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TheCmetric in vacuum general relativity describes a pair of accelerated black holes supported by conical
singularity. In this paper, we present a new family of exact solutions to the Einstein-phantom scalar system
that describes accelerated wormholes in anti–de Sitter (AdS) spacetime. In the zero acceleration limit with a
vanishing potential, the present solution recovers the asymptotically flat wormhole originally constructed by
Ellis and Bronnikov. The scalar potential of the phantom field has an infinite number of critical points and is
expressed in terms of the superpotential, which is obtained by suitable analytic continuation of a one
parameter family of theN ¼ 2 gauged supergravity. As one traverses two asymptotic regions connected by a
throat, the scalar field evolves from AdS space, corresponding to the origin of the potential, toward the
neighboring AdS local minimum of the potential. We find that the flipping transformation, which
interchanges the role of “radial” and “angular” coordinates at the expense of double Wick rotation, is an
immediate cause for the existence of two branches of static AdSwormholes discovered previously. Contrary
to the ordinaryCmetric, the conical singularity along the symmetry axis can be completely resolvedwhen the
(super)potential is periodic or zero. We explore the global causal structure in detail.

DOI: 10.1103/PhysRevD.108.064036

I. INTRODUCTION

A family of vacuum solutions to Einstein’s equations
[1–3], which describes a pair of causally disconnected
black holes with a uniform acceleration [4], is dubbed as a
C metric. The vacuum C metric is classified into a Petrov
type D and Weyl class of solutions [5]. The acceleration of
each black hole is produced by a conical deficit angle along
the axis of symmetry, corresponding to the cosmic string
extending out to infinity, or a strut with a negative tension
developing between two black holes. At the linear approxi-
mation of acceleration, the C metric appears as a perturba-
tion of the Schwarzschild black hole with a distributional
stringy source [6]. Extensive studies have been conducted
thus far on the causal structures and physical properties of
the vacuum C metric [7–10]. The C metric in anti–de Sitter
(AdS) spacetime has also been investigated from diverse
perspectives, including causal structures [11–13], thermo-
dynamics [14–18], minimal surfaces [19], and quasinormal
modes [20–22].
In our recent paper [23], we have constructed a new

family of C metrics in N ¼ 2 gauged supergravity. Upon
suitable truncation, the bosonic part of this theory is
nothing but the Einstein-Uð1Þ2-dilaton gravity. In the case

of zero acceleration limit, this C metric reduces to the
asymptotically AdS magnetically charged black hole with a
nontrivial scalar field, which admits a parameter range
under which the event horizon persists even in the neutral
case [24]. Nevertheless, it turns out that the neutralCmetric
does not shield the curvature singularity by the event
horizon, implying that the solution fails to describe the
accelerated black holes with a scalar hair. Solutions with at
least one nonvanishing charge can avoid naked curvature
singularities. Another insightful outcome of [23] is that
the “flipping transformation” inherent to the C metric
brings the solution into another family of C metrics found
in [25,26], which occurs with the sign change of the scalar
field. In the case of zero acceleration limit, the C metric
in [25,26] reduces to the asymptotically AdS electrically
charged black hole with a nontrivial scalar field [27,28],
which does not admit a parameter range under which the
event horizon exists in the spherical and neutral case [24].
It should be noted that these two families of hairy

solutions are not related by electromagnetic duality and
this flipping transformation is invisible in the zero accel-
eration limit. Before the discovery of the C metric in
gauged supergravity, it has been unclear why a particular
Einstein-scalar system gives rise to the two kinds of hairy
black holes [23,27,28]. With the benefit of hindsight, the
question regarding the appearance of two distinct families
of static solutions is a direct consequence of the existence
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of the C metric and its flipping degrees of freedom. This
status is schematically shown in Fig. 1.
With the same objective inmind,we consider in this paper

the accelerated generalization of wormholes, rather than
black holes. Wormholes describe the nonsingular geometry
that allows for tunneling into a different universe through a
bridge structure called a throat. The first physical discussion
of traversable wormholes was due to the landmark result of
Morris and Thorne in 1988 [29,30]. They analyzed a static
solution with a massless phantom scalar field, which was
later recognized as the same solution previously found by
Ellis [31] andBronnikov [32].Wormholes offer a theoretical
way to perform interstellar and time travel. The necessity of
exotic matter violating energy conditions for the construc-
tion of traversable wormholes is an immediate corollary
of the topological censorship theorem [33,34]. The Ellis-
Bronnikov class of wormholes has thus been studied
extensively over the years, including studies on stability
[35–37], gravitational lensing [38–40], and charged and
higher-dimensional generalizations [41–44]. Recently,
wormholes in AdS space have garnered significant attention
in the context of quantum entanglement and teleportation in
gauge/gravity duality [45–48].
In [49] (see also [50]), one of the present authors has

successfully constructed two distinct families of AdS worm-
hole solutions in Einstein-phantom scalar system with a
potential. These wormhole solutions interpolate the two
nearbyAdS local minima of the potential. A striking property
of the two families of wormhole solutions is that they admit a
scalar field profilewith opposite signs. It is then reasonable to
hope that these solutions are likely to be related by means of
the flipping symmetry of a more general C metric solution,
similar to the case of black holes. This expectation is indeed
true, as we will demonstrate in this paper.
We present a new C metric solution in Einstein’s gravity

with a phantom scalar field. The scalar field has a potential
written in terms of the superpotential, which is obtainable by
a suitable Wick rotation of parameters in theN ¼ 2 gauged
supergravity model considered in [23–28]. The potential
admits countablymanyAdS extrema amongwhich the local
minima correspond to the critical points of the superpoten-
tial. The flipping transformation of the solution brings the
present metric into a different family ofCmetrics. By taking
the zero acceleration limit, each solution recovers two
wormhole solutions in [49], as anticipated. We confirm that
the instruction presented in Fig. 1 has proven to be universal
also for wormholes.Within a natural coordinate domain, our

Cmetric asymptotes to AdS at the origin of the potential. By
themaximal extension, the solution is patched smoothly into
the other side of the universe, where the scalar field evolves
toward a different critical point of the potential. This
property mirrors the behavior of a soliton that interpolates
two different vacua. A noteworthy property of ourCmetrics
is that for appropriate parameters they do not necessitate
conical singularities to induce acceleration, for which the
acceleration of wormholes is supplied solely by the phan-
tom field.
The present paper is structured as follows. In the next

section, we provide a detailed description of our model for
the Einstein-phantom scalar gravity. In Sec. III, a new C
metric solution is presented. We determine the physical
meaning of parameters of the solution by considering
suitable limits. Of particular interest to be highlighted is
that the C metric is endowed with the flipping symmetry.
Physical properties of the C metric are explored in Sec. IV.
SectionVspells out theglobal causal structureof our solution
by drawing Penrose diagrams. We summarize our work in
Sec. VI. The Appendix presents an alternative C metric
solution with a different superpotential, which is the accel-
erated generalization of the Ellis-Gibbons class of metrics.
Our conventions of curvature tensors are ½∇ρ;∇σ�Vμ ¼

Rμ
νρσVν and Rμν ¼ Rρ

μρν. The Lorentzian metric is taken to
be mostly the plus sign, and greek indices run over all
spacetime indices. To maintain simplicity of equations, we
work in units 8πG ¼ c ¼ 1.

II. EINSTEIN’S GRAVITY WITH A PHANTOM
SCALAR FIELD

Let us consider four-dimensional Einstein gravity with a
real scalar field described by Lagrangian

L ¼ R − ϵð∇ϕÞ2 − 2VðϕÞ; ð2:1Þ
where ϵ ¼ −1 corresponds to the phantom field. We
maintain ϵ throughout the paper to emphasize the conse-
quence of the phantom property. We consider a theory in
which the potential VðϕÞ of the phantom field is expressed
in terms of a subsidiary function WðϕÞ as

VðϕÞ ¼ 4

�
2ϵ

�
∂

∂ϕ
WðϕÞ

�
2

− 3WðϕÞ2
�
: ð2:2Þ

By a slight abuse of terminology, we refer to WðϕÞ as the
“superpotential” in this paper, following the language of
supergravity (ϵ ¼ 1). We focus on the theory whose
superpotential is given by

WðϕÞ ¼ g
2
e

βffiffiffiffiffiffiffiffiffi
2ð1þβ2Þ

p ϕ
�
cos

�
ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ β2Þ
p �

− β sin

�
ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ β2Þ
p ��

; ð2:3Þ

FIG. 1. Flipping transformation of C metrics and hairy black
holes in supergravity.
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where β is a parameter governing the decay of the potential
and g determines the overall scale. By the redefinition
W → −W if necessary, one can assume g ≥ 0 without
losing any generality. This superpotential makes contact
with the N ¼ 2 supergravity model considered in [23–28]
by analytic continuation ϕ → iϕ=

ffiffiffi
2

p
and β → −ið1 − α2Þ=

ð1þ α2Þ with α∈R.
Typical behaviors of the potential and the superpotential

are depicted in Fig. 2. For β ¼ 0, both V and W are
periodic. The present potential V admits an infinite number
of AdS critical points labeled by integer n∈Z as

ϕn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ β2Þ

q
nπ;

ϕ̃n ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ β2Þ

p h
nπ þ arctan

�
1
2β

�i
ðβ ≠ 0Þ;ffiffiffi

2
p �

nþ 1
2

�
π ðβ ¼ 0Þ:

ð2:4Þ

The local minima ϕn of the potential V also extremize the
superpotential W, which is reminiscent of supersymmetric
vacua in supergravity. The local maxima ϕ̃n of the potential
V, on the other hand, do not correspond to the critical points
of the superpotential W.
At ϕ ¼ ϕn, we have1

VðϕnÞ ¼ −3g2n; gn ≡ genπβ; m2
n ≡ ϵV 00ðϕnÞ ¼ −2g2n:

ð2:5Þ

It follows that gn corresponds to the reciprocal of each
AdS radius at ϕn and the (super)potential is invariant under
ϕ → ϕþ ϕn with g → gn. At ϕ ¼ ϕ̃n, we obtain

Vðϕ̃nÞ ¼ −3g̃2n; g̃n ≡ gffiffiffi
3

p eβðnπþarctanð1=ð2βÞÞ;

m̃2
n ≡ ϵV 00ðϕ̃nÞ ¼ 6g̃2n: ð2:6Þ

Note that the construction of exact solutions for V ≠ 0 is
a challenging task to implement. A principal adversity in
this regard is that the solution generating technique
developed for the asymptotically flat case is inoperative,
due to the presence of the scalar potential [51]. This fact has
thus hampered the systematic analysis and classification of
asymptotically AdS solutions. We would like to emphasize
that the construction of exact solutions to the present
system is invaluable in its own right.

III. WORMHOLE C METRIC

In this section, we present a new solution corresponding
to the accelerated wormholes. We clarify the physical
meaning of the parameters of the solution by considering
the appropriate limits. We highlight the existence of the
flipping transformation of the C metric, which enabled us
to obtain two distinct families of AdS wormholes in [49].

A. Solution

A newCmetric solution for the system (2.1)–(2.3) reads2

ds2¼ 1

A2ðx−yÞ2
�
e2βUðxÞVðxÞ

�
−e−2βUðyÞΔyðyÞdt2

þ dy2

e−2βUðyÞΔyðyÞ

�

þe2βUðyÞVðyÞ
�
e−2βUðxÞΔxðxÞdφ2þ dx2

e−2βUðxÞΔxðxÞ

��
;

ð3:1aÞ

FIG. 2. Potential V (thick line) and superpotential W (dashed line) for β ¼ 0 (left) and β ¼ 0.1 (right).

1The mass eigenvalue should have an ϵ term, which can be
recognized by the multifield covariant expression ðm2ÞIJ ¼
GIK

∂K∂JV for L ¼ − 1
2
GIJ∂ϕ

I
∂ϕJ − VðϕKÞ.

2Even though there is no systematic way to derive the solution
for the g ≠ 0 case, the present solution (3.1) has been constructed
by demanding the following reasonable ansatz. (i) The scalar
field should be independent of the AdS radius g. (ii) Writing
y ¼ −1=ðArÞ and x ¼ cos θ in the static wormholes in [49], the
solution should admit the flipping symmetry (3.26). (iii) In the
g ¼ 0 case, ðx − yÞ4ρ2 in (5.5) should be a product of quartic
functions of x and y, as for the Weyl metric. These conditions
may be used to fix the metric’s dependence on the functions U
and V almost uniquely. Finally, the structure functions (Δx, Δy)
are determined by enforcing Einstein’s equations.

WORMHOLE C METRIC PHYS. REV. D 108, 064036 (2023)

064036-3



ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ϵð1þ β2Þ

q
ðUðxÞ −UðyÞÞ: ð3:1bÞ

The reality of the scalar field requires ϵ ¼ −1, i.e., the
phantom field. The metric comprises four functions
(U;V;Δx;Δy) given by

UðyÞ¼−arctan
�

a1þ2a2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a0a2−a21

p �
; VðyÞ¼a0þa1yþa2y2;

ð3:2Þ

and

ΔyðyÞ ¼ c0 þ c1yþ c2y2;

ΔxðxÞ ¼ −c0 − c1x − c2x2 þ
g2

A2
VðxÞe4βUðxÞ: ð3:3Þ

Apart from g and β, the solution possesses seven para-
meters a0;1;2, c0;1;2, and A. We see that the scalar field
configuration given by (3.1) tends to vanish at x ¼ y.

As will be discussed in the next section, x ¼ y corresponds
to AdS infinity. For the spacetime with the wormhole, there
turn out to be two types of AdS infinity. The first one occurs
when y approaches x from below, i.e., x ¼ y−. This AdS
infinity for the current solution corresponds to the origin
ϕ ¼ 0 of the scalar field potential.3 At the other AdS
infinity, where x ¼ yþ, the scalar field approaches one of
the two neighboring vacua ϕ�1 of the superpotential, as we
will illustrate in Sec. V.
The solution (3.1) admits mutually commuting

hypersurface-orthogonal Killing vectors ∂=∂t and ∂=∂φ
and falls into Petrov type D. These properties are common
to the ordinary Cmetric in the Einstein-Maxwell-Λ system.
The solution allows the following shift and scaling

symmetry [7]:

x¼ b0x0 þb1; y¼ b0y0 þb1; t¼ b2t0; φ¼ b2φ0;

ð3:4Þ

with A0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0b3=b2

p
A and

a00 ¼ b3ða0 þ b1a1 þ b21a2Þ; a01 ¼ b3b0ða1 þ 2b1a2Þ; a02 ¼ b3b20a2;

c00 ¼
b2
b0

ðc0 þ b1c1 þ b21c2Þ; c01 ¼ b2ðc1 þ 2b1c2Þ; c02 ¼ b0b2c2: ð3:5Þ

Here, b0ð> 0Þ, b1, b2ð> 0Þ, and b3ð> 0Þ are constants. A
tailor-made choice of the sign allows us to set A > 0, which
will be assumed in the sequel. Suppose a2 ≠ 0, one can
always choose a1 to vanish.
The solution (3.1) does not permit the A → 0 limit

in an obvious fashion, because of the overall factor A−2.

To evade this adversity, we exploit the following rescaled
coordinates:

r ¼ −
1

Ay
; τ ¼ 1

A
t; ð3:6Þ

in terms of which the solution is rewritten into

ds2 ¼ 1

ð1þ ArxÞ2
�
e2βUðxÞVðxÞ

�
−e−2βUrðrÞΔrðrÞdτ2 þ

dr2

e−2βUrðrÞΔrðrÞ

�

þr2e2βUrðrÞVrðrÞ
�
e−2βUðxÞΔxðxÞdφ2 þ dx2

e−2βUðxÞΔxðxÞ

��
; ð3:7aÞ

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ϵð1þ β2Þ

q
ðUðxÞ − UrðrÞÞ; ð3:7bÞ

where

UrðrÞ ¼ arctan

�
a2ffiffiffiffiffiffiffiffiffiffi

a0a2
p

Ar

�
; VrðrÞ ¼ a0 þ

a2
A2r2

; ΔrðrÞ ¼ c2 − Ac1rþ A2c0r2: ð3:8Þ

In the abovewe have used (3.4) to set a1 ¼ 0. To keep the Lorentzian signature, we need VðxÞ > 0 and VrðrÞ > 0, requiring
a0 and a2 to be positive. By tuning b3, we can fix a0 ¼ 1. Writing a2 ¼ m2A2ð> 0Þ, the b2 degree of freedom in (3.4) can be

3One can also consider the configuration around any local minima ϕn of the potential by ϕ → ϕþ ϕn in (3.1), which can be
compensated by g → gn in Δx. By using this freedom, we can assume that ϕ tends to zero at AdS infinity, where x ¼ y−.
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used to set k≡ c2 − g2m2ð1þ 8β2Þ as k ¼ f0;�1g. The
remaining parameters c0 and c1 can be fixed by requiring
the A → 0 limit to be well defined, giving rise to

c0 ¼
g2

A2
− 1; c1 ¼ −

4g2mβ

A
; ð3:9Þ

where the OðA0Þ term of c0 has been set to be −1 by
adjusting b0. It is critical for the present parametrization
that the sign change m → −m can be offset by β → −β.
This symmetry allows us to set m ≥ 0 with no loss of
generality.4

To sum up, metric functions are determined to be

VðxÞ ¼ 1þ A2m2x2; ð3:10aÞ

UðxÞ ¼ − arctanðAmxÞ; ð3:10bÞ

ΔxðxÞ ¼ 1 − kx2 þ g2

A2

	
−1þ 4Amβx − A2m2ð1þ 8β2Þx2

þ e4βUðxÞð1þ A2m2x2Þ
; ð3:10cÞ

and

ΔrðrÞ ¼ kþ ð1þ 8β2Þm2g2 þ 4g2mβrþ ðg2 − A2Þr2;
ð3:11aÞ

UrðrÞ ¼
8<
:

π
2
− arctan

	
r
m


 ðm > 0Þ;
0 ðm ¼ 0Þ; ð3:11bÞ

VrðrÞ ¼ 1þm2

r2
: ð3:11cÞ

Going back to the y coordinate,

ΔyðyÞ ¼ −1þ g2

A2
−
4g2mβy

A
þ 	

kþ ð1þ 8β2Þm2g2


y2:

ð3:12Þ

For g ¼ 0, ΔxðxÞ ¼ 1 − kx2. Thus, k controls the topology
of the x − φ surface: S2 for k ¼ 1, R2 for k ¼ 0, and H2 for
k ¼ −1. It turns out that the solution is specified by three

physical parameters m, A, and k together with theoretical
parameters g and β. The physical meaning of other
parameters will be clarified soon.
It should be emphasized that we have derived the

expression of UrðrÞ in (3.1) by making use of the formula
arctanðzÞ ¼ π=2 − arctanð1=zÞ for z > 0. With the current
expression of UrðrÞ, it is evident that r ¼ 0 is not the
coordinate singularity, and the solution (3.7) becomes
smooth at r ¼ 0 (y → −∞). If UrðrÞ were defined as
UrðrÞ ¼ arctanðm=rÞ, the solution would not be smooth at
r ¼ 0. This substitution plays a crucial role when consid-
ering the maximal analytic extension of the spacetime, as
will be argued in Sec. V.

B. m= 0 case: AdS

Setting m ¼ 0 for the solution (3.1) with (3.10) and
(3.12), the scalar field vanishes and the metric reduces to

ds2 ¼ 1

A2ðx − yÞ2
�
−ΔyðyÞdt2 þ

dy2

ΔyðyÞ
þ dΣ2

kðx;φÞ
�
;

ð3:13Þ

where ΔyðyÞ ¼ g2A−2 − 1þ ky2 and

dΣ2
kðx;φÞ≡ dx2

1 − kx2
þ ð1 − kx2Þdφ2: ð3:14Þ

dΣ2
kðx;φÞ denotes the two-dimensional metric of constant

Gauss curvature k ¼ 0;�1. The Riemann tensor for the
metric (3.13) is simplified to Rμνρσ ¼ −2g2gμ½ρgσ�ν, imply-
ing AdS spacetime. To see this explicitly, we suppose
temporarily g2 > A2 and define new coordinates

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0ðx; yÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − A2

p
gAðx − yÞ

; w ¼ g2x − A2ðx − yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0ðx; yÞ

p ;

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − A2

p
Ag

t; ð3:15Þ

where F0ðx;yÞ≡g2½g2−A2ð1−ky2Þ�−A2kðg2−A2Þðx−yÞ2.
In terms of these coordinates, the metric (3.13) is expressed
by the standard static coordinates of AdS as

ds2¼−ðkþg2R2ÞdT2þ dR2

kþg2R2
þR2dΣ2

kðw;φÞ: ð3:16Þ

The above coordinate system (3.13) is the counterpart of
the Rindler coordinates in Minkowski spacetime. To see
this, consider a static observer sitting at jyj → ∞ with
constant x;φ. It can be verified that this observer undergoes
an acceleration aμ ¼ uν∇νuμ with constant magnitude
jaμj ¼ A, which enables us to identify A as the acceleration
parameter.

4When the theory parameter β is fixed, there appear solutions
withm ≥ 0 andm < 0, which discriminates the physical quantity
of the spacetime. Therefore, it appears more reasonable from a
physical perspective to confine ourselves to the β ≥ 0 case by
varying m. However, this choice compels us to encounter a
serious difficulty when we try to explore the global extension of
spacetime, since the asymptotic values of UðyÞ and UrðrÞ at the
coordinate boundary depend sensitively on the sign of m. To
streamline the analysis, we limit the range of m to non-negative
values, while obtaining an equivalent solution with negativem by
using β → −β.
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Note that the only way to obtain ϕ ¼ 0 for the solution
(3.1) is to set m ¼ 0, resulting in AdS. Hence, this solution
(3.1) does not embrace the AdS Cmetric sourced by a pure
cosmological constant [11,12].

C. A = 0 case: Wormhole in AdS

Taking the A → 0 limit of (3.7) with (3.10) and (3.11),
we get

ds2 ¼ −e−2βUrðrÞΔ−ðrÞdτ2 þ VrðrÞ

× e2βUrðrÞ
�

dr2

VrðrÞΔ−ðrÞ
þ r2dΣ2

kðx;φÞ
�
; ð3:17aÞ

ϕ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ϵð1þ β2Þ

q
UrðrÞ; ð3:17bÞ

where VrðrÞ and UrðrÞ are given by (3.11) and

Δ−ðrÞ ¼ kþ g2
	
r2 þ 4mβrþ ð1þ 8β2Þm2



: ð3:18Þ

In the spherically symmetric case (k ¼ 1), the solution
(3.17) reduces to the static wormhole in AdS [49]. Thus, the
solution (3.17) represents its topological generalization.
Since ϕ ¼ 0 (m ¼ 0) reduces to AdS, the solution (3.17) is
not connected to the AdS Ellis-Bronnikov wormhole
sourced by a phantom scalar and a pure cosmological
constant. The k ¼ 0 Ellis-Bronnikov solution in the
Einstein-Λ system with a massless phantom scalar has
been obtained in [52] with the help of AdS/Ricci-flat
correspondence [53], while the spherical solution k ¼ 1
has yet to be analytically found [54].
If we take g ¼ 0 with k ¼ 1, the solution (3.17) recovers

the Ellis-Bronnikov wormhole in the asymptotically flat
spacetime [31,32]. It is worth commenting that the para-
meter β remains present in the solution (3.17) despite being
initially introduced in the superpotential WðϕÞ, which
vanishes in the limit as g → 0. It turns out that β is
demoted to the physical parameter from the theoretical
parameter in the g ¼ 0 case.
For the present paper to be self-contained, it is enlight-

ening here to explore the asymptotic structure of the
solution, by repeating the analysis in [49]. Around
r → ∞, the solution can be expanded as

ds2 ≃ −
�
k −

2Mr>0

R
þ g2R2

�
dτ2

þ dR2

kþ γr>0 − 2M0
r>0=Rþ g2R2

þ R2dΣ2
kðx;φÞ;

ϕ ≃
ϕr>0
−

R
þ ϕr>0þ

R2
; ð3:19Þ

where R ¼ jrjeβUrðrÞVrðrÞ1=2 is the areal radius and

ϕr>0
− ¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þβ2Þ

q
m; ϕr>0þ ¼−

βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þβ2Þ

p ðϕr>0
− Þ2;

γr>0¼−
g2

2
ðϕr>0

− Þ2; ð3:20Þ

with

Mr>0 ¼ mβ

�
kþ 4

3
g2m2ð1þ 4β2Þ

�
;

M0
r>0 ¼ Mr>0 þ

2

3
g2ϕr>0

− ϕr>0þ : ð3:21Þ

Instead of M0
r>0, Mr>0 corresponds to the physical mass of

the spacetime [55,56]. It follows that the scalar field obeys
the Robin boundary conditions at the AdS boundary,
which have their roots in the range of the mass eigen-
value −ð9=4Þg2 ≤ m2 ≤ −ð5=4Þg2 given in (2.5) [57].
Specifically, the slower falloff mode ϕ− of the scalar field
gives a backreaction to the geometry and is ascribed as the
cause of nonstandard falloff term γr>0, compared to the
ordinary Dirichlet boundary conditions [58,59].
Since none of curvature invariants constructed out of

metric (3.17) diverge, one can extend the spacetime
across the r ¼ 0 surface into the r < 0 region.5 Then,
around r → −∞,

ds2 ≃ −
�
k −

2Mr<0

R
þ g2−1R

2

�
dτ2r<0

þ dR2

kþ γr<0 − 2M0
r<0=Rþ g2−1R

2
þ R2dΣ2

kðx;φÞ;

ϕ ≃ ϕ−1 þ
ϕr<0
−

R
þ ϕr<0þ

R2
; ð3:22Þ

where τr<0 ¼ e−πβτ and ϕ−1, g−1 are given, respectively,
by (2.4) and (2.5). The asymptotic expansion of the scalar
field reads

ϕr<0
− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þβ2Þ

q
meπβ; ϕr<0þ ¼−

βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þβ2Þ

p ðϕr<0
− Þ2:

ð3:23Þ

The coefficients of metric expansion are γr<0 ¼
−g2−1ðϕr<0

− Þ2=2 and

Mr<0 ¼ −eπβMr>0; M0
r<0 ¼Mr<0 þ

2

3
g2−1ϕ

r<0
− ϕr<0þ :

ð3:24Þ

5As we noticed, this conclusion is unattainable if we
were to define UrðrÞ ¼ arctanðm=rÞ rather than UrðrÞ ¼
π=2 − arctanðr=mÞ.
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For the metric (3.17) to be eligible as a wormhole, the
static Killing vector ∂=∂τ should be globally timelike, i.e.,
Δ−ðrÞ > 0. Without extra effort, one can verify that Δ−ðrÞ
is always positive for k ¼ 1; 0. For k ¼ −1, Δ−ðrÞ > 0 is
guaranteed, provided

g2m2 >
1

1þ 4β2
: ð3:25Þ

Under this condition, the solution (3.17) is regarded as a
regular topological wormhole in AdS. Note that the
extension to r < 0 is asymmetric for β ≠ 0, since the mass
of each asymptotic AdS region disagrees Mr>0 ≠ Mr<0.
This asymmetry is encoded also into the locus of the
wormhole throat, corresponding to the minimum of the
areal radius Rthroat ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p
eβðπ=2−arctan βÞ at r ¼ mβ,

which differs from the coordinate boundary r ¼ 0. When

the theoretical parameter β is fixed, the throat radius is
determined by the parameterm. Thus, we can considerm as
the physical parameter that defines the size of the wormhole
throat. In the case of β ¼ 0, the wormhole exhibits
symmetry with respect to the throat at r ¼ 0, and both
regions have a vanishing mass.

D. Flipping transformation

Working with the general metric functions (3.2) and (3.3)
in (3.1), let us consider the following transformation:

x ¼ ŷ; y ¼ x̂; t ¼ iφ̂; φ ¼ it̂; ð3:26Þ

which flips the role of ðx; yÞ and ðt;φÞ. The solution is
recast into the following form:

ds2 ¼ 1

A2ðx̂ − ŷÞ2
�
e2βUðx̂ÞVðx̂Þ

�
−e−2βUðŷÞΔŷðŷÞdt̂2 þ

dŷ2

e−2βUðŷÞΔŷðŷÞ

�

þe2βUðŷÞVðŷÞ
�
e−2βUðx̂ÞΔx̂ðx̂Þdφ̂2 þ dx̂2

e−2βUðx̂ÞΔx̂ðx̂Þ

��
; ð3:27aÞ

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ϵð1þ β2Þ

q
ðUðŷÞ −Uðx̂ÞÞ; ð3:27bÞ

where

Δx̂ðx̂Þ ¼ c0 þ c1x̂þ c2x̂2;

ΔŷðŷÞ ¼ −c0 − c1ŷ − c2ŷ2 þ
g2

A2
e4βUðŷÞVðŷÞ: ð3:28Þ

Functions U and V are still given by (3.2). It can be
explicitly verified that the solution (3.27) also solves the
field equations derived from the Lagrangian (2.1) with (2.2)
and (2.3). A striking feature of the transformation (3.26) is
that the flipped solution (3.27) keeps the form of the
original C metric (3.1), aside from the explicit form of
structure functions (Δx, Δy) and the sign of the phantom
scalar field. To take the A → 0 limit, we employ rescaled
coordinates r̂ ¼ −1=ðAŷÞ and τ̂ ¼ t̂=A. It turns out that
with the following choice of parameters:

a0 ¼ 1; a1 ¼ 0; a2 ¼ m2A2;

c0 ¼ 1; c1 ¼ 0; c2 ¼ −k; ð3:29Þ

i.e.,

Δx̂ðx̂Þ ¼ 1− kx̂2; ΔŷðŷÞ ¼ −1þ kŷ2 þ g2

A2
e4βUðŷÞVðŷÞ;

ð3:30Þ

where U and V are given by (3.10), we can take the A → 0
limit. Here, we choosem ≥ 0, similar to the unflipped case.
The A ¼ 0 solution reads

ds2 ¼ −e−2βUrðr̂ÞΔþðr̂Þdτ̂2

þ Vrðr̂Þe2βUrðr̂Þ
�

dr̂2

Vrðr̂ÞΔþðr̂Þ
þ r̂2dΣ2

kðx̂; φ̂Þ
�
;

ð3:31aÞ

ϕ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ϵð1þ β2Þ

q
Urðr̂Þ; ð3:31bÞ

where Ur and Vr are given by (3.11) and

Δþðr̂Þ≡ kþ g2r̂2Vrðr̂Þe4βUrðr̂Þ: ð3:32Þ

It should be noted that the choice of parameters (3.29),
which is demanded by the existence of the A → 0 limit,
differs from the previous one.
Setting m ¼ 0, the metric is reduced to AdS at ϕ ¼ 0

as in the previous case. Compared with (3.17), the solution
(3.31) has a scalar field of opposite sign with a structure
function Δþ distinct from Δ−. Nevertheless, this solution
also describes a regular wormhole in AdS for k ¼ 1 [23].
Taking the asymptotic limit r̂ → ∞ of the solution

(3.31), we have
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ds2 ≃ −
�
k −

2M̂r̂>0

R̂
þ g2R̂2

�
dτ̂2

þ dR̂2

kþ γ̂r̂>0 − 2M̂0
r̂>0=R̂þ g2R̂2

þ R̂2dΣ2
kðx̂; φ̂Þ;

ϕ ≃
ϕ̂r̂>0
−

R̂
þ ϕ̂r̂>0

þ
R̂2

; ð3:33Þ

where R̂ ¼ jrjeβÛrðr̂ÞV̂rðr̂Þ1=2 and

ϕ̂r̂>0
− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ β2Þ

q
m; ϕ̂r̂>0

þ ¼ βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ β2Þ

p �
ϕ̂r̂>0
−

�
2
;

γ̂r̂>0 ¼ −
g2

2

�
ϕ̂r̂>0
−

�
2
: ð3:34Þ

The mass parameters are given by

M̂r̂>0 ¼ kmβ; M̂0
r̂>0 ¼ M̂r̂>0 þ

2

3
g2ϕ̂r̂>0

− ϕ̂r̂>0
þ : ð3:35Þ

Since this solution (3.31) is also free of scalar curvature
singularities, one can extend the physical region r̂ ≥ 0 to
r̂ < 0. In the asymptotic r̂ → −∞ limit, the solution is
approximated as

ds2 ≃ −
�
k −

2M̂r̂<0

R̂
þ g21R̂

2

�
dτ̂2r̂<0

þ dR̂2

kþ γ̂r̂<0 − 2M̂0
r̂<0=R̂þ g21R̂

2
þ R̂2dΣ2

kðx̂; φ̂Þ;

ϕ ≃ ϕ1 þ
ϕ̂r̂<0
−

R̂
þ ϕ̂r̂<0

þ
R̂2

; ð3:36Þ

where τ̂r̂<0 ¼ e−πβτ̂. ϕ1 and g1 are given by (2.4) and (2.5),
respectively. Other coefficients read

ϕ̂r̂<0
− ¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þβ2Þ

q
meπβ; ϕ̂r̂<0

þ ¼ βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þβ2Þ

p �
ϕ̂r̂<0
−

�
2
;

ð3:37Þ

with γ̂r̂<0 ¼ −g21ðϕ̂r̂<0
− Þ2=2 and

M̂r̂<0 ¼ −eπβM̂r̂>0; M̂0
r̂<0 ¼ M̂r̂<0 þ

2

3
g21ϕ̂

r̂<0
− ϕ̂r̂<0

þ :

ð3:38Þ

Δþðr̂Þ > 0 is satisfied for k ¼ 0; 1, leading to the AdS
wormhole geometry. Δþðr̂Þ > 0 is ensured for k ¼ −1,
provided

g2m2 >
e−2βðπ−2 arctanð2βÞÞ

1þ 4β2
: ð3:39Þ

Under this condition, the solutionwith k ¼ −1 also serves as
a static wormhole in AdS. For either sign of k, the worm-
hole throat is given by R̂throat ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p
eβðπ=2−arctan βÞ at

r̂ ¼ mβ.
Let us comment that the asymptotic value ϕ1 of

the flipped wormhole (3.31) differs from the one ϕ−1
for the unflipped wormhole (3.17). Viewed from the origin
of the potential, these are two neighboring critical points of
the superpotential. This difference is ascribed to the sign
flip of the scalar field [see (3.17b) and (3.31b)]. Since the
discovery of these solutions in [49], it has remained unclear
why these different wormhole solutions exist in the same
theory. We have explicitly demonstrated above that its
geometric origin is attributed to the existence of C metric
flipping transformation.

IV. PHYSICAL PROPERTIES

In this section, we embark on the task of uncovering the
physical properties of the C metric solution (3.1). For the
sake of clarity, we restrict ourselves to the case where k ¼ 1
and m > 0.

A. Conical singularity

We consider the case in which ΔxðxÞ given by (3.10)
admits at least two real distinct roots x�,

Δxðx�Þ ¼ 0; ΔxðxÞ > 0ðx− < x < xþÞ: ð4:1Þ

A possible conical singularity at x ¼ xþ can be avoided,
provided φþ ¼ e−2βUðxþÞðjΔ0

xðxþÞj=2Þϕ has a periodicity
2π. However, the conical singularity at x ¼ x− is generi-
cally inevitable. Thus, the solution is viewed as a wormhole
accelerated by a cosmic string.
Exceptional cases are β ¼ 0 or g ¼ 0, for which

ΔxðxÞ ¼ 1 − x2. In these special cases, the two-dimensional
surface spanned by x and φ describes a regular S2 without
conical singularities. Consequently, we do not need distri-
butional sources to maintain the acceleration of wormholes.
This property stands in stark contrast to the vacuum case.

B. Infinity

Let us consider the radial null geodesics (ẋ ¼ φ̇ ¼ 0)
described by

− e−2βUðyÞΔyðyÞṫ2 þ
ẏ2

e−2βUðyÞΔyðyÞ
¼ 0;

E ¼ e2βðUðxÞ−UðyÞÞVðxÞΔyðyÞ
A2ðx − yÞ2 ṫ; ð4:2Þ

where the dot denotes the derivative with respect to the
affine parameter λ of the null geodesics and E is a constant
corresponding to the energy. Upon integration, the affine
parameter is given by
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λ ¼ � e2βUðxÞVðxÞ
A2Eðx − yÞ : ð4:3Þ

It turns out that x ¼ y corresponds to infinity, since an
infinite amount of affine time is needed for radial null
geodesics to arrive at x ¼ y. It therefore turns out that the
coordinate r ¼ −1=ðAyÞ is of no utility to explore the
global causal structure, since r → ∞ can be reached by a
finite affine parameter for x ≠ 0.
The proper distance s along the curve ft; x;φg ¼ const

is also a useful quantity to reveal the causal structure,

s ¼
���� eβUðxÞVðxÞ1=2

A

Z
eβUðyÞ

ðx − yÞΔyðyÞ1=2
dy

����: ð4:4Þ

This allows us to deduce if the given point is a spatial
infinity or not. Besides x ¼ y, the proper distance becomes
infinitely large if ΔyðyÞ has a double root. This is the same
as what happens for the degenerate event horizon.

C. Curvature singularities

The spacetime curvature singularity is identified by the
divergence of curvature invariantsRμνρσRμνρσ,RμνRμν,R, etc.
Since all of these expressions are not illuminating, we do not
show them here. One can nevertheless verify that a plausible
divergence comes exclusively from VðxÞVðyÞ ¼ 0.
Since we have required the positivity of VðxÞ and VðyÞ,
we conclude that our solution is free of any curvature
singularities.

V. CAUSAL STRUCTURE

We are now going to discuss the global causal structure
of the C metric by maximal extension. In pursuit of this
aim, we first need to specify the coordinate domain.
Inspecting (3.6), we designate the first coordinate domain
(I) to be represented by

ðIÞ∶ x − y ≥ 0; ΔxðxÞ ≥ 0: ð5:1Þ

At the asymptotic AdS infinity in domain (I), the scalar field
is given by ϕðIÞjx¼y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ β2Þ

p
ðUðxÞ −UðyÞÞx¼y ¼ 0,

corresponding to the origin of the potential.
As y decreases in domain (I), one encounters the

coordinate boundary y ¼ −∞. As we spelled out in the
previous section, y ¼ −∞ is a regular surface and is not
infinity. One can then continue y across this surface to
the y ¼ þ∞ side by r ¼ −1=ðAyÞ. Under this extension,
the second coordinate domain (II) for the other side of the
universe is covered by

ðIIÞ∶ x − y ≤ 0; ΔxðxÞ ≥ 0: ð5:2Þ

The precise extension can be done as follows.
Suppose x < 0. In domain (I) −∞ < y ≤ x, we have

UðIÞ
y ðyÞ ¼ arctanð−AmyÞ > 0. Since arctanð−AmyÞ is not

smooth at jyj ¼ ∞, one must replace arctanð−AmyÞ →
π=2þ arctanð1=ðAmyÞÞ to traverse the jyj ¼ ∞ sur-
face. Thus, in domain (II-a) 0 ≤ y < ∞, one obtains

UðII-aÞ
y ðyÞ ¼ π=2þ arctanð1=ðAmyÞÞ. As y decreases, one

arrives at y ¼ 0. Then π=2þ arctanð1=ðAmyÞÞ is not
smooth there and one needs another replacement π=2þ
arctanð1=ðAmyÞÞ → π − arctanðAmyÞ in domain (II-a) to
cross the y ¼ 0 surface. Hence in domain (II-b) x ≤ y < 0,

UðII-bÞ
y ðyÞ¼π−arctanðAmyÞ¼πþUðIÞðyÞ. Note that UðxÞ¼

−arctanðAmxÞ remains untouched during these exten-
sions, since we are focusing on the fixed and bounded x.
It follows that the asymptotic value of the scalar field in
domain (II) for x < 0 reads ϕðIIÞjx¼y¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þβ2Þ

p
ðUðxÞ−

π−UðIÞðyÞÞx¼y¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þβ2Þ

p
×ð−πÞ¼ϕ−1.

Let us next suppose x ≥ 0. With the same reasoning as

above,we haveUðIÞ
y ðyÞ¼ arctanð−AmyÞ in domain (I)−∞<

y<x, and UðIIÞ
y ðyÞ¼π=2þarctanð1=ðAmyÞÞ in domain (II)

0 ≤ x < y < ∞. In this case, the asymptotic value
of the scalar field reads ϕðIIÞjx¼y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 þ β2Þ

p
× ½−π=2

− arctanðAmxÞ − arctanð1=ðAmyÞÞ�x¼y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 þ β2Þ

p
×

ð−πÞ ¼ ϕ−1, as in the x < 0 case. It follows that the solution
interpolates two nearby critical points of the superpotential,
regardless of the angular direction x. This is precisely the
same structure as what we have encountered in the non-
accelerated wormholes.
Since x is recognized as a directional cosine (x ∼ cos θ)

of S2, the essential spacetime causal structure is determined
by the two-dimensional portion,

ds22 ¼ −e−2βUðyÞΔyðyÞdt2 þ
dy2

e−2βUðyÞΔyðyÞ
¼ −e−2βUðyÞΔyðyÞðdt2 − dy2�Þ; ð5:3Þ

where y� ¼
R ðe2βUðyÞ=ΔyðyÞÞdy is analogous to the tortoise

coordinate. It therefore follows that the infinite y� corre-
sponds to the null surface, while the finite y� corresponds to
the timelike (spacelike) surface for ΔyðyÞ > 0 (< 0). Since
e2βUðyÞ is positive and bounded, the null surface occurs only
at Δy ¼ 0, corresponding to the Killing horizon.
In the following, we shall put particular emphasis on the

two simplest cases, g ¼ 0 and β ¼ 0, which are amenable
to analytic study. In each case, the global causal structure
is x dependent, as in the case of the ordinary C metric in
vacuum.

A. g= 0 case

We begin our discussion with the illuminative case of
g ¼ 0, for which the potential of the scalar field vanishes.
The solution is viewed as an accelerated generalization of
the Ellis-Bronnikov wormholes in the asymptotically flat
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spacetime. In this case, we have ΔxðxÞ ¼ 1 − x2,
ΔyðyÞ ¼ y2 − 1, giving rise to geometry without conical
singularities. We see that there exists at least one accel-
erating horizon at y ¼ −1 for fixed x (−1 ≤ x ≤ 1).
For x ¼ −1, the first coordinate domain (I) is y ≤ −1.

y ¼ −1 therefore corresponds to infinity for null geodesics,
which possesses the null structure since y� diverges. One
can check that the y → −∞ surface is timelike, reached by
a finite affine time for radial null geodesics and does not
correspond to spatial infinity. One can extend the spacetime
across the y ¼ −∞ surface to the y ¼ þ∞ side by
r ¼ −1=ðAyÞ, for which UðyÞ ¼ π=2þ arctan½1=ðAmyÞ�,
while UðxÞ ¼ − arctanðAmxÞ remains intact. As y
decreases from y ¼ þ∞ in the second coordinate
domain (II) −1 ≤ y, one encounters the null surface
y ¼ þ1, across which the y < þ1 domain is in the trapped
region (y ¼ const surface is spacelike). As y decreases
further, one finds the spacelike surface at y ¼ 0, across
which the replacement UðyÞ ¼ π=2þ arctan½1=ðAmyÞ� ¼
π=2þ ½π=2 − arctanðAmyÞ� ¼ π − arctanðAmyÞ is neces-
sary. Further decrement of y reaches null infinity at
y ¼ −1. The corresponding Penrose diagram is depicted
in Fig. 3(i).
Next, let us consider the case with −1 < x < 1. For

−1 < y ≤ x, AdS infinity y ¼ x is in the trapped region and
has a spacelike structure. As y decreases, one finds the null
surface at y ¼ −1 and a timelike surface y ¼ −∞, which is
smooth and thus extendible to the y ¼ þ∞ side. After
passing y ¼ þ1, one arrives at infinity y ¼ xð−1 < x < 1Þ.
The corresponding Penrose diagram is in Fig. 3(ii).
The Penrose diagram for x ¼ 1 is deduced

similarly. Infinity at y ¼ 1 lying in the first domain (I)
has a null structure. It turns out that the global structure
is as shown in Fig. 3(iii), which is essentially the same
as (I), up to the interchange of coordinate domains (I)
and (II).
It is worthwhile to comment that the metric in the g ¼ 0

case falls into the Weyl class

ds2 ¼−e2uðρ;zÞdt2þ e−2uðρ;zÞ
�
ρ2dφ2þ e2γðρ;zÞðdρ2þ dz2Þ

�
;

ϕ¼ ϕðρ; zÞ: ð5:4Þ

In the k ¼ 1 case, we have

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1þ A2m2x2Þðy2 − 1Þð1þ A2m2y2Þ

p
A2ðx − yÞ2 ;

z ¼ ð1 − xyÞð1þ A2m2xyÞ
A2ðx − yÞ2 : ð5:5Þ

Explicitly, the metric components are given by

u ¼ βðUðxÞ −UðyÞÞ þ log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðxÞΔyðyÞ

p
Aðx − yÞ

�
;

e2γ ¼ e4βUðxÞVðxÞ2VðyÞΔyðyÞ
ð1þ A2m2Þ2ðy2 − x2Þð1þ A2m2x2y2Þ : ð5:6Þ

Functions u and ϕ obey axisymmetric Laplace equations
on R3,

ΔR3u ¼ ΔR3ϕ ¼ 0; ΔR3 ¼ ∂
2

∂ρ2
þ 1

ρ

∂

∂ρ
þ ∂

2

∂z2
: ð5:7Þ

B. g ≠ 0 and β= 0 case

We now turn to the causal structure of the g ≠ 0 case.
First we set β ¼ 0, for which the analytic classification is
possible. It is also noteworthy that there appear no conical
singularities on the axis in this distinguished case, for
which the source of acceleration is provided by a phantom
scalar.
Now, it is useful to work with dimensionless quantities

A ¼ A
g
ð> 0Þ; m ¼ mgð> 0Þ; ð5:8Þ

FIG. 3. Penrose diagrams for g ¼ 0. Dotted lines stand for the Killing horizons, while the dashed lines correspond to the coordinate
boundaries jyj ¼ ∞. The black dots denote the bifurcation surfaces, while white circles denote spatial or timelike infinities. The “scri” is
infinity for null geodesics distinguished by I (y → x−) and I 0 (y → xþ).
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in terms of which ΔyðyÞ ¼ −1þ A−2 þ ð1þm2Þy2. Since
ΔxðxÞ ¼ 1 − x2, we have symmetry axes at x ¼ �1.
For 0 < A < 1, we have ΔyðyÞ > 0, indicating the

absence of a horizon. The other asymptotic AdS vacuum
at ϕ ¼ ϕ−1 can be glued across the timelike jyj ¼ ∞
surface to the original vacuum at ϕ ¼ ϕ0 ¼ 0. The global
structure is shown in Fig. 4(a), which is the same as the
static AdS wormhole solutions (3.17) and (3.31).
For A ¼ 1, the surface y ¼ 0 represents a degenerate

Killing horizon for x ≠ y and infinity for x ¼ y ¼ 0. Away
from y ¼ 0, ΔyðyÞ > 0 is satisfied. The degenerate Killing
horizon appears in either coordinate domain (I) or (II). At
x ¼ 0 there is no horizon, and the global structure corre-
sponds to a configuration that connects two Minkowski-
like spacetimes. The global structure corresponds to
Figs. 4(b-i)–4(b-iii).
For A > 1, ΔyðyÞ ¼ 0 necessarily allows two roots

y ¼ y�, where

−1 < y− ≡ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A−2

1þm2

s
; yþ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A−2

1þm2

s
< 1: ð5:9Þ

These loci correspond to Killing horizons except at x ¼ y�.
Depending on the direction x, these horizons appear in
each domain. The global structure is shown in Figs. 4(c-i)–
4(c-v). Specifically, diagrams in Figs. 4(c-ii)–4(c-iv) are
the same as diagrams in Figs. 3(i)–3(iii), respectively.

However, diagrams in Figs. 4(c-i) and 4(c-v) exhi-
bit characteristic features specific to the asymptotically
AdS case.

C. gβ ≠ 0 case

Next, let us investigate the most general case, gβ ≠ 0.
Unfortunately, the nonpolynomial character of ΔxðxÞ given
in (3.10) reaches a level of substantial complexity, which
makes the exhaustive classification and general analysis
difficult. Instead of dwelling on this task, we just content
ourselves with demonstrating that there appears a para-
meter region under which the wormhole structure remains
valid also in this case.
As in the case of the supergravity C metric [23], we find

the following notable relation:

ΔxðxÞ ¼ A−2VðxÞe4βUðxÞ − ΔyðxÞ; ð5:10Þ

where ΔyðyÞ¼−1þA−2−4mA−1βyþð1þm2ð1þ8β2ÞÞy2,
UðxÞ ¼ − arctanðAmxÞ, and VðxÞ ¼ 1þ A2m2x2. The
Killing horizon and the symmetry axis appear, respectively,
at ΔyðyÞ ¼ 0 and ΔxðxÞ ¼ 0. Using the aforementioned
relation (5.10), one can visually recognize their positional
relationship by the intersection of curves ΔyðxÞ or ΔxðxÞ
and A−2VðxÞe4βUðxÞ. See the left plot in Fig. 5.
Requiring the Killing vector ∂=∂t to be globally timelike,

the dimensionless acceleration parameter obeys

FIG. 4. Penrose diagrams for β ¼ 0 and g ≠ 0. Depending on the horizon structure, the diagrams are classified into three subclasses,
according to (a) 0 < A < 1, (b) A ¼ 1 and (c) A > 1. Dotted lines stand for the Killing horizons, while the dashed lines correspond to
the coordinate boundaries jyj ¼ ∞. The black dots denote the bifurcation surfaces, while white circles denote spatial or timelike
infinities. The scri is infinity for null geodesics distinguished by I (y → x−) and I 0 (y → xþ).

WORMHOLE C METRIC PHYS. REV. D 108, 064036 (2023)

064036-11



0 < A <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2 þ 4m2β2

1þm2 þ 8m2β2

s
< 1: ð5:11Þ

If, in addition, the ΔxðxÞ ¼ 0 admits two roots correspond-
ing to the axis, the solution can be interpreted as a
wormhole. The parametrization shown in Fig. 5 corre-
sponds precisely to this case. The corresponding global
structure is the same as in Fig. 4(a). We have also confirmed
that the equation ΔyðxÞ ¼ 0 has either one multiple root or
two roots, which correspond to the degenerate horizon and
two Killing horizons, respectively. Furthermore, we have
found parameter values for which ΔxðxÞ ¼ 0 has no real
roots, indicating that the spacetime does not exhibit a
wormhole structure.

D. Flipped solution

Finally, let us demonstrate the causal structure for the
flipped solution (3.27). For the gβ ¼ 0 case, the metric is
the same as the unflipped one (3.1). The difference arises
only from the gβ ≠ 0 case.
Extension of the spacetime can be done in a parallel

fashion as in the previous case. In domain I −∞ < ŷ ≤ x̂,
UðIÞðŷÞ ¼ arctanð−AmŷÞ, so that the scalar field is sitting at
the origin of the potential at asymptotic infinity. As one
crosses the jyj ¼ ∞ surface, one needs arctanð−AmŷÞ →
π=2 − arctanð1=ð−AmŷÞÞ. Thus, in domain (II) x̂ ≤ ŷ < ∞,
UðIIÞðŷÞ ¼ π=2þ arctanð1=ðAmŷÞÞ. Hence, the asymptotic
value of the scalar field in domain (II) is ϕðIIÞjx̂¼ŷ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ β2Þ

p
× π ¼ ϕ1 for 0 ≤ x̂. The analysis for the

x̂ < 0 case is deduced in the same vein.
We suppose k ¼ 1 and m > 0. Then, we obtain

Δx̂ðx̂Þ ¼ 1 − x̂2, implying that x̂ ¼ �1 is the symmetry
axis. An example of the plot is shown on the right in Fig. 5.
In this case, ΔŷðŷÞ ¼ −1þ ŷ2 þ A−2e4βUðŷÞVðŷÞ > 0 is
satisfied, signifying that the global structure is given by
Fig. 4(a). We have also confirmed the existence of a
solution that exhibits a wormhole structure with horizons.

VI. SUMMARY

We have constructed a new C metric solution with a
wormhole structure in the Einstein-phantom scalar system.
In the case of a massless scalar field, the solution
corresponds to an accelerated generalization of Ellis-
Bronnikov wormholes. The scalar potential is built out
of a superpotential and admits an infinite number of
extrema. Our model (2.3) can be obtained through the
analytical continuation of the parameters in the N ¼ 2
supergravity model. When traversing through the worm-
hole throat from one universe to another, the scalar field
evolves from the origin to the adjacent AdS extrema of the
superpotential. This property is redolent of solitons and
domain walls.
One of the major advantages of the C metric is the

manifestation of the flipping transformation (3.26), which
allows the solution to be transformed into another Cmetric.
In the limit of zero acceleration, these solutions revert to the
two families of AdS wormhole solutions found in [49]. The
same thing happens also for the Ellis-Gibbons class of
solutions, as demonstrated in the Appendix. Importantly,
the existence of two families of black hole/wormhole
solutions is intrinsic to four dimensions [49]. Our con-
clusion is persuasive and consistent with the absence of the
C metric in higher dimensions [6].
We have also provided a detailed clarification of the

global causal structure. The corresponding Penrose dia-
grams are found in Figs. 3 and 4. Remarkably, the solution
may be free of conical singularities, which is a character-
istic not observed in the ordinary C metric.
Our new solution would offer a window to examine the

spacetime structure and physical properties of wormholes
in greater detail. A rotating variant of the Cmetric is known
as the Plebanski-Demianski solution [60], which is the
most general solution in Einstein-Maxwell-Λ system fall-
ing into Petrov type D. Physical properties of this solutions
have been discussed in [61,62]. Although some rotating
generalization of Ellis-Bronnikov wormholes have been
constructed, e.g., in [63,64], they do not seem to fall into

FIG. 5. Left: plots of ΔyðxÞ (thick line) and A−2VðxÞe4βUðxÞ (thin line) for A ¼ 0.9, m ¼ 0.1 and β ¼ 1. Two intersecting points of
these curves correspond to the symmetry axis x�. Right: represents ΔŷðŷÞ for the same parameter value. The corresponding plots for
changing the sign of β are obtained by the reflection of the plot across the vertical axis.
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this category (see also [65–67] for recent related works). It
seems a useful strategy to look for exact solutions from an
algebraic point of view of Weyl curvature.
The C metric admits a shear-free null geodesic con-

gruence without twist. This means that it falls within a
Robinson-Trautman class [68,69]. We can indeed find a
family of Robinson-Trautman solutions for the super-
potential (2.3) with β ¼ 0. This solution is dynamical
and belongs to Petrov type II. We will provide a detailed
report on these findings in the near future [70].
The C metric solutions in Euclidean signature is also an

alluring subject to be examined. The C metric instanton
solution represents a pair production of black holes by
the cosmic string [71–73]. The Euclidean Plebanski-
Demianski solution allows an abundance of mathematically
rich properties, such as the conformal ambi-Kähler struc-
ture [74,75] and hidden symmetry [76]. Pursuing these
issues is left for future investigation.
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APPENDIX: ELLIS-GIBBONS CLASS
OF C METRIC SOLUTIONS

Static and spherically symmetric solutions to the
Einstein-phantom scalar system without potential divides
into three classes [31,43]: (i) the Fisher class [77], (ii) the
Ellis-Gibbons class [78], and (iii) the Ellis-Bronnikov
class [32]. All of these solutions are asymptotically flat.
Only the Fisher class solution exists even for the non-
phantom case and corresponds to the nakedly singular
spacetime, except for the Schwarzschild case, i.e., trivial
scalar field. The Ellis-Gibbons class solution (widely
referred to as the “exponential metric”) with a positive
mass does not admit curvature singularity. However, it
admits a parallelly propagated (p.p.) curvature singularity
[79] at the center, implying that it is not qualified as a
regular wormhole [43]. Only the Ellis-Bronnikov class
describes a novel wormhole geometry.
The prescription of adding scalar potential to these

solutions developed in [49] gives rise to corresponding
asymptotically AdS solutions with two different branches.
In the nonphantom case, the AdS-Fisher solutions recover
the solutions in [24,27,28] corresponding to hairy black
holes. Its accelerated generalization corresponding to the

Cmetric has been considered in [23,25,26], which properly
accounts for the existence of two branches by virtue of
C metric flipping symmetry. In the body of this paper, we
have discussed that this program for the Ellis-Bronnikov
class works out in a parallel fashion. This appendix gives a
short report on the Ellis-Gibbons class.
Taking the β → ∞ limit, the superpotential (2.3)

reduces to

WðϕÞ ¼ −
g
2
e

1ffiffi
2

p ϕ
�

1ffiffiffi
2

p ϕ − 1

�
: ðA1Þ

The origin ϕ ¼ 0 is an AdS vacuum corresponding to the
critical point of the (super)potential with Vð0Þ ¼ −3g2,
V 00ð0Þ ¼ 2g2. The other critical point ϕ ¼ 1=

ffiffiffi
2

p
is not the

present concern.
This theory admits the following AdS Ellis-Gibbons

class of solutions [49]:

ds2 ¼ −e−2m=rΔG
�ðrÞdt2 þ e2m=r

�
dr2

ΔG
�ðrÞ

þ r2dΣ2
kðx;φÞ

�
;

ðA2aÞ

ϕ ¼ �
ffiffiffiffiffiffi
−ϵ
2

r
2m
r

: ðA2bÞ

Here,

ΔGþðrÞ≡ kþ g2r2e4m=r;

ΔG
−ðrÞ≡ kþ g2ð8m2 þ 4mrþ r2Þ; ðA3Þ

where m is a parameter corresponding to the mass.
Although curvature invariants remain finite for m > 0 at
r ¼ 0, this point corresponds to the p.p. curvature
singularity.
It has remained an open question as to why there appear

two branches of solutions for a given theory. This can be
understood by the flipping symmetry of the C metric.
Following the strategy laid out in footnote 2, we found the
following C metric solution:

ds2¼ 1

A2ðx−yÞ2
�
e−2mAx

�
−e2mAyΔG

y ðyÞdt2þ
dy2

e2mAyΔG
y ðyÞ

�

þ e−2mAy

�
e2mAxΔG

x ðxÞdφ2þ dx2

e2mAxΔG
x ðxÞ

��
; ðA4Þ

ϕ ¼ −
ffiffiffi
2

p
mAðx − yÞ; ðA5Þ

with structure functions
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ΔG
x ðxÞ ¼ −c0 − c1x − c2x2 þ

g2

A2
e−4mAx;

ΔG
y ðyÞ ¼ c0 þ c1yþ c2y2: ðA6Þ

Following the strategy laid out in the body of text, this C
metric reduces to the minus branch of (A2) in the zero
acceleration limit, by the following parametrization:

c0¼−1þ g2

A2
; c1¼−

4mg2

A
; c2¼kþ8m2g2: ðA7Þ

The plus branch of the solutions is obtainable by flipping
transformation (3.26) with

c0 ¼ 1; c1 ¼ 0; c2 ¼ −k: ðA8Þ
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