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Black hole images are theoretically predicted—under mild astrophysical assumptions—to display a
stack of lensed “photon rings” that carry information about the underlying spacetime geometry. Despite
vigorous efforts, no such ring has been observationally resolved thus far. However, planning is now actively
under way for space missions targeting the first (and possibly the second) photon rings of the supermassive
black holes M87* and Sgr A*. In this work, we study interferometric photon ring signatures in time-
averaged images of Kerr black holes surrounded by different astrophysical profiles. We focus on the first,
most easily accessible photon ring, which has a larger width-to-diameter ratio than subsequent rings and
whose image consequently lacks a sharply defined diameter. Nonetheless, we show that it does admit a
precise angle-dependent diameter in visibility space, for which the Kerr metric predicts a specific functional
form that tracks the critical curve. We find that a measurement of this interferometric ring diameter is
possible for most astrophysical profiles, paving the way for precision tests of strong-field general relativity
via near-future observations of the first photon ring.
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I. INTRODUCTION

Theoretical work [1–4] predicts that—under some mild
assumptions—images of an astrophysical Kerr black hole
generically display a stack of nested “photon rings,” each of
which is a strongly lensed image of the main emission
superimposed on top of the direct image. These rings may
be labeled by the number n of half-orbits executed around
the black hole by their constitutive photons on their way
from source to observer. The full set of n ≥ 1 rings is often
collectively referred to as “the photon ring”: a striking
feature that dominates simulated black hole images, and a
signature stamp of strong gravity (Fig. 1).
Despite vigorous efforts [5–8], Event Horizon Telescope

(EHT) observations from Earth of the supermassive black
holes M87* and Sgr A* [9,10] have yet to experimentally
resolve any photon ring [11,12]. Space missions targeting
their first (n ¼ 1)—and possibly second (n ¼ 2)—photon
rings are now being planned [13–15]. While a theoretical
prediction for the interferometric signature of then ≥ 2 rings
has already been derived [15–18] and explored [19–21], a
sharp prediction for the interferometric signature of themore
readily accessible n ¼ 1 ring is still lacking. This paper
formulates such a prediction (Sec. III F).

II. PHOTON RING IMAGES

The lensing behavior of the Kerr geometry confers two
properties to the appearance of the photon ring. First, since

each subring is a mirror image of its predecessor, the full
photon ring must exhibit a self-similar substructure, which
in the limit n → ∞ is completely characterized by three
critical exponents γ, δ, and τ that, respectively, control the
demagnification, rotation, and time delay of successive
images [3]. The analytically known parameters ðγ; δ; τÞ
depend only on the mass and spin of the black hole—as
well as the photon orbital radius [2,3]—and may, in
principle, be measured from observations of light echoes
or their characteristic pattern of autocorrelations [22,23].
Since successive subrings are exponentially demagnified
by ∼e−γ, the large-n rings quickly become so narrow in the
image plane of a distant observer that they may—to a very
good approximation—be regarded as infinitely thin, math-
ematical curves Cn. In fact, this is an excellent approxi-
mation for n ≥ 2, as the second (n ¼ 2) photon ring already
appears extremely thin; typically, only the first (n ¼ 1) ring
displays a noticeable thickness (Fig. 1).
The second property is closely tied to the exponential

subring demagnification: the photon rings must converge
(exponentially fast in n) to a theoretical “critical curve” in
the image plane of an observer, which corresponds to the
image of the black hole’s (asymptotically) bound photon
orbits. First derivedbyBardeen [24], this analytically known
curve—call it C̃—delineates the apparent cross section of a
black hole in the sky. It is fully determined by the Kerr
geometry (together with the observer inclination θo). Thus,
the critical curve is the “n → ∞ photon ring”

C̃ ¼ C∞ ≡ lim
n→∞

Cn; ð1Þ*Corresponding author: cardenas-avendano@princeton.edu
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FIG. 1. Top left: Adaptively ray-traced (with AART [21]) image of a stationary, axisymmetric, equatorial source with a radial profile
given by (23) with μ ¼ 3rþ=2, γ ¼ 0, and ϑ ¼ M. The inset panels decompose the image into its photon-orbit layers: the direct (n ¼ 0)
image and the first two (n ¼ 1 and n ¼ 2) photon rings. Top right: The corresponding visibility amplitudes for a spin-perpendicular
(φ ¼ 0°) cut across the total image (black dashed line) and across each image layer. Bottom left: The image of the n ¼ 1 photon ring
only. Three characteristic diameters are measured along a horizontal cut of the intensity profile, corresponding to (from top to bottom):
the distance between the location of the peaks in the intensity (9.82M), the distance between the inner edges of the “n ¼ 1 lensing band

[21]” (9.02M), and the distance between the outer edges of the band (12.03M). The diameter dð1Þ0° inferred from the characteristic ringing
of the total visibility amplitude in two baseline windows ½40; 70� Gλ and ½70; 100� Gλ is reported. Bottom right: Same as in the bottom-

left panel, but for the n ¼ 2 ring and with a projected diameter dð2Þ0° inferred from the ringing in the baseline window ½285; 315� Gλ.
Here, the black hole spin is a=M ¼ 94%, the observer inclination is θo ¼ 17°, and the critical curve has a diameter of 9.73M along the
considered horizontal cut.
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and indeed, photons that appear exactly on C̃ lie on null
rays that were unstably trapped (in the far past) within
a region of spacetime just outside the event horizon,
which is now known as the “photon shell” [2,3]; see
also [25–29].
The preceding discussion leads to a simple description of

the large-n subring images: they appear as thin curves Cn
that closely track the critical curve C̃ ¼ C∞, with the
deviations exponentially suppressed in n. As illustrated
in the bottom-right panel of Fig. 1, this description is
already valid for n ¼ 2: the second photon ring looks like a
bright, narrow curve that sits exactly atop C̃ (drawn as a
dashed black line). On the other hand, the bottom-left panel
of Fig. 1 shows why this description fails for n ¼ 1: the first
ring has a significant width, and its shape visibly deviates
from that of the (dashed black) critical curve.
Moreover, the appearance of the n ¼ 1 photon ring—

both its thickness and deviation from C̃—can significantly
vary with the choice of astrophysical source. This leads to
the central question of this paper: can one produce a sharp
theoretical prediction for the n ¼ 1 ring shape?

III. INTERFEROMETRIC RING SIGNATURES

The key to predicting the n ¼ 1 ring shape is to work in
Fourier space. Interferometers sample the radio visibility

VðuÞ ¼
Z

IoðxoÞe−2πiu·xod2xo; ð2Þ

which is the Fourier transform of the sky image IoðxoÞ.
The dimensionless baseline u sampled by two elements
is the distance separating them in the plane perpendicular
to the line of sight, in units of the observation wavelength.
An image of an infinitely thin ring produces a visibility

with a characteristic ringing pattern, whose periodicity at
polar angle φ in the baseline plane u ¼ ðu;φÞ is set by the
(precise, well-defined) diameter of the ring at the corre-
sponding angle ϕ ¼ φ in the image plane xo ¼ ðρ;ϕÞ. On
the other hand, if the ring has some thickness, then its
image lacks a well-defined diameter, but nevertheless its
corresponding visibility still rings with a characteristic
periodicity, from which a sharp notion of angle-dependent
“interferometric ring diameter” dφ can thus be derived.
The main idea of this paper is to define the diameter dð1Þφ

of the first (n ¼ 1) photon ring from the periodicity of its
ringing interferometric signature. In the remainder of this

section, we will describe precisely how dð1Þφ may be
recovered from the visibility (2) that is directly probed
by an interferometer, and formulate a guess for its func-
tional form. In the rest of the paper, we will then study a set
of astrophysical source models around a Kerr black hole

and show that the angle-dependent diameter dð1Þφ of their
first photon ring follows this functional form to high
accuracy.

A. Interferometric signature of a zero-width ring

To make sense of the preceding remarks, the first step is
to consider perfectly thin rings, or more generally, images
that consist of an infinitely narrow, bright curve C. If C is
closed and convex,1 then its shape can always be para-
metrized in the Cartesian image plane xo ¼ ðα; βÞ by the
normal angle angle φ to the curve [17],

C ¼ fðαðφÞ; βðφÞÞjφ∈ ½0; 2πÞg: ð3Þ

In practice, given another parametrization ðαðσÞ; βðσÞÞ of
C, this parametrization may be obtained by solving

tanφðσÞ ¼ −
α0ðσÞ
β0ðσÞ ð4Þ

for the normal angle φðσÞ along the curve, and then
plugging the inverse σðφÞ into the original parametrization.
Thereafter, one can compute the projected position of C,

fðφÞ≡ xðφÞ cosφþ yðφÞ sinφ: ð5Þ

This function completely encodes the shape of C, which
may still be recovered via the inverse relations

xðφÞ ¼ fðφÞ cosφ − f0ðφÞ sinφ; ð6aÞ

yðφÞ ¼ fðφÞ sinφþ f0ðφÞ cosφ: ð6bÞ

From an interferometric perspective, however, it is most
natural to describe C via its projected position (5), which
turns out to be most closely connected to the visibility (2) of
C that an interferometer would directly sample.
To connect fðφÞ to interferometric observables, we first

decompose it into its parity-even and parity-odd parts,

dφ ≡ fðφÞ þ fðφþ πÞ; ð7aÞ

Cφ ≡ 1

2
½fðφÞ − fðφþ πÞ�; ð7bÞ

which are the angle-dependent projected diameter and
projected centroid displacement at angle φ in the image
of C, respectively—see [17] for further discussion of their
geometric interpretation. Here, we simply note that dφ and
Cφ carry all the information about the shape of C that was
stored in the projected position function, since

fðφÞ ¼ dφ
2
þ Cφ: ð8Þ

1If C is not closed and convex, then it does not admit a single
normal-angle parametrization and must be covered by multiple
segments ðxiðφÞ; yiðφÞÞ [17]; we will not consider such cases
here.
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While it may seem that we have now doubled the degrees of
freedom needed to describe C, that is not in fact the case
because, as defined in (7), dφ and Cφ only range over ½0; πÞ,
repeating periodically thereafter. Geometrically, this makes
sense since the diameter and centroid are only defined for
pairs of points ðφ;φþ πÞ around the curve.2

We now come to the key conclusion of [16]: the Fourier
transform of an infinitely narrow curve C with projected
diameter dφ and projected centroid Cφ is approximately

VðuÞ ≈ e−2πiCφuffiffiffi
u

p ½αLφe−iπ
4
þiπdφu þ αRφe

iπ
4
−iπdφu�; ð9Þ

where the coefficients αL;Rφ ¼ αR;Lφþπ > 0 encode the polar
intensity profile around the curve, and the approximation
holds for udφ ≫ 1. In particular, the visibility amplitude is
a damped oscillation with radial periodicity Δu ¼ 1=dφ
inside an envelope with a weak

ffiffiffi
u

p
power-law falloff,

jVðuÞj ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαLφÞ2 þ ðαRφÞ2 þ 2αLφα

R
φ sinð2πdφuÞ

u

s
; ð10Þ

which depends only on the projected diameter dφ.
On the other hand, the projected centroid Cφ is only

encoded in the visibility phase, which we will henceforth
ignore as it is significantly harder to measure, and beyond
the reach of presently envisioned n ¼ 1 ring observations.

B. Interferometric signature of the photon ring

So far, we have argued that an image-plane curve with
angle-dependent diameter dφ produces an interferometric
response on long baselines u ≫ 1=dφ that is completely
captured by the visibility (9). In particular, its visibility
amplitude displays a characteristic ringing signature (10)
whose periodicity at angle φ in the baseline plane encodes
the image diameter dφ of the curve at image angle ϕ ¼ φ.
Strictly speaking, this discussion only pertains to zero-

width curves. Intuitively, however, if the curve were in fact
a very narrow ring with a small width-to-diameter ratio
w=d ≪ 1, then we would expect it to produce the same
response in an interferometer limited to sampling only
baselines uw ≪ 1 too short to resolve the ring width. This
intuition was in fact proved in [16], which computed the
Fourier transform of such a thin ring to leading order in
w=d ≪ 1, and found that the same approximation (9) to the
complex visibility still holds in the baseline range

1

d
≪ u ≪

1

w
: ð11Þ

This range is aptly called the “universal regime” since all
thin rings produce the same universal signature (9)–(10) on
these baselines, regardless of their radial profile: it is only
on even longer baselines u≳ 1=w that a ring profile can be
resolved and different rings can be distinguished.
For a ring with a smooth radial profile, the visibility

ought to decay very rapidly once its width is resolved.
Therefore, as first noted in [2] and extensively reviewed in
[3,19,21], the sequence of exponentially demagnified
photon rings described in Sec. II must produce a cascade
of damped oscillations on long baselines (see, e.g., Fig. 5 of
[2]). Given that the (nþ 1)th photon ring has width

wnþ1ðφÞ ≈ e−γðφÞwnðφÞ ≈ e−nγðφÞw1ðφÞ; ð12Þ

the nth subring ought to dominate the signal in the range

1

wn−1
≪ u ≪

1

wn
; ð13Þ

in which the (n − 1)th ring has already been resolved out,
but the (nþ 1)th ring (whose flux is ∼e−γ times weaker)
has yet to take over. Hence, we expect that for large n, the
visibility amplitude in the range (13) must adopt a universal

form (10) fixed by the nth ring diameter dðnÞφ .
This expectation has been confirmed by simple models

[15,19–21] for which these statements already hold to very
good approximation starting with the n ¼ 2 ring, as
expected since its typical width w2 ≲ 0.1M and diameter
d ∼ 10M correspond to a width-to-diameter ratio ≲1%
suitable for an expansion in w2=d ≪ 1. Indeed, [15] found

that the diameter dð2Þφ of the n ¼ 2 ring image could be
inferred from its visibility amplitude in the range (13).
In general, the nth ring must lie within the nth “lensing

band”: an exponentially narrow (in n) region of the image
plane that is fully determined by the Kerr metric [15,21].
Within this band, however, it generically has some width.
Two important comments are now in order:
(1) We reiterate that any ring of finite width does not

have a unique, well-defined image diameter dφ, but
rather a range of diameters that extends from a
minimum diameter (between its inner boundaries) to
a maximum diameter (between the outer ones). That
is, the image diameter is only defined up to a
precision of order the ring width w (Fig. 1). Yet,
the corresponding visibility in the universal regime
(11) does seem to pick out a unique periodicity—so
how can this be? A resolution to this puzzle is partly
that the exact periodicity of the ringing in the
universal visibility (10) varies with the baseline
length u within the regime (11). That is, the precise

value of the diameter dðnÞφ ðuÞ depends on the choice
of baseline window from which it is inferred [19].
For a thin n ¼ 2 ring, the image diameters vary

within a narrow range of ≲1% (Fig. 1), but such

2We also note that the π periodicity of dφ, Cφ, and α
L;R
φ ensures

that the Fourier transform (9) satisfies Vðu;φþ πÞ ¼ V�ðu;φÞ,
as required by its definition (2) for a real image IoðxoÞ ¼ I�oðxoÞ.
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variation could be detected at the microarcsecond
scale accessible on 230 GHz Earth-Moon baselines.
When observing near u ∼ 300 Gλ, for instance, a
unique periodicity emerges and yields a sharp n ¼ 2

ring diameter dð2Þφ ðuÞ, but this answer varies with the
baseline length u within the regime (13). As longer
baselines are sampled, higher-frequency compo-
nents of the ring are progressively picked up and
larger image gradients within its intensity profile are
increasingly resolved. Intuitively, then, the inferred

diameter dð2Þφ receives contributions from image
diameters connecting points across the ring’s profile
where the derivative of the intensity is greater. As a

result, the inferred diameter dð2Þφ ðuÞ may exhibit a
slight but still noticeable drift in u.

(2) We emphasize that the universal signature (9)–(10)
is only present when the universal regime (11) exists.
That is, the nth photon ring produces its character-
istic periodic ringing only within the range (13). All
the photon rings have a diameter d ∼ 10M, which for
230 GHz observations of M87* corresponds to an
angular size of d ∼ 40 μas, and hence to a radial
periodicity Δu ∼ 1=d ≈ 5 Gλ [9]. As such, the
number Nn ≈ ðΔunÞd of periods (or “hops”) of
the visibility amplitude within the regime (13) of
width Δun ¼ 1=wn − 1=wn−1 is N2 ∼ 100, a suffi-
cient number to obtain a good estimate of the

periodicity Δu ¼ 1=dð2Þφ . The scaling (12) of the
ring widths implies a scaling Δunþ1 ≈ eγΔun of the
baseline windows (13), so each ring produces an
exponentially growing numberNnþ1 ≈ eγNn of hops
in the range in which it dominates the signal.
Therefore, every n ≥ 2 ring produces sufficiently
many hops to enable an estimate of its diameter.

C. Predicted interferometric shape
of the higher (n ≥ 2) photon rings

The first property of Kerr lensing described in Sec. II
(namely, the exponential demagnification of successive
subrings) guarantees a small width-to-diameter ratio for all
the n ≥ 2 subrings. As a result, their diameter dðnÞφ is well
defined in the image, up to minute variations of order
wn=d ≪ 1 (with w2=d ∼ 1% and the higher ratios wn=d
exponentially suppressed by factors of ∼e−γ).
Moreover, this guarantees—for each n ≥ 2 subring—the

existence of a wide range of baselines in the universal
regime (11). In the regime (12) dominated by the nth ring,
the visibility amplitude takes a “universal form” (10) that is

fixed by the ring diameter dðnÞφ , and which extends over
sufficiently many hops for its periodicity—and hence

dðnÞφ —to be precisely inferred. This interferometrically

measured diameter dðnÞφ ðuÞ may vary slightly with the
precise choice of baseline u within the range (11), but

this variation is again limited to variations of order
wn=d ≪ 1.
The outstanding question that remains is then: what is the

interferometric shape of the n ≥ 2 rings? Or, more pre-
cisely: does general relativity make a prediction for the

projected diameter dðnÞφ ?
The second property of Kerr lensing described in Sec. II

(namely, the exponential convergence of successive rings to
the critical curve) answers in the affirmative: by (1), the
rings Cn converge to the critical-curve shape C̃ ¼ C̃∞. In
other words, as the large-n rings become increasingly
narrow curves, their projected position functions tend to
that of the critical curve, f̃ðφÞ ¼ 1

2
d̃φ þ C̃φ. In particular,

lim
n→∞

dðnÞφ ¼ d̃φ; lim
n→∞

CðnÞ
φ ¼ C̃φ: ð14Þ

The analytic expression for the critical curve’s projected
position f̃ðφÞ is investigated in [17]. The exact formula is
rather unwieldy, but it closely tracks the “phoval” shape

f̃ðφÞ ≈ R0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1sin

2φþ R2
2cos

2φ
q

þ ðX − χÞ cosφþ arcsinðχ cosφÞ; ð15Þ

to better than 1 part in 105 for most black hole spins and
observer inclinations, with the largest deviation from this
functional form reaching 1 part in 103 in the extremal limit
a → M for an equatorial observer, when the critical curve is
least circular and develops a vertical edge [30].
The five parameters R0, R1, R2, X, and χ in the phoval

family of shapes admit a simple geometric interpretation.
The offset X accounts for a spin-dependent, translation of
the centroid of the critical curve relative to Bardeen’s
Cartesian coordinate system ðα; βÞ. Together with the
parameter χ ∈ ½−1; 1�, which is necessary to reproduce
the asymmetry of the high-spin, high-inclination critical
curve, it only enters into the projected centroid of C̃,

C̃φ ≈ ðX − χÞ cosφþ arcsinðχ cosφÞ: ð16Þ

The projected diameter thus takes the functional form

d̃φ
2
≈ R0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 sin

2 φþ R2
2 cos

2 φ
q

; ð17Þ

controlled by three characteristic radii R0, R1, and R2.
When R1 ¼ R2 ¼ 0, this describes a curve of constant
radius R0, such as a perfect circle, which is the shape of C̃
for an on-axis observer at any spin or for any observer at
zero spin. When R0 ¼ 0 instead, (17) describes a perfect
ellipse with axes of length R1 and R2, which is exactly the
shape of C̃ for all spins and low observer inclinations, or
equivalently for all inclinations at small spin [17].
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Based on the reasoning laid out above, [15] conjectured
that the projected diameter of the n ≥ 2 rings of M87*
(which due to its jet orientation is believed to be observed at
a relatively low inclination of θo ≈ 17° [9]) ought to follow
the four-parameter functional form of a “circlipse”

dðnÞφ

2
≈ R0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 sin

2ðφ − φ̄Þ þ R2
2 cos

2ðφ − φ̄Þ
q

; ð18Þ

where the additional offset angle φ̄ is meant to account for
the uncertain image-plane orientation of the projected black
hole spin (and in practice, the low-n subrings may also
appear rotated relative to the critical curve).
As checked in [15,19,20] for multiple astrophysical

source profiles around a Kerr black hole, the visibility
amplitude in the regime (11) dominated by the n ¼ 2 ring
really does follow the universal form (10), with a projected

n ¼ 2 ring diameter dð2Þφ following the circlipse shape (18).
We may therefore regard (18) as a generic prediction for the
interferometric signature of the n ≥ 2 rings that follows
from the Kerr hypothesis. As argued in [15,19–21], a
measurement of the interferometric n ¼ 2 ring diameter

dð2Þφ ðuÞ on long Earth-space baselines could deliver a
stringent test of strong-field general relativity.

D. Predicted interferometric shape
of the first (n= 1) photon ring

Having reviewed the prediction for the interferometric
shape of the n ≥ 2 photon rings, we now turn to the first
photon ring, for which an analogous prediction has so far
been lacking. In large part, this is because the preceding
discussion breaks down for the first n ¼ 1 subring:
(1) Because of its significant width w1 ∼M and large

width-to-diameter ratio w1=d ∼ 10%, the first ring

really lacks a sharply defined diameter dð1Þφ in image
space: at a given angle φ around the image, it has a
wide range of possible diameters (Fig. 1). Moreover,
unlike the higher-n rings, the n ¼ 1 ring is not yet
strongly constrained to track the critical-curve shape
C̃. As a result, there is no theoretical prediction for its
image diameter—more than that, it is not even clear
how such a diameter could be precisely defined from
the n ¼ 1 ring image.

(2) Relatedly, even if we were able to define the n ¼ 1

ring diameter dð1Þφ in image space and then derive a
prediction for it, we would have no reason to expect
its visibility to adopt the universal form (9): first,
because this form was derived in a leading-order
expansion in w=d ≪ 1 and may receive significant
corrections when w1=d ∼ 10%, and second, because
the n ¼ 1 ring typically fails to exhibit a “universal
regime” in which it dominates the signal, since the
range (11) closes off for thick rings with w=d≳ 10%

(see Appendix B and Appendix C of [19] for more
details).

To get around all these issues, we propose to define an
interferometric diameter dð1Þφ ðuÞ from the periodicity of the
visibility amplitude in the baseline range where the n ¼ 1
ring dominates, namely,

1

d
< u≲ 1

w1

: ð19Þ

We reiterate that this range is typically too narrow to
contain a universal regime (11). For observations of M87*
at 230 GHz, this range usually stretches from ≳25 Gλ to
≲100 Gλ, and therefore contains only ∼15 hops of perio-
dicity Δu ∼ 5 Gλ. Nevertheless, even a handful of hops is
already enough to estimate a periodicity, and thence infer a

diameter dð1Þφ .
Two final questions remain. First, we have no reason to

expect the visibility amplitude in the (nonuniversal) n ¼ 1
regime (19) to take the universal form (10), so there is no
obvious functional form to fit to the visibility. How then can
we best extract its periodicity?
Second, assuming an interferometric diameter dð1Þφ can

be extracted from the visibility amplitude, what form
should its angle dependence take? Since this diameter
would have no clear connection to any precise feature in the
image, it is perhaps not evident what to expect.
To tackle the first problem, we note that the universal

visibility amplitude (10) can be generalized to [19]

jVðuÞj ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAL

φÞ2 þ ðAR
φÞ2 þ 2AL

φAR
φ sinð2πdφuÞ

q
; ð20Þ

where, instead of decaying like
ffiffiffi
u

p
, the angle-dependent

functions AL=R
φ may become general functions of u,

AL=R
φ ðuÞ ¼ eupperðuÞ � elowerðuÞ

2
: ð21Þ

Here, eupperðuÞ and elowerðuÞ respectively correspond to the
upper and lower envelopes of the function (20), which
oscillates between these envelopes with periodicity dφ. As
shown in [19,21], fitting a ringing signal to (20) is a more
robust method for inferring its periodicity, even when it
takes the universal form (10). Mathematically speaking, we
know of no reason why it should always be possible to fit a
generic ringing visibility to the functional form (20), but in
practice we find that it is sufficiently general to work (see
Sec. 3.2.2 of [19] for more discussion).
As for the second question, the simplest guess is that the

interferometrically defined n ¼ 1 ring diameter dð1Þφ still
follows the circlipse shape (18), at least for the low observer
inclinations relevant to M87* observations. At this stage of
the discussion, this is merely a conjecture which may not
necessarily be correct. As we will show in the remainder of
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the paper, however, it does turn out to be true (to about 1
part in 103) in a wide range of simple phenomenological
models of M87*.
As such, we may also regard (18) as a prediction from

the Kerr hypothesis for the interferometric shape of the
n ¼ 1 ring, and its measurement could provide a precise
probe of general relativity in the strong-field regime.

E. Comparison with the shadow and critical curve

In certain highly fine-tuned scenarios, the photon ring
and its subring substructure are not present in black hole
images. This happens, for instance, when the black hole is
immersed in a spherically symmetric accretion inflow: in
that case, the observational appearance of the source
consists of a bright ring that encircles a central brightness
depression whose boundary precisely coincides with the
critical curve—an effect known as the “black hole shadow”
[31,32]. In such a scenario, measuring the shadow—the
shape of the central brightness defici—yields a direct
measurement of the critical curve C̃, and hence of the
black hole geometry. Indeed, the shape of C̃ depends only
on the black hole mass M, its spin a, and the inclination θo
of the observer, and these three parameters can be directly
recovered from the three radii ðR0; R1; R2Þ that parametrize
the projected diameter (17) of C̃.
Unfortunately, such an astrophysical scenario does not

seem to be relevant for either M87* or Sgr A* [1–4], which
are instead expected to present the photon ring structure
described in Sec. II. Thus, the analytically known critical
curve, which directly encodes the black hole parameters
ðM;a; θoÞ, is likely not observable in itself. On the other
hand, the photon rings, which are, in principle, observable,
do not have an analytically predicted shape that encodes
ðM;a; θoÞ, at least for rotating black holes.3 Rather, their
appearance is not entirely fixed by the Kerr geometry, but
instead varies with the astrophysical details of the emitting
source: indeed, two black holes with the same mass and
spin, observed from the same inclination, can nonetheless
display photon rings of noticeably different shapes if their
emission differs [15].
In other words, while the shape of the photon rings does

track that of the critical curve, in the sense that their
projected diameters follow the same functional form (17)–
(18), the radii parametrizing these functions differ in their
interpretation: in (17), they can be mapped back to
ðM;a; θoÞ, whereas in (18), this map itself depends on
the source, with the astrophysical dependence vanishing as
n → ∞. Hence, measuring the projected diameter (18) of
the nth photon ring gives stronger constraints on ðM; a; θoÞ
the higher n is. For n ¼ 2, these can likely be inferred
within a few percent, but less precisely for n ¼ 1.

F. Summary of the predicted first ring shape

To summarize, we predict that in the baseline range (19)
dominated by the n ¼ 1 ring, the visibility amplitude of the
(time-averaged) image of a Kerr black hole displays a
characteristic ringing with angle-dependent periodicity

Δu ¼ 1=dð1Þφ , where dð1Þφ follows the functional form
(18) to high precision. This naturally extends a previous
[15] and similar prediction for the higher-n rings to the first
and most easily accessible n ¼ 1 subring.
In contrast to the n ≥ 2 rings, for which dðnÞφ may be

associated with the diameter of the nth ring in the image,

the n ¼ 1 ring diameter dð1Þφ is defined purely interfero-
metrically and lacks a sharp image-space interpretation.
The diameter dð1Þφ may be extracted from the visibility

amplitude by fitting the latter to (20) and finding the best-
fitting envelopes (21) and circlipse shape (18). The three
circlipse radii ðR0; R1; R2Þ loosely track the black hole
parameters ðM; a; θoÞ, but their precise relation is not
robust and depends on the astrophysics of the source.

IV. PHENOMENOLOGICAL SOURCE MODEL

Having formulated a prediction for the interferometric
shape of the n ¼ 1 ring, we now wish to test whether it does
indeed hold in a simple phenomenological model of M87*.
In this section, we give a lightning review of the source
model introduced in [4,15,19,21]. Then, we use our
Adaptive Analytical Ray Tracing code AART [21]—which
exploits the integrability of light propagation in the Kerr
spacetime—to compute high-resolution black hole images
of this model, together with their corresponding visibilities
accessible on long space-ground baselines.
We model the source as a stationary, axisymmetric,

equatorial disk composed of emitters describing circular
Keplerian orbits down to the radius rms of the innermost
stable circular orbit), past which they plunge into the hole
following a prescription of Cunningham [34].
To determine the observational appearance of the source

at an image-plane position ðα; βÞ, we analytically trace the
corresponding light ray back from the observer’s image
plane and into the emitting region, increasing the observed
intensity Ioðα; βÞ each time the ray intersects the accretion
disk by an amount dictated by the local emissivity. The full
procedure is efficiently implemented in our relativistic ray
tracing code AART [21].
For completeness, we sketch the main ingredients of the

calculation, referring the reader to [21] for the details of our
implementation. Effectively, we compute

Ioðα; βÞ ¼
XNðα;βÞ−1

n¼0

ζn · g3ðrðnÞs ;αÞIsðrðnÞs Þ; ð22Þ

where rðnÞs ¼ rðnÞs ðα; βÞ denotes the (analytically known)
equatorial radius at which a ray intersects the equatorial

3In the Schwarzschild case, there does exist an analytic
asymptotic formula for the n ≥ 2 images of an equatorial
emission ring [33].
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plane for the (nþ 1)th time on its backward trajectory from
image-plane position ðα; βÞ, up to a total number Nðα; βÞ
along its maximal extension. Meanwhile, g is a redshift
factor (which is determined by the motion of the emitters
and also known analytically), IsðrÞ is a radial emission
profile, and ζn is a “fudge” factor, which we assume to be
equal to 1 for n ¼ 0, and 1.5 for n ≥ 1.
The inclusion of this factor is meant to account for the

(otherwise neglected) effects of the disk’s geometrical
thickness. It improves the qualitative agreement between
images of this equatorial model and the time-averaged
images obtained from state-of-the-art GRMHD simula-
tions [4,20].
We consider a family of radial emission profiles derived

from Johnson’s standard unbounded (SU) distribution,

IsðrsÞ ¼ JSUðrs; μ; ϑ; γÞ≡ e−
1
2
½γþarcsinhðrs−μϑ Þ�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrs − μÞ2 þ ϑ2

p ; ð23Þ

where the parameters μ, ϑ, and γ respectively, control the
location of the profile’s peak, its width, and the profile
asymmetry [19]. In our survey over emission profiles, we
examine the same set of parameters as in [19], which we list
in Table I. We display the corresponding profiles in Fig. 2,
which shows that these values span a wide range of possible
emissivities. In particular, our survey includes a profile
(solid blue line in Fig. 2) whose corresponding image is
directly comparable to the time-averaged image in Fig. 1 of
[2], for which the parameters in the underlying GRMHD
simulation were chosen to ensure consistency with the
2017 EHT observations of M87*.

V. SURVEY OVER EMISSION PROFILES

Using AART [21], we perform a parameter survey over
the emission profiles in Table I and Fig. 2, enabling us to
verify how well our prediction for the interferometric shape
of the n ¼ 1 ring holds in our model.
For each of the 100 considered emission profiles, we ray

trace high-resolution images and compute the associated
visibility amplitudes on very long baselines with AART—
we assume throughout a black hole spin of a=M ¼ 94%
and an observer inclination θo ¼ 17°, but we expect our
conclusions to hold more generally at low inclinations.

Then, following the procedure introduced in [19], we
determine the functional forms (20)–(21) that best fit the
visibility amplitude in a given baseline range, allowing us
to extract a characteristic periodicity for its ringing and
thereby infer a projected diameter dφ.
As discussed in [15,19], on baselines of length ∼u, the

functional form (20) is approximately invariant under shifts
dφ → dφ þ k=u for integer k, creating a discrete degen-
eracy in the inferred diameter dφ. In principle, this
degeneracy may be broken by counting the exact number
of hops from u back to the origin u ¼ 0, which would fix
the radial periodicity Δu of the ringing, and hence dφ. In
practice, this is not possible if we can only sample a fixed
baseline window far from the origin. Instead, we fit dφ at
multiple baseline angles φ simultaneously, so as to obtain
the best global fit dobsφ for the interferometric diameter. This
multifit procedure is explained in Sec. 3.2 of [19].
We carry out the fit on four different baseline windows of

width 30 Gλ, and assess how well the resulting interfero-
metric diameters dobsφ ðuÞ match the prediction (18) in each

FIG. 2. Radial emission profiles (23) considered in this work
(with parameters listed in Table I). These profiles range from
emission that peaks inside the horizon and then decays rapidly
outside (dotted green), to emission that peaks past the innermost
stable circular orbit (with innermost stable circular orbit ra-
dius rms) and decays very slowly thereafter (dash-dot blue).
The radii of the outer and inner horizons are denoted by r� ¼
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
and indicated with vertical lines. The profile

depicted with a solid blue line was considered in [15]. It is
broadly consistent with the 2017 EHT observations of M87* on
Earth-size baselines and qualitatively similar to time-averaged
images of state-of-the-art general-relativistic magnetohydrody-
namic (GRMHD) simulations (see, e.g., Fig. 1 of [2]). The insets
display the images produced by each of these three highlighted
profiles.

TABLE I. Values of the parameters considered in our survey
over the 100 radial emission profiles (23) shown in Fig. 2. The
outer/inner event horizon radii are r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
.

Johnson SU
parameter Values

μ r−; rþ=2; rþ; 3rþ=2; 2rþ
γ −2;−1, 0, 1, 2
ϑ=M 0.25,0.5,1.0,1.5
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of the windows as a function of the emission profile. In
realistic observations, the sampled baseline window would
likely vary in size and location, so this simulates a some-
what idealized experiment. We chose a fixed width of
30 Gλ to ensure that the baseline windows contain ∼5 hops
in the visibility amplitude.
The first three baseline windows that we examine are

½40; 70� Gλ, ½50; 80� Gλ, and ½70; 100� Gλ. These often lie
in the range (19) dominated by the n ¼ 1 ring, though
sometimes they may also fall into a region where the n ¼ 0
image still contributes significant power.
Meanwhile, the fourth window spans the much longer

baselines ½285; 315� Gλ, which were investigated in [15]
and typically fall into a universal regime (11) dominated by
the n ¼ 2 ring. For some profiles, however, these baselines
fall into a transition regime between the range (19)
dominated by the n ¼ 1 ring and the universal n ¼ 2 range
(11). As explained in Sec. 4 of [19], in such cases the
inferred diameter dobsφ may belong to neither ring, as the
visibility amplitude receives significant contributions from
both of them, resulting in interference. Or, it may happen

that dobsφ measures the n ¼ 1 ring diameter dð1Þφ at some

angles φ, and the n ¼ 2 diameter dð2Þφ for others.
In principle, all these baselines are within reach of an

eccentric orbiter whose Earth perigee is at ∼4.5 × 104 km
and its apogee at∼4 × 105 km, provided it is equipped with
receivers capable of observing on multiple frequency bands
between 83 and 345 GHz. Indeed, a baseline extending
from Earth to such an orbiter could sample the visibility
from ∼12 Gλ (shortest baseline with the lowest frequency)
to ∼455 Gλ (largest baseline with the highest frequency).
Given an observed diameter dobsφ , we assess the quality of

its best fit dGRφ to the circlipse shape (18) by computing the
ring-averaged normalized root-mean-square deviation

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdobsφ − dGRφ Þ2iφ

q
hdGRφ iφ

: ð24Þ

The RMSD distributions resulting from the fits on the
four different windows are shown in Fig. 3. As expected,
the shortest baseline window is the one where fitting a
circlipse shape to the inferred diameter is hardest: out of the
100 profiles studied, 53 provided a RMSD ≤ 0.05%, which
is our (conservative) cutoff. The number of models for
which the RMSD ≤ 0.05% jumps to 85 for the longest
baseline window considered.
Here, it is important to clarify that the inability to obtain

good circlipse fits within a fixed baseline window for some
of the emission profiles does not mean that the diameters of
their rings fail to follow the circlipse shape (18). In fact, for
all of our profiles, each ring produces a clean ringing
signature, as expected from our discussion in Sec. III. This
can be seen, for instance, in Fig. 4, where we display the

total visibility amplitude—together with its decomposition
into separate subring contributions—for two representative
profiles: one with the best-fitting circlipse in the window
½70; 100� Gλ (top two rows), and another with the worst fit
whose RMSD ≤ 0.05% we nonetheless deemed acceptable
(bottom two rows). The difficulty, therefore, lies in whether
the ring diameters can be extracted from the total visibility
amplitude, which is of course the only one that is
observable in experiment.
Consistent with [15,19], we find that for the n ¼ 2 ring,

one may always obtain a good fit to the circlipse shape (18)
from the total visibility amplitude, though this may require
going to extremely long baselines (sometimes as far as
1000 Gλ [19]). This is only possible to do while still
remaining in the universal regime (11) dominated by the
n ¼ 2 ring because the width of this range is so large.
By contrast, while the n ¼ 1 ring image by itself also

produces a clean interferometric ringing, this signature only
dominates the total visibility in the comparably much
narrower range (19). As a result, in some models, there
may not exist a single baseline range in which the n ¼ 1
ring dominates at every baseline angle φ (so that its full

angle-dependent diameter dð1Þφ may be extracted).
By fixing a baseline length (window size) and angle, we

may thus obtain a visibility amplitude that can be either

FIG. 3. The normalized root-mean-square deviation (RMSD)
distributions of the fits for four different windows of size 30 Gλ
with overlaying kernel density estimations. The percentage of
models for which we get an acceptable fit (RMSD ≥ 0.05%) are
53%, 70%, 72%, and 85% for the windows ½40; 70� Gλ,
½50; 80� Gλ, ½70; 100� Gλ, and ½285; 315� Gλ, respectively. For
the baseline window ½70; 100� Gλ, we display the best fit in the
top panels of Fig. 4, while the worst fit (which still has an
RMSD ≤ 0.05%) is shown in the bottom panels of Fig. 4.
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FIG. 4. Visibility amplitudes at two different baseline angles (φ ¼ 15° and φ ¼ 85°), together with corresponding images and inferred
diameters dφ, for two emission profiles from our survey (with Johnson SU parameters shown in the lower-left corner). The top two rows

display the profile whose interferometric n ¼ 1 ring diameter dð1Þφ inferred from the periodicity of the visibility amplitude in the baseline
window ½70; 100� Gλ (yellow) best fits our theoretical prediction (18), with an RMSD of 0.0025%. Conversely, the bottom two rows
correspond to the profile in our survey with the worst fit to the circlipse shape (18) that nonetheless has RMSD ≤ 0.05%. For the best-fit
profile, an excellent fit is also obtained in the other two baseline windows: RMSD of 0.012% in ½40; 70� Gλ (magenta) and RMSD of
0.0016% in ½285; 315� Gλ (purple). On the other hand, for the worst-fit profile, a good fit is not possible in the window ½40; 70� Gλ
because it lies in the transition region between the regimes dominated by the n ¼ 0 and n ¼ 1 rings: at many baseline angles in this
range, each of the two rings produces significant power, and their signals interfere in the visibility, whose periodicity then corresponds to
neither’s diameter. For each profile, we decompose the total visibility amplitude into the contributions it receives from each image layer
labeled by n. This total amplitude (dashed black line) is the sum of all the subring contributions in image space, but not in Fourier space.
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dominated by a single ring or can show comparable power
in multiple rings, as illustrated in Fig. 4. Here, the relevant
factor is primarily the width of the profile, which deter-
mines the locations and widths of the ranges over which
each ring dominates the signal by itself.
On longer baselines ∼300 Gλ, one may see interference

between the n ¼ 1 and n ¼ 2 rings. This does not happen
for the top model in Fig. 4, for which the visibility
amplitude is completely dominated by the n ¼ 2 ring in
the purple window, resulting in an excellent circlipse fit.
For the bottom model, on the other hand, the emission

profile—and hence the n ¼ 1 ring—are much narrower, so
the n ¼ 1 range (19) extends farther out and there is some
interference between n ¼ 1 and n ¼ 2 in the purple
window ½285; 315� Gλ, resulting in a slightly worse cir-
clipse fit. Nonetheless, it is clear that going farther out to
even longer baselines would further attenuate the power
from the n ¼ 1 ring and lead to a better circlipse fit to the
n ¼ 2 ring diameter in this model also.
Neither of these models displays a transition between

measuring purely dð1Þφ or dð2Þφ at different φ, though this can
also sometimes occur—particularly at higher inclinations—
as shown in Fig. 6 of [19].
On shorter baselines ≲100 Gλ, a clean diameter can be

more challenging to extract because of more frequent
interference between the n ¼ 0 and n ¼ 1 rings. When
such interference occurs, the inferred diameter can differ
more from that of a circlipse, which is expected since the
n ¼ 0 ring is not constrained to closely follow that shape.
For the top model in Fig. 4, such interference never

occurs in either the magenta window ½40; 70� Gλ nor the
yellow window ½70; 100� Gλ, which are always dominated
by the n ¼ 1 ring and from which we can therefore extract

diameters dð1Þφ with excellent circlipse fits.
For the bottom model in Fig. 4, in the yellow window

½70; 100� Gλ, there are baseline angles (such as φ ¼ 15°)
where the n ¼ 1 ring dominates, but at other angles (such
as φ ¼ 85°) the n ¼ 0 ring retains significant power. As a
result, the circlipse fit is not as good at those angles.
For extremely narrow profiles, the first three image

layers (n ¼ 0 through n ¼ 2) all consist of very thin rings,
and one may even observe interference effects between all
three—this is, for instance, the case for the bottom model in
Fig. 4 in the magenta window ½40; 70� Gλ at φ ¼ 85°. Even
at other angles (such as φ ¼ 15°) where the n ¼ 0 signal
has relatively died out, the n ¼ 1 and n ¼ 2 rings still have
comparable power, which explains why the circlipse fit in
that window is so poor overall.
These angle-dependent effects ought to grow with the

observer inclination, but we expect them not to pose an
insuperable obstacle at the low-to-moderate inclinations
≲30° of likely relevance for M87*. As for the black hole
spin, higher spins increase the angular variation of dφ and
should therefore facilitate a precise circlipse fit—we defer a
more thorough investigation to future work.

VI. RESOLVING THE PHOTON RING

In this section, we discuss some of the implications of
our results for future measurements of the n ¼ 1 ring,
before concluding in Sec. VII.
There already exist multiple promising ways to detect the

photon ring via its distinctive polarimetric signature [35] or
characteristic pattern of autocorrelations [23,29]. Here, we
set aside these potential avenues for detection and focus
exclusively on the complex visibility (2) dual to the image
intensity and, more precisely, its amplitude.
In that case, it seems likely that the first unambiguous

observation of the photon ring will occur via a detection of
its characteristic “ringing” in the visibility amplitude.
Moreover, this ringing will likely first be detected on the
relatively shorter Earth-to-space baselines u≲ 100 Gλ
most easily accessible to observations, where the first
subring dominates the visibility. Hence, our prediction

(18) for the angle-dependent diameter dð1Þφ of the n ¼ 1
ring, which may be inferred from the angle-dependent
radial periodicity of the ringing in the visibility amplitude,
is especially timely.
However, an important caveat is in order at this stage.

According to Fig. 5, a ringing in the visibility amplitude on
baselines of length ∼20–40 Gλ does not by itself provide
conclusive evidence for the presence of the photon ring.
After all, the n ¼ 0 image is also ringlike [9] (in line with
theoretical expectations) and therefore it also produces a
characteristic ringing on those baselines by itself (top row
of Fig. 5). Naively, it seems necessary to probe longer
baselines ≳40 Gλ to determine whether there really is a
signature of the photon ring, that is, of strong gravity’s
stamp (bottom row of Fig. 5). For M87* observations at
230 GHz, an interferometer with a space element appears to
be indispensable to achieve the requisite baseline length.
Of course, a precise threshold past which the n ¼ 0

signal decays depends on the width of the n ¼ 0 ring in the
image. Likewise, the decay rate of the visibility amplitude
in the regime (19) dominated by the n ¼ 1 ring may well
provide some information about its width.
It would be interesting to determine whether this width—

and hence the Kerr-predicted demagnification factor e−γ—
may be recovered from the falloff rate of the visibility, that
is, whether the envelope of the damped oscillations con-
strains the ring width.
We take some first steps in this direction in Appendix A,

where we investigate the relation between the width w of a
Gaussian ring and the falloff rate e−2π

2w2u2 of its visibility
amplitude. Generalizing such relations (if possible) would
be interesting, since a measurement of γ could yield a
much-sought-after estimate of the black hole parameters,
particularly its spin.
Finally, we note that a measurement of the predicted

shape (18) for the interferometric diameter of the n ¼ 1
ring would yield a consistency test of strong-field general
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relativity, since measuring a different diameter would be
incompatible with Kerr hypothesis. At the same time, a
measurement of the expected circlipse shape would not
necessarily discriminate between general relativity and
alternative theories of gravity predicting the same shape.
On that note, [18] recently investigated the shape of the

n ¼ 2 photon ring in modified theories of gravity. They
found that deviations from the circlipse shape were small
unless the deviation from the Kerr geometry grew very
large. This conclusion merits reevaluation in the context of
the n ¼ 1 ring, whose deviations could perhaps be stronger.

VII. CONCLUSION

In this paper, we examined the shape of the first n ¼ 1
photon ring in time-averaged images of a simple model of
M87* with an equatorial source around the black hole.
We found that, even though this first photon ring lacks a

sharply defined diameter in the image domain (unlike the
n ≥ 2 rings, which are much narrower and converge to the
critical curve exponentially in n), it is nevertheless possible
to define its angle-dependent projected diameter from the
periodic ringing of its interferometric signature in visibility
space, which is the observable that proposed extensions of
the EHT to space will directly probe.
We showed in the context of our simple model of M87*

that this interferometrically defined n ¼ 1 ring diameter

follows the shape (18) of a circlipse. We therefore regard
this as a prediction from strong-field general relativity (and

its Kerr hypothesis) for the shape dð1Þφ of the first photon
ring, which is most accessible to observation and will
hopefully be measured soon.
We emphasize that the prediction of a circlipse shape (18)

for dðnÞφ is theoretically well-motivated when n ≥ 2. The idea
that the same shape would also describe the n ¼ 1 ring is a
guess that we empirically observed to hold in our models.
The results of thiswork indicate thatmeasuringdð1Þφ within

a few percent of the critical-curve diameter d̃φ is possible for
several astrophysical profiles, and important factors affecting
the accuracy of these measurements have been highlighted.
As a final caveat: we have only studied time-averaged

images and need to examine instantaneous snapshots with
noise—both instrumental and astrophysical—to truly
establish this as a robust prediction. This work is now
ongoing, and we expect to report results soon. Overall, this
line of research provides valuable insights into the inter-
ferometric structure of black hole images and lays the
groundwork for future observations.
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APPENDIX A: THICK AXISYMMETRIC RINGS

This appendix explores the relation between the decay
rate of the visibility amplitude of a thick axisymmetric ring
and its width.
In polar coordinates, the radio visibility Vðu;φÞ of an

image Iðρ;ϕÞ, that is, its Fourier transform (2), is

Vðu;φÞ ¼
Z

∞

0

Z
2π

0

Iðρ;ϕþ φÞe−2πiuρ cosϕρdρdϕ: ðA1Þ

For an axisymmetric image with a purely radial profile IðrÞ,
this is simply the zero-order Hankel transform

VðuÞ ¼ H0½IðρÞ� ¼
Z

∞

0

2πρJ0ð2πuρÞIðρÞdρ; ðA2Þ

which is self-inverse (H2
0 ¼ I), so IðρÞ ¼ H0½VðuÞ�.

1. Convolution theorem for Hankel transform

If two axisymmetric images I1ðρÞ and I2ðρÞ have the
visibilities V1ðuÞ ¼ H0½I1ðρÞ� and V2ðuÞ ¼ H0½I2ðρÞ�, then
their product image has visibility VðuÞ ¼ H0½I1ðρÞI2ðρÞ�
given by

VðuÞ ¼
Z

∞

0

Z
2π

0

V1ðUÞV2ðu0Þu0du0dφ; ðA3Þ

with U2 ¼ u2 þ u02 − 2uu0 cosφ. Since the zero-order
Hankel transform is self-inverse, this formula also holds
with I ↔ V interchanged.

2. Infinitely thin ring

An infinitely thin ring of radius r (normalized to have
unit total flux) has radial profile

IδðρÞ ¼
1

2πr
δðρ − rÞ; ðA4Þ

and corresponding visibility

VδðuÞ ¼ J0ð2πruÞ: ðA5Þ

3. General thick axisymmetric ring

Consider another image with some radial profile IwðρÞ
and associated visibility VwðuÞ. By (A3), the product
visibility VðuÞ ¼ VδðuÞVwðuÞ corresponds to an image

IðρÞ ¼
Z

∞

0

Z
2π

0

IwðRÞ
δðρ0 − rÞ

2πr
ρ0dρ0dϕ

¼
Z

2π

0

dϕ
2π

Iw
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ r2 − 2ρr cosϕ
q �

; ðA6Þ

since R2 ¼ ρ2 þ ρ02 − 2ρρ0 cosϕ. This leads to a simple
idea: any bump IwðρÞ of width w at the origin creates a ring
image IðρÞ, and vice versa.

4. Example: Gaussian ring

The Gaussian ring of width w, diameter d, and unit total
flux (Vð0Þ ¼ 1), has a visibility

VðuÞ ¼ J0ð2πruÞe−2π2w2u2 : ðA7Þ

This is of the product form VðuÞ ¼ VδðuÞVwðuÞ with
VwðuÞ ¼ e−2π

2w2u2 , which corresponds to a unit-flux
Gaussian bump of width w:

IwðρÞ ¼
1

2πσ2
e−

ρ2

2w2 : ðA8Þ

By (A6), the Gaussian ring image has a radial profile

IðρÞ ¼ 1

ð2πÞ2rw2

Z
∞

0

Z
2π

0

e−
ρ2þρ02−2ρρ0 cosϕ

2w2 δðρ0 − rÞρ0dρ0dϕ

¼ 1

2πrw2

Z
∞

0

e−
ρ2þρ02
2w2 I0

�
ρρ0

w2

�
δðρ0 − rÞρ0dρ0

¼ 1

2πw2
e−

d2

8w2I0

�
dρ
2w2

�
e−

ρ2

2w2 ; ðA9Þ

where I0ðxÞ is a modified Bessel function of the first kind.
Its name is justified because as long as the ring diameter is
large enough that the intensity is small near the origin, this
profile is indistinguishable from a Gaussian of width w and
radius r:

IðρÞ ≈
d≫1 1

ð2πÞ3=2 ffiffiffiffiffi
rρ

p
w
e−

ðρ−rÞ2
2w2 : ðA10Þ

5. Example: Lorentzian ring

The Lorentzian (Cauchy distribution) of width w is

IwðρÞ ¼
1

ρ2 þ w2
: ðA11Þ

Famously, all of its moments diverge. In particular, this
image has infinite flux and its visibility is logarithmically
divergent at the origin:

VwðuÞ ¼ 2πK0ð2πwuÞ ≈
u→0

2π log

�
1

2πu

�
; ðA12Þ
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where K0ðxÞ is a modified Bessel function of the second
kind. The Lorentzian ring of width w and radius r has
visibility

VðuÞ ¼ 2πJ0ð2πruÞK0ð2πwuÞ ðA13aÞ

≈
u→∞ 2π2J0ð2πruÞffiffiffiffiffiffi

wu
p e−2πwu; ðA13bÞ

which on long baselines decays like a linear exponential.

6. Example: “Smooth bump” ring

The smooth bump of width w is the function

fwðxÞ ¼
�
e−

w2

w2−x2 x∈ ½−w;w�;
0 otherwise:

ðA14Þ

It defines a (normalizable) radial bump of width w

IwðρÞ ¼ cfwðρÞ; c−1 ¼ 2π

Z
∞

0

fwðρÞρdρ; ðA15Þ

whose convolution with IδðρÞ produces a ring image IðρÞ
with compact support localized in a band of width 2w.
The Fourier transform of f1ðxÞ behaves asymptotically
as [36]

f̃1ðkÞ ≈
k→∞

2ℜ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−iπffiffiffiffi
2i

p
k3=2

s
eik−

1
4
−

ffiffiffiffiffi
2ik

p 	
: ðA16Þ

Therefore, we expect that on long baselines, the visibility
VðuÞ of a smooth bump ring of unit width will scale as

VðuÞ ∝u→∞ J0ð2πruÞ
u3=4

e−
ffiffi
u

p
; ðA17Þ

which indeed appears to be the case numerically.

7. An observation

In the three examples above, the visibility of a ring of
width w asymptotically behaves as VðuÞ ∼ e−cðwuÞp for
some constants c and p. Mathematical properties of the
profile can impose stringent restrictions on these constants.
For instance, if the profile is analytic, then p ≥ 1 by the
Paley-Wiener theorem, as exemplified by the Gaussian
and Lorentzian rings (meanwhile, the smooth bump has
p ¼ 0.5 but is not analytic). It seems worthwhile to explore
the set of possible values of c and p found in phenom-
enological models and to investigate whether a robust
connection to the ring width w can be established.

APPENDIX B: NO UNIVERSAL REGIME
FOR THICK RINGS

In Sec. III, we discussed how a relatively thicker ring
(such as the n ¼ 1 photon ring in many models) may not
display a universal regime. In this appendix, we examine
explicitly how the universal regime opens or closes up as a
function of the width of a Gaussian ring.
A ring of width w and diameter d has one dimensionless

parameter: its width-to-diameter ratio, or thickness

t ¼ w
d
∈
�
0;
1

2

�
; ðB1Þ

This thickness cannot be too large: t≲ 1
2
is necessary to

have a ring rather than a disk. In the limit t → 0, we always
recover the infinitely thin ring IδðρÞ with visibility
VδðuÞ ¼ J0ð2πruÞ. A generic ring IðρÞ lies in between
these two extremes:

(i) A thick ring has 0 ≪ t≲ 1
2
.

(ii) A thin ring has 0 < t ≪ 1
2
.

Its visibility VðuÞ has two dimensionless scales U ¼ du
and W ¼ wu. These are not independent, but related by

0 < W ¼ tU < U: ðB2Þ

It is best to view the visibility as a function VðUÞ that has a
spacing of nulls ΔU ≈ 1 and exhibits three regimes:
(1) W < U < 1, or u < 1

d <
1
w: in this regime, the

visibility does not yet resolve the ring, as it has
not even reached its first null at U ∼ 1 or u ∼ 1

d.
(2) W < 1 < U, or 1

d < u < 1
w: in this regime, the

visibility resolves the ring (at least one null), but
not yet its width.

(3) 1 < W < U, or 1
d <

1
w < u: in this regime, the ring

has been fully resolved out.
This applies to both thick and thin rings, but for thin rings
only, a qualitatively new behavior can emerge in the second
regime. As usual, the reason is that if a system has a small
dimensionless parameter, then it ought to exhibit a large
separation of scales (and vice versa).
Here, if 0 < t ≪ 1

2
, then it is possible to simultaneously

have 1 ≪ U and tU ≪ 1, opening up a new regime
W ≪ 1 ≪ U, or 1

d ≪ u ≪ 1
w: the smallness of t ¼ W

U is
equivalent to the large separation of scales needed to open
up this new regime.
This is the universal regime. It is universal because in it

we may approximate W ≈ 0 and hence set t ≈ 0 while still
keeping U ≫ 1, which means that it is possible to stay in
this regime while forgetting about the width—and radial
profile—of the ring. Therefore, the visibility of any thin
ring in this regime must tend to VδðuÞ.
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1. Example: Gaussian ring

We now explore how this works in the context of the
Gaussian ring of width w and diameter d ¼ 2r, with the
visibility (A7) or

VðUÞ ¼ J0ðπUÞe−2π2W2 ¼ J0ðπUÞe−2t2π2U2

: ðB3Þ

In regime 1, both U and W ¼ tU are small, so we may
expand in U ≪ 1 to find the second-order approximation

VðUÞ≈1−
�
1

4
þ2t2

�
π2U2þ

�
1

64
þ t2

2
þ2t4

�
π2U2; ðB4Þ

which we expect to be valid for U < 1 and any t.
In Fig. 6, we confirm this by plotting the exact jVðUÞj

(blue) against its leading (orange) and subleading (green)
approximations for t ¼ 5%, finding good agreement in the
expected range U ≪ 1.
In regime 3, both U and W ¼ tU are large, so we may

expand in U ≫ 1 to obtain the leading approximation

VðUÞ ≈ cos πU þ sin πU

π
ffiffiffiffi
U

p e−2t
2π2U2

; ðB5Þ

which we plot in Fig. 6 (orange) against the exact jVðuÞj
(blue) for a ring of width t ¼ 20%, again finding excellent
agreement in the expected regime U ≫ 1.

We note that the approximations obtained in these
regimes are not in any sense universal: in particular, they
depend on the thickness t of the ring and would differ for a
non-Gaussian radial profile.
Finally, in regime 2, U is large but W ¼ tU is small, so

we cannot expand in U. We have no recourse but to expand
in t ≪ 1 to find

VðUÞ ≈ J0ðπUÞ½1 − 2t2π2U2 þ…�; ðB6Þ

which is only supposed to be a valid approximation for

1 < U ≲ 1

2πt
: ðB7Þ

Thus we only expect this approximation to be good as
t → 0, in which case it holds over a very large range and
forgets about the width (radial profile) of the ring to take the
universal form

VðUÞ ≈ J0ðπUÞ ¼ VδðUÞ: ðB8Þ

In Fig. 6, we confirm this by plotting the exact visibility
jVðuÞj (blue) against its leading (orange) and subleading
(green) approximations (B6), first for a relatively thicker
ring with t ¼ 8% and next for a thinner ring with
t ¼ 2%.

FIG. 6. Top left: Exact visibility amplitude jVðUÞj (blue) of a Gaussian ring with t ¼ 5% against its leading (orange) and subleading
(green) approximations (B4) in regime 1, showing excellent agreement in the expected range U ≪ 1. Top right: Exact visibility
amplitude jVðUÞj (blue) of a Gaussian ring with t ¼ 20% against its leading approximation (B5) in regime 3, showing excellent
agreement in the expected range U ≫ 1. Bottom left: Exact visibility amplitude jVðUÞj (blue) of a relatively thicker Gaussian ring with
t ¼ 8% against its leading (orange) and subleading (green) approximations (B6) in regime 2. Bottom right: Same for a narrower ring of
thickness t ¼ 2%. In both cases, we find excellent agreement in the expected range 1 ≪ U ≪ ð2πtÞ−1, where the profile follows the
universal form (B8) of an infinitely thin ring.
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Remarkably, we find that the agreement is good up
to U ≲ 2 in the first case, and up to U ≲ 8 in the
second case, exactly as predicted by (B7). At the lower
end, we find that for the Gaussian ring, the universal

formula applies all the way down to U ¼ 0, but this is
merely a coincidence: this would not be true of the
Lorentzian ring, for instance, whose visibility diverges
at the origin.
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