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Béatrice Bonga *

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University,
6525 AJ Nijmegen, The Netherlands

Claudio Bunster†

Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, Valdivia, Chile
and Universidad San Sebastián, General Lagos 1163, Valdivia 5110693, Chile

Alfredo Pérez ‡
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We study gravitational radiation for a positive value of the cosmological constant Λ. We rely on two
battle-tested procedures: (i) We start from the same null coordinate system used by Bondi and Sachs for
Λ ¼ 0, but, introduce boundary conditions adapted to allow radiation when Λ > 0; and (ii) We determine
the asymptotic symmetries by studying, à la Regge-Teitelboim, the surface integrals generated in the action
by these boundary conditions. A crucial difference with the Λ ¼ 0 case is that the wave field does not
vanish at large distances, but is of the same order as de Sitter space. This novel property causes no
difficulty; on the contrary, it makes quantities finite at every step, without any regularization. A direct
consequence is that the asymptotic symmetry algebra consists only of time translations and space rotations.
Thus, it is not only finite dimensional, but smaller than de Sitter algebra. We exhibit formulas for the energy
and angular momentum and their fluxes. In the limit of Λ tending to zero, these formulas go over
continuously into those of Bondi, but the symmetry jumps to that of Bondi, Metzner, and Sachs. The
expressions are applied to exact solutions, with and without radiation present, and also to the linearized
theory.
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I. INTRODUCTION

We study gravitational radiation for a positive value of
the cosmological constant Λ as generated by compact
sources such as stars and black holes. We are guided by,
and closely follow the steps of Sachs’ classical analysis of
the concepts, introduced by Bondi for Λ ¼ 0 [1–3]. That
analysis gave unambiguous expressions for energy and
energy flux, and also established the existence of an
infinite-dimensional symmetry algebra, now called the
Bondi-Metzner-Sachs (BMS) algebra.
Bondi and Sachs relied only on Einstein’s equations with

boundary conditions to study a large class of spacetimes,
now known as “asymptotically flat” solutions. They did not,
and did not need to, invoke the action principle. They
required though, that the mass should decrease when
radiation is emitted. This demand was essential to arrive

at unambiguous expressions for the mass and its flux. We
have not been able to implement the mass diminution
requirement for Λ > 0, although we do recover this in the
linearized case. In order to arrive at the formulas for themass
and its flux, we have appealed instead to the action principle,
including in it appropriate surface integrals à la Regge-
Teitelboim.
The symmetry algebra consists only of time translations

and space rotations, even when gravitational radiation is
present. It is not only finite dimensional but smaller than
the de Sitter algebra. This result is crucially linked to the
R × S2 topology of the future boundary, and as shown in [4],
the symmetry group for asymptotically de Sitter spacetimes
depends crucially on the topology. The existence of this
smaller symmetry algebra can be attributed to the fact that in
the presence of a positiveΛ thewave field does not vanish at
large distances, in sharp contrast with the asymptotically flat
case. As a result, a generic gravitational wave will induce a
strong deformation on the geometry of the future boundary.
This deformation of the asymptotic region precludes the
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presence of the full de Sitter group or infinite-dimensional
extensions thereof. In the limit Λ → 0, the mass and flux
formulas coincide with those of Bondi and Sachs. In
contradistinction, the symmetry algebra has an enormous
jump; it becomes the BMS symmetry.
For waves of small amplitude, we recover the energy flux

of the linear theory on a de Sitter background. Interestingly,
even waves with small amplitudes reach infinity without
decay. This is not the case for asymptotically flat space-
times, in which linear waves decay at least as 1=r at large
distances. For special solutions such as Kerr-de Sitter and
Robinson-Trautman with Λ > 0, we recover the accepted
expressions for the mass and angular momentum. All of our
conclusions follow from general relativity, by bringing into
it boundary conditions which are the natural extension for
Λ > 0 of those employed by Sachs for Λ ¼ 0.
Interestingly, all equations in this paper hold also for

Λ < 0. In that case, the boundary conditions do not corres-
pond to the typical reflecting ones (see e.g. [5–7]).1 We find
this an appealing issue for exploration, but we will not
address it here.
The boundary conditions in this paper are new and have

not been explored elsewhere. These new boundary con-
ditions have a finite-dimensional symmetry algebra, lead to
finite charges, and accommodate many interesting space-
times describing radiation in de Sitter-like spacetimes (such
as Robinson-Trautman with Λ > 0 and linearized waves on
a de Sitter background). Some of these properties have been
obtained from different boundary conditions and/or differ-
ent methods as well. We compare our results to other
approaches in Sec. VI.
The setup of this paper is as follows. We introduce the

Bondi-Sachs coordinates and their falloff rates in Sec. II.
Given these coordinates, we study the asymptotic sym-
metry algebra in Sec. III. In Sec. IV, we compute the energy
and angular momentum at future infinity and their fluxes.
We apply this formalism to various exact solutions of
general relativity with Λ > 0 in Sec. V, in which we also
study linearized gravitational waves on a de Sitter back-
ground. Finally, we compare our approach to various
alternative approaches in Sec. VI. The key findings of this
paper are summarized in Table I.

II. BONDI REVISITED FOR Λ > 0

Although the geometry is very different for Λ > 0 and
Λ ¼ 0, it turns out that in the natural extension of the
coordinate system used by Bondi and Sachs the formulas
for energy flux, energy, and the like turn out to be
remarkably simple, and furthermore reduce for Λ ¼ 0 to
theirs. For this reason, we will go right away into the
analysis in that particular coordinate system.

A. Asymptotic behavior of the metric

In the coordinate system ðu; r; θ;ϕÞ originally intro-
duced by Bondi [1] and generalized later to the non-
axisymmetric case by Sachs [2,3], the line element reads

ds2 ¼ e2β
V
r
du2 − 2e2βdudr

þ r2gABðdxA − UAduÞðdxB −UBduÞ ð1Þ

with −∞ < u < ∞ and 0 < r < ∞. The xA are coordinates
on the two-sphere, which we choose here to be the
standard spherical one; xA ¼ ðθ;ϕÞ with 0 ≤ θ ≤ π and
0 ≤ ϕ < 2π.2 The coordinate u is null becausewhen du ¼ 0

and dxA ¼ 0, one has ds2 ¼ 0. Radiation is “observed” as
r → ∞. In this limit, one approaches the future boundary—
often denoted by I. These coordinates nicely encode that the
topology of I is R × S2, which is the relevant setting for
studying gravitational radiation emitted by compact sources.
The functions β, V, gAB, and UA depend on xA, u, and r.

The procedure is to expand the metric components in
powers of r−1, demand reasonable boundary conditions and
impose Einstein’s equations order by order in r. The latter
step does not restrict the dependence on u and xA, but leads
to relationships between different coefficients in the
expansion. We will omit the details of this calculation
and state the result to the order needed for the determination
of possible asymptotic “charges,” and their fluxes.
One finds

β ¼ −
1

32r2
CABCAB

þ 1

128r4
ððCABCABÞ2 − 12CABEABÞ þ…; ð2aÞ

V ¼ Λr3

3
−DAUA

ð0Þr
2 −

�
1þ Λ

16
CABCAB

�
rþ 2M þ…

ð2bÞ

UA ¼UA
ð0Þ−

1

2r2
DBCAB−

2

3r3

�
NA −

1

2
CABDCCBC

�
þ…;

ð2cÞ

gAB ¼ γAB þ CAB

r
þ CCDCCDγAB

4r2
þ EAB

r3
þ…; ð2dÞ

det gAB ¼ sin2 θ: ð2eÞ

These expressions depend on Λ explicitly in Eq. (2b) and
through UA

ð0ÞðΛÞ, which vanishes for Λ ¼ 0, but depends

implicitly on it according to Eq. (4) below. When Λ ¼ 0,

1This is clear from the nonconformal flatness of the boundary
metric.

2Strictly speaking, one of course needs two charts to cover the
two-sphere.
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they reduce to those of Sachs. Here DA is the covariant
derivative with respect to the metric of the unit two-sphere
γAB. The indices A, B are lowered and raised with the metric
γAB. The symmetric tensors CAB and EAB are trace-
less; γABCAB ¼ γABEAB ¼ 0.

Besides Eq. (2), there are two further restrictions on the
coefficients which are of decisive importance in the
analysis. They are as follows: (i) The zeroth-order term
in gAB is required to be the standard line element on the unit
two-sphere,

TABLE I. Key results summarized. Cases Λ ¼ 0 and Λ > 0 compared and contrasted.

Λ ¼ 0 Λ > 0
Asymptotic region Future null I Future spacelike I

Topology asymptotic region R × S2 R × S2 (¼ S3 with two points removed)
to describe radiation emitted

by bounded sources

Conformal completion
of infinity possible?

Yes Yes

Coordinates ds2 ¼ e2β V
r du

2 − 2e2βdudr
þ r2gABðdxA − UAduÞðdxB − UBduÞ,

ds2 ¼ e2β V
r du

2 − 2e2βdudr
þ r2gABðdxA −UAduÞðdxB − UBduÞ,

det gAB ¼ sin2 θ det gAB ¼ sin2 θ

(Bondi gauge with the Sachs condition) (Bondi gauge with the Sachs condition)
Falloff β ¼ Oðr−2Þ, β ¼ Oðr−2Þ,

UA ¼ − 1
2r2

DBCAB UA ¼ UA
ð0Þ −

1
2r2

DBCAB

− 2
3r3 ðNA − 1

2
CABDCCBCÞ þ � � �, − 2

3r3 ðNA − 1
2
CABDCCBCÞ þ � � �,

V ¼ −rþ 2M þ � � �, V¼Λr3
3
−DAUA

ð0Þr
2−

�
1þ Λ

16
CABCAB

�
rþ2Mþ���,

gAB ¼ γAB þ CAB
r þ γABCCDCCD

4r2 þ EAB
r3 þ � � � gAB ¼ γAB þ CAB

r þ γABCCDCCD

4r2 þ EAB
r3 þ � � �,

DAUð0ÞB þDBUð0ÞA − γABDCUC
ð0Þ ¼ Λ

3
CAB

Radiation field
vanishes at infinity

Yes No
(UA

ð0Þ ¼ 0) (UA
ð0Þ ≠ 0)

Imprint on the metric
of the most general wave

Symmetric traceless tensor CAB
arbitrary functions of the retarded

time and the angles (generic graviton)

Symmetric traceless tensor CAB
arbitrary functions of the retarded time and

the angles (generic graviton)

Symmetry Infinite-dimensional (“BMS”) Lie algebra:
soð3; 1Þ þ “supertranslations”

Four-dimensional Lie algebra: soð3Þ ⊕ R

Energy (“Bondi mass”) E ¼ 1
4πG

H
d2SM E ¼ 1

4πG

H
d2SM

Angular momentum J⃗ ¼ 1
8πG

H
d2Sr̂ϵABDANB J⃗ ¼ 1

8πG

H
d2Sr̂ϵABDANB

Angular momentum ambiguity Yes No

(angular momentum not invariant
under supertranslations)

(there are no supertranslations)

Energy flux dE
du ¼ − 1

32πG

H
d2SNABNAB,

with NAB ≔ ĊAB

dE
du ¼ − 1

32πG

H
d2S

h
NðΛÞ

AB N
ðΛÞAB

þ 2Λ
3
CABCAB − Λ

6
CABD2CAB

þ 7Λ2

144
ðCABCABÞ2 − Λ2

3
CABEAB

þ ð4M þDADBCABÞ
�
DCUC

ð0Þ
�i

,

with NðΛÞ
AB ≔ ĊAB þ LUð0ÞCAB

− 1
2

�
DCUC

ð0Þ
�
CAB − Λ

6
γABCCDCCD

Inputs to arrive at a formula
for the mass and its
variation (energy flux)

Equations of motion (asymptotic
form of the solution should
include the generic graviton)

Equations of motion (asymptotic form
of the solution should include the

generic graviton)
Mass should reduce to known

expressions when there is no radiation
Mass should reduce to known expressions

when there is no radiation
Energy flux should be negative or zero Action principle should be well-defined
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γABdxAdxB ¼ dθ2 þ sin2 θdϕ2: ð3Þ

This additional demand, imposed by Bondi, which does not
follow from Einstein’s equations and it is not a mere
restriction on the coordinate system, turns out to be of
enormous consequence; it will guarantee later on that no
divergent quantities appear in the analysis of a problem that
has no physical singularities. In contradistinction, Eq. (2e)
can be imposed to all orders by a change of coordinates
r ¼ fðr0; θ;ϕÞ; and (ii) Besides the relations between the
coefficients in Eq. (2), Einstein’s equations imply

2DðAU
ð0Þ
BÞ − γABDCUC

ð0Þ ¼
Λ
3
CAB: ð4Þ

Equation (4) exhibits the key difference in the imprint of the
gravitational wave on the metric for Λ ¼ 0 versus Λ ≠ 0. In
fact, as we will see, the tensor CAB describes the field of the
wave when it is u-dependent, and we see from (4) that when
Λ ¼ 0, the waves do not affect the metric to the lowest
order. However, when Λ ≠ 0 the wave affects the metric
even to the lowest order through the shift vector UA

ð0Þ.
Note that the particular solution to Eq. (4) exclusively

exhibits modes with l ≥ 2 that are inherited from the tensor
CAB. The information of the gravitational wave is exclu-
sively contained within these modes. On the other hand, the
solution of the homogeneous equation, specifically the
conformal Killing equation on the two-sphere, only has
l ¼ 1 modes and are independent of the wave degrees of
freedom. These latter modes represent the freedom in
selecting the frame at infinity and can be set to zero
without loss of generality.

1. Remark

The fact that no regularization is needed at any step in the
present work and that, in particular, all the charges are finite
follows from allowing a generic UA

ð0Þ ≠ 0. Had we imposed
UA

ð0Þ ¼ 0, we would have been forced to let γAB be a generic
metric, but divergences would appear.

B. Asymptotic symmetries for Λ= 0 and Λ > 0
compared and contrasted

1. Mass for Λ= 0

When the cosmological constant vanishes, Bondi pro-
posed that the integral over a two-sphere of the coefficient
Mðu; θ;ϕÞ appearing in Eq. (2b)

E ¼ 1

4πG

I
d2SM; ð5Þ

is the total energy of the system (with d2S ¼ sin θdθdϕ).
To validate this guess, he observed first that for the static
Schwarzschild solution, M was indeed the Schwarzschild
mass. Then he moved on to investigate dynamical cases

with gravitational waves, when the integral of M over a
large sphere was expected to diminish as a function of u due
to an energy flux emitted by a source within the sphere and
going out to infinity (the coordinate u is a retarded
coordinate because the sign of the dudr term in the line
element is negative). This crucial test was satisfied because
one can verify, from Einstein’s equations, that

dE
du

¼ −
1

32πG

I
d2SNABNAB < 0 ðΛ ¼ 0Þ: ð6Þ

The mass expression in Eq. (5) has later also been derived
using other methods such as the Landau-Lifschitz approach
based on a pseudo-tensor (see e.g., [8]) and covariant
phase-space methods (see e.g., [9,10]).

2. Angular momentum for Λ= 0

If one were to attempt guessing an expression for the
angular momentum, one would naturally focus on the shift
NA because it carries the imprint of being stationary (versus
static). One would need a two-form to integrate over the
sphere constructed out of this shift. The simplest candidate
is its exterior derivative. So, one would write

J⃗ ¼ 1

8πG

I
d2Sr̂ϵABDANB: ð7Þ

The first test would be to check if this formula gives the
right value for the angular momentum of the Kerr-de Sitter
solution [which can be brought to satisfy the boundary
conditions in Eq. (2), see Sec. V C]. If one does so, one
finds that indeed the test is passed. One does not expect the
angular momentum flux to have a definite sign so that test
is not available, but a complete analysis of the asymptoti-
cally defined symmetries confirms its validity. The vector
NA is referred to as “angular momentum aspect”.3

3. Symmetry for Λ= 0

In order to prove that Eqs. (5) and (7) are the energy and
the angular momentum, one needs to show that they
generate time translations and spatial rotations at infinity
when acting on phase space. That proof, and much more,
was given by Sachs who, in a brilliant analysis did two
things: (i) He discovered, extending previous work of
Bondi, Metzner, and Van der Burg, that the asymptotically
defined symmetry is enormously larger than the expected
Poincaré group, and that the commutators of its Killing
vectors form an infinite-dimensional Lie algebra now called
the Bondi-Metzner-Sachs algebra [2]; and (ii) He postu-
lated a commutation rule for the two independent

3Beware, conventions differ on the exact definition of the
angular-momentum aspect; some authors shift NA by terms
proportional to CAB and its derivatives, and/or multiply it by a
numerical factor.
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components of the news CAB and showed that, with
just that, Mðθ;ϕÞ and the Lorentz generators Jμν that he
also constructed, generate the symmetry algebra [3]. In
particular, the zero mode (5) generates time translations.
By guessing the commutation rule, Sachs did not need to
use the action principle, but just the equations of motion.
Later developments have permitted to recover the canonical
generators of the Bondi-Metzner-Sachs algebra from the
action principle [9,11,12].

4. Symmetry for Λ > 0

For Λ ¼ 0, besides the energy and angular momentum,
one has boosts K⃗ and infinitely many supertranslation
generators Mðθ;ϕÞ, with spherical modes l ≥ 1.
The situation is dramatically different for Λ ≠ 0, in which
case only E and J⃗ are present. The complete asymptotic
symmetry algebra consists just of time translations and
spatial rotations, and the expressions for the generators are
the same as for Λ ¼ 0. This is why we have brought them
out especially above.

III. REGGE-TEITELBOIM ANALYSIS OF THE
SYMMETRIES FOR Λ ≠ 0

A. Preservation of the asymptotic behavior of the metric

Since Λ does not appear explicitly in the asymptotic
form (1) of the metric, the form of the asymptotic Killing
vectors for Λ ≠ 0 is the same as the one given by Sachs for
Λ ¼ 0 [Eqs. (III5)–(III7) in [3]], that is

ξu ¼ Tðu; xAÞ; ð8aÞ

ξr ¼ −
r
2
ðDAXA þDAIA −UADATÞ; ð8bÞ

ξA ¼ XAðu; xAÞ þ IAðu; r; xAÞ ð8cÞ

with IA ¼ −ðDBTÞ
Z

∞

r
dr0

�
e2β

r2
gAB

�
: ð8dÞ

The preservation of Eq. (4) under the action of the
asymptotic Killing vectors implies that XA must obey the
following differential equation

2DðAXBÞ − γABDCXC ¼ 2Uð0Þ
ðA DBÞT − γABUC

ð0ÞDCT: ð9Þ

The preservation of the falloff of the metric also requires
that the parameters T and XA obey the following first-order
differential equations in time

Ṫ ¼ 1

2
DAXA −

3

2
UA

ð0ÞDAT; ð10Þ

ẊA ¼ ṪUA
ð0Þ −UA

ð0ÞU
B
ð0ÞDBT −

Λ
3
DAT: ð11Þ

In particular, Eq. (10) is obtained from the preservation of
the decay of the gur component, and Eq. (11) from the guA
component. Equations (9)–(11) constrain the algebra to
three rotations and the time translation as we will see in the
next subsection.

B. Symmetry algebra

The symmetry algebra is determined from T and XA

satisfying Eqs. (9)–(11). Equation (9) constraints T tre-
mendously: from a generic function of u; θ;ϕ to a function
of u only. Equation (10) then further requires that T is time
independent, so that T can only be a constant. Using this,
we find that there are only three independent solutions for
XA describing exactly the three rotations on the sphere. We
will now show in detail how this comes about.
To analyze Eq. (9) it is useful to introduce YA,

YA ¼ XA − UA
ð0ÞT; ð12Þ

which explicitly separates a “frame rotation” at infinity. In
which case, we get

2DðAYBÞ − γABDCYC ¼ −
Λ
3
TCAB: ð13Þ

This equation has the same form as the one obeyed by the
zero-order shift [Eq. (4)], except for a negative sign—
which is just a matter of convention in the definition of
YA—and the appearance of the factor T on the right-hand
side. Decomposing YA into vector spherical harmonics, we
see that the left-hand side of Eq. (13) contains no l ¼ 1
modes as these are in the kernel of the conformal Killing
operator. Therefore, the right-hand side cannot contain any
l ¼ 1 modes. Decomposing T and CAB into spin-weighted
spherical harmonics

T ¼
X
l;m

TlmðuÞ0Ylm; ð14Þ

CAB ¼
X
l;m

CE
lmðuÞð−2YlmmAmB þ 2Ylmm̄Am̄BÞ

− iCB
lmðuÞð−2YlmmAmB − 2Ylmm̄Am̄BÞ; ð15Þ

where mA; m̄A are complex null vectors on the two-sphere
satisfying mAm̄A ¼ 1, we find that if we project onto
m̄Am̄B, their product can be written as

Tm̄Am̄BCAB ¼
X
l;m

Clm−2Ylm: ð16Þ

So we need to determine what the constraints on Tlm are
such that Clm does not contain any l ¼ 1 modes. We find
that
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Clm ¼
X

l0;m0;l00;m00
Tl0m0 ðCE

l00m00 − iCB
l00m00 Þ

×
Z

d2S0Yl0m0−2Yl00m00−2Ȳlm ð17Þ

¼
X

l0;m0;l00;m00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2l00 þ 1Þ

4π

r
× ð−1ÞmTl0m0 ðCE

l00m00 − iCB
l00m00 Þ

×

�
l l0 l00

m m0 m00

��
l l0 l00

−2 0 2

�
; ð18Þ

where in going from Eq. (17) to (18), we used that sȲlm ¼
ð−1Þmþs

−sYlm and that the integral over three spin-
weighted spherical harmonics is given by the product of
two 3j symbols; see Eq. (34.3.22) in Ref. [13]. Spin-
weighted spherical harmonics sYlm are not defined for
jsj > l so CE

lm=C
B
lm does not have any modes with l ¼ 0

or 1. Hence, Clm contains no l ¼ 1 modes only if Tlm

is nonzero for l ¼ 0, because CE
lm=C

B
lm is generically

nonzero for l ≥ 2 and the 3j symbols are nonzero
when jl0 þ l00j ≤ l ≤ l0 þ l00.
So far, we have seen that Tðu; θ;ϕÞ ¼ T0ðuÞ and XA

satisfies the conformal Killing equation. Substituting this
into Eq. (10), we obtain

Ṫ0 ¼
1

2
DAXA: ð19Þ

The only consistent solution is if both sides of the
equation vanish independently. Hence, we find that T0 is
u-independent and XA is also divergence-free. Finally, from
Eq. (11), we obtain that XA is time independent. Therefore,
we find that T and XA are

T ¼ T0 and XA ¼ ϵABDBðΩ⃗ · r̂Þ; ð20Þ

for constant T0 and Ω⃗. Substituting this back into the form
of the asymptotic Killing vector fields, we obtain

ξu ¼ T0; ð21aÞ

ξr ¼ 0; ð21bÞ

ξA ¼ ϵABDBðΩ⃗ · r̂Þ: ð21cÞ

One immediately recognizes this as theR ⊕ soð3Þ algebra.
This result generalizes the findings in [4], where it was
shown that the asymptotic symmetry group is exactly the
four-dimensional group of time translations and rotations
when I has R × S2 topology and the induced metric at I is
conformally flat. The requirement of conformal flatness,
which severely restricted the allowed gravitational radiation

by essentially cut the degrees of freedom of the gravita-
tional field in half, can be lifted.

IV. REVISITING REGGE-TEITELBOIM FOR Λ > 0
AND RADIATION AT FUTURE INFINITY

A. Charges

The variation of the charge is obtained using the
covariant approach of Barnich and Brandt [14], which—
as they proved—is equivalent to the standard Regge-
Teitelboim analysis [15].4 In particular, if hμν ≔ δgμν
corresponds to the functional variation of the spacetime
metric, then the general expression for the variation of the
charge is given by

δξQ¼ 1

16πG

I
I
ðd2xÞμν

�
ξν∇μh− ξν∇σhμσ þ ξσ∇νhμσ

þ 1

2
h∇νξμ þ 1

2
hνσð∇μξσ −∇σξ

μÞ− ðμ↔ νÞ
�
; ð22Þ

where ξμ is the asymptotic Killing vector, h ≔ gμνhμν and
the volume form is

ðd2xÞμν ≔
1

4
ϵμνλσdxλ ∧ dxσ: ð23Þ

Applying this to our setup, we find

δξQ ¼ 1

16πG

I
I
d2S

�
Tδð4MÞ þ T

2
NðΛÞ

AB δC
AB

þXAδ

�
2NA þ 1

16
DAðCBDCBDÞ

�
− TUA

ð0Þδ
�
2NA þ 1

16
DAðCBDCBDÞ

��
; ð24Þ

where the tensor NðΛÞ
AB is defined by

NðΛÞ
AB ≔ ĊAB þ LUð0ÞCAB −

1

2

�
DCUC

ð0Þ
�
CAB

−
Λ
6
γABCCDCCD: ð25Þ

NðΛÞ
AB generalizes the Bondi news tensor when the cosmo-

logical constant is nonzero. This expression acquires a
similar structure as the one obtained in [9] for the asymp-
totically flat case withM playing the role of the “Bondi mass
aspect” and NA that of the “angular-momentum aspect.”
However, there are some differences that come from the
presence of a nonzero cosmological constant. Apart from the

4Note that it is also equivalent to the Wald-Zoupas
method [16,17] for an appropriate choice of boundary terms
(see e.g., [18]), as well as to the one of Abott et al. [19–21].
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correction coming from Λ in the “news tensor” NðΛÞ
AB in

Eq. (25), there is an additional nonintegrable term propor-
tional to UA

ð0Þ that vanishes in the limit when Λ → 0.
It is worth emphasizing that the variation of the charge is

finite in the limit when r → ∞, without the need of any
ad hoc regularization procedure. The only potentially
divergent terms were those proportional to r, which after
some appropriate integration by parts on the sphere acquire
the form

δξQdiv ¼ −
r

32πG

I
d2S

�
2DðAXBÞ − γABDCXC

− 2Uð0Þ
ðA DBÞT þ γABUC

ð0ÞDCT

− T

�
2DðAU

ð0Þ
BÞ − γABDCUC

ð0Þ −
Λ
3
CAB

��
δCAB;

ð26Þ

which, by virtue of Eqs. (4) and (9), vanishes identically.
Thus, if one assumes that δT0 ¼ δΩ⃗ ¼ 0, then the

integrable part (in the functional sense) of the variation
of the charge, takes the form

Qint½T0; Ω⃗� ¼ T0Eþ Ω⃗ · J⃗; ð27Þ

where the energy E and angular momentum J⃗ are

E ¼ 1

4πG

I
d2SM; ð28Þ

J⃗ ¼ 1

8πG

I
d2Sr̂ϵABDANB: ð29Þ

Note that the term proportional to T in the last line of
Eq. (24) does not contribute to the mass, because it does not
contain any l ¼ 0 modes [this can again be seen from an

analysis of the 3j symbols and noting that Uð0Þ
A is only

nonzero for l ≥ 2]. As we will show in Sec. V C, these
expressions give the expected results for the mass and
angular momentum for the Kerr-de Sitter geometry, and
allows to extend to notion of energy and angular momen-
tum to the case when gravitational waves are present.

B. Fluxes

The fluxes of energy and angular momentum can be
directly obtained by taking the time derivative of Eqs. (28)
and (29) in conjunction with Einstein’s equation. In
particular, Einstein’s equations yield the evolution of M
and NA, respectively. The resulting expressions are rather
long but manageable:

Ṁ ¼ 1

4
DADBNAB

ðΛÞ −
1

8
NðΛÞ

ABN
AB
ðΛÞ þ

Λ
96

CABD2CAB −
Λ
12

CABCAB −
Λ
6
DANA −

Λ
96

ðDCCABÞðDCCABÞ

þ Λ2

24
CABEAB −

7Λ2

1152
ðCABCABÞ2 −UA

ð0ÞDAM −
3

2
MDAUA

ð0Þ −
1

8
CABDADBDCUC

ð0Þ ð30Þ

and

ṄA ¼ DAM þ 1

4
DADBDCCBC −

1

4
DBD2CAB þ 5

16
CABDCNðΛÞ

BC −
3

16
CBCDBNAC

ðΛÞ −
Λ
2
DBEAB

−
1

2
NAB

ðΛÞD
CCBC þ 1

16
NBC

ðΛÞD
ACBC þDBCAB þ 5Λ

32
CBDCCDDCCAB þ 7Λ

48
CABCCDDBCCD

−UB
ð0ÞDBNA þ NBDBUA

ð0Þ − 2NADCUC
ð0Þ −

1

64
UA

ð0ÞðCBDCBDÞ − 1

64

�
D2UA

ð0Þ
�
CBDCBD

þ 1

32
DA

�
DCUC

ð0Þ
�
ðCBDCBDÞ: ð31Þ

The energy flux is given by

dE
du

¼ −
1

32πG

I
d2S

	
NðΛÞ

ABN
AB
ðΛÞ þ

2Λ
3

CABCAB −
Λ
6
CABD2CAB þ 7Λ2

144
ðCABCABÞ2 −

Λ2

3
CABEAB

þ ð4M þDADBCABÞ
�
DCUC

ð0Þ
�


: ð32Þ

The first termon the right-hand side has the same form as the one that contributes to the loss of energy in the asymptotically flat
case. However, there are now also corrections coming from the presence of the cosmological constant which are up to fourth
order in the fields. These higher-order terms are characteristic of the full-nonlinear theory and cannot be seen in the linearized
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approximation. In Sec. V D 1, we will show that when the
higher-order terms are neglected, the total amount of energy
radiated in a certain interval of time precisely coincide with
the one reported in [22–24]. An important difference with
the asymptotically flat case is that the flux of energy is not
manifestly negative. This was also observed for the case of
homogeneous gravitational perturbations on a de Sitter
background in [22]. Moreover, this can also occur for
Maxwell fields on a de Sitter background [22] and thus
seems a rather generic feature of spacetimes with Λ > 0.
This is likely due to the fact that there is no global timelike
Killing vector field in de Sitter spacetime. However, as was
pointed out in [25], and as we will show in Sec. V D, in the
case of quadrupolar radiation in the linearized theory, the
flux of energy is manifestly negative.
Analogously, the flux of angular momentum takes the

form

dJ⃗
du

¼ 1

8πG

I
d2Sr̂ϵABDAṄB; ð33Þ

where ṄB is given by Eq. (31). Due to the cosmological
constant there is no angular-momentum ambiguity, because
there are no Abelian supertranslations as is the case
with Λ ¼ 0.
The flux of energy and angular momentum in Eqs. (32)

and (33) can alternatively be obtained from the nonintegr-
able part of the variation of the charge in Eq. (24) following
the prescription in [9] (see also [12,26]). We have verified
this explicitly for the energy flux.

C. No radiation condition

In the Bondi-Sachs coordinates we introduced in Sec. II,
the presence of a gravitational wave manifests itself
through the tensor CAB [and, of course, UA

ð0Þ given its
direct link to CAB through Eq. (4)]. In particular, whenever
CAB is time dependent, there is gravitational radiation. This
is the case for all the examples in Sec. V. This interpretation
is further supported by the expressions for flux of energy
and angular momentum in Eqs. (32) and (33). Whenever
the spacetime under consideration is stationary, these fluxes
vanish trivially as Ṁ and ṄA are both zero. When CAB is
zero, the flux formulas are also both trivially zero. The
scenario in which CAB is nonzero, but time independent is
subtle. From the expressions for the fluxes, it is not evident
that they will both be zero. Although we have no formal
proof, we have some evidence that this is indeed
the case. First, we have two nontrivial examples in which
this expectation is borne out. In particular, time-
independent linearized quadrupolar waves and linearized
Robinson-Trautman solutions. We will discuss the general
time-dependent cases in detail in Secs. V D and V E,
respectively. When we restrict those solutions to CAB
nonzero but u independent, the integrand for the energy
flux is nonzero in both cases, but the resulting integral

vanishes [specifically, the first two lines cancel with the last
line in Eq. (32)]. This is evident from the final expressions
in Eqs. (65) and (75), which vanish if ∂uCAB ¼ 0. The
cancellation is nontrivial and all terms conspire for this to
happen. The second line of evidence is by analogy with a
related scenario in the asymptotically flat case. For asymp-
totically flat spacetimes, the presence of radiation also
manifests itself through a u-dependentCAB, or equivalently,
a nonzero Bondi news tensor NAB ¼ ∂uCAB. Thus, if
CABðu; θ;ϕÞ ¼ uC̄ABðθ;ϕÞ, NAB is nonzero and one would
classify this spacetime as radiative. However, the resulting
energy flux in this case would be constant as NAB is time-
independent and the flux only depends on NAB. As a result,
the total energy radiated would be infinite. This is unphys-
ical and therefore not considered to be a viable solution,
and one typically (implicitly) does not include such
solutions. We expect a similar scenario to hold here; if
CAB is a nonzero, but u-independent solution, either the
flux will be zero, or it will be constant and as a result the
energy radiated will be infinite. The latter is not physical
and we do not include such solutions in our solution space.

V. APPLICATION TO SPECIAL CASES

In this section, we show explicitly that the falloff
conditions in Eq. (2) accommodate a wide range of
physically interesting solutions to Einstein’s equation.
First, we discuss the de Sitter spacetime itself before
moving on to two black hole solutions in the presence
of a positive cosmological constant: the nonrotating
Schwarzschild-de Sitter spacetime and the rotating Kerr-
de Sitter spacetime. Next, we discuss linearized solutions to
Einstein’s equations with Λ > 0 representing gravitational
radiation emitted by a compact source. Finally, we describe
a simple model of gravitational radiation with a single
degree of freedom known as the Robinson-Trautman
spacetime.

A. de Sitter spacetime

The full de Sitter spacetime is not an example of the class
of spacetimes we have defined. This is not problematic, as
the goal of this paper is to describe radiation generated by
compact sources in the presence of Λ in which case not the
complete de Sitter spacetime, but the Poincaré patch of de
Sitter spacetime with an additional point at I removed is
relevant. The removal of this additional point is natural as it
represents the intersection of the future boundary with the
source generating radiation (see also Sec. II in Ref. [25]).
As a result, the future boundary has topologyR × S2 and is
naturally coordinatized by ðu; r; θ;ϕÞ,

ds2 ¼ −
�
1 −

Λr2

3

�
du2 − 2dudrþ r2ðdθ2 þ sin2 θdϕ2Þ:

ð34Þ
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The behavior of these coordinates is illustrated in the
conformal diagram in Fig. 1. The time translation vector
field ∂

∂u and the three rotational Killing vector fields are not
only asymptotic symmetries, but symmetries of the entire
spacetime. Translations and inverted translations, which are
symmetries of the full de Sitter spacetime, do not leave i0

and iþ invariant and are therefore not permissible (for a
more extensive discussion, see [4]).

B. Schwarzschild-de Sitter spacetime

The simplest prototype for describing nondynamical
isolated gravitating systems in the presence of a cosmo-
logical constant is undoubtedly the Schwarzschild-de Sitter
spacetime. This spacetime describes a nonrotating black
hole with Λ > 0. We consider the metric in Eddington-
Finkelstein coordinates ðu; r; θ;ϕÞ,

ds2 ¼ −
�
1 −

2m
r

−
r2

l2

�
du2 − 2dudr

þ r2ðdθ2 þ sin2 θdϕ2Þ; ð35Þ

where Λ ¼ 3l−2. The coordinate ranges are u∈ ð−∞;∞Þ;
r∈ ð0;∞Þ; θ∈ ½0; πÞ and ϕ∈ ½0; 2πÞ. While these coordi-
nates do not provide a global chart of the spacetime, they
suffice to cover the asymptotic region near I. In terms of
the asymptotic expansions of the metric in Eq. (2), this
metric has Mðu; θ;ϕÞ ¼ m and all other coefficients zero.
In particular, CAB and UA

ð0Þ are both zero so that there is no
gravitational radiation.
This metric has four Killing vector fields; one Killing

vector field generates time translations and the other three
describe the spherical symmetry of the spacetime. A well-
known property of (global) Killing vector fields is that
every Killing field of the physical spacetime admits an
extension to the boundary and is tangential to it. This is

also the case for the above Killing vector fields, which
coincide exactly with the asymptotic symmetry vector
fields. All charges and fluxes vanish except for the mass,
which is

ESch−dS ¼ m
G
: ð36Þ

C. Kerr-de Sitter spacetime

Kerr-de Sitter spacetimes are stationary, vacuum solu-
tions to Einstein’s equations describing rotating black holes
in the presence of a positive cosmological constant. Let us
consider the Kerr-de Sitter metric in standard Boyer-
Lindquist coordinates ðT; R;Θ;ΦÞ [27],

ds2 ¼ −2asin2Θ
�

2mR
a2cos2Θþ R2

þ a2 þ R2

l2

�
dTdΦ −

�
1 −

2mR
a2cos2Θþ R2

−
a2sin2Θþ R2

l2

�
dT2

þ sin2Θ
�
2a2mRsin2Θ
a2cos2Θþ R2

þ ða2 þ R2Þ
�
1þ a2

l2

��
dΦ2

þ ða2cos2Θþ R2Þ
�

dR2

R2 − ða2 þ R2Þ R2

l2 − 2mRþ a2
þ dΘ2

1þ a2cos2Θ
l2

�
; ð37Þ

where the parameter a is related to the amount of rotation of this rotating black hole. In the limit, a → 0 one recovers the
Schwarschild-de Sitter metric in static coordinates. Note that these Boyer-Lindquist coordinates are “twisted” at I ; for
instance, surfaces of constant T, R describe deformed spheres (consequently, the range of Θ,Φ is not the standard range for
coordinates on the sphere). Inspired by the coordinate transformation used in [6] to undo this twisting, we perform the
following asymptotic change of coordinates5

FIG. 1. Conformal diagram of de Sitter spacetime, where each
point represents a two-sphere (except for the points at r ¼ 0
which are proper points). The gray lines denote surfaces of
constant r, and the blue lines surfaces of constant u [see Eq. (34)].
r ¼ 0 is the vertical line on the left, and r → ∞ at I . The diagonal
constant r surface corresponds to the cosmological horizon
r ¼ l.

5The Kerr-de Sitter solution in Bondi coordinates was also written in [28].
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T ¼ uþ larctanh

�
r
l

�
−
ml4

�
1 − a2sin2θ

2l2

�
2
�
1þ a2sin2θ

l2

�
5=2

1

r4
þ…;

R ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2sin2θ

l2

s
−

�
1þ a2

l2

�
a2sin2θ

2
�
1þ a2sin2θ

l2

�
3=2

1

r
−

ma2sin2θ

2
�
1þ a2sin2θ

l2

�
2

1

r2
þ…;

Θ ¼ arccos

0B@ cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2sin2θ

l2

q
1CA −

a2 sin ð2θÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

l2

q
4
�
1þ a2sin2θ

l2

�
2

1

r2
þ
3a4 sin ð2θÞ

�
1 − 2sin2θ

�
1þ a2

2l2

�� ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

l2

q
16
�
1þ a2sin2θ

l2

�
4

1

r4
þ…;

Φ ¼ 1

1þ a2

l2

0B@ϕþ a
�
uþ larctanh

�
r
l

��
l2

1CAþ ma3sin2θ

4
�
1þ a2

l2

��
1þ a2sin2θ

l2

�
5=2

1

r4
þ…:

The leading terms of the Kerr-de Sitter metric near I fit
within our asymptotic conditions.6 The metric on I with
u ¼ constant is the unit two-sphere with θ;ϕ having their
standard range, i.e., θ∈ ½0; πÞ;ϕ∈ ½0; 2πÞ. Moreover, UA

ð0Þ
and CAB are both equal to zero, which is consistent with the
fact that there is no gravitational radiation in this spacetime.
The mass and angular-momentum aspect are given by

M ¼ m

�
1 − a2sin2θ

2l2

�
�
1þ a2sin2θ

l2

�
5=2 ; ð38Þ

Nθ ¼ 0; ð39Þ

Nϕ ¼ −
3am�

1þ a2sin2θ
l2

�
5=2 : ð40Þ

We also find that EAB is

Eθθ ¼ −
ma2sin2θ�

1þ a2sin2θ
l2

�
5=2 ; ð41Þ

Eϕϕ ¼ ma2sin4θ�
1þ a2sin2θ

l2

�
5=2 ; ð42Þ

Eθϕ ¼ 0; ð43Þ

so that EAB is traceless with respect to the unit two-sphere
metric, as it should.
The mass and the angular momentum can be directly

computed from the expressions for the charges in Eqs. (28)

and (29) (which also define the normalization of the Killing
vectors here). They are given by

EKerr−dS ¼ m
G

�
1þ a2

l2

�−2
; Jz ¼ −aEKerr−dS: ð44Þ

These results coincide with the charges obtained using
Hamiltonian methods by Marolf and Kelly in [29].7 More-
over, these expression also precisely coincide with the ones
obtained for Kerr-anti–de Sitter spacetimes after replacing
l → il [6]. Since this spacetime is stationary, the fluxes are
trivially zero, which we verified by direct computation.

D. Linearized solutions in de Sitter spacetime

1. Linearized charges and fluxes

The expressions for the charges and fluxes simplify
drastically in the linearized context. Here, we will briefly
comment on the linearized setting and explicitly connect
the resulting flux of energy radiated across I to existing
results in the literature.
Let us consider the linearized gravitational field in

retarded null coordinates ðu; r; xAÞ around the de Sitter
background metric

ds̄2 ¼ −
�
1 −

Λr2

3

�
du2 − 2dudrþ r2ðdθ2 þ sin2 dϕ2Þ:

ð45Þ

6Note that the solution is not in the Bondi gauge everywhere,
but its asymptotic form to the orders needed is. Indeed
grr ¼ Oðr−6Þ and grA ¼ Oðr−4Þ.

7These final expressions also agree with the gravitational
charges defined in terms of the electric part of the Weyl tensor
in [4] despite the fact that the mass and angular momentum there
refer to a differently normed Killing vector field. This is due to
the fact that in [4], the Θ,Φ coordinates were assumed to have the
standard range on the two-sphere, which is not the case. If this is
corrected, the results here and in [4] differ exactly by the expected
scaling with the Killing vector field.
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The spacetime metric is then written as

gμν ¼ ḡμν þ hμν; ð46Þ

where hμν is kept only up to first order. Quantities that have
dimensions of length are compared with an external fixed
length scale. The linearization expression (46) is valid
everywhere, not just asymptotically. The falloff of the
metric in the linearized theory can be directly obtained from
our asymptotic conditions in Eq. (2) by neglecting the
terms that are quadratic in the fields. The asymptotic form
of the metric then reads

β ¼ O
�
1

r5

�
; ð47aÞ

V ¼ Λr3

3
−DAUA

ð0Þr
2 − rþ 2M þ…; ð47bÞ

UA ¼
�
UA

ð0Þ −
DBCAB

2r2
−
2NA

3r3
þ…

�
; ð47cÞ

gAB ¼ γAB þ
�
CAB

r
þ EAB

r3
þ…

�
; ð47dÞ

where UA
ð0Þ obeys Eq. (4). Note that U

ð0Þ
A , which is of order

zero in the asymptotic expansion in which the reference
length is r, becomes of first order in the linearized theory, in
which the reference length is a fixed distance. So, both
expansions do not coincide at large distances. The time
derivatives of M and NA reduce to

Ṁ ¼ 1

2
DADBNAB

ðΛÞ −
Λ
6
DANA; ð48Þ

ṄA ¼ DAM þ 1

4
DADBDCCBC −

1

4
DBD2CAB

−
Λ
2
DBEAB þDBCAB; ð49Þ

while the linearized version of the News tensor now takes
the form

NðΛÞ
AB ¼ ĊAB: ð50Þ

In the linearized limit, the symmetry algebra of the
de Sitter background metric can be naturally used (see
Sec. VA). The radiation rates in the linear theory can be
obtained from the corresponding expressions in the non-
linear theory by dropping the cubic and the quartic terms in
the fields. In the case of the energy, we have

dE
du

¼ −
1

32πG

I
d2S

	
NðΛÞ

ABN
ðΛÞAB þ 2Λ

3
CABCAB

−
Λ
6
CABD2CAB −

Λ2

3
CABEAB

þ ð4M þDADBCABÞ
�
DCUC

ð0Þ
�


: ð51Þ

Remarkably, if one calculates the total flux of energy
radiated in a finite interval of time Δu (assuming
appropriate falloff near the edges of Δu), one obtains
perfect agreement with the results obtained independently
by Chrúsciel et al. in [23], and by Kolanowski and
Lewandowski in [24]. It also coincides with the expression
found by Ashtekar et al. in a different set of coordinates
[22]. This can be seen as follows. If we reexpressCAB in the
terms with explicit Λ dependence by using Eq. (4), we
obtain

dE
du

¼ −
1

32πG

I
d2S

�
ĊABĊAB − 2ΛDBUA

ð0ÞEAB

þ 4DBUA
ð0ÞCAB −DBUA

ð0ÞD
2CAB

þð4M þDADBCABÞ
�
DCUC

ð0Þ
��

:

After an integration by parts on the sphere, one obtains

dE
du

¼ −
1

32πG

I
d2SðĊABĊAB þUA

ð0Þ½2ΛDBEAB

−4DBCAB þDBD2CAB −DAð4M þDBDCCBCÞ�Þ:

Using the linearized equation of motion for NA in (49), we
can write this compactly as

dE
du

¼ 1

8πG

I
d2S

�
−
1

4
ĊABĊAB þ UA

ð0ÞṄA

�
:

So that the total amount of energy radiated in the interval of
time Δu is given by

EjΔu ¼
1

8πG

Z
Δu

du
I

d2S

�
−
1

4
ĊABĊAB þ UA

ð0ÞṄA

�
:

Assuming that there is no flux of radiation outside this
interval of time, we can integrate by parts in the null time
and discard the corresponding boundary terms, so that we
can write

EjΔu ¼ −
1

8πG

Z
Δu

du
I

d2S

�
1

4
ĊABĊAB þ U̇A

ð0ÞNA

�
:

Now, by virtue of our asymptotic conditions,
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huA ¼ −
1

r2
UA:

Therefore, if we consider an asymptotic expansion of the
form

huA ¼ hð2ÞuAr
2 þ hð1ÞuArþ hð0ÞuA þ hð−1ÞuA

r
þ…;

we obtain

hð2ÞuA ¼ −Uð0ÞA; hð−1ÞuA ¼ 2

3
NA:

Thus, in terms of these variables, the total amount of energy
radiated in the interval of time Δu acquires the following
form:

EjΔu ¼ −
1

32πG

Z
Δu

du
I

d2S
�
ĊABĊAB − 6ḣð2ÞuAh

ð−1ÞA
u

�
:

This expression precisely coincides with the ones found
in [23,24].

2. Explicit solutions for quadrupolar modes

Using the set-up in the previous subsection, we will now
study explicit solutions to the linearized Einstein’s equa-
tion. The strategy is to solve for the homogeneous solution
of Einstein’s equation, which corresponds in a partial wave
expansion to the gravitational field away from the source
generating the gravitational waves (which is assumed to be
bounded). In particular, the homogeneous solutions corre-
sponding to a fixed l in the spherical harmonic expansion,
should necessarily be generated by a source with multipole
moment l. Even though the homogeneous solution is only
valid outside the source, in principle we could match this
solution with the “inner” solution using matched asymp-
totic expansions [30]. The matching with an interior
solution is beyond the scope of this paper, which focuses
on the solution far away from the source. The waves here
could be considered a generalization of the “Teukolsky
waves” from flat spacetime to de Sitter spacetime—apart
from the different gauge choice that we implement [31].
Since the background spacetime is spherically symmet-

ric, it is convenient to use similar techniques as Regge
and Wheeler did when solving for linearized perturbations
off Schwarzschild (although we will not implement the
Regge-Wheeler gauge) [32]. In particular, we will use
separation of variables and for the angular part of the
perturbations, we introduce scalar, vector and tensor
spherical harmonics. Following the notation in [33], we
note that the scalar harmonics are the usual spherical-
harmonic functions YlmðxAÞ satisfying the eigenvalue
equation D2Ylm ¼ −lðlþ 1ÞYlm. There are two types
of vector harmonics: even-parity Ylm

A (also known as

electric) and odd-parity Xlm
A (also known as magnetic),

which are related to the scalar harmonics through the
covariant derivative operator compatible with γAB

Ylm
A ≔ DAYlm; ð52Þ

Xlm
A ≔ −ϵABDBYlm: ð53Þ

The even- and odd-parity harmonics are orthogonal in the
sense that

R
d2SȲA

lmX
l0m0
A ¼ 0. The tensor harmonics also

come in the same two types:

Ylm
AB ≔ DðAYlm

BÞ −
1

2
γABDCYC

lm; ð54Þ

Xlm
AB ≔ −ϵðACDBÞYlm

C : ð55Þ

These operators are traceless, i.e., γABYlm
AB ¼ 0 ¼ γABXlm

AB
and orthogonal in the same sense as the vector harmonics
are. The separation of variables takes the form

huu ¼
X
l;m

flmðu; rÞYlm; ð56aÞ

hur ¼
X
l;m

hlmðu; rÞYlm; ð56bÞ

huA ¼
X
l;m

Flm
1 ðu; rÞYlm

A þGlm
1 ðu; rÞXlm

A ; ð56cÞ

hAB ¼
X
l;m

Flm
2 ðu; rÞYlm

AB þ Glm
2 ðu; rÞXlm

AB; ð56dÞ

where the sum here is restricted to l ≥ 2 andm ranges from
−l to l. We neglect the l ¼ 0 and l ¼ 1multipoles, which
are nonradiative and require a special treatment. We have
also set hrr ¼ hrA ¼ γABhAB ¼ 0 to ensure that the linear-
ized metric satisfies the required falloff in Eq. (47). This
gauge choice can always be made (in fact, there is some
residual gauge freedom left that we will use in the
analysis below).
The even and odd-parity modes remain decoupled in the

linearized Einstein’s equation and so are all the l; m modes
in the spherical decomposition. We will restrict ourselves in
this section to the l ¼ 2modes; the structure of the solution
is very similar for higher-l modes and we will briefly
comment on the form of the general solution at the end.
Solving for the simpler, odd-parity sector first, we find the
following retarded solution:

Gl¼2
1 ðu; rÞ ¼

X2
m¼−2

�
1

2
Ċm
2

r2

l4
−
�
l−2Ċm

1 − ⃛Cm
1

�
þ 2

r
C̈m
1

þ 3

2r2
Ċm
1

�
; ð57Þ
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Gl¼2
2 ðu; rÞ ¼

X2
m¼−2

��
Cm
2 þ Cm

1 − C̈m
1 l

2
� r2

l4

þ r
�
l−2Ċm

1 − ⃛Cm
1

�
þ 1

r
Ċm
1

�
; ð58Þ

with Cm
1 ; C

m
2 dimensions of length squared. The term

proportional to r2 in Gl¼2;m
2 spoils the falloff behavior

of the angular part of the metric in Eq. (2). This is, however,
easily remedied by realizing that the solution is not
completely gauge fixed and with the residual gauge free-
dom this part of the metric can be gauged away. With an
appropriate gauge choice, we set8

Cm
2 ≡ C̈m

1 l
2 − Cm

1 : ð59Þ

This gauge choice is further preserved by the residual
gauge freedom generated by χA ¼ ϵABDBðΩ⃗ · r̂Þ. With this
gauge choice, and introducing Bm ¼ Ċm

1 , we finally obtain
the following odd-parity solutions for the quadrupolar
modes with l ¼ 2

hodduu ¼ 0; ð60aÞ

hoddur ¼ 0; ð60bÞ

hodduA ¼
X2
m¼−2

�
1

2

�
B̈m − l−2Bm

� r2

l2
þ
�
B̈m − l−2Bm

�
þ 2

r
Ḃm þ 3

2r2
Bm

�
X2m
A ; ð60cÞ

hoddAB ¼
X2
m¼−2

�
r
�
B̈m − l−2Bm

�
−
1

r
Bm

�
X2m
AB; ð60dÞ

where Bm ¼ BmðuÞ is an arbitrary function of the retarded
time u with dimensions of length. Note that the leading
order of the angular metric is independent of the wave, but
that CAB ≠ 0 and UA

ð0Þ ≠ 0 [with the constraint relating

these metric coefficients in Eq. (4) satisfied].
The solution for general l is more complicated, but has

these general features,

Gl
1ðu; rÞ ¼

X2
m¼−2

"
1

2
Ċlm
2

r2

l4
þ
Xl
i¼0

aðlÞi ðrÞClm
i

ðiÞ #
; ð61Þ

Gl
2ðu;rÞ¼

X2
m¼−2

2664Clm
2

r2

l4
þ
Xl
i¼0

8>><>>:
bðlÞi ðrÞClm

i

ðiÞ
if l even

bðlÞi ðrÞClm
i

ðiþ1Þ
if l odd

3775;
ð62Þ

with the C-coefficients depending on u only, the factor (i)
on top of these coefficients indicate its ith derivative with

respect to u and aðlÞi ; bðlÞi are polynomials in r (and its
inverse powers) with the highest power being r2. Note that
the term proportional to C2 is in fact independent of l and
can always be gauged away. As a result, even though
generically G2 contains terms proportional to r2 which
could spoil the desired falloff, these terms can always be set
to zero by a clever gauge choice for C2—similar to the case
with l ¼ 2. Hence, linearized solutions with odd-parity
satisfy the desired falloff conditions for any l ≥ 2.
The analysis for the even-parity sector mimicks that of

the odd-parity sector, but is more involved as more terms
are nonzero. Nonetheless, also in this case one can gauge
fix the solution to obtain a linearized solution that satisfies
the falloff conditions prescribed in Eq. (47). Specifically,
the retarded l ¼ 2 even-parity solutions for hμν takes the
form

hevenuu ¼
X2
m¼−2

�
3
�
Äm − 4l−2Am

� r
l2

þ 6
�
Äm − l−2Am

� 1

r
þ 6

r2
Ȧm þ 3

r3
Am

�
Y2m; ð63aÞ

hevenur ¼ 0; ð63bÞ

hevenuA ¼
X2
m¼−2

��
2l−2Am −

1

2
Äm

�
r2

l2
þ
�
4l−2Am − Äm

�
þ 2

r
Ȧm þ 3

2r2
Am

�
Y2m
A ; ð63cÞ

hevenAB ¼
X2
m¼−2

�
r
�
Äm − 4l−2Am

�
þ 1

r
Am

�
Y2m
AB; ð63dÞ

where Am ¼ AmðuÞ is an arbitrary function of the retarded
time u and dimensions of length. Also, similar to the odd-
parity sector, we have set hrr ¼ hrA ¼ γABhAB ¼ 0. Note
that there is backreaction on the “background” metric as
r → ∞ through the leading term of huA, that is, UA

ð0Þ ≠ 0.

The backreaction onto the leading-order part is unique to
Λ ≠ 0. In the limit l → ∞, this backreaction vanishes. This
is immediately clear from the limit of the even- and odd-
parity solutions:

8By the Stewart-Walker lemma, the linearized Weyl tensor is
gauge-invariant and a straightforward computation shows that the
linearized Weyl tensor is independent of Cm

2 . Therefore, the Cm
2

solution is pure gauge and contains no physical degrees of
freedom. This interpretation of the solution is consistent with the
gauge choice made in Eq. (59).
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lim
l→∞

huu ¼
X2
m¼−2

�
6Äm

r
þ 6Ȧm

r2
þ 3Am

r3

�
Y2m; ð64aÞ

lim
l→∞

hur ¼ 0; ð64bÞ

lim
l→∞

huA ¼
X2
m¼−2

��
−Äm þ 2Ȧm

r
þ 3Am

2r2

�
Y2m
A

þ
�
B̈m þ 2Ḃm

r
þ 3Bm

2r2

�
X2m
A

�
; ð64cÞ

lim
l→∞

hAB ¼
X2
m¼−2

��
Äm

r
þ Am

r3

�
r2Y2m

AB þ
�
B̈m

r
−
Bm

r3

�
r2X2m

AB

�
;

ð64dÞ

where Am and Bm reduce to the standard quadrupole
moments on flat spacetime.
Connecting these results with the Bondi-Sachs expan-

sions, we find that the linear part of the metric coefficients
is given by

M ¼
X2
m¼−2

3
�
Äm − l−2Am

�
Y2m; ð65aÞ

Uð0Þ
A ¼ 1

l2
X2
m¼−2

�
2l−2Am−

1

2
Äm

�
Y2m
A þ1

2

�
B̈m− l−2Bm

�
X2m
A ;

ð65bÞ

NA ¼
X2
m¼−2

−3ȦmY2m
A þ 3ḂmX2m

A ; ð65cÞ

CAB ¼
X2
m¼−2

�
Äm − 4l−2Am

�
Y2m
AB þ

�
B̈m − l−2Bm

�
X2m
AB;

ð65dÞ

EAB ¼
X2
m¼−2

AmY2m
AB − BmX2m

AB; ð65eÞ

and all other coefficients vanishing or determined by lower-
order terms.
The radiation rate at the linearized level in Eq. (51)

reduces after some further simplifications to

dE
du

¼ −
3

8πG

X2
m¼−2

h ⃛Am − 4l−2Ȧm

2
−3l−2Ä�

m

�
Äm − 4l−2Am

�
þ
 ⃛Bm − l−2Ḃm

2
þ3l−2B̈�

m

�
B̈m − l−2Bm

�i
; ð66Þ

where the star indicates complex conjugation. If we
consider the total energy radiated during some large time
interval Δu, where we assume that at far past and at far
future the system will not radiate so that we can remove the
boundary terms in time, then

EΔu ¼ −
3

8πG

Z
∞

−∞
du

X2
m¼−2

��
⃛Am −

Ȧm

l2

�
�
⃛A�
m −

4Ȧ�
m

l2

�
þ
�
⃛Bm −

Ḃm

l2

��
⃛B�
m −

4Ḃ�
m

l2

��
: ð67Þ

In particular, after integration by parts, we have

EΔu ¼ −
3

8πG

Z
∞

−∞
du

X2
m¼−2

�
j ⃛Amj2 þ

5jÄmj2
l2

þ 4jȦmj2
l4

þ j ⃛Bmj2 þ
5jB̈mj2
l2

þ 4jḂmj2
l4

�
: ð68Þ

This flux is manifestly negative. Therefore, the total energy
always decreases for a source characterized by a quadru-
pole. The flat spacetime limit yields the expected result for
a quadrupolar source A, B

lim
l→∞

EΔu ¼ −
3

8πG

Z
∞

−∞
du

X2
m¼−2

h
jA…mj2 þ jB…mj2

i
: ð69Þ

Note that for Λ < 0, i.e. l → il, the energy flux is nonzero
so that the boundary is not reflective (as is typically
imposed). In fact, the energy flux can have an arbitrary
sign depending on the values of A, its time derivatives and l.

E. Robinson-Trautman spacetime

The Robinson-Trautman spacetime is an exact solution
of Einstein equations that describes the backreaction of a
nonlinear gravitational wave on a Schwarzschild space-
time. The Robinson-Trautman solution is dynamical; it
models gravitational radiation expanding from a radiating
object. Since ultimately, we are interested in describing
gravitational radiation emitted by compact sources in
the presence of a cosmological constant, this example is
of particular interest for our analysis. The original
Robinson-Trautman solution contained no cosmological
constant [34], but it was soon realized that the solution
easily accommodates for a nonzero cosmological constant.
This class of spacetimes is the most general radiative
vacuum solution admitting a geodesic, shear-free and
twist-free null congruence of diverging rays. It has been
shown that starting with arbitrary, smooth initial data at
some retarded time u ¼ u0, the cosmological Robinson-
Trautman solutions converge exponentially fast to a
Schwarzschild-de Sitter solution at large retarded times
(u → ∞). Thus, these solutions also belong to the class of
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solutions discussed in this paper. In this section, we will
show this explicitly by providing the form of this solution
in Bondi-Sachs-like coordinates.
The line element of the Robinson-Trautman solution

with a positive cosmological constant is given by

ds2 ¼ −2Hðu; r; θ;ϕÞdu2 − 2dudr

þ r2

P2ðu; θ;ϕÞ ðdθ
2 þ sin2 θdϕ2Þ; ð70Þ

with

2Hðu; r; θ;ϕÞ ¼ −
r2

l2
−
2rṖ
P

þ 1

2
Rh −

2mðuÞ
r

:

Here Pðu; θ;ϕÞ is an arbitrary function of the retarded time
and the angles, and contains the information of the
gravitational wave. According to Einstein’s equations,
the following equation governs the time evolution of mðuÞ,

ṁ ¼ 3m
Ṗ
P
−
1

8
ΔhRh: ð71Þ

The Laplacian Δh is defined with respect to the metric
hAB ¼ P−2ðu; θ;ϕÞðdθ2 þ sin2 θdϕ2Þ. In the particular
case when P ¼ 1 (no radiation), the Schwarzschild de
Sitter solution is recovered.
The Robinson-Trautman solution, as written in Eq. (70),

does not fit immediately within the asymptotic conditions in
Eq. (2). The reason is the presence of the function P−2

appearing in front of themetric of the two-sphere. In order to
accommodate the solution one must perform an appropriate
change of coordinates. In general, the implementation of this
change of coordinates is technically a very hard task.
However, a simplified analysis can be achieved by consid-
ering the Robinson-Trautman metric with axial symmetry.
In addition, and for clarity to the reader, in this section we
will only consider a linearized version of the solution. The
nonlinear analysis will be discussed in Appendix B.
Assuming for simplicity axial symmetry, the linearized

Robinson-Trautman solution expanded around a
Schwarzschild-de Sitter background is obtained by
expressing the function P ¼ Pðu; θÞ as follows:

P ¼ 1þ ϵpðu; θÞ:

Here ϵ is a small parameter that controls the linearized
expansion. In this approximation, the leading order of
Eq. (71) becomes

ṁ ¼ 1

4
ϵ
h
12mṗþ pð4Þ − cot2 θp00 þ 2 cot θp000

þ cot θðcsc2 θ þ 2Þp0
i
þOðϵ2Þ: ð72Þ

Here the prime denotes derivatives with respect to θ. In
order to accommodate the solution within our asymptotic

conditions, one can implement the following change of
coordinates to linear order in ϵ

u → u − ϵfðu; θÞ þOðr−3Þ;

r → rð1þ ϵpðu; θÞÞ − 1

2
ϵD2fðu; θÞ þOðr−2Þ;

θ → θ þ ϵ
f0ðu; θÞ

r
þOðr−3Þ;

ϕ → ϕ;

where

p ¼ ḟ: ð73Þ

Thus, one finds

M ¼ m½1 − ϵð3ḟ þ fṁÞ�; ð74aÞ

Cθθ ¼ ϵðf00 − cot θf0Þ; Cϕϕ ¼ −ϵ sin2 θðf00 − cot θf0Þ;
ð74bÞ

Cθϕ ¼ 0; ð74cÞ

Uθ
ð0Þ ¼

ϵ

l2
f0; Uϕ

ð0Þ ¼ 0; ð74dÞ

Nθ ¼ −3ϵmf0; Nϕ ¼ 0; ð74eÞ

EAB ¼ 0: ð74fÞ

Decomposing f into spherical harmonics f ¼ P
l flYl0, we

can also compactly write CAB as CAB ¼ 2ϵ
P

l flY
l0
AB. In

addition, at linear order the News tensor in Eq. (25) takes

the simple form NðΛÞ
AB ¼ ĊAB.

To obtain the flux of energy one can replace (74) in
Eq. (32), while retaining only the terms up to order ϵ2. After
some integrations by parts one finally obtains

dE
du

¼−
ϵ2

16πG

I
d2S

�
ðḟ00−cotθḟ0Þ2þ3m

l2
∂uðf02Þ

�
: ð75Þ

VI. COMPARISON WITH ALTERNATIVE
APPROACHES

Given the observational evidence for an accelerated
expansion of our Universe and the recent gravitational
wave observations, the challenge of understanding gravi-
tational waves in the presence of a positive cosmological
constant Λ has received considerable attention in recent
years. At the linearized level, most of the previous results in
the literature agree with each other. As we will see below,
our results are also in agreement with them.
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However, the situation is drastically different in the
full nonlinear theory. Different methods and/or different
boundary conditions are employed—some of which even
require regularization; the results in general do not agree.
We describe below some of these approaches without any
pretense of being exhaustive.

A. Linearized gravity

An important starting point is a thorough understanding
of weak gravitational waves on a de Sitter background.
There are two key issues predominantly studied within this
context: (1) a mathematically sound and physically sensible
notion of energy and its flux; and (2) finding explicit
solutions for gravitational waves generated by a compact
source and their link to time-changing quadrupole
moments, thereby generalizing the well-known flat result.9

There are various notions of energy and its flux in the
literature that mostly distinguish themselves by the method
used to derive it (as a consequence, these notions typically
are equivalent up to boundary terms), where in spacetime
the energy (flux) is evaluated (mostly on I or across the
cosmological horizon) and by the class of linearized
solutions for which the energy is defined. For instance,
in [24], the energy flux across I is derived using the same
symplectic methods as in the earlier work in [22], but for a
slightly larger class of linearized solutions. In [36], the
authors use the Wald-Zoupas prescription to define energy
(and angular momentum). In all these cases, the resulting
energy flux is finite and the result gauge invariant.
On the other hand, the energy flux obtained in [23] by

direct use of Noether currents is not finite (note also earlier
work [37]). In that paper, they remedy this issue by
isolating the terms which would lead to infinite energy
and introducing a “renormalized canonical energy.” Their
argument for the plausibility of this procedure is based on
the observation that the diverging terms have dynamics of
their own, which evolves independently from the remaining
part of the canonical energy.
Yet another approach, which applies only for sources

supporting the short wavelength approximation, as it relies
on the Isaacson effective stress-tensor, matches the results
in [25] if one identifies the transverse-traceless gauge with a
certain projection operation.10

In [39], the authors employ the symplectic current
density of the covariant phase space to show that the
integrand in the energy flux expression on the cosmo-
logical horizon is same as that on I . This result is
interesting as it suggests that at the linearized level
propagation of energy flux is along null rays in de
Sitter spacetime, despite the fact that gravitational waves
themselves have tail terms due to backscattering off the
background curvature.
The second key issue investigated is the link between

time variation of some compact source generating gravi-
tational waves and the resulting gravitational waves
themselves. This was investigated in [25] by solving
the linearized Einstein’s equation on de Sitter background
sourced by a (first-order) stress-energy tensor. To study
the limit to I , the authors introduce a late-time approxi-
mation in addition to the commonly used post-Newtonian
approximation. This allowed them to express the leading
terms of the gravitational waves in terms of the quadru-
pole moments of sources. Moreover, the energy carried
away by this gravitational waves was studied using
Hamiltonian methods on the covariant phase space
of the linearized solutions introduced in their earlier
paper [22]. This showed that despite the fact that in
principle the energy for linearized perturbations on de
Sitter spacetime can be negative (note that this is not in
contrast with the finiteness discussed in the previous
paragraph), the energy of gravitational waves emitted
by compact objects is always positive. This is also
consistent with our results in Sec. V D. The quadrupolar
solutions in [25] were also reinterpreted in [40], by writing
the solutions in Bondi-Sachs-type coordinates different
from the ones introduced in this paper. The authors
showed that the quadrupolar solutions can be accommo-
dated by a nonzero shear for the leading-order part of gAB.
This is different but not in contradiction with the results in
this paper, which show that the radiative solution con-
tributes to the sub-leading part of gAB and to UA

ð0Þ, while
the leading-order part of gAB is equal to γAB. This is a
gauge choice. Other papers relating the source dynamics
modeled by some compact stress-energy tensor to the
gravitational wave and the energy have relied on the short
wave approximation [41–43]. These results are consistent
with the results in [22].
The gravitational memory effect, which describes the

permanent displacement of test masses after a gravitational
wave has passed, has only sparsely been analyzed in de
Sitter spacetimes. This interesting physical effect was
studied near the cosmological horizon of de Sitter space-
time in [35,44], and a “linear” memory effect has been
linked to the tail of the de Sitter Green’s function in [45].
However, the connection to asymptotic symmetries—
which exist for the memory effect in asymptotically flat
spacetimes—have not been studied. We intend to explore
this in upcoming research.

9The gravitational memory effect in de Sitter spacetimes has
been investigated in [35], however, this paper focused on the
cosmological horizon and is therefore more difficult to relate to
the results in this paper that exclusively apply near I.

10For linearized solutions on Minkowski spacetime, this is a
well-defined and consistent procedure for the leading order
components of the gravitational field. This is shown explicitly
in [38], in which the first notion is referred to as “TT” gauge and
the second as “tt” gauge. However, it is not clear that the two
notions are also equivalent for the leading order fields in de Sitter
spacetime.
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B. Full nonlinear theory

Early investigations of the asymptotic structure of
asymptotically de Sitter spacetimes in full nonlinear gen-
eral relativity such as [46–48] imposed too stringent
boundary conditions by demanding conformal flatness of
the induced three-dimensional metric on I . As a result,
these early investigations concluded that the asymptotic
symmetry group is the full de Sitter group. However, as was
shown in [4], imposing conformal flatness ruled out many
physically relevant spacetimes as they enforced a vanishing
flux of radiation across I (and consequently all charges are
strictly conserved, see also [49]). For a more explicit link
between some of the results here and in those papers, see
Appendix A.
The observation that demanding the asymptotic symmetry

group to be the de Sitter one ruled out gravitational waves
sparked new interest in this challenging problem. It lead the
authors in [50] to consider Bondi-Sachs-type coordinates for
asymptotically de Sitter spacetimes, which are not confor-
mally flat at I . A nice property of their coordinates is that the
Weyl tensor has peeling behavior near I [51]. While these
authors also rely on the Bondi framework, their falloff
conditions on the metric coefficients are different from those
considered here. In particular, the authors did not fix gAB to
be equal to the unit two-sphere but instead allowed for a
nonzero shear at leading order. Their shear contains all the
information about gravitational radiation. However, based on
our analysis, using their falloff conditions the variation of the
charge is infinite. This makes these falloff conditions not as
attractive. Moreover, the analysis in those papers was
restricted to axisymmetric spacetimes and limited to the
study of Einstein’s equations; these papers did not study
gravitational charges and fluxes.
Subsequently, various authors used the Newman-Penrose

formalism to define and study asymptotically de Sitter
spacetimes [52–54]. The two earlier papers by Saw used
a special choice of null foliation, thereby excluding the
Robinson-Trautman spacetimewith a positive cosmological
constant as part of their allowed class of spacetimes. The
class of null foliations was generalized in [54] by Mao to
accommodate for the Robinson-Trautman spacetime.
A nice feature of the falloff conditions on the spin coef-
ficients and Weyl scalars in those papers is that they have a
well-defined flat limit. However, Mao finds that the asymp-
totic symmetry algebra consists of all diffeomorphisms on
the two-sphere and translations in the u-direction. In the
limit l → ∞, the asymptotic symmetry algebra becomes the
algebra of all diffeomorphisms on the two-sphere and
supertranslations known as the extended BMS algebra
[55] instead of the BMS algebra. Gravitational charges
and fluxes were not studied in these papers.
Another set of recent papers on this topic uses similar

techniques to those used here [56,57]. These authors find
that the asymptotic symmetries form a Lie algebroid
instead of a Lie algebra, as they used different falloff

conditions on the metric. Their asymptotic symmetries
consist of infinite-dimensional “non-Abelian supertransla-
tions” and superrotations, and like in [54] reduces in the
limit l → ∞ to the extended BMS algebra. These boundary
conditions were used in [58] to define a Bondi news-like
tensor using a Newman-Penrose tetrad.
Inspired by the dictionary between Bondi and Fefferman-

Graham gauges [59], the authors used earlier results in
Fefferman-Graham gauges to define a new class of asymp-
totically de Sitter spacetimes. In their follow-up work [60],
in order to obtain finite charges and fluxes, these authors
introduce a holographic renormalization procedurewhile all
charges and fluxes are naturally finite in this paper and donot
require any ad hoc regularization. The latter work also states
more clearly that their interest is in spacetimes with compact
spatial slices, as opposed to this work.
Other work has focused on studying the possible iso-

metries of asymptotically de Sitter spacetimes. One of the
key results is that the asymptotic symmetry algebra they
find is maximally four-dimensional [61], which in spirit
agrees with our work.
Research in a different direction focused on the question of

how to identify the presence of gravitational radiation in the
presence of Λ using geometric tools only and without
referring to a specific coordinate system [62]. The criterion
proposed is based onvalue of super-Poynting vector at I ; if it
vanishes, there is no gravitational radiation acrossI while if it
is nonzero, there is gravitational radiation across I . This
criterion is straightforward to check as the super-Poynting
vector is the commutator of the leading order electric Eab and
magneticBab part of theWeyl tensor.When the cosmological
constant vanishes, this criterion is equivalent to the standard
“identification” method of gravitational radiation at null
infinity through the means of the (non)vanishing of the
Bondi news tensor [63]. When Bab vanishes on I , the
super-Poynting vector also vanishes and this criterion implies
that there is no radiation. However, the vanishing ofBab is not
a necessary condition. In particular, certain Kerr-de Sitter
generalized spacetimes have nonvanishingBab on I yet their
super-Poynting vector vanishes. Here we find that there is
gravitational radiation whenever CAB [and hence UA

ð0Þ] is

nonzero. When these are zero, Bab vanishes. Therefore, our
criterion to establish the presence of gravitational radiation
seems to be stricter. In other words, based on the super-
Poynting vector criterion a spacetime may be labeled as
nonradiating, while based on CAB it would be considered
radiating. It is therefore not too surprising that the authors
in follow-up work found that the asymptotic symmetry
algebra for the spacetimes they considered are infinite dimen-
sional [64–66].
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APPENDIX A: LINK WITH GEOMETRIC
APPROACH

The goal of this appendix is to show how the metric in
Eq. (1) with the falloff conditions specified in Eq. (2) is
related to earlier results obtained using purely geometric
techniques in [4,22,25,67]. In particular, here we show that
the falloff conditions are such that the class of spacetimes
described here are not strongly asymptotically de Sitter
spacetimes. This is as desired, because strongly asymp-
totically de Sitter spacetimes have no radiative fluxes
across I .
From the coordinates and expression for the physical

metric in the main body of this paper, we can construct
Bondi-Sachs-type coordinates near I for the conformally
completed spacetime g̃μν ¼ Ω2gμν with r ¼ Ω−1. In par-
ticular, we straightforwardly obtain

g̃μνdxμdxν b¼UWdu2 þ γABðdxA − UAduÞðdxB −UBduÞ;
ðA1Þ

where the falloff of the coefficients directly follows from
that in Eq. (2)

β ¼ −
1

32
CABCABΩ2

þ 1

128

�
ðCABCABÞ2 − 12CABEAB

�
Ω4 þ…; ðA2aÞ

W ¼ Λ
3
−DAUA

ð0ÞΩ−
�
1þ Λ

16
CABCAB

�
Ω2 þ 2MΩ3 þ…

ðA2bÞ

UA ¼ UA
ð0Þ −

1

2
DBCABΩ2

−
2

3

�
NA −

1

2
CABDCCBC

�
Ω3 þ…; ðA2cÞ

qAB ¼ γAB þ CABΩþ CCDCCDγAB
4r2

Ω2 þ EABΩ3 þ…:

ðA2dÞ

The surfaces of constant u are outgoing null surfaces for
both the unphysical and the physical spacetime, since
conformal transformations do not change the properties
of null geodesics. With this choice of the falloff conditions

and conformal factor, the divergence of e∇μΩ is nonzero.
This is different from the typical choice made in the
asymptotically flat context, where one often chooses Ω
such that one is in a conformal divergence-free frame
because for asymptotically flat spacetimes this choice
simplifies intermediate results significantly.
In [4], it was shown that strongly asymptotically de Sitter

spacetimes have a conformally flat metric at I and all
fluxes vanish across I . It is clear from Eq. (A1) that the
class of spacetimes considered in this paper do not belong
to strongly asymptotically de Sitter spacetimes. This can
also been seen by studying the Weyl tensor. In particular,
conformal flatness of the metric at I is equivalent to the
vanishing of the next-to-leading-order magnetic part of the
Weyl tensor at I . Given the above expression for the metric,
we can compute the Weyl tensor explicitly. We find that, as
expected, the leading order part of the Weyl tensor vanishes
on I , that is, Cabcd b¼ 0 [4]. The next-to-leading-order part
is nonzero and we will decompose it into its electric and
magnetic part,

Eab ≔ l2Ω−1Cacbdncnd; ðA3Þ

Bab ≔ l2Ω−1�Cacbdncnd ¼
l2

2
ϵac

mnCmnbdncnd; ðA4Þ

where both Eab and Bab are symmetric, traceless and
orthogonal to na, which here is equal to na∂a ¼ ∂=∂u.
The resulting expressions are rather long, so here we only
show the part linear in the metric coefficients,
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Eabdxadxbjlin b¼ −
1

l2
Vð3Þðduþ l2dΩÞ2 þ

�
3

2l2
Uð3Þ

A þ l2

2
∂u½D2 þ 1�Uð0Þ

A

�
ðduþ l2dΩÞdxA

−
l2

2

�
3

l4
qð3ÞAB −

1

l2
Vð3ÞγAB þ ½2l2∂2u þD2 − 4�

�
DðAU

ð0Þ
BÞ −

1

2
γABDCUC

ð0Þ

�
−
�
DðADBÞ −

1

2
γABD2

�
DCUC

ð0Þ

�
dxAdxB ðA5Þ

and

Babdxadxbjlin b¼ 1

2
½D2 þ 2�ϵABDAU

ð0Þ
B ðduþ l2dΩÞ2 l

2

2
∂u½D2 þ 1�ϵABUð0Þ

B ðduþ l2dΩÞdxA

−
l2

2

�
1

2
½D2 þ 2�ðϵEFDEU

ð0Þ
F ÞγAB − 2l2∂2u

�
DðAðϵBÞCUð0Þ

C Þ − 1

2
γABDCðϵCEUð0Þ

E Þ
�

−
�
DðADBÞ −

1

2
γABD2

�
ϵEFðDEU

ð0Þ
F Þ

�
dxAdxB: ðA6Þ

It is evident that Bab is nonzero and consequently the class of spacetimes considered in this paper are not strongly
asymptotically de Sitter as desired, because strongly asymptotically spacetimes remove half the permissible data and have
no fluxes of energy across I .
Using the explicit linearized solutions in Sec. V D, we find that for quadrupolar gravitational waves, the electric and

magnetic part of the Weyl tensor are

Eabdxadxb b¼ X2
m¼−2

	
6l−2

�
l−2Am− Äm

�
Y2mdu2þ

�
∂u

�
l−2Am− Äm

�
Y2m
A −∂u

�
4l−2Bm− B̈m

�
X2m
A

�
dudxA

þ
��

−
3

2

�
l−2Am− Äm

�
þ1

2
∂
2
u

�
l−2Am− Äm

��
Y2m
AB−3

�
l−2Am− Äm

�
Y2mSAB−

1

2
∂
2
u

�
4Bm− l2B̈m

�
X2m
AB

�
dxAdxB



ðA7Þ

and

Babdxadxb b¼ X2
m¼−2

	
6l−2ðl−2Bm− B̈mÞY2mdu2− ð∂uð4l−2Am− ÄmÞY2m

A −∂uðl−2Bm− B̈mÞX2m
A ÞdudxA

þ
��

−
3

2
ðl−2Bm− B̈mÞþ

1

2
∂
2
uðl−2Bm− B̈mÞ

�
Y2m
AB −3ðl−2Bm− B̈mÞY2mSABþ

1

2
∂
2
uð4Am− l2ÄmÞX2m

AB

�
dxAdxB



:

ðA8Þ

We have explicitly verified that these expressions
are symmetric, transverse Eabnb b¼0 b¼Babnb and traceless
qabEab b¼0 b¼qabBab. In taking the limit l → ∞, one
needs to be careful to rescale Eab and Bab; otherwise,
due to the overall factor of l2 in the definition in Eqs. (A3)
and (A4), this limit trivially diverges. The flat limit is

lim
l→∞

l−2Eabdxadxb b¼ X2
m¼−2

−2∂4uBmX2m
ABdx

AdxB; ðA9Þ

lim
l→∞

l−2Babdxadxb b¼ X2
m¼−2

2∂4uAmX2m
ABdx

AdxB: ðA10Þ

Note that the parity-even solution, which is sometimes
also called an electric solution, contributes to the magnetic
part of the Weyl tensor and vice versa. There is no
contradiction here, as the names electric and magnetic
refer to very different notions.
In this linearized limit one can also explicitly show that

the l ¼ 1 modes in UA
ð0Þ do not contribute to Eab nor to

Bab.
11 This further supports the interpretation of those

modes as nonradiative.

11To show this, first decompose Uð0Þ
A into an “electric” and

“magnetic” part: Uð0Þ
A ¼ DAf þ ϵA

BDBg and use that if f and g
are l ¼ 1 modes DADBf ¼ −γABf and similarly for g.
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APPENDIX B: CHANGE OF COORDINATES FOR THE NONLINEAR
ROBINSON-TRAUTMAN SOLUTION

In this appendix we show that the non-linear Robinson-Trautman solution can be accommodated within the asymptotic
conditions in Eq. (2). Starting from the solution in Eq. (70) one can perform the following asymptotic change of coordinates

u → fðu; θÞ þ l2 csc θðsin θh0 − sin hÞ
P

1

r
þ U2

r2
þ…;

r → sin θ csc hPrþ R0 þ
R1

r
þ…;

θ → hðu; θÞ − Pf0

r
−
1

2
l2

�
h00 þ cot θh0 −

1

2
csc2θ sin 2h

�
1

r2
þ…;

ϕ → ϕ;

with

U2 ¼
l4ðcsc θ sin h − h0Þ

4f0P3
½Pð−2h00 − 2 cot θh0 þ csc2 θ sinð2hÞÞ

−2ðcsc θ sin h − h0Þðf0ð∂fPÞ þ ð∂hPÞðh0 þ csc θ sin hÞÞ�;

R0 ¼
1

2
l sin θ csc h

�
lð−h00 − cot θh0 þ 1

2
csc2 θ sin 2hÞ

f0
−
f0Pð∂hPÞ

l
þ 2lð∂fPÞðh0 − csc θ sin hÞ

P

�
;

R1 ¼
l4 csc3 θ sin3 h

16f02P5
f−2P2ð∂hPÞðh0 sin θ csc h − 1Þ2ðh0 sin θ csc hþ 1Þð8f0 sin θ cschð∂fPÞ

þ 3ð∂hPÞðh0 sin θ csc hþ 1ÞÞ þ 4P3ðsin2 θh02 csc2 h − 1Þ½4 sin θf0 csc hð∂f∂hPÞðh0 sin θ csch − 1Þ
þ 2∂2hPðh02 sin2 θ csc2 h − 1Þ þ ð∂hPÞðsin θ csc2 hðsin θh00 þ cos θh0Þ − cot hÞ�
− 8l2Pð∂2fPÞðh0 sin θ csc h − 1Þ3ðh0 sin θ cschþ 1Þ þ 8l2ð∂fPÞ2ðh0 sin θ csc h − 1Þ3ðh0 sin θ csc hþ 1Þ
þ csc2 hP4½2h002 sin4 θ csc2 hþ 4h00 sin2 θðh0 sin θ csc2 hðcos θ − 2h0 sin θ cot hÞ þ cot hÞ
þ h0ðh0 sin2 θ csc2 hð8h0 sin θðh0 sin θ csc2 h − cos θ cot hÞ þ 4 cosð2hÞ þ cosð2θÞ − 11Þ þ 2 sinð2θÞ cot hÞ
− 3 cosð2hÞ þ 5�g;

and P ¼ Pðfðu; θÞ; hðu; θÞÞ. The functions f and h are required to satisfy the following conditions

h02 þ P2f02

l2
¼ csc2 θ sin2 h; ðB1Þ

Pðḟh0 − f0ḣÞ ¼ csc2 θ sin2 h: ðB2Þ

Note that in the linear approximation, Eq. (B1) indicates that h ¼ θ, while Eq. (B2) implies Eq. (73), i.e., ḟ ¼ −ω. In the flat
limit (l → ∞), Eq. (B1) implies that h ¼ θ, while according to Eq. (B2) one has ḟ ¼ P−1. This condition is the same as that
obtained in [68].
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