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Currently, there is a great deal of interest in the seeking of consistent thermodynamics of the Lorentzian
Taub-Newman-Unti-Tamburino (NUT) spacetimes. Despite a lot of “satisfactory” efforts that have been
made, all of these activities have been restricted to the four-dimensional cases, with the higher even-
dimensional cases remaining unexplored. The aim of this article is to fill the gap for the first time. To the
end of this subject, we first adopt our own idea that “The NUT charge is a thermodynamical multi-hair” to
investigate the consistent thermodynamics of D ¼ 6, 8, 10 Lorentzian Taub-NUT spacetimes without a
cosmological constant. Similarly to theD ¼ 4 cases, as in our previous works, we find that the first law and
Bekenstein-Smarr mass formulas are perfectly satisfied if we still assign the secondary hair Jn ¼ Mn as a
conserved charge in both mass formulas. Turning to the cases with a nonzero cosmological constant, our
treatment continues to work very well and all the results can be fairly generalized to the corresponding
Taub-NUT anti–de Sitter spacetimes in higher even dimensions, although we do not know how to define
and introduce a similar higher-dimensional version of the dual (magnetic) mass that is well known in four
dimensions. Based upon the preceding results, we will also derive the reduced version of the mass formulas
when the secondary hair Jn is viewed as a redundant thermodynamic variable.

DOI: 10.1103/PhysRevD.108.064034

I. INTRODUCTION

Taub-Newman-Unti-Tamburino (NUT) solutions [1,2]
have long been a source of insight into gravitational
thermodynamics. The solutions possess a number of
undesirable properties that, while at first sight are highly
pathological, actually result in important clarifications in
our understanding of black hole thermodynamics, such as
the geometrical interpretation of entropy. Recently, there
has been a resurgence of great interest in exploring the
consistent thermodynamics of the Lorentzian Taub-NUT
spacetimes [3–23]. In our opinion, these current inves-
tigations of the first law of the NUT-charged spacetimes can
be categorized into three different schemes: (I) Retaining
the mass unmodified and introducing new global-like
charges (secondary hairs) together with their conjugate
potentials [3,4]; (II) Keeping the mass unchanged and
including new nonglobal Misner charges and their con-
jugate variables [6–11]; and (III) Only modifying the mass

by taking account for the contribution of new nonglobal
charges [16,17]. Note that in Ref. [23], the thermodynamic
mass that enters into the first law of the four-dimensional
Taub-NUT spacetime is the horizon mass [24]. Besides
these, there is less interest [6,15] to consider the entropy as
the Noether charge [25] that includes the horizon area
and the contribution from the Misner strings. However,
all of the above-mentioned efforts are only restricted
to four-dimensional cases, leaving thermodynamics of
the Lorentzian Taub-NUT spacetimes in higher even-
dimensions unexplored, which motivates the subject of
the present article.
In our previous papers [3–5], we have advocated a new

idea that “The NUT charge is a thermodynamical multi-
hair” and put forward a simple, systematic way to study the
consistent thermodynamics of almost all of the four-
dimensional (dyonic) NUT-charged spacetimes. It should
be emphasized that, unlike all other attempts [6–17,22,23],
our scheme only relies on deriving first a new meaningful
Christodoulou-Ruffini-type squared-mass formula [26,27]
satisfied by the four-dimensional (dyonic) NUT-charged
spacetimes, and the only needed input in this derivation is
to introduce the secondary hairs (Jn ¼ Mn, Qn ¼ qn and
Pn ¼ pn) as new conserved charges. Then the consistent
thermodynamic first law and Bekenstein-Smarr mass for-
mulas of these NUT-charged spacetimes can be deduced
via some simple and purely algebraic manipulations from
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this squared-mass formula, which can hardly be given by
the other papers as mentioned above. Subsequently, the
usual Bekenstein-Hawking one-quarter area-entropy rela-
tion can be naturally restored for the generic NUT-charged
spacetime (and all its extensions) without imposing any
constraint condition and with no need to assume ahead that
the one-quarter area-entropy relation should hold true. The
advantage of our proposal that the NUT charge acts as a
thermodynamical multi-hair is that it cannot only explicate
the rotationlike and electromagnetic chargelike characters,
but it can also simultaneously explain many other exotic
properties. What is more, our consistent mass formulas
[3,4] are unique, and all expressions for thermodynamical
quantities are exceedingly simple and succinct. This is in
contrast to all other works where not only can the consistent
first law of the NUTty dyonic spacetimes have the electric-
type, magnetic-type, mixed-type versions [7,10], and even
many other ones [11], but also the expressions of the related
thermodynamical variables are quite complicated.
In addition, it should be emphasized that the introduction

of the secondary hair Jn ¼ Mn in our previous works [3–5]
is not merely based upon thermodynamical reasons, but
also comes from many other considerations. For instance,
our secondary hair Jn ¼ Mn≡M5 must endow the char-
acter of a global conserved charge, which exactly corre-
sponds to the mass of the five-dimensional gravitational
magnetic monopole [28], so that it can be naturally
included into the first law and Bekenstein-Smarr mass
formula. On the other hand, it cannot only help to explain
the gyromagnetic ratio of a Kerr-NUT-type spacetime [29],
but also accounts for the quantization condition for a
gravitational monopole [30–32]. What is more, it has been
later shown in Ref. [33] that only when considering the
secondary hair Jn ¼ Mn as a independent charge can the
area (or entropy) products of the NUT-charged spacetimes
be subject to the universal rules [34], and the mass be
expressed as a sum of the surface energy, the rotational
energy, and the electromagnetic energy [35].
In this work, we will continue to apply our proposal that

“The NUT charge is a thermodynamical multi-hair” to
investigate consistent thermodynamics of the D ¼ 6, 8,
10 Lorentzian Taub-NUT spacetimes without and with a
cosmological constant. Our paper is organized as follows.
In Sec. II, we start with the construction of a novel
Christodoulou-Ruffini-like squared-mass formula of the
six-dimensional Lorentzian Taub-NUT solution by addi-
tionally including only one secondary hair Jn ¼ Mn, as was
done in Refs. [3,4]. Using this squared-mass formula, which
can be thought of as representing a hypersurface embedded
into one more high-dimensional thermodynamical state
space, both the differential and integral mass formulas
can be deduced through a simple mathematical manipula-
tion. Then, the procedure is extended to the six-dimensional
Lorentzian Taub-NUT-anti–de Sitter (AdS) case. In Sec. III,
we proceed to discuss the cases of the eight-dimensional

Lorentzian Taub-NUT and Taub-NUT-AdS spacetimes,
respectively. Then, in Sec. IV, we extend to investigate
the cases of the ten-dimensional Taub-NUT spacetime and
its AdS extension. We find that our scheme in theD ¼ 6, 8,
10 cases works successfully as in the four-dimensional
case [3], and summarize in Sec. V the main results for the
generic (2kþ 2)-dimensional Taub-NUT-AdS spacetimes.
In Sec. VI, wewill turn to consider the secondary hair Jn as a
redundant thermodynamic variable and derive the corre-
sponding mass formulas for all (2kþ 2) dimensions when
Jn is not considered as a independent thermodynamic
variable. Finally, we present our conclusions and outlooks
in Sec. VII. In the Appendix, we briefly present the main
results of our extensions to the cases of the (2kþ 2)-
dimensional multi-NUTty spacetimes without a cosmologi-
cal constant.

II. SIX-DIMENSIONAL TAUB-NUT SPACETIME

As shown in Ref. [36] for the six-dimensional Taub-
NUT spacetime, there are two different choices for the base
space, namely, S2 × S2 and CP2. We start our investigation
of the mass formulas in the case of the S2 × S2 base space,
but the same procedure is also applicable to the case of the
CP2 base space. Using S2 × S2 as a base space, the metric
of the six-dimensional Lorentzian Taub-NUT solution has
the form

ds26 ¼ −fðrÞ
�
dtþ 2n

X2
i¼1

cos θidϕi

�
2

þ dr2

fðrÞ

þ ðr2 þ n2Þ
X2
i¼1

ðdθ2i þ sin2 θidϕ2
i Þ; ð1Þ

where

fðrÞ ¼ r4 þ 6n2r2 − 3n4 − 6mr
3ðr2 þ n2Þ2 ;

in which m and n are the mass parameter and the NUT
charge parameter, respectively.
Our aim is to derive various mass formulas and to

discuss consistent thermodynamics of the six-dimensional
Lorentzian Taub-NUT spacetime. To begin with, let us
present some known quantities that can be evaluated via the
standard method. First, the area and the surface gravity at
the horizon are easily computed as

Ah¼16π2ðr2hþn2Þ2¼16π2Ah; κ¼1

2
f0ðrhÞ¼

1

2rh
; ð2Þ

in which a reduced horizon area Ah ¼ ðr2h þ n2Þ2 is intro-
duced just for briefness, and rh represents the greatest root of
the horizon equation: r4h þ 6n2r2h − 3n4 − 6mrh ¼ 0.
As for the global conserved charges (M and N), the

Komar mass is divergent, while the Abbott-Deser (AD)
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mass [37] is finite. The AD mass M associated to the
Killing vector ∂t and the NUT charge N read

M ¼ 8πm; N ¼ 8πn: ð3Þ

In addition to the above global conserved charges ðM;NÞ
which act as the primary hairs, below just as we did in the
four-dimensional cases [3–5], wewill also simply introduce
an extra secondary hair Jn ≃mn into the mass formula,
which appears in the following asymptotic expansions of
the metric components gtϕ1

and gtϕ2
at infinity:

gtt ≃ −
1

3
−
4n2

3r2
þ 2m

r3
þOðr−4Þ;

gtϕi
≃ 2ngtt cos θi; i ¼ 1; 2: ð4Þ

It should be mentioned that the hairs (M;N; Jn) that
appeared in the first law and the Bekenstein-Smarr mass
formula are the lowest three moments of the multipole
moments, minj or ðmþ InÞk where i ≥ 0, j ≥ 0, k ≥ 0 are
non-negative integers. In particular, Jn is the only intro-
duced secondary hair so that all the thermodynamical
expressions of the solutions will not be complicated in
our work.

A. Consistent mass formulas of the six-dimensional
Taub-NUT spacetime

In order to establish the first law which is reasonable and
consistent in both physical and mathematical senses, we
employ the algebraic approach suggested in Refs. [3,4,38] to
construct a meaningful Christodoulou-Ruffini-type squared-

mass formula. First, via reexpressing rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1=2

h − n2
q

in
terms of the reduced horizon area and substituting it into
the equation ðr4h þ 6n2r2h − 3n4Þ2 ¼ 36m2r2h, we get the
following identity:

m2 ¼ 1

36
ffiffiffiffiffiffi
Ah

p �
Ah þ 4n2

ffiffiffiffiffiffi
Ah

p
− 8n4

�
2 þ m2n2ffiffiffiffiffiffi

Ah

p ; ð5Þ

which can be alternatively converted to a quartic polynomial
of Ah:

ðA2
h þ 36m2n2 þ 64n8Þ2 ¼ 16ð9m2 þ 16n6 − 2n2AhÞ2Ah:

Next, in addition to the conserved charges M and N
given in Eq. (3), only one extra input that we need is to
introduce the secondary hair Jn ¼ Mn ¼ 8πmn as a
thermodynamic independent variable. Then after substitut-
ingm ¼ M=ð8πÞ, n ¼ N=ð8πÞ andA ¼ 8πAh into Eq. (5),
one can arrive at an useful identity

M2 ¼
ffiffiffiffiffiffi
2π

p

18
ffiffiffiffi
A

p
�
Aþ N2

8π2
ffiffiffiffiffiffiffiffiffi
2πA

p
−

N4

64π3

�
2

þ2
ffiffiffiffiffiffi
2π

p
ffiffiffiffi
A

p J2n; ð6Þ

which is our new Christodoulou-Ruffini-like squared-mass
formula for the six-dimensional Taub-NUT spacetime.
Alternatively, the above equation (6) can be converted to
a quartic polynomial of the area A ¼ AðM;N; JnÞ:
�
A2þ36J2nþ

N8

4096π6

�
2

¼ A
8π3

�
N2A−36πM2−

N6

64π3

�
2

:

At this step, it would be stressed that Eq. (5) can be
thought of as representing a hypersurface in the three-
dimensional thermodynamical state space, whose variables
(m; n;Ah) exactly match with the numbers of the solution
parameters that appeared in the structure function fðrÞ.
After introducing an extra hair Jn, which is nothing but a
kind of higher-dimensional embedding trick, it becomes a
hypersurface in the four-dimensional state space, as speci-
fied by Eq. (6), which now has four independent variables
(M;N; Jn;A). Our below discussions will be based upon
this higher one-dimensional thermodynamical state space.
Having finished the above task, we are now in a position

to obtain the differential and integral mass formulas for the
six-dimensional Taub-NUT spacetime. Since the secondary
hair Jn will be treated as an independent variable,1 the
above squared-mass formula (6) can be regarded formally
as a basic functional relation: M ¼ MðA; N; JnÞ. As was
done in Refs. [3–5,39–41], differentiating it with respect to
the thermodynamical variables (A; N; Jn) yields their con-
jugate quantities, and subsequently we can arrive at the
differential and integral mass formulas with the conjugate
thermodynamic potentials given by the ordinary Maxwell
relations.
For instance, differentiating the squared-mass formula (6)

with respect to A yields one-quarter of the surface gravity

κ ¼ 4
∂M
∂A

����
ðN;JnÞ

¼ 1

2rh
; ð7Þ

which is exactly the same one as given in Eq. (2). Similarly,
by differentiating the squared-mass formula (6) with
respect to the NUT charge N and the secondary hair Jn,
then their conjugate gravitomagnetic potential ψh and
quasiangular momentum ωh can be derived, respectively,
as follows:

ψh ¼
∂M
∂N

����
ðA;JnÞ

¼ 4nrhðr2h − 3n2Þ
3ðr2h þ n2Þ ; ð8Þ

1However, one may object to this viewpoint. A treatment
without viewing it as a independent thermodynamic variable in
the mass formulas for all (2kþ 2) dimensions is presented in
Sec. VI.
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ωh ¼
∂M
∂Jn

����
ðA;NÞ

¼ n
r2h þ n2

: ð9Þ

Now, one can check that both the differential and integral
mass formulas are completely fulfilled

dM ¼ ðκ=4ÞdAþ ωhdJn þ ψhdN; ð10Þ

3M ¼ κAþ 4ωhJn þ ψhN; ð11Þ

among all the aforementioned thermodynamical conjugate
pairs. Comparing these mass formulas [(10) and (11)] with
the standard ones, it is highly urged that the following
familiar identifications be made:

S¼Ah

4
¼ π

2
A¼ 4π2ðr2hþn2Þ2; T ¼ κ

2π
¼ 1

4πrh
; ð12Þ

which naturally recovers the famous Bekenstein-Hawking
one-quarter area-entropy relation of the six-dimensional
Taub-NUT spacetime, completely similar to the D ¼ 4
cases.

B. Extension to the Taub-NUT-AdS6 spacetime

Now we will extend the above discussion to explore the
Lorentzian Taub-NUT-AdS6 spacetime with a nonzero
negative cosmological constant. The metric is still given
by Eq. (1), but now we have

fðrÞ ¼ 1

3ðr2 þ n2Þ2 ½r
4 þ 6n2r2 − 3n4 − 6mr

þ 3g2ðr6 þ 5n2r4 þ 15n4r2 − 5n6Þ�;

where l ¼ 1=g is the cosmological scale.
First, we will employ the conformal completion method

[42] to calculate the conserved mass M of the Taub-NUT-
AdS6 solution. This conformal Ashtekar-Magnon-Das
(AMD) mass can be evaluated via the integral in terms
of the conformal Weyl tensor over the spatial conformal
boundary at infinity. The Taub-NUT-AdS6 spacetime is
asymptotically local AdS, and admits an asymptotic boun-
dary five-metric that approaches to

ds̄25 ¼ lim
r→∞

ds26
r2

¼ −g2
�
dtþ 2n

X2
i¼1

cos θidϕi

�
2

þ
X2
i¼1

ðdθ2i þ sin2θidϕ2
i Þ; ð13Þ

with which one can define a normal vector: n̂a ¼ −gr2δar .
Note that the five-volume form of the conformal boun-

dary AdS metric (13) is simply given by

V5 ¼ g sin θ1 sin θ2dt ∧ dθ1 ∧ dθ2 ∧ dϕ1 ∧ dϕ2; ð14Þ

then, using the inner-product rule, h∂μ; dxμi ¼ δνμ, we can
obtain the area vector dΣt ¼ h∂t;V5i ¼ g sin θ1 sin θ2dθ1 ∧
dθ2 ∧ dϕ1 ∧ dϕ2, from which we can get its only non-
vanishing component:

dSt ¼ g
Y2
i¼1

sin θidθidϕi: ð15Þ

Since the conserved charge associated with a unit Killing
vector ξν is defined as

Q½ξ� ¼ 1

24πg3

Z
ðr3Ct

aνbn̂
an̂bξνdStÞ

���
r→∞

; ð16Þ

where Ct
aνb is the Weyl conformal tensor, we can easily

obtain the conserved charge associated with the timelike
vector ∂t as

Q½∂t� ¼ 8πm −
8π

3
ð1þ 6g2n2Þn2rþOðr−1Þ; ð17Þ

which is clearly divergent at spatial infinity. Therefore, in
order to obtain a finite expression for the conformal mass
M ¼ 8πm, one must subtract the divergence due to the
contribution from the massless (pure NUT) background
spacetime. So we see that while the conformal completion
method can get a finite expression for the NUT-AdS4
spacetime, it fails to do so in the higher even-dimensional
NUT-charged AdS spacetimes [43]. This situation is
very much similar to the Komar integral which can
achieve a finite value for the four-dimensional RN-NUT
spacetime while it cannot obtain a finite one for higher
even-dimensional NUT-charged spacetimes.
On the other hand, the Abbott-Deser method [37] is a

reference background subtraction approach, which fairly
gives a finite AD mass [44]. Incidentally, one can also use
the counterterm method [45–48] to obtain the same result
for the mass, but also to get a finite expression for the
Euclidean action at the same time. However we shall not
adopt this method here due to its involved computations.
Unfortunately, since it is unclear to us how to define a

dual (magnetic) mass in the higher-dimensional spacetime,
we will not consider the dual mass here and hereafter. The
NUT charge will be simply taken as N ¼ 8πn just like the
case without a cosmological constant.
Next, the surface gravity at the horizon that is specified

by the largest root of the equation fðrhÞ ¼ 0 can be
evaluated as

κ ¼ 1

2
f0ðrhÞ ¼

1þ 5g2ðr2h þ n2Þ
2rh

; ð18Þ
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while the horizon area reads Ah ¼ 16π2Ah, in which the
reduced horizon area is still denoted as Ah ¼ ðr2h þ n2Þ2.
Nowwewould like to derive a novelChristodoulou-Ruffini-

like squared-mass formula like the casewithout a cosmological

constant. Accordingly, inserting rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1=2

h − n2
q

into the

equation ½r4h þ 6n2r2h − 3n4 þ 3g2ðr6h þ 5n2r4h þ 15n4r2h −
5n6Þ�2 ¼ 36m2r2h will yield

m2 ¼ 1

36
ffiffiffiffiffiffi
Ah

p ½ð1þ 6g2n2ÞðAh þ 4n2
ffiffiffiffiffiffi
Ah

p
− 8n4Þ

þ 3g2A3=2
h �2 þ m2n2ffiffiffiffiffiffi

Ah

p ; ð19Þ

which can be converted to a sextic polynomial of Ah:

½9g4A3
h þ ð1þ 6g2n2Þð1þ 30g2n2ÞA2

h þ 64n8ð1þ 6g2n2Þ2
þ 36m2n2�2 ¼ 4½18m2 þ ð1þ 6g2n2Þð3g2Ah þ 24g2n4

þ 4n2Þð8n4 −AhÞ�2Ah: ð20Þ

Finally, plugging m¼M=ð8πÞ, n¼N=ð8πÞ, A ¼ 8πAh,
and g2 ¼ 4πP=5 into Eq. (19), where P ¼ ðD − 1ÞðD −
2Þg2=ð16πÞ is the generalized pressure [49], and also
introducing a secondary hair, Jn ¼ Mn, as before, then
after a little algebra we obtain a useful identity

M2 ¼
ffiffiffiffiffiffi
2π

p

18
ffiffiffiffi
A

p
��

1þ 3N2

40π
P

��
Aþ N2

8π2
ffiffiffiffiffiffiffiffiffi
2πA

p
−

N4

64π3

�

þ 3

10π
ð2πAÞ3=2P

	
2

þ 2
ffiffiffiffiffiffi
2π

p
ffiffiffiffi
A

p J2n; ð21Þ

which is nothing but the Christodoulou-Ruffini-like
squared-mass formula for the six-dimensional Taub-
NUT-AdS spacetime. Equation (21) consistently reduces
to Eq. (6), which is obtained in the case of the six-
dimensional Taub-NUT spacetime when the generalized
pressure P is turned off.
Like the case without a cosmological constant, Eq. (19)

represents a hypersurface in the four-dimensional state space
with four free variables (m; n; g;An). After introducing an
extra hair Jn, it is embedded into a five-dimensional
thermodynamic state space defined by Eq. (21), which is
our starting point of the following prescription.
The differentiation of the squared-mass formula (21)

leads to the first law

dM ¼ ðκ=4ÞdAþ ωhdJn þ ψhdN þ VdP; ð22Þ

where

κ ¼ 4
∂M
∂A

����
ðN;Jn;PÞ

¼ 1þ 5g2ðr2h þ n2Þ
2rh

;

ωh ¼
∂M
∂Jn

����
ðA;N;PÞ

¼ n
r2h þ n2

;

ψh ¼
∂M
∂N

����
ðA;Jn;PÞ

¼ 2nrh½2r2h − 6n2 þ 3g2ðr4h þ 10n2r2h − 15n4Þ�
3ðr2h þ n2Þ ;

V ¼ ∂M
∂P

����
ðA;N;JnÞ

¼ 16π2rhðr6h þ 5n2r4h þ 15n4r2h − 5n6Þ
5ðr2h þ n2Þ :

When the NUT charge parameter n vanishes, the thermo-
dynamic volume reduces to V ¼ 16π2r5h=5.
Utilizing all the expressions obtained above, one can

directly verify that the Bekenstein-Smarr mass formula,

3M ¼ κAþ 4ωhJn þ ψhN − 2VP; ð23Þ
is completely satisfied also. It is naturally suggested to
identify S ¼ Ah=4 ¼ 4π2Ah and T ¼ κ=ð2πÞ, so that the
solution acts like a genuine black hole without breaking the
classical one-quarter area-entropy relation.
In the remaining two sections, we will adopt the same

strategy to deal with the eight- and ten-dimensional NUT-
charged (AdS) spacetimes, respectively. The interpretation
of our squared-mass formulas in both dimensions is essen-
tially the same one as was done just in the six-dimensional
case, and will not be repeated once more again.

III. EIGHT-DIMENSIONAL
TAUB-NUT SPACETIME

In this section, we will extend the above discussion to the
case of the eight-dimensional Taub-NUT spacetime, to
which there are two different choices [36] for the base
manifold, namely, S2 × S2 × S2 and S2 × CP2. Likewise, in
the six-dimensional case we will only consider the case
where the base space is S2 × S2 × S2, so that the metric
owns a Uð1Þ fibration over S2 × S2 × S2:

ds28 ¼ −fðrÞ
�
dtþ 2n

X3
i¼1

cos θidϕi

�
2

þ dr2

fðrÞ

þ ðr2 þ n2Þ
X3
i¼1

ðdθ2i þ sin2θidϕ2
i Þ; ð24Þ

where

fðrÞ ¼ r6 þ 5n2r4 þ 15n4r2 − 5n6 − 10mr
5ðr2 þ n2Þ3 :

At the horizon that is the largest root of fðrhÞ ¼ 0, the
area and the surface gravity can be evaluated via the
standard method as
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Ah ¼ 64π3ðr2h þ n2Þ3 ¼ 64π3Ah; κ ¼ 1

2
f0ðrhÞ ¼

1

2rh
;

ð25Þ

where we now denote the reduced horizon area:
Ah ¼ ðr2h þ n2Þ3.
Similar to the six-dimensional case, the AD mass and the

NUT charge can be computed as

M ¼ 48π2m; N ¼ 48π2n: ð26Þ

A. Consistent mass formulas of the eight-dimensional
Taub-NUT spacetime

To derive our squared-mass formula, we will adopt
the same trick as we did in the last section, so we first

express the positive root rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1=3

h − n2
q

in terms of the
reduced horizon area and substitute it into the equation
ðr6h þ 5n2r4h þ 15n4r2h − 5n6Þ2 ¼ 100m2r2h. After some
algebraic computations, one can obtain the following useful
identity:

m2 ¼ 1

100A1=3
h

ðAh þ 2n2A2=3
h þ 8n4A1=3

h − 16n6Þ2

þm2n2

A1=3
h

; ð27Þ

which can also be converted into a polynomial of Ah after
eliminating the fractional powers. Because of its complex-
ity, we shall omit it here.
Subsequently, after inserting m ¼ M=ð48π2Þ, n ¼

N=ð48π2Þ, and A ¼ 48π2Ah into Eq. (27) and including
only one secondary hair, Jn ¼ Mn, as before, we can obtain
a novel squared-mass formula:

M2 ¼ ð6π2Þ1=3
50A1=3

�
Aþ N2ð6π2A2Þ1=3

576π4
þ N4ð36πAÞ1=3

165888π7

−
N6

15925248π10

	
2

þ 2ð6π2Þ1=3
A1=3 J2n: ð28Þ

Now we employ a similar procedure as manipulated in
the previous section, i.e., viewing the secondary hair
Jn ¼ Mn as an independent thermodynamical variable,
then performing the partial derivative of the above squared-
mass formula (28) with respect to one of its thermody-
namical quantities (A; N; Jn) and simultaneously fixing the
remaining ones, respectively, and this will lead to their
corresponding conjugate quantities.
First, differentiating the squared-mass formula (28) with

respect to A yields one-sixth of the surface gravity:

κ ¼ 6
∂M
∂A

����
ðN;JnÞ

¼ 1

2rh
; ð29Þ

which coincides with the one given in Eq. (25). Next, the
potential ψh and the quasiangular momentumωh, which are
conjugate to N and Jn, respectively, are given by

ψh ¼
∂M
∂N

����
ðA;JnÞ

¼ 2nrhðr4h þ 10n2r2h − 15n4Þ
5ðr2h þ n2Þ ; ð30Þ

ωh ¼
∂M
∂Jn

����
ðA;NÞ

¼ n
r2h þ n2

: ð31Þ

Using all the above thermodynamical conjugate pairs, it is
easy to check that both differential and integral mass
formulas are completely obeyed

dM ¼ ðκ=6ÞdAþ ωhdJn þ ψhdN; ð32Þ

5M ¼ κAþ 6ωhJn þ ψhN: ð33Þ

Then it is natural to recognize

S¼Ah

4
¼ π

3
A¼ 16π3ðr2þn2Þ3; T ¼ κ

2π
¼ 1

4πrh
; ð34Þ

so that the eight-dimensional Taub-NUT solution behaves
like a genuine black hole without violating the beautiful
one-quarter area-entropy law. Here we do not require in
advance that the first law should be obeyed in order to
obtain the consistent thermodynamical relations, rather it is
just a very natural by-product of the purely algebraic
deduction.

B. Extension to the Taub-NUT-AdS8 spacetime

In this subsection, we would like to deal with the
Lorentzian Taub-NUT-AdS8 spacetime with a nonzero
cosmological constant. The metric is still given by Eq. (24),
but now

fðrÞ ¼ 1

5ðr2 þ n2Þ3 ½r
6 þ 5n2r4 þ 15n4r2 − 5n6 − 10mr

þ g2ð5r8 þ 28n2r6 þ 70n4r4 þ 140n6r2 − 35n8Þ�;

in which l ¼ 1=g is the cosmological scale.
First, one can evaluate the AD mass for this spacetime as

M ¼ 48π2m: ð35Þ

Next, we want to compute some thermodynamic quan-
tities at the Killing horizon that is determined by fðrhÞ ¼ 0.
At the horizon, the surface gravity can be obtained via the
standard method as
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κ ¼ 1

2
f0ðrhÞ ¼

1þ 7g2ðr2h þ n2Þ
2rh

; ð36Þ

while the horizon area is Ah ¼ 64π3Ah, with the reduced
horizon area still being denoted as Ah ¼ ðr2h þ n2Þ3.
Then we substitute rh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1=3

h − n2
q

into the equation

½r6hþ 5n2r4hþ 15n4r2h− 5n6þ g2ð5r8hþ 28n2r6hþ 70n4r4h þ
140n6r2h − 35n8Þ�2 ¼ 100m2r2h to get an identity:

m2 ¼ 1

100A1=3
h

½ð1þ 8g2n2ÞðAh þ 2n2A2=3
h þ 8n4A1=3

h

− 16n6Þ þ 5g2A4=3
h �2 þm2n2

A1=3
h

: ð37Þ

Supposing that only the secondary hair Jn ¼ Mn is
needed to be included as before, then after inserting
m ¼ M=ð48π2Þ, n ¼ N=ð48π2Þ, A ¼ 48π2Ah, and g2 ¼
8πP=21 into Eq. (37), one can arrive at the following
squared-mass formula:

M2 ¼ ð6π2Þ1=3
50A1=3


�
1þ N2

756π3
P

��
Aþ N2ð6π2A2Þ1=3

576π4

þ N4ð36πAÞ1=3
165888π7

−
N6

15925248π10

	
2

þ 10

63
ð36πA4Þ1=3P

�
2

þ 2ð6π2Þ1=3
A1=3 J2n; ð38Þ

in which P is the generalized pressure. We point out that the
squared-mass formula (38) consistently reduces to Eq. (28)
when the cosmological constant vanishes.
Similar to the strategy that we used in the last subsection,

one can view the mass as an implicit function, M ¼
MðA; N; Jn; PÞ, and then differentiating the squared-mass
formula (38) with respect to its variables leads to a new
reasonable differential mass formula

dM ¼ ðκ=6ÞdAþ ωhdJn þ ψhdN þ VdP; ð39Þ
where

κ ¼ 6
∂M
∂A

����
ðN;Jn;PÞ

¼ 1þ 7g2ðr2h þ n2Þ
2rh

;

ωh ¼
∂M
∂Jn

����
ðA;N;PÞ

¼ n
r2h þ n2

;

ψh ¼
∂M
∂N

����
ðA;Jn;PÞ

¼ 2nrh
5ðr2h þ n2Þ ½r

4
h þ 10n2r2h − 15n4

þ 4g2ðr6h þ 7n2r4h þ 35n4r2h − 35n6Þ�;

V ¼ ∂M
∂P

����
ðA;N;JnÞ

¼ 64π3rhð5r8h þ 28n2r6h þ 70n4r4h þ 140n6r2h − 35n8Þ
35ðr2h þ n2Þ :

At the same time, one can check that the integral mass
formula,

5M ¼ κAþ 6ωhJn þ ψhN − 2VP; ð40Þ

is also automatically satisfied.
The consistency of the above thermodynamic

relations suggests that one should restore the well-known
Bekenstein-Hawking area-entropy relation S ¼ Ah=4 ¼
16π3Ah and Hawking-Gibbons temperature T ¼ κ=ð2πÞ,
which means that the eight-dimensional Taub-NUT-AdS
spacetime should be regarded as a generic black hole.
It is worth noting that the thermodynamic quantities of

the base space of S2 × CP2 are the same ones as those in
the case of S2 × S2 × S2 base space, because the expression
of the radial function fðrÞ remains unchanged, and we will
not repeat them here.

IV. TEN-DIMENSIONAL TAUB-NUT SPACETIME

Finally, we will turn to consider the ten-dimensional
Taub-NUT spacetime and its AdS counterpart. As shown
in Ref. [36] for the ten-dimensional Taub-NUT space-
time, there are three different choices for the base mani-
fold, namely, S2 × S2 × S2 × S2, S2 × S2 × CP2, and
CP2 × CP2. We will only consider the case in which the
metric possesses a Uð1Þ fibration over S2 × S2 × S2 × S2:

ds210 ¼ −fðrÞ
�
dtþ 2n

X4
i¼1

cos θidϕi

�
2

þ dr2

fðrÞ

þ ðr2 þ n2Þ
X4
i¼1

ðdθ2i þ sin2 θidϕ2
i Þ; ð41Þ

where

fðrÞ ¼ 5r8 þ 28n2r6 þ 70n4r4 þ 140n6r2 − 35n8 − 70mr
35ðr2 þ n2Þ4 :

At the horizon which is defined by the largest root of
fðrhÞ ¼ 0, the horizon area and the surface gravity can be
obtained as

Ah ¼ 256π4ðr2h þ n2Þ4 ¼ 256π4Ah; κ ¼ 1

2
f0ðrhÞ ¼

1

2rh
;

ð42Þ

where the reduced area is denoted as Ah ¼ ðr2h þ n2Þ4.
The expressions of the ADmass and the NUT charge can

be similarly calculated as

M ¼ 256π3m; N ¼ 256π3n: ð43Þ
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A. Consistent mass formulas of the ten-dimensional
Taub-NUT spacetime

Adopting the same strategy as did before, we insert rh ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1=4

h − n2
q

into the equation: ð5r8h þ 28n2r6h þ 70n4r4h þ
140n6r2h − 35n8Þ2 ¼ 4900m2r2h, and after some computa-
tions, we can get an useful identity:

m2 ¼ 1

4900A1=4
h

ð5Ah þ 8n2A3=4
h þ 16n4A1=2

h

þ 64n6A1=4
h − 128n8Þ2 þm2n2

A1=4
h

: ð44Þ

After substituting m ¼ M=ð256π3Þ, n ¼ N=ð256π3Þ, A ¼
256π3Ah, and the secondary hair Jn ¼ Mn into Eq. (44),
one can obtain the following squared-mass formula:

M2 ¼ π3=4

49A1=4

�
Aþ N2ðπAÞ3=4

10240π6
þ N4

ffiffiffiffiffiffiffi
πA

p

83886080π11

þ N6ðπAÞ1=4
343597383680π16

−
N8

2814749767106560π21

	
2

þ 4π3=4

A1=4 J
2
n: ð45Þ

In the following, the differential and integral mass
formulas for the ten-dimensional Taub-NUT spacetime
will be derived under the assumption that the entire set
of thermodynamic quantities is the mass M, the NUT
charge N, and the secondary hair Jn ¼ Mn, which will also
be viewed as an independent variable. Differentiating the
squared-mass formula (45) with respect to A yields one-
eighth of the surface gravity:

κ ¼ 8
∂M
∂A

����
ðN;JnÞ

¼ 1

2rh
; ð46Þ

which is in accordance with the one given in Eq. (42). The
gravitomagnetic potential ψh and the quasiangular momen-
tum ωh, which are conjugate to N and Jn, respectively, can
be computed as

ψh ¼
∂M
∂N

����
ðA;JnÞ

¼ 8nrhðr6h þ 7n2r4h þ 35n4r2h − 35n6Þ
35ðr2h þ n2Þ ; ð47Þ

ωh ¼
∂M
∂Jn

����
ðA;NÞ

¼ n
r2h þ n2

: ð48Þ

One can readily verify that both the differential and
integral mass formulas

dM ¼ ðκ=8ÞdAþ ωhdJn þ ψhdN; ð49Þ

7M ¼ κAþ 8ωhJn þ ψhN; ð50Þ

are fully obeyed by using all the thermodynamical con-
jugate pairs given above. It is natural to identify

S¼Ah

4
¼ π

4
A¼ 64π4ðr2hþn2Þ4; T¼ κ

2π
¼ 1

4πrh
; ð51Þ

so that the ten-dimensional Taub-NUT solution acts like a
true black hole without violating the beautiful one-quarter
area-entropy relation. Here, we do not require ahead that
the first law be obeyed to achieve consistent thermody-
namical connections, rather, it is a very natural by-product
of purely algebraic deduction.

B. Extension to the Taub-NUT-AdS10 spacetime

Finally we would like to tackle the Lorentzian Taub-
NUT-AdS10 spacetime with a nonzero cosmological con-
stant. The metric is still given by Eq. (41), and now we have

fðrÞ ¼ 1

35ðr2 þ n2Þ4 ½5r
8 þ 28n2r6 þ 70n4r4 þ 140n6r2

− 35n8 − 70mrþ 5g2ð7r10 þ 45n2r8 þ 126n4r6

þ 210n6r4 þ 315n8r2 − 63n10Þ�;

where l ¼ 1=g is the cosmological scale.
Similar to the low dimensional case, one can compute the

AD mass for this spacetime as

M ¼ 256π3m: ð52Þ

Below, we will evaluate some thermodynamic quantities
related to the Killing horizon which is specified by
fðrhÞ ¼ 0. The surface gravity at the horizon is easily
obtained via the standard method as

κ ¼ 1

2
f0ðrhÞ ¼

1þ 9g2ðr2h þ n2Þ
2rh

; ð53Þ

and the event horizon area still reads Ah ¼ 256π4Ah, in
which the reduced horizon area is Ah ¼ ðr2h þ n2Þ4.
Now it is a position to derive a novel squared-mass

formula. Inserting rh¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1=4

h −n2
q

into the equation ½5r8hþ
28n2r6hþ70n4r4hþ140n6r2h−35n8þ5g2ð7r10h þ45n2r8h þ
126n4r6hþ210n6r4hþ315n8r2h−63n10Þ�2¼ 4900m2r2h, and
after a little algebra, we can obtain a useful identity:
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m2 ¼ 1

4900A1=4
h

½ð1þ 10g2n2Þð5Ahþ 8n2A3=4
h þ 16n4A1=2

h

þ 64n6A1=4
h − 128n8Þþ 35g2A5=4

h �2þm2n2

A1=4
h

: ð54Þ

Then after plugging m ¼ M=ð256π3Þ, n ¼ N=ð256π3Þ,
A ¼ 256π3Ah, and g2 ¼ 2πP=9 into Eq. (54), where P
is the generalized pressure, and the secondary hair
Jn ¼ Mn, one can get the following identity:

M2 ¼ π3=4

49A1=4


�
1þ 5N2

147456π5
P

��
Aþ N2ðπAÞ3=4

10240π6

þ N4
ffiffiffiffiffiffiffi
πA

p

83886080π11
þ N6ðπAÞ1=4
343597383680π16

−
N8

2814749767106560π21

	
þ 7

18π
ðπAÞ5=4P

�
2

þ 4π3=4

A1=4 J
2
n; ð55Þ

which is the Christodoulou-Ruffini-like squared-mass for-
mula for the ten-dimensional Taub-NUT-AdS spacetime.
We again point out that this squared-mass formula con-
sistently reduces to the one obtained in Eq. (45) when the
generalized pressure P is turned off.
Now, as we did before, one can regard the mass M as an

elementary function: M ¼ MðA; N; Jn; PÞ, and then after
differentiating the squared-mass formula (55) with respect
to its variables, one can obtain a reasonable differential
mass formula:

dM ¼ ðκ=8ÞdAþ ωhdJn þ ψhdN þ VdP; ð56Þ

where

κ ¼ 8
∂M
∂A

����
ðN;Jn;PÞ

¼ 1þ 9g2ðr2h þ n2Þ
2rh

;

ωh ¼
∂M
∂Jn

����
ðA;N;PÞ

¼ n
r2h þ n2

;

ψh ¼
∂M
∂N

����
ðA;Jn;PÞ

¼ 2nrh
35ðr2h þ n2Þ ½4ðr

6
h þ 7n2r4h þ 35n4r2h − 35n6Þ

þ 5g2ð5r8h þ 36n2r6h þ 126n4r4h þ 420n6r2h − 315n8Þ�;

V ¼ ∂M
∂P

����
ðA;N;JnÞ

¼ 256π4rh
63ðr2h þ n2Þ ð7r

10
h þ 45n2r8h þ 126n4r6h þ 210n6r4h

þ 315n8r2h − 63n10Þ:

In the meanwhile, one can easily verify that the Bekenstein-
Smarr mass formula

7M ¼ κAþ 8ωhJn þ ψhN − 2VP; ð57Þ

is completely satisfied also.
Comparing our new mass formulas as displayed in

Eqs. (56) and (57) with the familiar standard ones, it is
strongly suggested that one should make the familiar
identifications S ¼ Ah=4 ¼ 64π4Ah and T ¼ κ=ð2πÞ,
which restores the famous Bekenstein-Hawking one-quar-
ter area-entropy relation of the ten-dimensional Taub-NUT-
AdS spacetime in a very pleasing way, so that the solution
behaves like a genuine black hole.
Here, we also point out that thermodynamic quantities in

the cases of S2 × S2 × CP2 and CP2 × CP2 base space
should be the same ones as those in the case of the
S2 × S2 × S2 × S2 base manifold since the expression of
the radial function fðrÞ remains unchanged, so we will not
present them.

V. SUMMARY: GENERAL
(2k+ 2)-DIMENSIONAL CASES

To summarize, we have established the consistent
thermodynamic first law and Bekenstein-Smarr mass for-
mula for the generic D ¼ ð2kþ 2Þ Lorentzian Taub-NUT
(AdS) spacetimes whose metrics are compactly written as

ds2D ¼ −fðrÞ
�
dtþ 2n

Xk
i¼1

cos θidϕi

�
2

þ dr2

fðrÞ

þ ðr2 þ n2Þ
Xk
i¼1

ðdθ2i þ sin2 θidϕ2
i Þ; ð58Þ

with the radial function being

fðrÞ ¼

Z

r½1þ ð2kþ 1Þg2ðx2 þ n2Þ� ðx
2 þ n2Þk
x2

dx

− 2m

�
r

ðr2 þ n2Þk :

These higher even-dimensional Taub-NUT-AdS space-
times are shown to be subject to the traditional forms of
the first law and the Bekenstein-Smarr mass formula as
follows:

dM ¼ TdSþ ωhdJn þ ψhdN þ VdP; ð59Þ

ðD − 3ÞM ¼ ðD − 2ÞðTSþ ωhJnÞ þ ψhN − 2VP; ð60Þ

provided that a new secondary hair Jn ¼ Mn is included
just like in the case of their four-dimensional cousins [3,4].
The thermodynamical quantities that enter the above

differential and integral mass formulas are given below
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M ¼ kð4πÞk−1m; N ¼ kð4πÞk−1n;

Jn ¼ kð4πÞk−1mn; S ¼ 1

4
½4πðr2h þ n2Þ�k;

T ¼ f0ðrhÞ
4π

¼ 1þ ð2kþ 1Þg2ðr2h þ n2Þ
4πrh

;

ωh ¼
n

r2h þ n2
; P ¼ kð2kþ 1Þ

8π
g2;

V ¼ ð4πÞkr2h
r2h þ n2

Z
rh ðx2 þ n2Þkþ1

x2
dx;

ψh ¼ −
1þ ð2kþ 1Þg2ðr2h þ n2Þ

2nrh
ðr2h þ n2Þk

þ ð2k − 1Þr2h − n2

2nðr2h þ n2Þ
Z

rh ðx2 þ n2Þk
x2

dx

þ ð2kþ 1Þg2 ð2kþ 1Þr2h − n2

2nðr2h þ n2Þ
Z

rh ðx2 þ n2Þkþ1

x2
dx:

By the way, the squared-mass formulas can be written as

M2 ¼ J2n
4πð4SÞ1=k þ

k2ð4πÞ2k−1
4ð4SÞ1=k



g2

ð4SÞ1þ1=k

ð4πÞkþ1

þ ½1þ 2ðkþ 1Þg2n2�rh
Z

rh ðx2 þ n2Þk
x2

dx

�
2

; ð61Þ

and the following identity must be used to verify that both
mass formulas are indeed fulfilled:

m ¼
Z

rh ½1þ ð2kþ 1Þg2ðx2 þ n2Þ� ðx
2 þ n2Þk
2x2

dx: ð62Þ

Incidentally, we should point out that the four-dimensional
NUT-charged case previously discussed in [3] without the
inclusion of the dual mass can be enclosed as a special case
in the above general expressions.

VI. THE EXTRA HAIR Jn AS A
REDUNDANT VARIABLE

In the previous three sections (II–IV), which are sum-
marized in Sec. V, by introducing an extra secondary hair
Jn ¼ Mn, which has been viewed as a independent
thermodynamic variable just like the four-dimensional
case [3,4], not only can the traditional thermodynamical
first law and Bekenstein-Smarr mass formula be perfectly
extended to the higher even-dimensional NUT-charged
cases, their thermodynamical conjugate pairs can also be
fairly subject to the common Maxwell relations.
However, one might object to our above measure

adopted in the last sections (II–IV) and doubt that there
exists a mathematical inconsistence in our preceding
treatments, which would be a key flaw in that it fails to
properly account for the number of independent parameters

appearing in the solutions. In other words, there is a
mismatch between the number of independent solution
parameters and that of thermodynamical variables after
introducing an extra secondary hair Jn, since it obviously
enlarges by one between these numbers. This can be easily
explained by counting the number of the solution parameter
space and that of thermodynamical parameter space as
follows. Note that in the usual NUT-less case, the horizon
equation fðrhÞ ¼ 0 and the variant δfðrhÞ ¼ 0 with respect
to its variables imply the Bekenstein-Smarr mass and the
first law, respectively, and this is completely equivalent to
deriving both mass formulas from the squared-mass for-
mulas and no mismatch problem arises when both methods
are used. Consider now the NUT-charged case, the equation
fðrhÞ ¼ 0 means that its roots can be written as:
rh ¼ rhðm; n; q; gÞ, which in turn can be expressed as an
entropy function: S ¼ SðM;N;Q;PÞ. According to the
traditional view, if no extra hair is included, then the
entropy expression should be converted into a mass
function: M ¼ MðS;N;Q; PÞ, and nothing more is added
by hand. However, different from the usual practice, we
have advocated to include a new secondary hair Jn into the
squared-mass formula in the above manipulations, which
results in a function relation M ¼ MðS; Jn; N;Q; PÞ by
enlarging one more parameter into the thermodynamical
state space. This apparently leads to a conflict about the
independent freedom of degree since there are only two free
parameters among three thermodynamical variables (M, N,
and Jn) due to the equality: Jn ¼ Mn ¼ ð4πÞ1−kMN=k.
To resolve the contradiction about the mismatch between

the number of independent solution parameters and that of
the thermodynamical variables, below we will provide a
simple recipe to deal with this conflict by waiving the import
of the secondary hair Jn, so that our preceding treatments
would be viewed as a simpler intermediate step towards
deriving the following reduced version of the mass formulas.
Consider Jn ¼ Mn as a redundant variable, that is to say,

Jn is not an independent variable so that we abandon it to
include Jn as a new hair. Previously, the impact of this
constraint on the thermodynamical relations had already
been addressed in the four-dimensional NUT-charged cases
in our papers [3,4], but was ignored in the last sections for
their higher-dimensional versions. Here we shall discuss
this issue and derive the corresponding reduced mass
formulas of the general (2kþ 2)-dimensional cases.
Now using Jn ¼ ð4πÞ1−kMN=k, we can obtain the

differentiation kð4πÞk−1dJn ¼ MdN þ NdM by taking
into account N ¼ kð4πÞk−1Jn=M. With the help of these
expressions, we can further eliminate Jn and dJn from the
differential and integral mass formulas. Thus, the first law
(59) and Bekenstein-Smarr mass formula (60) boil down to
their nonstandard forms as follows:

�
1 −

Nωh

kð4πÞk−1
	
dM ¼ TdSþ ψ̄hdN þ VdP; ð63Þ
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ðD − 3Þ
�
1 −

Nωh

kð4πÞk−1
	
M

¼ ðD − 2ÞTSþ ψ̄hN − 2VP; ð64Þ

where ψ̄h ¼ ψh þ ð4πÞ1−kMωh=k.
It is easy to see that all of the thermodynamic quantities

in the reduced mass formulas [(63) and (64)] cannot
constitute the ordinary canonical conjugate pairs and do
not obey the conventional Maxwell relations due to the
presence of a prefactor ½1 − ð4πÞ1−kNωh=k� in front of dM
and M. A similar situation previously appeared in the
four-dimensional superentropic Kerr-Newman-AdS, ultra-
spinning Kerr-Sen-AdS, and ultraspinning dyonic Kerr-
Sen-AdS black holes [39–41,50–53], where the chirality
condition J ¼ Ml (l ¼ 1=g is the cosmological scales)
reduces one of the numbers of independent thermodynam-
ical parameters of their corresponding usual black holes
after taking the a → l limit, so that the standard forms of
usual thermodynamics are reduced to the nonstandard
relations.
Finally, we can also note that the squared-mass formula

is recast into

½k2ð4SÞ1=k − ð4πÞ1−2kN2�M2

¼ k4ð4πÞ2k−1
4



g2

ð4SÞ1þ1=k

ð4πÞkþ1

þ ½1þ 2ðkþ 1Þg2n2�rh
Z

rh ðx2 þ n2Þk
x2

dx
�

2

: ð65Þ

VII. CONCLUSIONS AND OUTLOOKS

In our previous work [3,4], we have suggested from the
thermodynamical perspective that the NUT charge behaves
like a thermodynamical multi-hair in the mass formulas of
the four-dimensional NUT-charged spacetimes, of which a
great advantage is that not only will both the integral and
differential mass formulas inherit the conventional forms in
an elegant way, but also the thermodynamical quantities
constitute the usual relations of common conjugate pairs.
What is more, both the famous Bekenstein-Hawking
one-quarter of area-entropy relation S ¼ Ah=4 and the
Hawking-Gibbons temperature formula T ¼ κ=ð2πÞ can
be naturally applied to all NUT-charged spacetimes. These
are the most striking differences from other relevant
attempts of the mainstream community [6–23]. On the
other hand, the novelty of our proposal is that it not only
aims to copy with thermodynamical aspect, but also takes
account of other properties, such as the explanation of the
gyromagnetic ratio and the quantization condition for a
gravitational monopole. In particular, without considering
the secondary hair Jn ¼ Mn as an independent charge, the
universal rule of the area (entropy) products cannot be
applied to the NUT-charged spacetimes [33].

In this paper, we have adopted the same strategy and suc-
cessfully achieved the consistent first law and Bekenstein-
Smarr mass formula for the six-, eight-, and ten-dimensional
Lorentzian Taub-NUT (AdS) spacetimes. To date, our work
is the only one to deal with thermodynamics of higher even-
dimensional Lorentzian Taub-NUT (AdS) spacetimes.
Similar to the cases of the four-dimensional Lorentzian
Taub-NUT (AdS) solutions, as we did in our previous works
[3,4], we also import only one secondary hair Jn ¼ Mn here.
A key rudiment of this work is to deduce a reasonable
Christodoulou-Ruffini-like squared-mass formula for each
dimension, which represents a hypersurface in one more
high-dimensional thermodynamical state space. From this
squared-mass formula, the thermodynamical first law and
Bekenstein-Smarr mass formula can be derived via simple
differentiations with respect to its thermodynamic variables,
and the resultant thermodynamical conjugate pairs meet
their standard forms of the differential and integral mass
formulas. After collecting all main results in a compact
fashion for the generic (2kþ 2)-dimensional Lorentzian
NUT-charged spacetimes, we then have dealt with the case
when the secondary hair Jn ¼ Mn is not viewed as an
independent variable so as to resolve a potential mathemati-
cal inconsistency behind in our preceding prescription. We
should mention that all the results obtained in this paper
resemble the cases of the four-dimensional LorentzianTaub-
NUT (AdS) spacetime; however, there is an exception in that
the notion of a dual (magnetic) mass in higher dimensions is
currently unclearly defined. Once an appropriate definition
for it is proposed, our present work might be modified
accordingly via the further inclusion of it.
Our study in this paper demonstrated that our idea “The

NUT charge is a thermodynamical multi-hair” has a
universal applicability, and our method is effective and
systematical. A natural question is whether it is applicable
to deal with the charged versions of the higher even-
dimensional Taub-NUT spacetimes [54,55]. Preliminary
research shows that only including one secondary hair Jn ¼
Mn is not sufficient to resolve the consistency of the first
law and integral mass formula, so at least one more charge
should be added into them. For more details, please see our
recent work [56] about the electrically charged extension of
the present paper. Another related issue is whether the
present work can be extended to treat thermodynamics of
the higher even-dimensional multi-NUTty spacetimes
[57–59], since the solutions studied in this paper can be
viewed as a special equal-NUT case of these more general
spacetimes with multi-NUT parameters. The answer to this
question is affirmative, please see the Appendix for the
brief results in the cases without a cosmological constant.
We hope to report the details of the related work soon.
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APPENDIX: CONSISTENT THERMODYNAMICS
OF THE (2k+ 2)-DIMENSIONAL
MULTI-NUTty SPACETIMES

In this appendix, we will briefly give the main results of
the consistent thermodynamics of the D ¼ ð2kþ 2Þ-
dimensional Lorentzian multi-NUTty spacetimes without
a cosmological constant. Using the base spaces

Q
k
i¼1 ⊗ S2,

the line elements of these multi-NUTty spacetimes are
written as [59]

ds2D ¼ −fðrÞ
�
dtþ 2

Xk
i¼1

ni cos θidϕi

�
2

þ dr2

fðrÞ

þ
Xk
i¼1

ðr2 þ n2i Þðdθ2i þ sin2θidϕ2
i Þ; ðA1Þ

with the radial function being

fðrÞ ¼ rQ
k
i¼1ðr2 þ n2i Þ


Z
r
Q

k
i¼1ðx2 þ n2i Þ

x2
dx − 2m

�
:

These multi-NUTty spacetimes obey the usual forms of
the first law and the Bekenstein-Smarr mass formula as
follows:

dM ¼ TdSþ
Xk
i¼1

ðωidJi þ ψ idNiÞ; ðA2Þ

ð2k − 1ÞM ¼ 2kTSþ
Xk
i¼1

ð2kωiJi þ ψ iNiÞ; ðA3Þ

provided thatwe introducek new secondary hairs: Ji ¼ Mni.
The thermodynamical quantities that appear in the above

differential and integral mass formulas are

M¼ kð4πÞk−1m; Ni ¼ kð4πÞk−1ni; Ji¼ kð4πÞk−1mni;

S¼ð4πÞk
4

Yk
i¼1

ðr2hþn2i Þ; T ¼ 1

4πrh
; ωi¼

ni
r2hþn2i

;

ψ i¼
ni
k

�Xk
p¼1

r2h
r2hþn2p

�Z
rh
Q

k
j¼1ðx2þn2jÞ
x2ðx2þn2i Þ

dx

−
ni

kðr2hþn2i Þ
Z

rh Yk
j¼1

ðx2þn2jÞ
Xk
p¼1

1

x2þn2p
dx;

where rh is the largest root of the horizon equation:
fðrhÞ ¼ 0. Incidentally, we would like to emphasize that
throughout this article, all the integration constants in the
integral expressions are set to zero.
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