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Fermion soliton stars are a motivated model of exotic compact objects in which a nonlinear self-
interacting real scalar field couples to a fermion via a Yukawa term, giving rise to an effective fermion mass
that depends on the fluid properties. Here we continue our investigation of this model within general
relativity by considering a scalar potential with generic asymmetric vacua. This case provides fermion
soliton stars with a parametrically different scaling of the maximum mass relative to the model parameters,
showing that the special case of symmetric vacua, in which we recover our previous results, requires fine
tuning. In the more generic case studied here the mass and radius of a fermion soliton star are comparable to
those of a neutron star for natural model parameters at the GeV scale. Finally, the asymmetric scalar
potential inside the star can provide either a positive or a negative effective cosmological constant in the
interior, being thus reminiscent of gravastars or anti–de Sitter bubbles, respectively. In the latter case we
find the existence of multiple, disconnected, branches of solutions.
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I. INTRODUCTION

In a recent paper [1] we have explored in detail the
original model of fermion soliton stars1 [3]. These are
solutions to general relativity in the presence of a real scalar
field coupled to a fermion field via a Yukawa term. The
action of the theory reads2

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2
∂
μϕ∂μϕ − UðϕÞ

þ ψ̄ðiγμDμ −mfÞψ þ fϕψ̄ψ

�
; ð1Þ

where R is the Ricci scalar of the metric gμν, ϕ is the scalar
field with potential UðϕÞ, ψ is the fermion with mass mf,
and f is the Yukawa coupling. The latter provides an
effective mass, meff ¼ mf − fϕ, that is crucial for the
existence of these solutions [1,3], which indeed circumvent
classical no-go theorems for the existence of solitons [4,5].
The covariant derivative Dμ in Eq. (1) takes into account
the spin connection of the fermionic field.
The scalar potential adopted in [1,3] contains up to

quartic interactions and was tuned to have two degenerate

minima at ϕ ¼ 0 and ϕ ¼ vF, such that Uð0Þ ¼ UðvFÞ ¼ 0
(see blue curve in Fig. 1). A typical fermion soliton solution
has a scalar profile that interpolates between ϕ ≈ vF in the
interior and ϕ → 0 outside the star. Compact, spherically
symmetric solutions in this model were recently studied in
details [1].
The main goal of this paper is to extend our previous

work [1] to a more general potential breaking the degen-
eracy of the vacuum states (see Fig. 1). As we shall discuss,
this simply generalization unveils a number of interesting
features. In particular, it highlights that the original model
with degenerate vacua [1,3] is unnaturally fine tuned, since
when breaking the degeneracy the model is qualitatively
different from the original one. Furthermore, the breaking of

FIG. 1. Scalar potential in Eq. (2) normalized with respect to
U0 ¼ μ2v2F=12 as function of ϕ=vF for three different values of ζ.
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1See also Ref. [2] for a recent work on neutron stars in which a

real scalar field changes dynamically the equation of state of the
system.

2We use the signature ð−;þ;þ;þÞ for the metric and adopt
natural units (ℏ ¼ c ¼ 1).
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the degeneracy implies that the interior of the star can either
be described by an effective positive cosmological constant
(when UðvFÞ > 0) or by an effective negative cosmological
constant (when UðvFÞ < 0), with qualitatively different
properties. As we shall discuss, these two cases provide
a concrete and consistent realization of a model akin to
gravastars [6–8] or to anti–de Sitter bubbles [9], respec-
tively, providing a physically admissible, first principle
model for an exotic compact object [10].

II. FERMION SOLITON STARS
WITH ASYMMETRIC VACUUM

A. Setup

We consider the theory (1) with the scalar potential

UðϕÞ ¼ μ2v2F
12

vF
vB

�
ϕ

vF

�
2
�
3

�
ϕ

vF

�
2

− 4

�
ϕ

vF

��
1þ vB

vF

�
þ 6vB

vF

�
: ð2Þ

The latter features two minima at ϕ ¼ 0 and ϕ ¼ vF,
separated by a maximum located at ϕ ¼ vB. The potential
in Eq. (2) can be also written as

UðϕÞ ¼ μ2

2!
ϕ2 þ κ

3!
ϕ3 þ λ

4!
ϕ4; ð3Þ

with the definitions λ ¼ 6μ2

vBvF
, κ ¼ − λ

3
ðvF þ vBÞ.

By defining ζ ¼ vB=vF, it is possible to control the
energy difference between vacua, as illustrated in Fig. 1.
When ζ ¼ 1=2 the two minima are degenerate, whereas if
ζ > 1=2 the minimum ϕ ¼ vF has more energy than ϕ ¼ 0.
The opposite happens for ζ < 1=2.
In the degenerate case ζ ¼ 1=2, Eq. (2) takes the

simple form

UðϕÞ ¼ 1

2
μ2ϕ2

�
1 −

ϕ

vF

�
2

; ð4Þ

which is the potential originally considered in [3] and fully
investigated in [1].
We will focus on scenarios in which the fermion

becomes effectively massless (i.e., meff ¼ 0) when the
scalar field sits on the second vacuum, ϕ ¼ vF. This
condition implies fixing

f ¼ mf

vF
: ð5Þ

We will consider spherically symmetric equilibrium
configurations, whose background metric can be
expressed as

ds2 ¼ −e2uðρÞdt2 þ e2vðρÞdρ2 þ ρ2ðdϑ2 þ sin2 ϑdφ2Þ; ð6Þ

in terms of two real metric functions uðρÞ and vðρÞ.
Fermions are treated through the Thomas-Fermi approxi-

mation [1,3], practically meaning that they enter Einstein’s
equations as a perfect fluid characterized by an energy-
momentum tensor of the form

T ½f�
μν ¼ ðW þ PÞuμuν þ Pgμν; ð7Þ

where W is the energy density and P is the pressure of the
fluid, while they also enter the scalar field equation through
the scalar density S. These quantities are defined as follows

W ¼ 2

ð2πÞ3
Z

kF

0

d3kϵk; ð8Þ

P ¼ 2

ð2πÞ3
Z

kF

0

d3k
k2

3ϵk
; ð9Þ

S ¼ 2

ð2πÞ3
Z

kF

0

d3k
meff

ϵk
: ð10Þ

where ϵk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

eff

p
. Notice that W ¼ WðxμÞ through

the spacetime dependence of kF and meff (the same holds
for P and S). The integrals in Eqs. (8), (9) and (10) can be
computed analytically as shown for example in Ref. [1].
The fermion fluid is fully characterized once the Fermi

momentum kF is given. Within the Thomas-Fermi approxi-
mation, it can be shown that

k2FðρÞ ¼ ω2
Fe

−2uðρÞ − ðmf − fϕðρÞÞ2; ð11Þ

where ωF is the Fermi energy at the origin (ρ ¼ 0), which
can be written in terms of the fermion central pressure
Pðρ ¼ 0Þ≡ Pc (see Ref. [1] for details).
In order to simplify the numerical integrations, as well as

physical intuition, it is convenient writing the field equa-
tions in terms of dimensionless quantities. To this end,
we define

x ¼ kF
mf

; y ¼ ϕ

vF
; r ¼ ρμ: ð12Þ

Therefore, the potential U and kinetic V terms become

U≡ μ2v2FŨðyÞ;
V ≡ μ2v2FṼðyÞ; ð13Þ

where V ¼ 1
2
e−2vðρÞð∂ρϕÞ2. Moreover, we introduce the

following dimensionless fermionic quantities
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W̃ ¼ W
m4

f

; P̃ ¼ P
m4

f

; S̃ ¼ S
m3

f

: ð14Þ

It is convenient to further introduce the dimensionless
combination of parameters

Λ ¼
ffiffiffiffiffiffi
8π

p
vF

mp
; η ¼ mf

μ1=2v1=2F

: ð15Þ

where mp is the Planck mass, defined through G ¼ m−2
p .

Finally, the field equations (i.e., the Einstein-Klein-
Gordon equations with the addition of the Fermi momen-
tum equation) take the compact form [1]

e−2v− 1− 2e−2vr∂rv¼−Λ2r2½η4W̃þ Ũþ Ṽ�;
e−2v− 1þ 2e−2vr∂ru¼Λ2r2½η4P̃− Ũþ Ṽ�;

e−2v
�
∂
2
ryþ

�
∂ru− ∂rvþ

2

r

�
∂ry

�
¼ ∂Ũ

∂y
− η4S̃;

x2 ¼ ω̃2
Fe

−2uðrÞ− ð1− yÞ2;
ð16Þ

where Ũ, Ṽ, P̃, W̃, and S̃ depend on x, y, and r, and we also
introduced ω̃F ¼ ωF=mf. Static and spherically symmetric
configurations in the model (1) are solutions to the above
system of ordinary differential equations.
More details about the boundary conditions used and the

numerical procedure can be found in Ref. [1].

B. Scaling arguments

As highlighted in Ref. [1], simple analytical estimates
are possible in the macroscopic limit μR ≫ 1, by studying
Eq. (1) in the absence of gravity (R is the stellar radius).3

The main physical difference with respect to the ζ ¼ 1=2
case is the presence of a nonzero energy density associated
with the scalar field in the interior of the star. From Eq. (2),
the latter is

ϱ ¼ Uðϕ ¼ vFÞ ¼
μ2v2F
12ζ

ð2ζ − 1Þ: ð17Þ

In general, the total energy of the system is

E ¼ Ek þ Es þ Ev; ð18Þ

where Ek is the fermion energy, while Es ¼ 4πR2ð1
6
μv2FÞ,

Ev ¼ 4π
3
R3ϱ are the surface and the volume energy of the

scalar field, respectively. The quantity s ¼ 1=6μv2F plays
the role of a surface energy density. The minimum-energy

condition [1], ∂E=∂R ¼ 0 gives Ek ¼ 2Es þ 3Ev, which in
turn yields

M ≔ Emin ¼ 12πsR2 þ 16

3
πϱR3: ð19Þ

We estimate the critical mass Mc as the point in which
R ∼ 2GM. This gives a quadratic equation, whose positive
root is

Mc ∼ −
s

2ϱG
þ s
2ϱG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ϱ

Gs2

r
: ð20Þ

In the limit ϱ=Gs2 ≪ 1, i.e., when the surface energy
density dominates over that of the volume,

μMc

m2
p
∼

1

Λ2
; ð21Þ

which is indeed the scaling found in the case of perfect
degeneracy, ζ ¼ 1=2, studied in Ref. [1].
In the opposite limit, ϱ=Gs2 ≫ 1, when the volume

energy dominates we get

Mc ∼
1

G3=2jϱj1=2 : ð22Þ

Intriguingly, the latter scaling is what we would get from a
bubble of cosmological constant 8πGϱ. As we shall discuss
later, depending on the sign of ϱ, in this limit we can have a
compact object with either a positive or a negative effective
cosmological constant in the interior, reminiscent of grav-
astars [6–8] or anti–de Sitter bubbles [9], respectively.
Notice that Eq. (22) can be also written as

μMc

m2
p
∼
1

Λ
; ð23Þ

showing a parametrically different scaling with respect to
Eq. (21). Moreover, using Eq. (17) we get

ϱ
Gs2

∼
1

Λ2

ζ − 1
2

ζ
: ð24Þ

Remarkably, in the Λ ≪ 1 limit (which, as we shall discuss,
is the regime in which we find compact configurations of
astrophysical interest) the volume energy dominates as soon
as ζ departs from 1=2. Therefore, the case of degenerate
vacua, originally proposed in Ref. [3], appears unnaturally
fine-tuned.
Finally, we highlight that the macroscopic limit μR ≫ 1

parametrically corresponds to the region Λ ≪ 1. Indeed, the
dimensionless radius of the critical configuration μRc shows
the same scaling of the critical mass [see Eqs. (21) or (23)]
because of the relation Rc ∼ 2GMc.

3In the numerical procedure, the radius R is defined as that
containing 99% of the total mass (see Ref. [1]).
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C. Confining regime

Along the line of arguments given in Sec. III B of
Ref. [1] and in Sec. II B above, it is possible to compute
the scaling of ω̃F for the critical solution in the regime
μR ≫ 1. In this case, the real scalar field solution is well
approximated by a stiff Fermi function [3,11]

ϕðρÞ ≈ vF
1þ eμðρ−RÞ

; ð25Þ

which sharply interpolates between the two vacua in a
region of size μ−1. In that region, the effective mass meff
quickly increases allowing the fermion pressure to go to
zero. Therefore, the (relativistic) Fermi gas is well confined
in the core of the star ρ ≤ R. This implies that the Fermi
momentum is nearly constant in the core and equal to its
central value ωF. Consequently, the fermion number density
is estimated as ∼ω3

F and the total number of fermions in the
configuration is then N ∼ ðRωFÞ3. Hence,

ωF ∼ N1=3 1

R
: ð26Þ

Assuming ζ > 1=2, the fact that μR ≫ 1 (which, as already
discussed, corresponds to Λ ≪ 1) implies thought Eq. (24)
that Ev dominates over Es. Thus,

ϱR3 ∼ Ev ∼ Ek ∼ N4=3 1

R
⇒ N1=3 ∼ ϱ1=4R: ð27Þ

Substituting Eqs. (27) into (26), one gets ωF ∼ ϱ1=4. By
using Eq. (17) and the definitions of the dimensionless
quantities given in Sec. II A, we finally obtain4

ω̃F ∼
1

η

�
2ζ − 1

12ζ

�
1=4

: ð28Þ

The latter quantity is needed to find the confining regime of
the model, which is the region in the parameter space where
the mass and radius of the solution do not depend signifi-
cantly on mf. As discussed in Ref. [1], we expect that, for a
given choice of ðΛ; ηÞ, the confining regime exists only if ω̃F
is smaller than a certain value ω̃max

F . Using Eq. (28),

ω̃F < ω̃max
F ⇒ η > ηc ¼ CðζÞ: ð29Þ

At variance with the ζ ¼ 1=2 case (where a similar argu-
ments gives ηc ∼ Λ1=2 [1]), in the nondegenerate case ηc is
independent of Λ. It is natural to expect5 CðζÞ ∼ 1.
Therefore, as long as Λ ≪ 1, requiring

η≳ 1; ð30Þ

is enough to ensure that the solutions lay in the confining
regime.

D. Binding energy

Given a configuration made of N fermions, whose total
mass is M, it is useful to define the binding energy

EB ≔ M −mfN: ð31Þ

We wish to compare the energy of the relativistic configu-
ration, in which gravity and the scalar interaction act as a
glue, with the energy of the configuration in which the N
fermions are free particles. If EB < 0 the relativistic
configuration is stable under dispersion into free particles,
i.e., the system is gravitationally bound.
In the Thomas-Fermi approximation the number of

fermions is [3]

N ¼ 4

3π

m3
f

μ3

Z
drr2evðrÞx3ðrÞ≡m3

f

μ3
Ñ: ð32Þ

Using Eq. (15), we can rewrite Eq. (31) as

μEB

m2
p
¼ μM

m2
p
−
η4Λ2

8π
Ñ: ð33Þ

SinceN ∼ ðRωFÞ3, the combination of Eqs. (23) and (28)
gives Ñ ∼ 1

ðΛηÞ3. Substituting the latter into Eq. (33) finally

yields

μEB

m2
p
∼
1

Λ
ð1 − ηÞ: ð34Þ

Thus, the condition EB < 0 translates again into Eq. (30).
In other words, being in the confining regime ensures also
stability against dispersion into free particles.

E. Energy conditions

If ζ > 1=2 (corresponding to a positive effective cos-
mological constant in the interior), the scalar potential is
positive definite and the same arguments discussed in
Sec. III C of Ref. [1] hold, i.e., the weak and dominant
energy conditions are satisfied, whereas the strong energy
condition is violated. Different conclusions have to be
drawn when ζ < 1=2 (corresponding to a negative effec-
tive cosmological constant in the interior). In this case, the
scalar potential is negative around ϕ ¼ vF, which in turn
leads to a violation of the weak energy condition. Indeed,
the latter is satisfied in ϕ ≈ vF, i.e. ρ ≈ 0, if [1]

Uðρ ≈ 0Þ þWðρ ≈ 0Þ ≥ 0: ð35Þ

4In the degenerate case ζ ¼ 1=2, the scaling is parametrically
different, see Table II in Ref. [1].

5We checked numerically that this is indeed true.
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Being the effective fermion mass negligible around
ϕ ≈ vF, Wðρ ≈ 0Þ ≈ 3Pc. Using this fact, together with
Eq. (17), Eq. (35) gives

3Pc þ
μ2v2F
12ζ

ð2ζ − 1Þ ≥ 0: ð36Þ

Being Pc ¼ m4
fP̃c, we finally obtain that the weak energy

condition imposes

P̃c ≥
1

η4
ð1 − 2ζÞ
36ζ

: ð37Þ

As expected, this is trivially true if ζ > 1=2. Conversely, it
could be violated when ζ < 1=2, as we show using the
following heuristic argument (and exactly via numerical
integration in the next section). Thinking in terms of the
classical mechanics analogy described in Sec. III A of
Ref. [1], when ζ < 1=2 the false vacuum ϕ ¼ vF of the
inverted potential has more energy than the true vacuum
ϕ ¼ 0. Thus, the particle can reach the true vacuum even
in the absence of the fermions, which means that the
solution exists also in the Pc → 0 limit.6 As we lower Pc,
there will be a point in which the inequality (37) does not
hold anymore. The existence of the latter point is con-
firmed by numerical results (see next section) which also
show that the binding energy of solutions that violate (37)
can be positive, i.e. there exist configurations energetically
unstable.

III. NUMERICAL RESULTS

A fermion soliton star is described by a core of
relativistic fermion fluid mixed with an effective cosmo-
logical constant, surrounded by a shell of real scalar field
that is exponentially suppressed outside the star.
Depending on the value of ζ, we find different behaviors.
If ζ ¼ 1=2 the effective cosmological constant vanishes
and we recover the degenerate case presented in Ref. [1]. If
ζ > 1=2, the effective cosmological constant inside the
core is positive and, as we shall see, the solution follows
the qualitative picture outlined in the previous section.
Finally, if ζ < 1=2 a different behavior appears, due to the
violation of the weak energy condition. We shall refer to
the ζ > 1=2 and ζ < 1=2 cases as de Sitter and anti–de
Sitter interiors, respectively, although we stress that the
metric in the interior would be effectively (anti) de Sitter
only if the energy density of the scalar field dominates. As
we shall discuss, this can be the case for certain configu-
rations with an effective negative cosmological constant,
while an effective positive cosmological constant never
dominates the fermionic contribution.

A. De Sitter interior (ζ > 1=2)

In Fig. 2 we present the mass-radius and compactness-
mass diagrams for various values of ζ > 1=2, in the
confining regime. We observe that ζ affects the mass-
radius scale and the maximum mass (left panel), while it
has a weaker impact on the compactness (right panel).
Moreover, the binding energy is negative, which means
that the configurations are stable against dispersion into
free particles.
The dependence ofMc on Λ and ζ is presented in Fig. 3.

As expected, Mc ∼ 1=Λ2 when there is a perfect symmetry
between vacua (ζ ¼ 1=2) [1], whereas for any ζ > 1=2, the
scaling changes parametrically in Mc ∼ 1=Λ.

B. Anti–de Sitter interior (ζ < 1=2)

In Fig. 4 we present the mass-radius diagram for
ζ ¼ 0.49. The latter shows a different behavior from the
ζ ≥ 1=2 case, due to the presence of two disconnected
branches of solutions.
In particular, we highlight the existence of the point (red

circle in Figs. 4 and 5) mentioned in Sec. II E, where the
fermion density is negligible,7 which in turn is linked with
the divergence of the ratio jUðρ ¼ 0Þj=Wðρ ¼ 0Þ shown in
the right panel of Fig. 5. Moreover, in left panel of Fig. 5
we show that the latter point is unstable with respect to
dispersion into free particles.
Remarkably, from Fig. 5 we observe that there exists an

intermediate regime, in which jUðρ ¼ 0Þj=Wðρ ¼ 0Þ ≫ 1,
but the configurations are gravitationally bound. This
means that inside these solutions there is essentially an
anti–de Sitter core, whereas the fermions, although with a
negligible energy density in the core, are still crucial to
energetically bind the configurations. As an example, we
show one of these solutions in Fig. 6.
Analogous configurations, but with a de Sitter spacetime

inside, do not exist when ζ > 1=2. Indeed, in the latter case,
fermions are always characterized by a higher energy
density in the core than the scalar field, because they have
to fill the energy gap between the false vacuum and the true
vacuum of the inverted potential (when ζ ≥ 1=2 the
solution does not exist in the absence of fermions). This
is explicitly shown in the bottom right panel of Fig. 2.
The latter results and the existence of two branches for

ζ < 1=2 can be better understood by looking at Fig. 7,
where we show the mass as a function of ω̃F for both ζ <
1=2 and ζ > 1=2. In particular, we observe that for ζ ≥ 1=2
there exists a minimum value of ω̃F, below which no
solution is found. For ζ < 1=2, instead, ω̃F can be arbi-
trarily small. This causes the detachment between the two

6This is not in contradiction with the no-go theorem stated in
Ref. [5] since for ζ < 1=2 the scalar field potential is not positive
definite.

7Analogous configurations, characterized by the absence of
fermions and the violation of the WEC, were already discussed
in the literature under the name of “scalarons” and studied in
connection with hairy black holes [12–15].
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FIG. 2. Mass-radius (left top), compactness-mass (right top), binding energy (left bottom), and ratio Uðρ ¼ 0Þ=Wðρ ¼ 0Þ (right
bottom) for fermion soliton stars with an effective positive cosmological in the interior (ζ > 1=2) as the asymmetry between vacua
grows. We fixed Λ ¼ 0.15 and η ¼ 3. The latter are representative values such that the Newtonian limit exists and the configurations lie
in the confining regime [1], where the dependence of the critical mass on η is very weak. Varying Λ does not qualitatively change the
behaviors of the diagrams. There exists a turning point in the M-R diagrams at low masses, which cannot be seen from the figure, that
proceeds toward the Newtonian limit of small M and large R, similarly to what already found in the degenerate case [1]. In the bottom
right panel, we do not show the degenerate curve ζ ¼ 1=2 since in this case Uð0Þ ≈ 0 by construction. Note that Uð0Þ=Wð0Þ → 0 in the
large central pressure limit, corresponding to the spiraling behavior in the M-R diagram.

FIG. 3. Critical radius Rc (left) and massMc (right) as functions of Λ and ζ. In the degenerate case (ζ ¼ 1=2), both quantities scale as
1=Λ2 in the Λ ≪ 1 limit, while for ζ > 1=2 they scale as 1=Λ. These results are in agreement with the analytical estimates given in
Sec. II B.
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FIG. 4. Mass-radius (left) and compactness-mass (right) diagrams for fermion soliton stars with an anti–de Sitter core. We fixed
Λ ¼ 0.15, η ¼ 3 and ζ ¼ 0.49. Note the presence of two disconnected branches. The blue curves/points correspond to solutions
satisfying the weak energy condition, while the others violate Eq. (37). The red circle corresponds to P̃c → 0, i.e., a purely-scalar
solitonic configuration in the absence of fermions that does not exist in the ζ ≥ 1=2 case.

FIG. 5. Binding energy (left panel) and ratio jUðρ ¼ 0Þj=Wðρ ¼ 0Þ for the lower branch shown in Fig. 4, using the same color scheme
to highlight the violation of the weak energy conditions (37). We observe that there exists a set of solutions around μR ∼ 110 where
jUðρ ¼ 0Þj=Wðρ ¼ 0Þ ≫ 1 while the binding energy is still negative.

FIG. 6. Radial profiles of scalar field ϕ, normalized with respect to vF, metric functions u, v (left panel) and fermion pressure (right
panel) for a configuration with an effective anti–de Sitter core, but still a negative binding energy (Λ ¼ 0.15, η ¼ 3, ζ ¼ 0.49).
Continuous lines represent numerical data, whereas dashed lines reconstruct the asymptotic behavior of the solution by fitting with the
Schwarzschild spacetime. We observe a sharp (but continuous) transition between anti–de Sitter and Schwarzschild around μρ ∼ 110.
The mass and radius of this configuration are μM=m2

p ≈ 7.63 and μR ≈ 111.8, the compactness is C ≈ 0.068, while the solution
parameters are P̃c ¼ 1.30 × 10−6 and log10 ϵ ¼ −44.8. The binding energy is μEB=m2

p ≈ −4.51 and the ratio between cosmological
constant and central fermion density inside is jUðρ ¼ 0Þj=Wðρ ¼ 0Þ ≈ 10.8.
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branches of the ζ ¼ 0.49 curve, which also manifests
in Fig. 4.
The existence of two branches makes it harder to identify

configurations that are expected to be stable under radial
perturbations. In this case it is particularly interesting and
important to perform a radial stability analysis, which is left
for future work. In the next section we shall focus on the
more standard ζ > 1=2 case.

IV. PARAMETER SPACE
AND ASTROPHYSICAL IMPLICATIONS

When ζ > 1=2, it is straightforward to identify a critical
mass Mc (and corresponding radius Rc) as the point of
maximum mass in the M-R diagram, Fig. 2. As heuristi-
cally shown in Sec. II B for Λ ≪ 1, and confirmed numeri-
cally in Fig. 3 as long asΛ≲ 0.15, in this regime the critical
mass and radius scale as

μMc

m2
p

¼ Aðζ; ηÞ 1
Λ
; ð38Þ

μRc ¼ Bðζ; ηÞ 1
Λ
: ð39Þ

The region ðΛ≲ 0.15; η ¼ 3Þ is inside the confining
regime, where the dependence of the critical quantities
on η is very weak [1]. Thus, within very good approxi-
mation A, B are functions of ζ only. Numerical fits show
that AðζÞ, BðζÞ are functions of order unity (see legend in
Fig. 3). Therefore, assuming A; B ∼ 1 and defining
q ¼ ðμvFÞ1=2, it is possible to give the following general
estimate of the critical quantities,

Mc ∼OðM⊙Þ
�
0.6 GeV

q

�
2

;

Rc ∼OðkmÞ
�
0.6 GeV

q

�
2

: ð40Þ

Hence, the model can accommodate compact objects of
vastly different mass scales, while the compactness at the
maximum mass is independent of q, and equals to
GMc=Rc ≈ 0.27 (see top right panel of Fig. 2), which is
slightly larger than that of a typical neutron star, but still
smaller than the compactness of the photon sphere of a
Schwarzschild black hole (GM=R ¼ 1=3). As a conse-
quence, one expects fermion soliton stars to display a
phenomenology more akin to ordinary neutron stars than
to black holes [10].
Moreover, condition Eq. (30) gives

mf ≳ q: ð41Þ

Interestingly, the choice q ∼ qastro ¼ 0.6 GeV leads to the
existence of fermion soliton star with mass and radius
comparable to ordinary neutron stars, with a fermion mass
in the natural energy scale OðGeVÞ. This is a striking
difference with respect to the degenerate model presented
in Ref. [1], which required scalar field parameters at much
higher energy scales in order to obtain solar-mass compact
configurations.

V. DISCUSSION AND CONCLUSIONS

We have constructed physically admissible configura-
tions of fermion soliton stars in the presence of a scalar
potential featuring two asymmetric vacuum states. This
generalizes the original model of [3] (recently explored in
full general relativity [1]), in which the two vacua are
degenerate.
The breaking of the degeneracy drastically changes the

qualitative properties of the solution, thus unveiling that the
degenerate case is nongeneric and requires fine tuning. First
of all, the scaling of the maximummass relative to the model
parameters is different from the degenerate case and makes it
easier to obtain solar-mass compact solutions with natural
model parameters in the GeV scale. Secondly, the breaking
of the degeneracy implies that the interior of the star can
be described by either a positive or a negative effective
cosmological constant; the latter case (effective anti–de
Sitter core) being associated with compact solutions with
further peculiar properties.
The case of de Sitter interior provides a concrete

realization of a model somehow reminiscent of that of
gravastars [6–8], which are indeed supported by a positive
cosmological constant in the interior and feature aniso-
tropic pressure [16] (naturally provided by the scalar field
in our model). Our model is anyway different from the
original gravastar, since for ζ > 1=2 the contribution of the

FIG. 7. Mass as a function of ω̃F. We fixed Λ ¼ 0.15, η ¼ 3.
For ζ ¼ 0.53 (representative of ζ ≥ 1=2), there exists a minimum
value of ω̃F around 0.5, while for ζ ¼ 0.49 (representative of
ζ < 1=2) ω̃F can be arbitrarily small, which in turn leads to two
branches of solutions.
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fermion fluid is comparable to, and typically much larger
than, that of the effective cosmological constant (see right
bottom panel of Fig. 2). Interestingly, a recent concrete
realization of a gravastar was proposed in Ref. [17].
Likewise, the case of anti–de Sitter interior is somehow

reminiscent of that of anti–de Sitter bubbles [9]. This case
shows interesting features such as multiple branches and
viable configurations in which the contributions of fer-
mions is negligible (but anyway needed for the existence of
bound solutions). We defer a more detailed study of this
case and a comparison with the model in [9] to future work.
Further future work could focus on extending the

solutions beyond spherical symmetry and beyond the
static case, in particular to study the dynamical stability
and linear response of these objects, as well as considering
different scalar potentials and matter content. Work along

these directions is underway and will be reported
elsewhere.
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