕ−7
01

m2

2r12
Â1ijÂ1

ij þ
�
1þ m2

2r2

�
−7
Â2ijÂ2

ij

− 7ϕ−7
02 u

2
1Â2ijÂ2

ij − 7ϕ−7
02

m1

2r12
Â2ijÂ2

ij þO
�
P4

r12

�
þO

�
J4

r12

�
þO

�
J2P2

r12

�

þOðJ6Þ þOðP6Þ þOðP5JÞ þOðJ5PÞ þOðJ4P2Þ þOðJ3P3Þ þOðJ2P4Þ: ð19Þ
Equation (19) implies that at second order we have to solve the partial differential equation

Δu2 ¼ þ 7

8
ϕ−7
01 u

1
1Â1ijÂ1

ij þ 7

8
ϕ−7
01

m2

2r12
Â1ijÂ1

ij þ 7

8
ϕ−7
02 u

2
1Â2ijÂ2

ij þ 7

8
ϕ−7
02

m1

2r12
Â2ijÂ2

ij: ð20Þ

Then if we write u2 ¼ u12 þ u22 we can solve independently for the two BHs

Δu12 ¼ þ 7

8
ϕ−7
01 u

1
1Â1ijÂ1

ij þ 7

8
ϕ−7
01

m2

2r12
Â1ijÂ1

ij

Δu22 ¼ þ 7

8
ϕ−7
02 u

2
1Â2ijÂ2

ij þ 7

8
ϕ−7
02

m1

2r12
Â2ijÂ2

ij: ð21Þ

CLOSE ENCOUNTER OF THREE BLACK HOLES REVISITED PHYS. REV. D 108, 064045 (2023)

064045-3



And again, by performing a decomposition in spherical
harmonics we can reduce this system of partial differential
equations to a set of independent ordinary differential
equations. We also point out that this method can be
straightforwardly generalized to an arbitrary number of
BHs as follows

Δuα2 ¼þ7

8
ϕ−7
0αu

α
1ÂαijÂα

ij þ
XNBHs

β≠α

7

8
ϕ−7
0α

mβ

2rαβ
ÂαijÂα

ij: ð22Þ

with α ¼ 1; 2; 3;…; NBHs.
The total ADM mass at the second perturbative order is

MADM ¼
XNBHs

i

XNBHs

j≠i

P2
i

2640000m5
i

��
160J2i ð1448R31

PJ
2

þ 1448R32
PJ

2 þ 1529R33
PJ

2 − 8000Þ

þ 1650000m4
i ðsij − 3mjÞ
sij

− 520157m2
i P

2
i

��

−
266J4i
825M7

i
−
2J2i ð2mj − sijÞ

5m3
i sij

−
3kPi × Jik
110m5

i

þmi;

ð23Þ
where RPJ is the rotation matrix from the system with P̂ ¼
ð0; 0; 1Þ to the system with Ĵ ¼ ð0; 0; 1Þ defined in the
Appendix.
The total ADM linear momentum and angular momen-

tum of the Bowen-York data are given by:

P⃗ADM ¼
XNBHs

i

P⃗i; ð24Þ

J⃗ADM ¼
XNBHs

i

ðJ⃗i þ r⃗i × P⃗iÞ: ð25Þ

III. FULL NUMERICAL TECHNIQUES

In order to perform the full numerical simulations we use
the LazEv code [15] with 8th order spatial finite differences
[10], 4th order Runge-Kutta time integration with a
Courant factor ðdt=dx ¼ 1=4Þ.
To compute the numerical initial data, we use the

puncture approach [16] along with the TwoPunctures [17]
code. We use AHFinderDirect [18] to locate apparent horizons.
We measure the magnitude of the horizon spin SH, using
the isolated horizon algorithm as implemented in Ref. [19].
We can then calculate the horizon mass via the
Christodoulou formula mH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

irr þ S2H=ð4m2
irrÞ

p
, where

mirr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AH=ð16πÞ

p
and AH is the surface area of the

horizon.
The Carpet [20] mesh refinement driver provides a

“moving boxes” style of mesh refinement. In this approach,

refined grids of fixed size are arranged about the coordinate
centers of the holes. The code then moves these fine grids
about the computational domain by following the trajecto-
ries of the black holes.
The grid structure of our mesh refinements have a size of

the largest box for all simulations of �400M. The number
of points between 0 and 400 on the coarsest grid is XXX in
nXXX (i.e., n100 has 100 points). So, the grid spacing
on the coarsest level is 400=XXX. The resolution in the
wave zone is 100M=XXX (i.e. n100 has M=1.00, n120
has M=1.2 and n144 has M=1.44) and the rest of the
levels is adjusted globally. For instance, the grid around
one of the black holes (m1) is fixed at �0.6M in size and
is the 9th refinement level. Therefore the grid spacing
is 400=XXX=28.
We evaluate eccentricity during evolution via the simple

formula, as a function of the separation of the holes, d,
ed ¼ d2d̈=m, as given in [21].
We also use the proper distance between the two

horizons as measured along the coordinate line joining
the two punctures [22], which we call the simple proper
distance, or dspd, below (note that the minimal geodesic
does not necessarily follow this line).
The extraction of gravitational radiation from the

numerical relativity simulations is performed using the
formulas (22) and (23) from [23] for the energy and
linear momentum radiated, respectively, in terms of the
extracted Weyl scalar Ψ4 at the observer location
Robs ¼ 113M. For angular momentum radiated we use
the formulas in [24].

A. Two black holes test

In order to evaluate quantitatively the improvements of
this next to leading parameters ðP⃗i; S⃗i; 1=diÞ expansion
with respect to the leading (labeled for the sake of
simplicity second and first order respectively), we compare
the evolution of a binary black hole system from initial data
generated by these two expansions and that of the “exact”
TwoPunctures [17] numerical solver.
We will consider an equal mass, nonspinning binary with

a separation of the holes d ¼ 12m, where m is the sum of
the horizon masses, that in preparation to use this binary in
the three black holes case (3BH) (See Fig. 4), we will take
asmH

i ¼ 1=3. The orbital parameters are taken as those of a
quasicircular orbit [25] and are given in the first column of
Table I, and labeled as 2BH0.
We first observe that placing those sets of initial data

on the numerical grid that will serve for its evolution, allow
us to evaluate the violations of the Hamiltonian constraint
jHj. Figure 1 displays those violations along the line
joining the black holes. The spikes (in log-scale) shown
particularly in the TwoPunctures solution have to do with
crossing the zero-value at those points and the plotting of
the Hamiltonian magnitude jHj. The first and second order
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approximation fall well above the “exact” solution, with the
second order improving on the first order violations around
the black holes and asymptotically away.
The evolution of these initial data leads to potentially

different tracks and hence waveforms. A comparison of the
three cases of initial data considered here (but using the
same binary parameters as in Table I, 2BH0) is given in
Fig. 2 where we observe the close match of the second
order and “exact” TwoPunctures data in comparison with the
first order case. This later difference (already observed in
Fig. 1 of Ref. [10]) can be in part traced back to the effects
of the violations of the Hamiltonian constraint in the initial
data that propagates in the numerical grid or is accreted by
the black holes. In fact we can observe this effect in the
evolution of the individual horizon masses until merger in
Fig. 3. That would lead to deviations in their relative tracks
explaining the differences in their corresponding wave-
forms in Fig. 2.
We supplement the information of the initial data here

with another measure of the initial data quality as is the
computation of the “binding” energy of the two black holes
Eb ¼ MADM −m as the difference of the total ADM mass
MADM and the sum of the horizon masses m ¼ mH

1 þmH
2 .

We compare here its computation via the TwoPunctures

numerical solution to the Hamiltonian constraint to the
first and second order analytic approximations as given in
Eq. (23). For our binary separated by d ¼ 12m we find
EN
b ¼ −0.00588611 for the TwoPunctures numerical solution

while Ef
b ¼ −0.00350055, and Es

b ¼ −0.00486506, for the
first and second order solutions, representing a 40% and
17% differences, respectively.

FIG. 1. Violation of the constraints for the different sets of
initial data considered here for the 2BH0 reference binary.

FIG. 2. Weyl scalar ψ4 extracted at rex ¼ 113M from the
evolution of the binary system started with the three different sets
of initial data.

TABLE I. Initial data parameters for the base binary (2BH0)
and the two coplanar (3BH1, 3BH2) configurations with a third
black hole at a distance D from the binary along the x-axis.
ðxi; yi; ziÞ and ðpx

i ; p
y
i ; p

z
i Þ are the initial position and momentum

of the puncture i, mp
i is the puncture mass parameter, mH

i is the
horizon mass, MΩ is the binary’s orbital frequency, d is the
binary’s initial coordinate separation and dspd is the binary’s
simple proper distance. Parameters not specified are zero.

Configurations 2BH0 3BH1 3BH2

x1=M −9.95027835 −9.95027835 −9.98428541
y1=M 3.96401481 3.96401481 3.96401481
px
1=M −0.05706988 −0.05705839 −0.05705731

py
1=M −0.00036813 −0.02179566 0.02154356

mp
1=M 0.32546442 0.32362400 0.32359400

mH
1 =M 0.33334615 0.33335960 0.33332705

x2=M −9.95027835 −9.95027835 −9.98428541
y2=M −3.96401481 −3.96401481 −3.96401481
px
2=M 0.05706988 0.05708137 0.05708246

py
2=M 0.00036813 −0.02105940 0.02227982

mp
2=M 0.32546442 0.32362400 0.32362400

mH
2 =M 0.33334654 0.33335185 0.33333734

d=M 7.92802962 7.92802962 7.92802962
dspd=M 10.55538506 10.65527971 10.65538017
x3=M � � � 19.76412526 19.73192339
y3=M � � � 0 0
px
3=M � � � −0.00002299 −0.00002515

py
3=M � � � 0.04285506 −0.04382339

mp
3=M � � � 0.32908500 0.32901500

mH
3 =M � � � 0.33334994 0.33330884

MΩ 0.03273404 0.00586017 0.00590334
D=M � � � 29.7144036 29.7162088
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IV. THREE BLACK HOLES EVOLUTIONS

We will consider a series of prototypical simulations
involving three black holes. In this first exploration we
will consider a hierarchical system with the inner binary
at an initial separation of 12m ¼ 8M and a third black
hole at separation 30M. All black holes in this first set
will initially have equal masses (as measured by their
individual horizons) and no spins, but with different
relative orbital orientations. This set up is depicted
in Fig. 4.
As a first estimate of the orbital periods we can use

the Keplerian expression P ¼ 2π=Ω where the orbital
frequency is Ω ¼ m=r3=2. Thus for the binary (at

r ¼ 12m ¼ 8M), we find an initial period of PB ¼
174M while for the orbit of the third black hole (at
r ¼ 30M), a period of P3 ¼ 1032M. From the quasicir-
cular initial orbit [25] from the third post-Newtonian
order (3PN) given in the Table I we find P3PN

B ¼ 192M
and P3PN

3 ¼ 1072M, respectively. What we measure from
the simulation tracks is in close correspondence with
those values, i.e. PNR

B ≈ 205M and PNR
3 ≈ 1060M.

In order to choose parameters leading to small initial
eccentricities we first consider the inner binary as isolated
and apply the quasicircular formulas of Ref. [25] to obtain
the parameters reported in the first column of Table I and
referred to as 2BH0. Once we have the inner binary
parameters we apply the same quasicircular criteria to
the outer orbit of the third black hole with an effective
spinning black hole having the added masses and angular
momentum of the inner binary. In practice this process
works to provide low enough eccentricities (e≲ 0.05) for
our initial study purposes.

A. Three black holes in a hierarchical system

To start exploring this vast parameter space we have
chosen to consider two coplanar cases, when the third black
hole orbit is corotating with the binary (3BH1) and when it
is counter-rotating (3BH2). Those parameters are given in
Table I. We also consider precessing cases with the third
black hole momentum perpendicular to the orbital plane of
the binary (3BH3) and at �45 degrees with respect to that
(3BH4 and 3BH5), as depicted in Fig. 4. In all cases we
considered the quasicircular orbit of the third black hole
with the inner binary as an effective single black hole. The
corresponding parameters for these cases are given in
Table II.
In Fig. 5 we display the extracted waveform of the three

black hole simulation 3BH1. The gravitational radiation is
completely dominated by the inner binary. The difference

FIG. 3. Evolution of the black holes horizon masses starting
from the same normalization. Differences are due to different
initial violations of the constraints for the sets of approximate
initial data considered here.

FIG. 4. Initial configurations considered for the three black hole evolutions, labeled as 3BH1-5 (3’, 4’, 5’ are quasisymmetric
counterparts).
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with an isolated binary is given by the delay in the merger
due to the presence of the third black hole. Similar results
are obtained for the 3BH2-5 cases. Another effect is the
motion of the binary and its merger product around the center of mass of the triple system, as displayed in Fig. 6.

This leads to a mixing of modes as seen by a fixed observer
location, but its effects can be disentangled with techniques
like those used in Refs. [26,27].
In Fig. 7 we also display the trajectories of the three

black holes in the fully precessing case 3BH3 in three
dimensions. They clearly display the precession of the third
black hole orbital plane over the three orbits of our
simulation.
In Table III we report the merger times of the first

five cases studied here. We first note the clear delay of
the merger of 3BH1-5 with respect to the isolated binary
2BH0. We then note the relatively weak dependence of
the merger times and number of orbits on the orientation
of the orbit, at this initial separation of the third
hole, D ¼ 30M.
The other interesting property that we want to study here

is the evolution of the eccentricity of the binary due to
the presence of the third black hole in a hierarchical
orbit around the binary. In Fig. 8 we display the

TABLE II. Initial data parameters for the precessing three black
hole cases (3BH3, 3BH4, and 3BH5).

Configurations 3BH3 3BH4 3BH5

x1=M −9.96709434 −9.95516516 −9.97921106
y1=M 3.96401481 3.96401481 3.96401481
z1=M 0 0 0
px
1=M −0.05705789 −0.05705825 −0.05705749

py
1=M −0.00036813 −0.01556934 0.01507516

pz
1=M −0.02166824 −0.01520121 0.01544329

mp
1=M 0.32359400 0.32359400 0.32359400

mH
1 =M 0.33332740 0.33332841 0.33332691

x2=M −9.96709434 −9.95516516 −9.97921106
y2=M −3.96401481 −3.96401481 −3.96401481
z2=M 0 0 0
px
2=M 0.05708188 0.05708152 0.05708228

py
2=M 0.00036813 −0.01483308 0.01581142

pz
2=M −0.02166824 −0.01520121 0.01544329

mp
2=M 0.32359400 0.32359400 0.32359400

mH
2 =M 0.33332869 0.33332239 0.33333438

d=M 7.92802962 7.92802962 7.92802962
dspd=M 10.65491937 10.65499784 10.65513690
x3=M 19.74820210 19.75949795 19.73672848
y3=M 0 0 0
z3=M 0 0 0
px
3=M −0.00002398 −0.00002326 −0.00002479

py
3=M 0 0.03040241 −0.03088657

pz
3=M 0.04333649 0.03040241 −0.03088657

mp
3=M 0.32910500 0.32906500 0.32906500

mH
3 =M 0.33338457 0.33333346 0.33335498

MΩ 0.00588143 0.00586633 0.00589685
D=M 29.7152964 29.7146631 29.7159395

FIG. 5. Waveforms generated by the case 3BH1 in comparison
with the isolated binary 2BH0.

FIG. 6. Trajectories of the coplanar case 3BH1 and the
evolution of the center of masses of the binary and of the three
black holes.
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instantaneous [21] eccentricity eðtÞ ≈ e cosðΩtÞ ≈ d2d̈=M,
of the inner binary for the three black hole cases 3BH1-5
and the isolated reference binary 2BH0 (B1). We first
observe that the amplitude of the eccentricity slightly
decrease notably during evolution and presents a modula-
tion with the third black hole orbital frequency.
In order to visualize better the evolution of the eccen-

tricity we take the values of the extremes of oscillations per
orbit to model the eðtÞ ≈ e cosðΩtÞ dependence and extract
the values of e per each half orbit of the coplanar cases
3BH1 (corotating orbits) and 3BH2 (counterrotating
orbits). The results of this analysis are displayed in Fig. 9.
This is first contrasted with what we expect from an

isolated binary on the grounds of the decay of the
eccentricity with the instantaneous separation as ∼d1.735,
found from numerical simulations, see also Fig. 9 in
Ref. [28]. We observe that even if the inner binary starts
at a relatively close separation, 12m, leading to ten orbits
before merger compared to the nearly fifty orbits of the
simulation analyzed in Ref. [28], a general trend toward

decrease can be observed. Particularly closer to merger,
during the last few orbits, we see a decrease in the
eccentricity in as expected on the fact that at those close
separations the relative influence of the third black hole
should be reduced. We have also verified that the 1PN
predictions [29] that should show a decay of the eccen-
tricity with the instantaneous separation as ∼d19=12, give
very close results to those displayed in Fig. 9. See also
recent 2PN studies in Ref. [30].
Another feature that appears in both cases displayed

in Fig. 9 is a modulation superposed over an steady
decrease of the eccentricity. This modulation has a period
of around ∼500M which seems to correspond to the
semiperiods of the third black hole, that we estimated
above to be initially of the order of ≈1060M. It also bears
resemblance to a beating frequency of the two orbital
motions ðΩ2BH − Ω3BHÞ=2 ≈ 468M.

TABLE III. Number of orbits to merger and merger time of the
inner binary for different orbital orientations of the third black
hole. Cases 3BH1-5.

Label #Orbits tmerger=M

2BH0 9.949 1216.9
3BH1 10.637 1376.6
3BH2 10.821 1419.9
3BH3 10.523 1341.2
3BH4 10.582 1358.0
3BH5 10.705 1387.5

FIG. 8. Eccentricity evolution of the inner binary as measured
by d2d̈ðtÞ=M for the triple black hole cases 3BH1-5 and the
isolated reference binary 2BH0.

FIG. 7. Trajectories of the fully precessing case 3BH3.
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Finally, we can look at the eccentricity evolution of the
orbit of the third black hole. Before merger we can refer
its motion around the center of mass of the binary
system, as displayed in the bottom of Fig. 6 and then
after the merger of the inner binary to its remnant, as
displayed on the right panel of Fig. 10. We note that the
eccentricity measure from the center of mass of the
binary seems to grow in time and reaches relatively large
values before merger. This seems to be an effect of the
use of the coordinates of the center of mass as a reference
of this extended system. We note that right after merger
the eccentricity measure produces an order of magnitude
less eccentricity for the subsequent two orbits and with
values more in line with what we expect and found for

the inner binary studies above. Qualitatively similar
results have been found for the precessing cases
3BH3-5.

B. Numerical convergence

Here we explore the dependence of the previous results
on the numerical resolution of the finite difference inte-
grations to perform the evolutions of three black holes. To
that end we perform a series of three simulation of the
representative case 3BH1, with increasing global resolu-
tions by factors of 1.2, namely the original simulation
at n100 resolution and two additional ones at n120 and
n144 resolutions. The results of such simulations is
summarized in Table IV, were we report the merger times
and number of orbits of the inner binary as defined by its
trajectories approaching at a distance of dm ¼ 0.7M (this
corresponds closely to the first appearance of a common
apparent horizon within a Δt ∼ 5M, as we verified directly
for 3BH1).
We observe that those values align in a convergence

order leading to high powers of convergence, as computed
FIG. 9. Eccentricity evolution of the inner binary as measured
by the amplitude of d2d̈ðtÞ=M for the triple black hole cases
3BH1-2 and the expected decay d1.735 of Ref. [28].

FIG. 10. Eccentricity evolution of the outer black hole as
measured by the amplitude of D2D̈ðtÞ=M for the three coplanar
black hole cases 3BH1-2. (Note the zoom factor ×10 on the
right panel).

TABLE IV. Convergence of number of orbits and merger time
for the 3BH1 configuration using three resolutions. Richardson
extrapolation is used to determine convergence order and
infinitely extrapolated values. We point out that the difference
between different resolutions is smaller than differences between
the different configurations.

Resolution #Orbits tmerger=M

n100 10.637 1376.6
n120 10.603 1370.4
n144 10.597 1369.6

Inf. Extrap. 10.596 1369.5
Inf.- n100 −0.041 −7.1
% difference −0.387 −0.518

Conv. order 9.51 11.23
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by the formulas (5a)–(5c) of [31], still comparable to the
expected 8th order convergence from the spatial finite
difference stencils used in our integration algorithm. The
relevant point here is that the differences of the n100
simulations values we use as a basis to extract conclusions
about delays in merger times and number of orbits to
merger to its (Richardson’s) extrapolation to infinite res-
olution is very small compared to the physical changes we
observe. We hence conclude they are a numerically reliable
result and will keep using this n100 resolution as the
standard for the following studies.

C. The distance dependence to the third black hole

Given the weak sensitivity of the binary evolution with
the direction of the third black hole momentum, we will
next explore how the merger times and eccentricity
evolution of the binary vary versus the initial separation
of the outer black hole. For that end we look again for
quasicircular effective parameters at different initial sepa-
rations as given in Table V.
We are interested in studying the effect the third hole has

on the inner binary dynamics. In particular how it affects
the merger, if prompts or delays it. In Table VI we give the
results of our simulations versus the initial third black hole
distance to the binary’s center of mass. We find a clear trend
toward the delay of the merger, in both measures, the
merger time and the number of orbits as measured by the
tracks of the holes and using a definition of merger when

the binary distance reaches d ¼ 0.7M (which corresponds
closely to the formation of a common horizon).
In order to model the merger delay as a function of the

initial distance to the third black hole we consider devia-
tions with respect to the merger time and number of orbits
to merger isolated binary, 2BH0. We thus fit a dependence
to the data in Table VI of the form 2BH0þ a1=Da2. The
results are displayed in Fig. 11 and lead to a consistent
dependence of the form 1=D2.5.
We again study the instantaneous eccentricity evolution

of the inner binary as we vary the orbital distance of the
third black hole. The results are displayed in Fig. 12. While
the initial magnitude of the eccentricity is due to the choice
of the orbital parameters their evolution shows a trend
toward reduction for all cases, particularly very close to
merger.

TABLE V. Initial data parameters for coplanar-corotating configurations with a third black hole placed at different
distances D from the binary along the x-axis, 3BHD1-5.

Configurations 3BHD1 3BHD2 3BHD3 3BHD4 3BHD5

x1=M −8.28225635 −11.61795003 −13.28540069 −14.95270161 −19.95406346
y1=M 3.96401481 3.96401481 3.96401481 3.96401481 3.96401481
px
1=M −0.05705000 −0.05706264 −0.05706503 −0.05706647 −0.05706844

py
1=M −0.02408677 −0.02005564 −0.01867731 −0.01755115 −0.01511026

mp
1=M 0.32325400 0.32386400 0.32406400 0.32421600 0.32453600

mH
1 =M 0.33335247 0.33333709 0.33334068 0.33333886 0.33335088

x2=M −8.28225635 −11.61795003 −13.28540069 −14.95270161 −19.95406346
y2=M −3.96401481 −3.96401481 −3.96401481 −3.96401481 −3.96401481
px
2=M 0.05708976 0.05707712 0.05707474 0.05707329 0.05707133

py
2=M −0.02335051 −0.01931938 −0.01794106 −0.01681489 −0.01437400

mp
2=M 0.32325400 0.32386400 0.32406400 0.32421600 0.32453600

mH
2 =M 0.33334355 0.33332930 0.33333270 0.33333175 0.33334414

d=M 7.92802962 7.92802962 7.92802962 7.92802962 7.92802962
dspd=M 10.67520743 10.64064151 10.63015429 10.62193283 10.60525218
x3=M 16.46307522 23.06578078 26.36782091 29.67012192 39.57796287
y3=M 0 0 0 0 0
px
3=M −0.00003976 −0.00001448 −0.00000970 −0.00000682 −0.00000288

py
3=M 0.04743728 0.03937502 0.03661837 0.03436605 0.02948426

mp
3=M 0.32823500 0.32968500 0.33014500 0.33048500 0.33116543

mH
3 =M 0.33333394 0.33334810 0.33335404 0.33333988 0.33330813

MΩ 0.00763429 0.00465268 0.00384912 0.00323775 0.00211854
D=M 24.7453316 34.6837309 39.6532216 44.6228235 59.5320263

TABLE VI. Number of orbits to merger and merger time of the
inner binary for different initial separation of the third black hole.
Cases 3BHD1-5.

D=M #Orbits tmerger=M

30 10.63 1376.6
35 10.40 1323.6
40 10.25 1292.6
45 10.18 1275.0
60 10.09 1250.5
∞ 9.94915 1216.875
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V. CONCLUSIONS AND DISCUSSION

Although full numerical solutions to three black holes
initial data have been presented in Refs. [13,32,33] we
found a valid and practical option, validated for the two
black hole cases, to provide analytic initial data for prompt
use and with enough accuracy for current exploratory
studies.
We next revisited the triple black hole scenario to study

their merging times and eccentricity evolution. We found
that the third black hole delays the merger of the binary by
an amount inversely proportional to a power of the
distance, ∼1=D2.5. This behavior was not clearly observed
in some of the configurations simulated in a previous work
[10], due to the closeness of the cases studied that lead to a
prompt breakdown of the binary, as we also observe here if
we start the third black hole closer to ≈30M. We also note
here that the ∼1=D2.5 dependence can be associated to a 5th
post-Newtonian correction and its leading tidal effects on
the inner binary waveforms [34].

A delay in the merger time of the binary due to the
presence of the third black hole has also been observed in
the Post-Newtonian approximation [35] considering much
larger separations of the binary ð130M − 170MÞ and to the
third black hole up to ð10; 000MÞ, thus representing a
complementary study to the one presented here.
Results in Fig. 5 showing the differences in the wave-

forms of a binary in isolation versus one in the presence of a
third body may have consequences for parameter estima-
tion from gravitational wave detections. If we compare the
inspiral to merger part of the waveforms in Fig. 5 and try to
match the 3BH waveform with a 2BH waveform we would
find a match with different mass, i.e., with an effective mass
rescaled by Mðt3BHM =t2BHM Þ ≈ 1.13M, (from the numbers in
Table VI) to match merger times. The effect seems to be
cumulative with the number of orbits of the third, outer
black hole, around the inner binary. On the other hand, the

FIG. 11. Fit to a functional dependence 2BH0þ a1=Da2.

FIG. 12. Eccentricity evolution of the inner binary as measured
by d2d̈ðtÞ=M for the triple black hole cases 3BH1, 3BHD2-5 and
the isolated reference binary 2BH0.
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quasinormal modes of the final merged holes should be
very similar to each other, leading to an inconsistency if we
do not take into account the presence of the third body.
The presence of a nearby third black hole also seems to

confirm a decay of any residual inner binary eccentricity
and to induce a subtle modulation with about a half the
period of the third black hole orbit around the binary. Note
that in Ref. [36] it was studied with post-Newtonian
techniques [11] resonant eccentricity excitation in hierar-
chical three-body systems, another complementary study to
that presented here.
The next natural exploration of 3BH interactions with

our formalism involves the inclusion of spins in the inner
binary, the unequal mass ratio to consider binaries in the
field of a much larger black hole, and the scattering effects
of a passing third black hole. Those will be covered in a
forthcoming study.
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APPENDIX: ROTATION MATRIX

When we want to study the perturbation of the
Hamiltonian constraint at second order we encounter terms
of interaction between the momentum P and spin J of the
same black hole. Since this perturbative solution requires to
choose a specific axis with respect to which we write the
spherical harmonics, we need to be able to write the angle
between the position r and, for example, the spin in terms
of the angular coordinates taken starting from P as z axis.
In order to do so let’s consider the momentum versor P̂

and spin versor Ĵ in a certain coordinate system

P̂ ¼

2
64
Px

Py

Pz

3
75 Ĵ ¼

2
64
Jx
Jy
Jz

3
75 ðA1Þ

Let’s call the matrix RGP the matrix that rotates the vector
P̂ into the vector ẑ with

ẑ ¼

2
64
0

0

1

3
75 ðA2Þ

This matrix is constructed through

RGP ¼ I þ V þ V · V
1þ C

; ðA3Þ

where

V ¼

2
64

0 −Vz Vy

Vz 0 −Vx

−Vy Vx 0

3
75 ðA4Þ

and

V ¼ P̂ × ẑ C ¼ P̂ · ẑ ðA5Þ

This is also the matrix that transforms the coordinates of
a given vector in the reference system G to the one in which
the z axis is aligned along P̂ (which we call P).
Analogously we find RGJ and RGJ×P.
Once we have these matrices we can combine them to

find RPJ, RPJ×P, and RJJ×P.
Now let’s consider for example the unit vector n̂ which

has coordinates

n̂ ¼

2
64
nxP
nyP
nzP

3
75 ðA6Þ

in the P system.
Then the coordinates of n̂ in the J system are

2
64
nxJ
nyJ
nzJ

3
75 ¼ RPJ

2
64
nxP
nyP
nzP

3
75 ðA7Þ

In particular we are only interested in the 3rd coordinate
nzJ which is

nzJ ¼ R31
PJnxP þ R32

PJnyP þ R33
PJnzP

¼ sin θPðR31
PJ cosϕP þ R32

PJ sinϕPÞ þ R33
PJ cos θP ðA8Þ

Applying this procedure for all the cases we need we
finally obtain
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nzJ ¼ sin θPðR31
PJ cosϕP þ R32

PJ sinϕPÞ þ R33
PJ cos θP

nzJ×P ¼ sin θPðR31
PJ×P cosϕP þ R32

PJ×P sinϕPÞ
þ R33

PJ×P cos θP

nzJ×P ¼ sin θJðR31
JJ×P cosϕJ þ R32

JJ×P sinϕJÞ þ R33
JJ×P cos θJ

ðA9Þ

To determine let us say the angle ϕP (an analogous
argument holds for ϕJ) we make use of the matrix RGP as
follows. Let us say that in the system of coordinates G the
coordinates of n̂ are

n̂ ¼

2
64
nxG
nyG
nzG

3
75 ðA10Þ

Then we have,

tanϕP ¼ sinϕP

cosϕP
¼ ðRGP · nÞx

ðRGP · nÞy
ðA11Þ

From this we can obtain ϕP (and ϕJ).
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