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New light scalar degrees of freedom may alleviate the dark matter and dark energy problems, but if
coupled to matter, they generally mediate a fifth force. In order for this fifth force to be consistent with
existing constraints, it must be suppressed close to matter sources, e.g. through a nonlinear screening
mechanism. In this work, we investigate the nonrelativistic two-body problem in shift-symmetric scalar-
tensor theories that exhibit kinetic screening (k mouflage), both numerically and analytically. We develop
an approximate scheme, based on a Hodge-Helmholtz decomposition of the Noether current associated to
the shift symmetry, allowing for a qualitative insight into the dynamics and yielding results in good
agreement with the numerical ones in most of the parameter space. We apply the formalism to polynomial k
essence and to Dirac-Born-Infeld type theories, as well as to theories that develop “anti-screening.” In the
deep nonlinear regime, we find that the fifth force is screened slightly more efficiently in equal-mass
systems than in extreme mass-ratio ones. However, we find that systems with comparable masses also
exhibit regions where the screening is ineffective. These descreened spheroidal regions (bubbles) could in
principle be probed in the Solar System with sufficiently precise space accelerometers.
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I. INTRODUCTION

Probes from laboratory to cosmological scales are
consistent with gravity being described by general relativity
(GR) [1–3]. On the theoretical side, Poincaré invariance
and unitarity at low energies [i.e. in the infrared (IR)] imply
that the long-range attractive universal interaction that
couples to both massive and massless particles must
originate from a spin-2 massless particle (the graviton),
if one requires a single force carrier [4]. In the classical
limit, such a theory can be nonlinearly completed to GR
[5,6]. GR is a predictive effective field theory (EFT) up to
the Planck scale, where it needs to be ultraviolet (UV)
completed into a full theory of quantum gravity [7].
On the IR side, there is also clear evidence for the

presence of new forms of matter—dark energy (DE) [8–10]
and dark matter (DM) [9,11–13]. As the presence of both of
these components is inferred only from gravitational
experiments, it is reasonable to ask whether the gravita-
tional interaction stems from other degrees of freedom, in
addition to tensor gravitons, in order to explain these
phenomena (partially or in full).
For instance, cosmological observations are consistent

with the presence of an effective cold DM component on
large scales [9,11–13]. There are a plethora of models
providing a microphysical explanation for this component,
although none has yet been confirmed experimentally
[13,14]. An alternative approach, the phenomenological
proposal of modifying Newtonian gravity, known as
modified Newtonian dynamics (MOND) [15,16], had some

success on galactic scales [17]. Possible relativistic gener-
alizations of MOND [18–21] seem to be disfavored by
LIGO/Virgo observations [22,23] and are yet unsuccessful
at explaining the structure of the Universe on large scales
[24]. However, some proposals (e.g. superfluid DM [25])
have also attempted to combine cold DM’s success on
extra-galactic scales with MOND’s advantages on galactic
scales. If these models are viable, a MOND-like phenom-
enology would arise from the fifth force operating on
galactic scales.
Beyond-GR scalar-tensor theories may also provide an

effective DE phenomenology on large cosmological scales.
Examples include Horndeski theory [26] and its generaliza-
tions [10,27–29], which can be organized in an “EFTof DE”
[30]. Some of these models also provide hints about how the
cosmological constant problem could be addressed without
resorting to an anthropic explanation [10]. The problemwith
such an approach is that one needs to explain the absence of
fifth forces on local (e.g. solar system) scales.
For example, the simplest way of extending GR is to

introduce a massless scalar conformally coupled to matter,
which leads to Fierz-Jordan-Brans-Dicke (FJBD) theory
[31–33]. This theory, formally part of the Horndeski class,
is strongly constrained in the Solar System, e.g. by the
Cassini flyby [34]. In order for the fifth force to be consistent
with these local experimental constraints, it must be sup-
pressed close to matter sources, e.g. through a nonlinear
“screening” mechanism [35–38]. In contrast to GR, whose
coupling to matter and self-coupling are completely
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determined by unitarity and Poincaré invariance [4], mass-
less scalars allow for different screening mechanisms, e.g.
through scalar or derivative self-interactions [38]. Examples
of the former are chameleon [39] and symmetron [40]
screening, while examples of the latter include kinetic
screening (or k mouflage) [36] and Vainshtein screening
[35,37]. In more detail, kinetic screening is activated when
the first derivative of the scalar field (i.e. the Newtonian
acceleration) exceeds a certain threshold, while the relevant
quantity for Vainshtein screening is the second (i.e. curva-
ture) derivative of the scalar field. In this work, we focus on
kinetic screening, although there are significant similarities
between these two derivative-based types of screening.
A class of theories that admit kinetic screening is given

by KðXÞ theories1 [38]. These theories, also known as k
essence, are described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ KðXÞ

�
þ SmðΨi; g̃μνÞ; ð1Þ

where MPl is the Planck mass, X ¼ gμν∂μφ∂νφ, KðXÞ is a
function that defines the theory, Sm denotes the matter
action, Ψi represents a set of matter fields, and
g̃μν ¼ Φ−1gμν, with the functionΦðφÞ defining a conformal
coupling to matter. The simple polynomial

K ¼ −
1

2
X þ β

4Λ4
X2 −

γ

8Λ8
X3 þ…; ð2Þ

with Λ an energy scale, allows for screening to develop in
spherical symmetry [36,41,42] and axisymmetry [43], for
certain values of β < 0 and γ > 0. In the nonlinear screen-
ing regime, when X ≳ Λ4, one would expect the dynamics
to be outside the EFT regime. Luckily, KðXÞ theories are
radiatively stable in the nonlinear regime, and the scale Λ
should be interpreted as a strong-coupling scale and not as
the cutoff of the theory [44,45] (see Appendix A for
details). In addition, the conformal coupling of the scalar
to matter is radiatively stable against corrections from the
matter sector [46].
Although the speed of sound in these theories can be

superluminal [47], this does not imply the breakdown of
causality [48–50]. Indeed, the initial-value (Cauchy) prob-
lem is well-posed for a large class of KðXÞ theories, with or
without screening [48–52].2 On the other hand, positivity

bounds [58] may prevent the EFT from having a standard
local, unitary, Lorentz-invariant completion. It is unclear
whether this is true for all the choices ofKðXÞ that allow for
screening [59–61], and whether allowing for Lorentz
violations in the UV may allow for relaxing these bounds.
(Note that kineticlike screening can also be achieved by
breaking Lorentz symmetry explicitly at low energies [19–
21]). An alternative to the standard UV completion could
be considered by means of classicalization [62].
k-essence and similar theories are relevant for the DE/

DM problems described above. Self-acceleration of the
Universe can be obtained with models of the type KðX;φÞ
[63,64], although those generically do not lead to screening
[41]. Purely kinetic models KðXÞ can also serve as DE,
although with some degree of fine tuning [65,66]. Models
that produce a MOND-like phenomenology on galactic
scales are also of this type, sometimes featuring complex
scalar fields and additional nonderivative self-interactions
[25,67,68]. The class of KðXÞ models can also generate
“antiscreening,” where the fifth force increases near matter
[69]. An interesting feature of these models is that they do
not violate the positivity bounds, and therefore they are
expected to have a standard UV completion.
In the nonlinear regime, k-essence theories are nontrivial

to work with. Recently, significant effort has been directed
at producing numerical simulations of the full nonlinear
dynamics in both k essence [42,52,55,70–74] and in
theories with Vainshtein screening [75,76] (in the flat
spacetime limit).3 These breakthroughs allowed for study-
ing stellar oscillations [72,74], gravitational collapse [72]
and neutron star mergers [73]. These simulations, as well as
numerical results for the two-body problem in the sta-
tionary limit [43,83,84] (see also Ref. [85]), indicate that
the phenomenology of screening in dynamical regimes and
beyond spherical symmetry presents nontrivial differences
from the static and spherically symmetric case. This
modified phenomenology may include a partial breakdown
of the screening mechanism [72,73] and allow for further
constraints on the parameter space of these theories. In
addition to the inherent difficulties of k-essence theories, a
further obstacle in a fully numerical approach arises for the
cosmologically motivated models where Λ ∼ ðH0MPlÞ1=2,
as the latter implies a huge separation between the
cosmological scales and the local scales relevant for the
Solar System or compact object binaries. It is thus
important to understand in more detail, analytically as
much as possible, the physics of kinetic screening.
In this work, we will focus on the two-body problem in

theories with kinetic screening. We consider this problem
first analytically, providing a decomposition of the scalar
equation and solving it with various approximation

1These are usually referred to as PðXÞ theories in flat space,
and as KðXÞ theories in curved space.

2This is a nice feature, although one should note that EFTs
with perfectly healthy UV completions may suffer from a
breakdown of hyperbolicity (and thus of the Cauchy problem)
in the IR [53–55]. Thus, the requirement of hyperbolicity is not
informative on the values of the Wilson coefficients, although it
has practical importance for numerical relativity (see however
[54–57]).

3Simulations have also been performed in other scalar-
tensor theories in the Hordenski class that do not exhibit
screening [77–82].
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techniques, and we then numerically check their validity. In
particular, we will discover a partial breakdown of the
screening mechanism in the regime where one would
expect it to operate. Wewill consider the two-body problem
for different choices of the kinetic functionKðXÞ, including
a modification of Dirac-Born-Infeld (DBI) theory that
allows for “opposite” DBI screening [86], i.e.

KðXÞ ¼ Λ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λ−4X

p
: ð3Þ

Phenomenologically, the two-body problem is relevant
in several astrophysical scenarios, e.g. in the Solar System
and in binary pulsars, where tests of gravity have histor-
ically been performed [1,34,87–90], and more recently in
the merging binaries of compact objects detected by
gravitational wave experiments [1,3,88]. While the calcu-
lations of this paper are only at leading post-Newtonian
(PN) order and are clearly inadequate to quantitatively
describe binary mergers, they do nevertheless allow for a
qualitative insight into the dynamics of binary systems
beyond GR.
This paper is organized as follows. In Sec. II we will

provide the field equations of k essence, show how they can
be reformulated, using the Hodge-Helmholtz decomposi-
tion, review kinetic screening and illustrate it in the case of
isolated objects. In Sec. III we will describe the analytical
approximations and the numerical formalism that we use to
study the two-body problem in k essence at leading PN
order in the scalar sector. In Sec. III C we will focus on a
specific finding of our investigation—the appearance of
pockets of linear dynamics inside a region that would be in
a nonlinear regime in the absence of the second object.
Thus far, our results will be either general or focused on a
polynomial k-essence model. In Sec. IV we will instead
explore other models, including “opposite” DBI screening
and antiscreening. We will summarize our results in Sec. V.
Some details on the regime of validity of EFTs in theories
with kinetic screening and on the regularization of point-
particle divergences are presented in Appendixes A and B,
respectively. In Appendix C we comment on the parallel
between the Hodge-Helmholtz decomposition and classical
dual reformulation of self-interacting theories developed in
Refs. [91,92]. Finally, validations of our numerical code are
described in Appendix D. Throughout this paper, we will
employ a mostly plus metric signature ð−þþþÞ and
natural units c ¼ ℏ ¼ 1, with M2

Pl ¼ 1=ð8πGNÞ. Spatial
components are denoted with Latin letters, vectors in R3

are in boldface and the unit vectors carry a hat.

II. SETUP

A. k-essence equations of motion

The action for a k-essence scalar-tensor theory is given
by Eq. (1). Matter is assumed to be minimally coupled to

the conformal metric4 g̃μν ¼ Φ−1gμν, for whose conformal
factor we consider the following expansion at leading order
φ=MPl:

Φ−1 ≈ 1þ α

MPl
φ: ð4Þ

In spherical symmetry, screening is a robust consequence
of this action [for appropriate choices of KðXÞ], even when
considering higher order corrections to this expansion [94].
From the action, the equations of motion are

Gμν ¼
1

M2
Pl

ðTμν þ Tφ
μνÞ; ð5Þ

Tμν ¼
2ffiffiffiffiffiffi−gp δSm

δgμν
; ð6Þ

Tφ
μν ¼ KðXÞgμν − 2KX∂μφ∂νφ; ð7Þ

∇μðKX∇μφÞ ¼ 1

2

α

MPl
T; ð8Þ

where Gμν ¼ Rμν − Rgμν=2 and Rμν are the Einstein and
Ricci tensors for the metric gμν, Tμν (with T ¼ gμνTμν) and
Tφ
μν are the matter and the scalar energy-momentum

tensors, and KX ≡ ∂K=∂X.
Let us start by defining

χμ ≡ KX∇μφ: ð9Þ

In the absence of matter sources, this vector is covariantly
conserved and represents theNoether current associatedwith
the shift symmetryφ → φþ c. Let us then perform aHodge-
Helmholtz decomposition of this current into a longitudinal
component ∂μψ and a transverse component Bμ:

χμ ¼ −
1

2
∇μψ þ Bμ; ð10Þ

∇μBμ ¼ 0: ð11Þ

To check that this decomposition is unique andwell-defined,
one can compute the divergence ∇μχ

μ ¼ □ψ , with
□ ¼ ∇μ∇μ. One can then conclude that ψ is uniquely
determined if the D’Alembertian is invertible, which is the

4One can also perform a field redefinition and work with the
conformal metric directly [93]. This is usually referred to as
“Jordan frame,” as opposed to the Einstein frame used in this
paper.
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case ifψ is given appropriate initial and boundary conditions.
Bμ can then be determined unambiguously5 from Eq. (10).
By replacing the decomposition (10) in Eq. (8), one then

gets the following Klein-Gordon equation for the longi-
tudinal mode:

□ψ ¼ −
α

MPl
T: ð12Þ

As for Bμ, taking a covariant derivative of Eq. (9) and
antisymmetrizing we obtain

∇½νBμ� ¼ KXX∇½νX∇μ�φ; ð13Þ

where the antisymmetric part of a tensor Sμν is defined as
S½μν� ¼ ðSμν − SνμÞ=2. This equation can be put in mani-
festly hyperbolic form by taking a divergence [using also
Eq. (11)], which leads to

□Bμ − Rμ
νBν ¼ Jμ; ð14Þ

Jμ ¼ 2∇ν½KXX∇½νX∇μ�φ�: ð15Þ

Note that this is formally the same as the equation for the
relativistic vector potential in electromagnetism. In par-
ticular, in FJBD theory KXX ¼ 0, and this equation there-
fore implies Bμ ¼ 0 and φ ¼ ψ . [This can also be seen
directly from Eqs. (9) and (10), recalling that KX ¼ −1=2
in FJBD theory]. Thus, we will refer to ψ as the FJBD field.
By squaring Eq. (9), one obtains χμχμ ¼ K2

XX. In order
to express X as a function of χμχμ, K2

XX needs to be a
monotonic function of X. This therefore requires 1þ
2XKXX=KX being sign definite. One can obtain the same
condition by requiring invertibility of ∂μφ in terms of χμ
from the transformation (9). That requires the Jacobian of
Eq. (9), i.e.

J μν ¼ KXgμν þ 2KXX∂μφ∂νφ; ð16Þ

to be sign definite [59]. Since detJ μν ∝ 1þ 2XKXX=KX,
6

this yields again the same condition. By requiring addi-
tionally invertibility for small values of X, one finally
obtains the condition

1þ 2KXXX
KX

> 0: ð17Þ

Remarkably, this is the same condition that is found by
requiring that the field equations of k essence be strongly
hyperbolic [48–52].

B. Nonrelativistic and static limit

Let us now consider the scalar equation of motion at
leading PNorder, i.e. at leading order in 1=c. To this purpose,
let us note that if c ≠ 1 is reinstated, then gμν ¼ ημν þ
Oð1=c2Þ and □ ¼ ∇2 þOð1=c2Þ (with ∇2 ¼ δij∂i∂j). The
scalar equation (8) at leading PN (i.e. Newtonian) order is
therefore simply

∂iðKX∂
iφÞ ¼ 1

2

α

MPl
T: ð18Þ

For a binary system of point particles and again up to higher
order corrections in 1=c, one has

T ¼ −maδ
ð3Þðr − raðtÞÞ −mbδ

ð3Þðr − rbðtÞÞ; ð19Þ

where ra;bðtÞ are the two trajectories. It is then easy to check
that if we find a solutionφstaticðr; r̄a; r̄bÞ for the static problem
(with the two particles at rest at positions r̄a; r̄b), the solution
toEq. (18) for twoparticles inmotionwith velocities≪ c can
be obtained simply as φðt; rÞ ¼ φstaticðr; raðtÞ; rbðtÞÞ. In the
followingwewill therefore restrict, with no loss of generality
(at least as long as one is working at Newtonian order), to the
case of two static point particles.
In terms of the (three-dimensional) Helmholtz decom-

position7

χ ¼ −
1

2
∇ψ þ B; ð20Þ

Eq. (12) for ψ therefore becomes the Poisson equation

∇2ψ ¼ −
α

MPl
T: ð21Þ

This equation can be solved for an N-body system simply
by linear superposition. If one could assume B ¼ 0, one
would have to invert Eq. (20) in order to find φ, i.e., by
squaring that equation, one would have to invert

5More generally, the decomposition (10) is a consequence of
the Hodge decomposition theorem, which states that any p form
ω on a compact, Riemannian manifold can be uniquely decom-
posed as ω ¼ dΨþ d†β þ γ, where d† denotes a codifferential
and γ is a harmonic form defined by Δγ ¼ 0 with Δ ¼ ðdþ d†Þ2
[95]. In coordinates, this statement leads to (10), provided that the
harmonic component γ vanishes. This will indeed be the case
for appropriate boundary/initial conditions.

6This can be easily proven for generic gμν by projecting the
Jacobian (16) on a tetrad basis.

7This decomposition was also introduced for k essence in
Ref. [51], although the solenoidal component was set to zero in
spherical symmetry (see Sec. II C). In the context of MOND, the
decomposition was introduced in Ref. [96], while the behavior of
the two components was discussed for a particular type of KðXÞ
and in particular regions of space in a binary problem in Ref. [97]
(see Sec. III C).
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K2
XX ¼ 1

4
Xψ ; ð22Þ

with Xψ ¼ ð∇ψÞ2. This is possible if Eq. (17) is satisfied.
The implicit assumption B ¼ 0 was made, in the DBI case,
in Ref. [86]. However, it is not a priori clear that the
solenoidal component B can be ignored. In the rest of the
paper, we will discuss the role and importance of this
component.
In R3 the decomposition that we are using, i.e. one into a

longitudinal component (irrotational vector field) and a
transverse component (solenoidal vector field), is further
strengthened by the Helmholtz theorem [98], which states
that if all involved functions have appropriate asymptotic
behavior, the decomposition (20) is unique and

ψ ¼ −
1

4πMPl

Z
d3r0

αTðr0Þ
jr − r0j ; ð23Þ

B ¼ ∇ ×
1

4π

Z
d3r0

Cðr0Þ
jr − r0j ; ð24Þ

C≡ ∇ × χ : ð25Þ

From the definition of the vector χ [see Eq. (9)], one has

C ¼ KXX∇X × ∇φ

¼ 2KXXϵijk∂lφ∂j∂lφ∂kφ; ð26Þ

where ϵijk is the totally antisymmetric Levi-Civita symbol.
It is clear that the solenoidal component will be highly
suppressed (or zero) in highly symmetric regions/scenarios
where ∇X and ∇φ are parallel, or when nonlinearities are
suppressed.
Note that the total gravitational force (at leading PN

order) between two bodies, separated by a distanceD, is the
sum of the Newtonian/GR force and the scalar fifth force.
In FJBD theory the scalar force has a Newtonian-like
behavior and just renormalizes the gravitational constant:

Fg ¼ FN þ FFJBD ð27Þ

¼
�
GN þ α2

4πM2
Pl

�
mamb

D2
; ð28Þ

where the term in brackets defines the effective gravita-
tional constant. In theories with screening, the fifth force
will exhibit a different behavior. In the following, we will
ignore the usual Newtonian/GR component and focus on
the scalar force.

C. Isolated object

Let us first briefly review the solution for an isolated
object, extensively discussed elsewhere [41,42,51,72,94,99],

from the perspective of the Helmholtz decomposition. In the
case of a point particle or a spherically symmetric object,
spherical symmetry implies that both ∇φ and ∇X must be
parallel to the radial vector r. Thus, from the discussion in
Sec. II B [and particularly Eq. (26)], the solenoidal compo-
nentmust vanish. The solenoidal component will vanish also
in other highly symmetric configurations, if there is only one
vector in the problem that all quantities need to be propor-
tional to.
Consider a point particle at the origin with massm. For a

quadratic choice of the kinetic function of Eq. (2), i.e.

KðXÞ ¼ K2ðXÞ≡ −
1

2
X −

1

4Λ4
X2 ð29Þ

the full solution to Eq. (18) can be expressed in terms of the
generalized hypergeometric function as [43]

φ ¼ −
1

4πr
m

α

MPl
3F2

�
1

4
;
1

3
;
2

3
;
5

4
;
3

2
;−

�
rsc
r

�
4
�
; ð30Þ

rsc ¼
1

Λ

�
27

4

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mα

4πMPl

r
¼ 3 × 1011 km

×

�
α

0.1

�
1=2

�
Λ

1.9 × 10−3 eV

�
−1
�

m
M⊙

�
1=2

: ð31Þ

The length scale that controls the solution is the kinetic
screening radius rsc [36]. Fixing the value of rsc determines
the profile of φðrÞ=ðmαÞ, although there is degeneracy
among the individual parameters fm; α;Λg. One can
compare this “screened” solution to the FJBD one
[Eq. (23)]. For a point particle, the latter diverges at the
particle’s location, while the scalar field φ, as a result of the
nonlinear term in the kinetic function KðXÞ, remains finite,
i.e. at small radii one has

φ ≈ −3.7Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mα

4πMPl

r
þ 3Λ4=3

�
mα

4πMPl

�
1=3

r1=3: ð32Þ

The screening therefore acts as a physical “UV regulator”
for the field. Expanding the full result (30) around Λ → ∞,
one instead obtains

φ ¼ −
mα

4πMPl

1

r
þ 1

5

�
mα

4πMPl

�
3 1

Λ4r5
þOðΛ−8Þ; ð33Þ

which demonstrates that screening is a nonperturbative
effect appearing only in the regime X=Λ4 ≫ 1, i.e. in order
to recover it one needs to resum all the terms in the
perturbative expansion [60].
Note that although the scalar field is finite at the origin,

the scalar gradient still diverges. This is, however, simply
an artifact of the point-particle approximation, i.e. the scalar
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gradient goes to zero at the origin for a spherical star [42]. In
the following, when solving for the scalar field in a two-body
system,wewill therefore have to resolve (or “regularize”) the
Dirac deltas in order to allow for a numerical treatment of the
problem.Wewill do so by utilizing aGaussian densitymodel
for each point particle, i.e.

Ti ¼ −
mi

ð ffiffiffiffiffiffi
2π

p
σÞ3 exp

�
−
ðr − riÞ2
2σ2

�
; ð34Þ

where σ is the width of the Gaussian and ri is the position of
the particle. The solution of Eq. (18) with this source cannot
be expressed in closed form, even for a single particle,
although Eq. (22) provides a closed form expression for ∂rφ
[see Eq. (50) below]. This expression, however, needs to be
integrated in order to find the scalar profile φðrÞ for a single
point particle.
To test this regularization, we show in Fig. 1 the scalar

gradient, calculated with a Dirac delta and a Gaussian
source. As expected, the two profiles coincide outside the
effective radius of the object (R ¼ 2σ). The same figure
also shows the gradient of the FJBD field ψ , again for both
sources. As expected from previous studies [36,42,72], the
gradients of φ (which can be physically interpreted as the
fifth force) are suppressed with respect to the FJBD
gradients ∂rψ , even inside the effective radius R. As the
radial coordinate approaches the origin, both gradients tend
to zero for the regular Gaussian source, as dictated by
spherical symmetry and regularity [42,72]. Further details
on the Gaussian regularization will be presented in
Appendix B.

III. THE TWO-BODY PROBLEM:
POLYNOMIAL k ESSENCE

Unlike the isolated object case of Sec. II C, the two-body
problem is only axially symmetric, around the direction
that connects the two particles. Let us define the coordinate
system such that the particles (of masses mi) are located on
the z axis at zi ¼ �D=2, where D is the separation and i is
an index running on the two particles a and b. We will work
in cylindrical coordinates ðρ; ϑ; zÞ, with ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and

ϑ ¼ argðx; yÞ. In principle, the scalar field could depend on
ϑ, but because the source on the right-hand side of Eq. (18)
does not, the dependence must be linear, i.e. φ ¼ Lϑþ
φ̄ðρ; zÞ for some constant L. This would ensure that the left-
hand side of Eq. (18) is independent of ϑ. However,
asymptotic flatness requires φ approaching zero far from
the two-body system, which in turn imposes L ¼ 0.
Let us then solve the scalar equation (18) with the source

(19) and the polynomial kinetic function

KðXÞ ¼ Λ4KNðXÞ; KNðXÞ ¼ −
XN
n¼1

1

2n

�
X
Λ4

�
n
; ð35Þ

which allows for screening as long as the leading order term
has a negative coefficient [60]. Note that the choice of the
dimensionless series coefficient was made simply for com-
putational convenience, and is not expected to qualitatively
impact our results (see also Sec. IVA). In Appendix A we
argue, based on Ref. [44], that the nonlinear regime of the
above theory is in the EFT regime of validity for generic
astrophysical scenarios and every N > 1.
From the analysis of the scalar profile around an isolated

object in the previous section, we have seen that the
screening starts operating when X ≳ Λ−4, and that the field
strength is governed by fm; α;Λg. For a generic poly-
nomial function, in the region of deep screening the highest
power of XN will dominate. For an isolated point particle,
we then have, from Eq. (18),�

∂rφ

Λ2

�
2N−1

≈
�

mα

4πMPlΛ2

�
1

r2
: ð36Þ

Thus, the length scale that controls the scalar field profile
for an isolated object is parametrically the same as for
quadratic k essence, i.e.

rsc ¼ cN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mα

4πMPlΛ2

r
; ð37Þ

up to a numerical coefficient cN [for a quadratic kinetic
function one has e.g. c2 ¼ ð27=4Þ1=4�. In particular, for
N ¼ 2, from Eq. (36) one finds the small-radius expansion
given by Eq. (32), i.e. φ ≈ constþOðr1=3Þ.
Let us now turn to the binary problem and define

ma ≡m and mb ≡m=q, q ≥ 1. Motivated by the previous

FIG. 1. Scalar gradients for the quadratic k-essence theory
described by Eq. (29) and for an isolated object located at r ¼ 0.
The screening radius is rsc ¼ 100R (gray long-dashed vertical
line) and the effective radius of the Gaussian source is R ¼ 2σ
(pink short-dashed vertical line). f ¼ fφ;ψg are respectively the
k-essence scalar field and its irrotational component (which
matches the FJBD gradient). Profiles are computed for a
Gaussian source (index σ) and a Dirac delta (no index).
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discussion, we introduce the rescaled dimensionless
variables

xi ¼ λxi; κ ¼ mα

4πMPl

�
λ

Λ

�
2

; ϕ ¼ φλ

Λ2
; ð38Þ

X ¼ X
Λ4

; Ψ ¼ ψλ

Λ2
; B ¼ B

Λ2
; C ¼ C

λΛ2ð4πÞ ;

ð39Þ

where the constant λ (which has dimensions of a mass) is
for the moment left free. Note that the rescaling of the
Cartesian coordinates implies in particular the rescaling
ϱ ¼ λρ. Moreover, from now on the spatial derivatives will
be assumed to be taken with respect to the rescaled
coordinates xi unless otherwise specified. With these
rescalings, the scalar equation (18) takes the form

∇ ·

�
∇ϕ

XN
n¼1

Xn−1
�

¼ 4πκ

�
δð3Þ

�
r −

D
2
ẑ

�
þ 1

q
δð3Þ

�
rþ D

2
ẑ

��
: ð40Þ

We will from now on use the scale invariance of Eq. (40) to
set D ¼ 1, and thus λ ¼ D−1, without loss of generality.
Thus, the parameter space of the problem is defined by the
(square of the) ratio of the screening radius of the more
massive object and the interparticle separation,

κ ¼ mα

4πMPlΛ2

1

D2
∝
�
rsc
D

�
2

; ð41Þ

and by the mass ratio q. As mentioned earlier, to solve the
two-body problem numerically we will need a finite
representation for the Dirac deltas, i.e. Eq. (34) for both
sources, centered at z ¼ �1=2. The appearance of a
resolution length scale σ now extends the dimension of
the parameter space from two to three: κ, q and R,
where R ¼ R=D ¼ ð2σÞ=D.
In the following, for concrete calculations we will focus

on a quadratic model (N ¼ 2), which makes Eq. (22)
solvable analytically. However, we will also provide
analytic arguments supporting the (qualitative) applicabil-
ity of these results to more general polynomial functions.

A. To B or not to B

As discussed in Sec. II C, a perturbative treatment of the
dynamics is only useful outside the screening region(s). In
that regime, the solenoidal component is suppressed
relative to the irrotational one, as K00 ≪ 1 [see Eq. (26)].
Inside the screening region(s), the equation of motion is
highly nonlinear, and an exact solution cannot be found for
the two-body problem. We will therefore attempt two

approximations, whose validity we will evaluate by self-
consistency and by comparing to our fully numerical
results.8

As the Helmholtz decomposition (20) breaks the prob-
lem into a straightforward part (irrotational component) and
a complicated one (solenoidal component), most of our
focus will be on understanding the solenoidal component.
Let us then outline its vectorial structure. As elaborated in
the introduction of this section, from axial symmetry and
asymptotic flatness one has ϕ ¼ ϕðϱ; zÞ, and thus from the
Helmholtz decomposition (20) one can conclude that
Bϑ ¼ 0. As the source C is proportional to ∇ϕ⨯∇X , and
these two vectors are spanned by fϱ̂; ẑg, the only nonzero
component of the source vector will be Cϑ. From Eq. (24) it
then follows

Bϱ ¼ −
Z

dV0
∂z

�
1

jr − r0j
�
Cϑðϱ0; z0Þ;

Bz ¼
Z

dV0 1
ρ
∂ϱ

�
ϱ

jr − r0j
�
Cϑðϱ0; z0Þ: ð42Þ

It is clear that these two components satisfy the zero-
divergence condition (11)

1

ϱ
∂ðϱBϱÞ
∂ϱ

¼ −
∂Bz

∂z
: ð43Þ

If the source Cϑ is nonzero, as generically expected, the
solenoidal component is expected to be nonvanishing,
unlike in the example given in Sec. II C.

1. Linear superposition approximation

A very simple approximation is to consider the linear
superposition of the full single-particle solutions [given by
Eq. (30) for the quadratic kinetic function], i.e.

ϕ ¼ ϕa þ ϕb; ð44Þ

where ϕa;b are the two solutions. We expect this ansatz to
work well when the screening regions of the individual
bodies do not overlap, i.e. in the limit κ ≪ 1. In that

8One can perform a field rescaling [100–102] or introduce an
auxiliary field at the level of action (dual formulation) that
replaces the self-interacting terms [91,92] in order to obtain a
well-defined perturbative expansion in the screening region. In
Appendix C we show that the dual formulation is in fact
equivalent to the Helmholtz decomposition. We have not been
able to solve the equation for the solenoidal component (14) in a
binary problem even after such a reformulation. Other analytic
approaches, based e.g. on perturbing the scalar field around the
background field generated by a fictitious isolated body located at
the center of mass of the system [103], or on a sort of effective
one-body approach [43], have also failed to solve the two-body
problem in a controlled perturbative manner in theories with
kinetic/Vainshtein screening.
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situation, nonlinearities are strong only in the vicinity of
each body, and are sourced by the body itself (in isolation).
These nonlinearities are therefore already captured by
Eq. (30). This approximation will however receive non-
trivial and a priori uncontrolled corrections when the
screening regions of the individual bodies overlap.
Note that even when κ ≪ 1, the solenoidal component B

will be nonzero. In this regime, we can just insert the ansatz
(44) into Eq. (20) and get a (complicated) expression for
B2 ¼ B · B. The latter can be simplified on the plane ϱ ¼ 0,
where both the solenoidal and irrotational components
present maximal amplitudes:

B2ðϱ ¼ 0; zÞ ¼ 64

3
fðaÞ2fðbÞ2½sðbÞfðaÞ þ sðaÞfðbÞ�2;

fðiÞ≡ sinh

�
1

3
arcsinh

�
rsc;i
z − zi

�
2
�
; ð45Þ

sðiÞ≡ sgnðz − ziÞ: ð46Þ

In the regime where the superposition approximation is
valid (κ ≪ 1), we find that the irrotational component
dominates upon the solenoidal one, as the dimensionless
ratio between their kinetic energies is

XΨð0; zÞ
B2ð0; zÞ ∼

81q2

16κ4
ð1 − 2zÞ; ð47Þ

when κ → 0. Note that this is a nontrivial result, as it is
valid not only in the perturbative regime (outside the
screening regions of the individual bodies), but also in
the screening region of each body. Indeed, near the body
positions z ¼ �1=2, one recovers (by construction) the
isolated object solutions, at leading order. Similarly, the
isolated object solution can be recovered in the extreme
mass ratio limit. Indeed, expanding for q ≫ 1 we find

B2ð0; zÞ ∼Oðq−2Þ; XΨð0; zÞ ∼Oðq0Þ; ð48Þ

which shows that the solenoidal component is suppressed,
as expected.

2. Irrotational approximation

Motivated by the previous discussion, one can start from
the Helmholtz decomposition (20), ignore the solenoidal
component and invert Eq. (22) to find X. We will refer to
this approach as the irrotational (or longitudinal) approxi-
mation. Let us consider first a general kinetic function
KðXÞ, and emphasize that the kinetic energy X obtained in
this way is an infinite series in Λ−2 (although this scale is
absorbed in the parameter κ). Indeed, in the case of an
isolated object or other highly symmetric configurations,
this result matches the full result, as shown in Sec. II C.
Once found X, one can reconstruct the field by integrating
Eq. (20) (with B ¼ 0), i.e.

ϕðϱ; zÞ ¼ −
1

2

Z
ϱ

∞
dϱ̃

∂ϱ̃Ψ
K0ðXÞ : ð49Þ

(Note that the general solution would include an additional
arbitrary function of z, which is however forbidden by
requiring that ϕ vanishes far from the source.) For example,
for the quadratic function of Eq. (29), one finds the
following closed form for X :

X ¼ 1

3
ðY1=3 þ Y−1=3 − 2Þ;

Y ¼ 3
ffiffiffi
3

p ð27X2
Ψ þ 4XΨÞ1=2 þ 27XΨ þ 2

2
ð50Þ

[from Eq. (22); see Fig. 10].
Once determined X and ϕ in this irrotational approxi-

mation, one can check the validity of the latter by
computing the solenoidal component from Eq. (26). In
this way, one could devise an iterating scheme in order to
solve the problem self-consistently. We will however try to
understand if there are regimes where the solenoidal
component is parametrically suppressed and the irrotational
approximation is valid to leading order. We are thus
interested in comparing B with −∇Ψ=2. As the same
derivative power will act on the radial distance in the
denominator on the right-hand side of Eq. (23) as in
Eq. (42), it follows that if the source of the solenoidal
component C≡ jCj ¼ Cθ is parametrically suppressed with
respect to the irrotational one, i.e.

SΨ ¼ −
1

2
κ

�
δð3Þ

�
r −

1

2
ẑ

�
þ 1

q
δð3Þ

�
rþ 1

2
ẑ

��
; ð51Þ

this will be also true for the magnitudes of the components
themselves.
The magnitude of the source of the solenoidal compo-

nent in the irrotational approximation is given by

C ≈N KG∇; ð52Þ

N K ¼ −
1

8π

KXX

KX

dX
dXΨ

j∇XΨj
ffiffiffiffiffiffiffi
XΨ

p
; ð53Þ

G∇ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ð∇XΨ · ∇ΨÞ2
ð∇XΨÞ2XΨ

s
; ð54Þ

where the kinetic function and its derivatives are functions
of X ¼ XðXΨÞ. As can be seen, the source C depends on
the nonlinear terms of the function (encoded inN K) and on
the “misalignment” between ∇X ∝ ∇XΨ and ∇ϕ ∝ ∇Ψ
(encoded in G∇). In order for the solenoidal component to
be significant, there must be an overlap between the
supports of N K and G∇.
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Let us first consider G∇. Since it depends only on the
FJBD fields Ψ and XΨ, this quantity is independent of the
screening radius and only depends on the mass ratio q.
From the definition (54), it is also clear that 0 ≤ G∇ ≤ 1,
with G∇ ¼ 1 when ∇XΨ and ∇Ψ are orthogonal. In Fig. 2,
we plot the support of G∇, defined as the region where
G∇ ≥ 0.1, for various mass ratios. In the equal-mass case,
the support is symmetric around the center of mass of the
system. As q increases, the support shrinks and gets shifted
toward the smaller object (located at zb ¼ 1=2). In the limit
q → ∞we find thatG∇ → 0, i.e. we recover the spherically
symmetric solution and the solenoidal component vanishes,
as expected.
The prefactor N K has instead support in the screening

region, where the nonlinearities dominate and which is
centered on the objects themselves, encoded in κ ∝
ðrsc=DÞ2 and q. Let us first demonstrate two cases where
the overlap betweenN K and G∇ is small. Consider first the
equal-mass limit q ≈ 1 and κ ≪ 1: the support of N K
shrinks (because the screening radii of the two objects
shrink) and the small overlap with the support of G∇
suppresses the source of the solenoidal component. When
instead q ≫ 1, the support of N K is mostly around the
more massive body a, while the support of G∇ is closer to
the lighter body b (see Fig. 2), resulting again in a small
overlap between N K and G∇ and thus in a small source
magnitude C. Note that both of these cases (q ≈ 1 and
κ ≪ 1; q ≫ 1) are consistent with the intuition from the
linear superposition approximation (for the quadratic k
essence), but the arguments presented here extend their
validity to a generic kinetic function.
To gain some insight on the remaining case (κ ≫ 1 and

q ≈ 1), let us specialize to the polynomial form (35) for the
kinetic function. In the deep screening regime κ ≫ 1, the
highest power in the series dominates, and from (22) one
therefore concludes that

X ≈ X1=ð2N−1Þ
Ψ ; ð55Þ

and consequently

N K ≈ −
κ

8π

N − 1

ð2N − 1Þ
j∇X̂ψ jffiffiffiffiffiffiffi

X̂Ψ

q ; ð56Þ

XΨ ≡ κ2X̂ΨðqÞ: ð57Þ

For N ¼ 1, one recovers the FJBD theory result (X ¼ XΨ
and N K ¼ 0). Since G∇ does not depend on κ, one can
therefore conclude that C ≈N KG∇ ∝ κ.
Let us now compare the source of irrotational and the

solenoidal components.As bothSΨ [seeEq. (51)] and C scale
linearly with κ, their ratio will depend only on the mass ratio
q. Since − ∇Ψ=2 and B [Eqs. (23), and (42)] depend on the
volume integrals of their respective sources and both sources
have a compact support, let us then compute the spatial
averages of C and SΨ. For the irrotational component,
Eq. (51) yields the average hSΨi ¼ −κð1þ q−1Þ=ð2VÞ,
where V is the volume (larger than the individual supports
of C and SΨ) over which the average is peformed. For C, we
calculated the average numerically for a set of values of q. In
Fig. 3, we show the ratio hCi=hSΨi, multiplied by ð2N − 1Þ=
ðN − 1Þ to eliminate the dependence onN [see Eq. (56)]. For
instance, for q ¼ 1 and N ¼ 2, the ratio is hCi=hSΨi ≈ 0.38
(Also note that the ratio is independent of the volume V).
These results demonstrate that the solenoidal component is
always suppressed with respect to the irrotational one even
in the deep screening regime, although when q ≈ 1 this
suppression is less evident.
In conclusion, the analytic arguments of this section

indicate that the solenoidal component will be significantly
suppressed relative to the irrotational one when κ ≪ 1

FIG. 2. Support of the function G∇, which encodes the
geometry of the source (54), defined by G∇ > 0.1, for four
choices of the mass ratio q ¼ ma=mb. The cylindrical coordinates
ðρ; zÞ are rescaled by the interparticle separation, and the particles
are located at zi ¼ �D=2.

FIG. 3. The ratio between the volume-averaged source of the
irrotational component in the Helmholtz decomposition (20),
hSΨi, and the (averaged) source of the solenoidal component,
hCi, as function of the mass ratio q in the deep screening regime
κ ≫ 1. The ratio is multiplied by the factor ð2N − 1Þ=ðN − 1Þ,
which depends on the choice of the kinetic function (in poly-
nomial form).
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and/or q ≫ 1 (for a generic kinetic function). The sup-
pression also holds in the deep screening regime κ ≫ 1 (for
a polynomial kinetic function), although it becomes less
pronounced for comparable masses (q ≈ 1).

B. Numerical solution

1. Formulation

In order to validate the analytic approximations of
Sec. III A and to understand the full behavior of the
two-body dynamics, we have performed numerical simu-
lations for the case of a quadratic kinetic function.9 The
scalar equation of motion (40), together with appropriate
boundary conditions (to be described below), defines an
elliptic boundary value problem. We have represented
Eq. (40) in cylindrical coordinates, and we have discretized
it using a second-order finite difference scheme, regular-
izing the Dirac deltas with the Gaussian source of Eq. (34).
Our integration domain is the rectangle ½0; ϱout�×

½−zout; zout�, where the boundary values ϱout and zout are
chosen to be larger than or at most comparable to the
screening radii of the constituent object. On the ϱ ¼ 0 plane,
regularity requires the boundary condition ∂ϱϕjϱ→0 ¼ 0.
Defining our grid as ϱ ¼ ih and z ¼ jhz (with h and hz
the grid steps), regularity is then implemented by introducing
the ghost point i ¼ −1 and taking ϕð−1; jÞ ¼ ϕð1; jÞ. In
order to regularize the coordinate singularity of Eq. (40) at
ϱ ¼ 0, we apply the L’Hôpital rule

lim
ϱ→0

1

ϱ
∂ϕ

∂ϱ
¼ ∂

2ϕ

∂ϱ2
ð58Þ

to modify the scalar equation at i ¼ 0 [104].
On the other sides of the grid, we have used two

implementations of Dirichlet boundary conditions. First,
we have used the superposition of the FJBD potentials to
set the scalar field on the boundary, as long as the latter is
sufficiently far from the screening radius. Moreover, after
establishing that Eq. (49) provides a good approximation
away from the objects, but inside the screening region, we
have used it to set the boundary scalar field in the case when
the size of the domain is comparable to the screening
radius, in order to reduce the size of the grid for the highly
nonlinear cases.
After discretization, Eq. (40) yields the nonlinear system

Gij½fϕði0; j0Þgi0¼i−1;i;iþ1;j0¼j−1;j;jþ1� ¼ 0; ð59Þ

whereGij is a (nonlinear) function of the discretized field at
the neighboring points i0 and j0. We solve this nonlinear
system by using a Newton-Raphson method and an lower–
upper decomposition to compute the inverse of the Jacobian.
We have set a tolerance of 10−5 on the scalar field profile. In
all runs grid size was several times smaller than the effective
radius of the Gaussian source. As initial guess for scalar
profile in the Newton-Raphson method, we adopt several
choices including the superposition of FJBD potentials (B4)
and the single-particle solutions (Sec. III A).However, as the
nonlinearities becomemore important, corresponding to the
growth of κ in our units, we use Eq. (49) as an initial guess.
Moreover, to speed up the calculation we occasionally
replace the Newton-Raphson method iteration with one
computed with a Broyden method [105].
A description of our code’s validation, including a

comparison with the semianalytic solution in the single-
particle case and convergence tests, is left for Appendix D.

2. Results

Consider first an equal-mass system where the screening
regions of the constituent objects do not overlap, i.e. κ < 1.
In Fig. 4 (left), we show the numerical solution for the
scalar’s kinetic term on the plane ρ ¼ 0, Xnum, vs the same
quantity for FJBD theory XΨ, and two approximations
described in Sec. III A (with a Gaussian source). In more
detail, both the linear superposition of the two one-particle
solutions X sup and the irrotational approximation X irr

provide an excellent agreement with the numerical results.
Furthermore, the difference between these approximations
and the numerical solutions, and hence the importance of
the solenoidal component, is of the order of the numerical
error in this regime. The comparison with FJBD theory
demonstrates that the screening is active inside the screen-
ing region of the individual objects (shaded region), and
that outside the individual screening regions the scalar
gradient is not suppressed. Note also that the kinetic term is
significantly suppressed (although not zero in contrast to
the isolated object, Sec. II C), and thus the theory is in the
linear regime, near the center of the source.
More interesting is a scenario where κ > 1. In Fig. 4

(right) we show the same quantities as for the previous case.
In order to appreciate the full spatial behavior of the scalar
kinetic energy we also present in Fig. 5 a contour plot of
Xnum for one such case (bottom), together with the same
plot for the corresponding one-particle case (top). Consider
the region around z ¼ ρ ¼ 0, which is inside the single-
particle screening region. In the binary problem, this region
corresponds to the saddle point of the scalar profile, where
the fifth forces cancel each other, and thus the scalar
gradient is suppressed (see Sec. III C for further discus-
sion). This can be clearly seen in the bottom panel, where
the contour lines get deformed to allow for near zero
gradients in the saddle region. On the “outer” side of the
binary, the profile is much closer to the expectation from

9The same problem was also studied numerically in Ref. [43].
However, that analysis focused only on the binary’s energy.
Here we discuss several other aspects, and in particular the
behavior of the scalar gradients. In addition, we use a different
numerical method and provide a more refined code validation
(see Appendix D).
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the single-particle case, although both the scalar gradients
and the screening radius become larger. This is expected, as
sufficiently far away from the constituent objects, the
system behaves as a composite single object maþmb. Both
the irrotational and linear superposition approximations

considered earlier capture the essential characteristics of
how the screening operates in a binary system as is clear from
Fig. 4 (right). The superposition ansatz X sup tends to over-
correct the difference between the one-particle case and the
two-body by drastically reducing the peaks inside the binary
and enhancing those outside it. On the other hand, the
irrotational approximation X irr makes these adjustments
closer to the true (numerical) solution.
Consider now a case with κ > 1, q ≫ 1, shown in Fig. 6.

As discussed in Sec. III A, both approximations are much
closer to the numerical result than in the case of equal-mass
systems. In particular, the discrepancy between the analytic
approximations and the numerical result is most pro-
nounced in the vicinity of the smaller object. Again, the
irrotational approximation is outperforming the simple
linear superposition of the one-body solutions.

FIG. 4. Scalar kinetic energy on the plane ρ ¼ 0 for quadratic k essence, calculated from our numerical results (Xnum, red solid line),
with the linear superposition approximation (Xsup, black dashed line), and with the irrotational approximation (Xirr , purple long-dashed
line). Also shown for comparison is the FJBD result (Xψ , orange dot-dashed line). Two equal-mass (q ¼ 1) binary systems are
considered: rsc ¼ 4.5R, D ¼ 17.5R (left) and rsc ¼ 9.5R, D ¼ 5R (right), with the origin placed at the geometric center. The cyan
shaded areas represent the individual screening regions of each body in isolation (ignoring the descreening in the vicinity of the object’s
center), and the darker shade in the right panel denotes the overlap of these individual screening regions.

FIG. 5. Contour plot of the scalar kinetic energy X in the ðρ; zÞ
place. The bottom panel is for an equal-mass binary with rsc ¼
9.5R andD ¼ 5R. The top panel is for just one of the two bodies.
The pink semicircles denote the effective radii of the Gaussian
source model for the point particles. The orange dot-dashed line
connects the geometric center of the left object in the two
subplots, while the red dashed line connects the origins (which
are placed at the center of mass of the binary).

FIG. 6. The same as in Fig. 4 (right), but for q ¼ 25. The two
bodies are placed at z ¼ �2.5R.
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In order to compactly describe the two approximations
across the mass ratio parameter space, we define the
following L2 norm:

jjΔyjj2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

dVðynum − yanÞ2
s

; ð60Þ

where y ¼ fϕ;Xg, with subscripts fnum; ang, denote the
numerical result and the analytic approximation, respec-
tively, and the integral is taken over the whole grid. The
estimate is sensitive to the nonlinear regime, because in the
linear regime both approximations give a very good
description of the numerical results. Results are shown
in Fig. 7 for a scenario representative of the deep screening
regime κ ≫ 1. We find that the irrotational approximation is
outperforming the superposition approximation for all mass
ratios, although the relative error of both approximations
increases as q → 1. This is completely in line with the
conclusions from Sec. III A. We also find that the relative
error of the kinetic energy saturates at∼10% forq ¼ 1. Thus,
even in the case of equal masses, the irrotational approxi-
mation provides a decent quantitative description of the
scalar profile. It is also apparent that, for a given approxi-
mation, the error is smaller for the field than for X. A similar
phenomenon is observed in the two-body problem for
cubic Galileons (where the Vainshtein screening operates
[38,93,99,103,106]), when comparing the superposition
approximation and numerical results [84].

C. Descreened bubbles

In systems where only attractive forces act, there may be
special points where all the forces cancel. For spherical
objects in isolation, one such point is the center, while in
N-body systems these are the saddle points, where the

gradient of the potential vanishes. In theories where the
screening is activated by the magnitude of the scalar
gradient, these saddle points (and their neighborhoods)
are therefore in the perturbative regime, which leads to a
possible breakdown of the screening (Fig. 5). This, in turn,
suggests that saddle points and their vicinities may be
useful testing grounds for theories with screening mech-
anisms. This was recognized for MOND [97], and it was
even suggested that LISA Pathfinder could be used to probe
the MOND interpolating function if directed toward the
saddle point of the Solar System [107].
Following Ref. [97], let us then consider a region where

the theory dynamics is in the linear regime near the saddle
point. Therefore, we can use the superposition of the FJBD
scalar gradients (along the axis that connects the two
bodies) to compute fifth force (per unit mass) as (restoring
physical units)

ð∇ψÞz ¼
α

4πMPl

m
ðzþD=2Þ2 −

α

4πMPl

mq−1

ðz −D=2Þ2 : ð61Þ

The (saddle) point where the total scalar gradient is zero is
given by

zSP ¼
D
2

ffiffiffi
q

p − 1ffiffiffi
q

p þ 1
: ð62Þ

Taylor-expanding the scalar gradient around this saddle
point, we find the force in its vicinity10 to be

∇ψSP ≈ A

�
ðz − zSPÞẑ −

1

2
ρρ̂

�
; ð63Þ

A≡ −
α

2πMPl

mq−3=2

D3
ð1þ ffiffiffi

q
p Þ4: ð64Þ

The condition j∇ψSPj ¼
ffiffiffiffiffiffi
Xψ

p jSP ≲ Λ2 then defines the
region where the screening may break down. From this
condition, one obtains that the size δ of this region is
given by

δ

D
≃
1

κ

q3=2

ð1þ ffiffiffi
q

p Þ4 ; ð65Þ

i.e. this region shrinks in both the deep screening regime
(κ ≫ 1) and in the extreme mass ratio limit ðq → ∞Þ.
Although both theGRNewtonian force and the scalar fifth

force go to zero precisely at the saddle point, in their vicinity

FIG. 7. Relative difference of the linear superposition and
irrotational approximations from the numerical results, in terms
of the L2 norm defined in the text and as a function of the mass
ratio q. The differences are shown for the scalar field ϕ and its
kinetic energy X, in the deep screening regime. The system
considered is an rsc ¼ 9.5R and D ¼ 5R.

10One can further verify that the Hessian matrix is indefinite
and thus ð0; zSPÞ is indeed a saddle point. For a general discussion
see Ref. [108] (we thank Áron Kovács for pointing out this
reference).
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they are both nonvanishing, with their precise ratio depend-
ing on the value of α. Note that constraints on the time
variation of the effective gravitational constant (in the Jordan
frame) from big bang nucleosynthesis and lunar laser ranging
experiments require α≲ 0.1 [109]. Considering three repre-
sentative binary systems, i.e. Earth andmoon, Sun and Earth,
and Sun and Jupiter, taking Λ ≈ 2 × 10−3 eV and α ¼ 0.1,
we obtain δ ≈ 0.2 km, δ ≈ 1 km and δ ≈ 2800 km, respec-
tively.As δ ∝ α−2, by reducingα the size of the “descreening”
region grows, but the correction to the GR Newtonian force
from the fifth force decreases by the same amount.
Precise modeling of the dynamics near the saddle point

of the Solar System is challenging, as it would require
accurate ephemeris data [90,110] and even account for the
effect of the spacecraft carrying the accelerometer itself.
While this is outside the scope of this work, let us comment
on a few parallels with MOND, where these problems have
been analyzed to some extent [97,107]. First, note that if we
had used α ¼ 1 in our estimates for δ for the Earth and
moon, Sun and Earth, and Sun and Jupiter systems, they
would have differed only by a factor ∼ a few from the
estimate for MOND in Ref. [97]. The reason is that the
scale of the MOND critical acceleration is ao ≈H0=6, thus
leading to the same parametric scaling as the cosmologi-
cally motivated k essence. In more detail, the MONDian
behavior is triggered by the condition a0 ≃ aN [where
aN ≃m=ðD2M2

PlÞ], which is equivalent to the k-essence
∂rψ ≃ Λ2 deep screening condition.
Note that although MOND is not a well-defined theory

by itself, several attempts have been directed at construct-
ing a field theory that can develop a MONDian phenom-
enology [16], including hybrid models such as superfluid
DM [25]. Implementations that are of KðXÞ type combine
both screening around matter sources and antiscreening
(i.e. enhancement of the scalar gradient, see Sec. IV C) in
the low-acceleration regime. Thus, MOND saddle point
regions can be larger than the simple estimate given above,
and the fifth force may even dominate the Newtonian force
inside them [97]. This makes saddle points a potentially
better probe of MOND than k essence (although not all
MOND interpolating functions can be further constrained
in this way [111]).

D. Two-body energy and the fifth force

In a time-independent system such as the one that we
consider, the Hamiltonian (density) is given by H ¼ −L,
where the Lagrangian (density) L is obtained from Eq. (1)
[specializing to Minkowski space]. From this, one can find
the potential energy E ¼ R

dVH as a function of the
system’s parameters and the interparticle separation (see
Sec. III A). From the energy, the magnitude of the fifth
force between the two particles can then be found as

F ¼ ∂E
∂D

: ð66Þ

Let us consider the polynomial kinetic function of
Eq. (35), which yields

E ¼ −
Z

dV

�
−Λ4

XN
n¼1

1

2n

�
X
Λ4

�
n
þ α

MPl
φT

�
: ð67Þ

Using the equation of motion (40), we can rewrite this
integral as

E ≡ E
D3Λ4

¼ −
Z

dV
XN
n¼1

�
2n − 1

2n

�
Xn; ð68Þ

where we have also used the rescaling of Eq. (38). Noting
that in the deep screening regime the highest power of X
dominates the integral and using the irrotational approxi-
mation, one can apply Eq. (55) and obtain that the energy
Esc of the screened regions (sc) is given by

Esc ≈ −κ 2N
2N−1

�
2N − 1

2N

�Z
sc
dVX̂N=ð2N−1Þ

Ψ : ð69Þ

The total energy is then obtained by adding the subdomi-
nant term ≈ −

R
un−sc dVXΨ=2 that corresponds to the

“unscreened” region un − sc. [Note indeed that the integral
in Eq. (69) diverges in the unscreened region]. One can
observe that for N ¼ 1, we recover the FJBD scaling
E ∝ D−1, while forN ¼ 2we obtain E ∝ D1=3, as expected
on dimensional grounds and from the single particle limit.
Note also that in contrast to the Newtonian/FJBD case, the
scalar self-energy does not diverge in the point-particle
limit thanks to the screening. From the scaling of the source
of the solenoidal component [Eq. (56)], we find that B ∝ κ
when κ ≫ 1. Thus, including the solenoidal component in
Eq. (68) does not change the overall scaling of the energy
with κ in the deep screening regime, as given by Eq. (69).
The amplitude of the fifth force [from Eqs. (66) and (69)]

is then given by

F sc ≡ Fsc

D2Λ4
≈ −κ 2N

2N−1INðqÞ;

INðqÞ≡ 1

2

Z
sc
dVX̂ ð1−NÞ=ð2N−1Þ

Ψ ∂DX̂ΨjD¼1: ð70Þ

This indicates a clear suppression when N > 1 in com-
parison to the FJBD limit N ¼ 1. For instance, for N ¼ 1

one has Fsc ∝ D−2 (Newton’s law), while for N ¼ 2 one
obtains Fsc ∝ D−2=3. Unlike the energy, the fifth force
diverges in the limit D → 0. However, this is simply an
artifact of the point-particle model, i.e. it disappears for
extended sources (see e.g. Ref. [42] and the discussion in
Sec. II C, Appendix B). The details of the calculation of
INðqÞ are presented in Appendix B 1.
In order to verify the internal consistency of our irrota-

tional approximation (in both the deep screening and FJBD
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regimes), we have calculated the fifth force [from Eqs. (66)
and (68)] semianalytically in quadratic k essence (see
Appendix B 1 for details). In Fig. 8, we show how the
magnitude of the fifth force depends on the mass ratio and
on the interparticle separation in units of the object’s radius
(although we stress that our results do not depend on the
details of the object’s internal structure, as long as one
focuses on the object’s exterior). For q ¼ 1, we also show,
for comparison, the FJBD limit Fψ and the deep screening
limit given by Eq. (70) (which suppresses the fifth force
relative to FJBD theory). As can be seen, the change
between the two regimes is abrupt, for all mass ratios, and
the two approximations provide a very good description of
the scaling of the fifth force with distance in a piecewise
fashion.
Having established that the deep screening limit of

Eq. (70) is valid in the context of the irrotational approxi-
mation, we can compare that limit with the full numerical
result of Ref. [43] for quadratic k essence. Let us define the
force in the test-mass limit by performing the standard
Newtonian reformulation of a two-body problem into the
motion of a fictitious particle with the reduced mass μ ¼
mamb=ðma þmbÞ around a particle with the total mass
ma þmb (see e.g. Ref. [112]). The amplitude of the force is
then given by Ftm ¼ ðα=MPlÞμ∂rφjr¼a. Thus, from Eq. (36)
[and using the rescaling of Eq. (38)] we obtain

F tm

4π
¼

�
κ4

qðqþ 1Þ2
�
1=3

: ð71Þ

From the irrotational approximation, it follows that the
force in the deep screening regime [Eq. (70)] has the same
scaling with κ as the test-mass limit (and the solenoidal
component does not change this scaling, as argued above).
Therefore, the ratio of Fsc and Ftm depends only on the

mass ratio q. The same conclusion was reached in Ref. [43]
using an effective-one-body approach. Following Ref. [43],
let us define

Fsc ¼ b0ðxÞFtm; x ¼ 1

1þ q
; ð72Þ

where we expect that limx→0 b0 → 1. We have found b0ðxÞ
[from I2ðqÞ] semianalytically, and we have compared it
with the fit of the full numerical result from Ref. [43]
[Eq. (46)] in Fig. 9. As can be seen, this comparison
confirms the observation from Ref. [43] that the screening
is more efficient in equal-mass systems than in the extreme-
mass ratio limit. (This implies a breakdown of the weak
equivalence principle, as further elaborated in Ref. [43]).
Note that the relative enhancement of the screening relative
to the extreme mass-ratio limit is at most ∼25%. Also note
that our findings confirm that the irrotational approxima-
tion is in good agreement with the full numerical results,
differing only by a few percent from the latter.
Finally, let us emphasize that the breakdown of screening

in the descreened bubbles (see Sec. III C) is a local
phenomenon, which can be probed with a third test body.
Descreened bubbles can in principle affect the two-body
energy and the fifth force, since the latter are expressed as
integrals over all space. For a given κ, Eq. (65) predicts that
the largest descreened bubbles appear for q ≈ 9. However,
as clear from Fig. 9, in the deep screening regime this does
not significantly impair the efficiency of the screening
mechanism.

IV. OTHER THEORIES

Thus far, we have focused on the polynomial form of the
k-essence kinetic function, given by Eq. (35). Let us now
broaden the scope of the possible kinetic functions, and
investigate again the nonrelativistic limit for single bodies

FIG. 8. Fifth force F for four values of the mass ratio q,
calculated using the irrotational approximation and various
values of D=R, for fixed rsc=R ¼ 100 (denoted by the gray
dashed line). For q ¼ 1, we also show the FJBD limit [Eq. (B3),
cyan dot-dashed line] as well as the deep screening approxima-
tion [Eq. (70), solid red line].

FIG. 9. Ratio of the fifth force amplitudes between the two-
point particles and in the test-mass limit, in quadratic k essence,
calculated from the numerical simulation of Ref. [43] (black) and
using the irrotational approximation in the deep screening regime
(pink, dashed).
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and for binary systems. We will employ the same notation
as in the previous sections. Note that while in polynomial k
essence a generic astrophysical system is in the regime of
validity of the EFT when the screening operates, this may
not be the case for some theories considered in this section,
and in particular opposite DBI and antiscreening theories
(see Appendix A).

A. Beyond (simple) polynomial k essence

One may wonder how values of the polynomial coef-
ficients different from those in Eq. (35) impact our previous
discussion and results. Since the highest power of X
dominates the others in the deep screening regime, our
results should be qualitatively unchanged (as long as the
coefficient of the highest power of X has the sign leading to
screening in the first place). We have performed simple
numerical experiments to check this, e.g. we have considered
a sextic polynomialK6 ¼ −X=2þ c2X2 þ c4X4 − X6=12,
with randomly generated values of the coefficients fc2; c4g
in the interval−5 ≤ ci ≤ 5 but requiring that the condition of
Eq. (17) is satisfied. We have calculated the suppression
factor X=Xψ for the isolated Gaussian source as in Sec. II C
for several such realizations. Comparing with our default
modelK6 ¼ −X=2 − X6=12, we have found that outside the
object but within the screening region, the suppression factor
varies by at most a few percent. The differences between the
various realizations peak around the screening radius, where
they reach ∼10%, as this is the transition region where the
effect of the subleading terms X2, X4 is maximized. The
relative difference is further suppressed outside the screening
region, when the FJBD limit is asymptotically approached.
We expect this conclusion to hold also for the two-body
problem.
If one relaxes the assumption of a polynomial kinetic

function, one can also engineer particular functions passing
different cosmological and solar system constraints while
still providing a viable scalar-tensor theory of gravity
[51,109]. One such model was considered in Ref. [109]
and is given by

Ktan−1 ¼ −1 −
X
2
−K⋆

�
X − X⋆ arctan

�
X
X⋆

��
; ð73Þ

where fX⋆;K⋆g are free parameters of the model. Note
that K0ðXÞ → K⋆ as X → ∞ (see Ref. [45] for the
quantum aspects of this model). In the irrotational approxi-
mation, one cannot invert Eq. (17) exactly, although in the
deep screening regime the relation is approximately linear,
X ≈ XΨ=ð1þK⋆Þ2, and the suppression of the fifth force
is realized through a large value for K⋆. We show a
numerical solutionXðXΨÞ forX⋆ ¼ −2,K⋆ ¼ 103 (model
I from Ref. [109]) in Fig. 10.
In the context of the two-body problem, let us assess the

importance of the solenoidal component using the argu-
ments of Sec. III A. The quantity that characterizes the

nonlinearities, i.e. N K [Eq. (53)], is given in the deep
screening regime by

N K ≈ κ−3K⋆ð1þK⋆Þ3X2
⋆
j∇X̂Ψj
X̂5=2

Ψ

: ð74Þ

As the screening arises in this model from a large factorK⋆,
the relative strength of the solenoidal and irrotational
components is controlled by ðK⋆=κÞ4 [we remind the
reader that SΨ ∝ κ; see Eq. (51)]. This scaling makes the
solenoidal component much more suppressed than in
the case of a polynomial kinetic function, for the parameter
values considered in Ref. [109].

B. “Opposite” DBI

Let us consider a class of models where the scalar
gradient X saturates in the strongly interacting regime. A
particularly interesting model is the (opposite) DBI one
[44,62,86]:

KDBI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X=2

p
: ð75Þ

Standard DBI theory (obtained by flipping the overall sign
of the Lagrangian and the sign in front of X ) can be
embedded in string theory, but does not allow for screening
[41,51]. However, the “opposite DBI” kinetic function in
Eq. (75) may appear naturally in higher dimensions and
possesses a higher symmetry group than the standard shift-
symmetric KðXÞ theory analyzed thus far [44,86].
Like in the case of quadratic k essence, the solution for a

single point-particle source can be expressed in terms of the
hypergeometric function

FIG. 10. Relation between the kinetic energy X and the FJBD
kinetic energy Xψ in the irrotational approximation, for several
choices of the kinetic function. The latter include quadratic k
essence K2 [Eq. (29)]; the arctan model Ktan−1 [Eq. (73);
X⋆ ¼ −2, K⋆ ¼ 103]; opposite DBI theory KDBI [Eq. (75)];
and the antiscreening model Ka−sc [Eq. (79); p ¼ 5=6]. The thin
solid line corresponds to X ¼ Xψ .
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ϕ ¼ 1.85rsc − r2F1

�
1

4
;
1

2
;
5

4
;−

�
r
rsc

�
4
�
: ð76Þ

This exact solution features a screening radius rsc ¼
ffiffiffi
κ

p
.

Like in Sec. II C, we show the scalar gradient for an isolated
Gaussian source and for a point particle in Fig. 11. In
contrast with the polynomial k essence, now even in the
point-particle case the scalar gradient does not diverge at
the particle’s location, and the point particle and Gaussian
models are much closer even inside the source, down to
very small radii. We also find that the screening in opposite
DBI is more efficient than in quadratic k essence (see
Figs. 1 and 11, and also Fig. 10).
Away from spherical symmetry (or other highly sym-

metric configurations), the solenoidal component is in
general not zero in opposite DBI, unlike what was
implicitly assumed in Ref. [86]. However, we can consider
the irrotational approximation described in Sec. III A (see
Fig. 10) and obtain

X ¼ XΨ

1þ XΨ
: ð77Þ

We can then calculate the source of the solenoidal field that
encodes nonlinearities in the two-body problem [see
Eq. (53)], obtaining

N K ≈
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xð1 − XÞ

p
: ð78Þ

One can see that as X flattens in the deep screening regime,
N K → 0. Thus, the solenoidal component in opposite DBI
is even more suppressed than for a polynomial kinetic
function.

C. Antiscreening

As noted in Sec. I, a drawback of generic k-essence
models is the absence of a standard UV completion [58,61].
Thus, in Ref. [69] a class of shift-symmetric theories that do

not violate positivity bounds11 and which are thus expected
to admit such a completion were considered. Those are
described by

Ka−sc ¼ −
1

p
½ð1þ X=2Þp − 1�; ð79Þ

where 1=2 ≤ p < 1 (p ¼ 1=2 corresponding to the stan-
dard DBI theory, see Ref. [51], while p ¼ 1 yields FJBD
theory). These theories, however, lead to antiscreening i.e.
an enhancement of the fifth force near matter sources (see
Fig. 10). These theories, like FJBD theory, are then only
relevant if the coupling of the scalar to matter satisfies the
Cassini bound. The antiscreening phenomenon could then
provide additional constraints in the Solar System and in
the strong gravity regime [69].
The Helmholtz decomposition and the arguments of

Secs. II B and III A can also be applied to theories with
antiscreening. In particular, in spherical symmetry the
solenoidal component is zero, and XðXΨÞ can be found
from Eq. (22) (see Fig. 10). Away from spherical symmetry,
from Eq. (53) one finds (e.g. for the special case p ¼ 5=6)

N K ≈
κ

8

j∇X̂ψ jffiffiffiffiffiffiffi
X̂Ψ

q ; ð80Þ

i.e. the same as in Eq. (56) for N ¼ 5=6. Therefore, the
details of the antiscreening model are captured in a
dimensionless prefactor, and the dependence on κ and q
is the same as in polynomial k essence (see Fig. 3).

V. CONCLUSIONS

We have shown that shift-symmetric scalar-tensor the-
ories, involving only first derivatives in scalars, can be
reformulated by covariantly splitting the scalar gradient
into a longitudinal ∂μψ and a transverse component Bμ

(Hodge-Helmholtz decomposition; Sec. II A). The longi-
tudinal component reduces to a (free) Klein-Gordon field,
while the transverse component obeys a hyperbolic equa-
tion with a nonlinear source. We have shown that for
spherical and static sources, the transverse component
identically vanishes (Secs. II B and II C). In this situation,
the problem reduces to solving a linear elliptic equation and
then an algebraic one.
In general, and also in the case of two-body non-

relativistic systems that we consider in this paper, the
solenoidal component does not vanish (unlike what was
implicitly assumed e.g. in Refs. [86,91]). Outside the

FIG. 11. The same as in Fig. 1, but for (opposite) DBI theory.

11These models were unfortunately advertized in Ref. [69] as
causal modifications of gravity, as opposed to superluminal
models that allow for screening. However, as elaborated in Sec. I,
causality is not an issue in superluminal k-essence theories
[48–52,55].
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screening region of a two-body system (which is controlled
by the ratio between the screening radius of the more
massive objects rsc and the interparticle separation D, as
well as by the mass ratio q), the solenoidal component is
perturbativly suppressed, and the superposition approxi-
mation provides a good description of the full results (see
Secs. III A and III B). Inside the screening region, we have
developed an approximate “irrotational” scheme that starts
by ignoring the solenoidal component and finds the scalar
gradients X by solving an algebraic problem. This approach
was validated by checking self-consistency (Sec. III A), by
solving the full system numerically (Sec. III B) and
by comparing with the previous results of Ref. [43]
(Sec. III D). We have shown in Sec. III A that irrespective
of the form of the kinetic function, the irrotational field
dominates upon the solenoidal one when D ≫ rsc and/or
q ≫ 1. In these regimes, ignoring the solenoidal component
will introduce only small errors in the description of the
scalar gradients. Furthermore,wehave shown that evenwhen
rsc ≫ D and q ≈ 1, the irrotational approximation will
introduce only percent-level errors in the binary fifth force,
in comparison with the full numerical results for quadratic k
essence (Sec. III D). Kinetic functions whose growth is
suppressed in the deep screening regime will have
even more suppressed solenoidal components (Secs. IVA
and IV B).The irrotational approximationcan also be applied
for theories that exhibit antiscreening (Sec. IV C).
At the physical level, our results, both analytic and

numerical, show that the absence of spherical symmetry in
a binary system does not make screening necessarily
inefficient. On the one hand, the nonlinear nature of k
essence generally renders screening slightly more efficient,
relative to the test-body limit, in equal-mass systems
(Sec. III D). This has already been established numerically,
and its consequences on violations of the weak equivalence
principle elaborated, in Ref. [43]. However, we show that
binaries also produce “descreened” regions near the sys-
tem’s saddle point (Sec. III C). These regions may in
principle be probed in the solar system with sufficiently
precise accelerometers. A natural continuation of this work
would be to assess the validity of the irrotational approxi-
mation in N-body systems. In relation to k-essence probes
in the solar system (e.g. with these descreened regions),
such an irrotational approach could alleviate the numerical
difficulty and cost of full multibody simulations (for a
related numerical study of the Sun-Earth-moon system in
the cubic Galileon theory, see Ref. [84]).
As the Hodge-Helmholtz decomposition can be imple-

mented in a covariant way, it is an interesting question to
consider whether it can be helpful in dynamical problems.
For instance, stellar collapse in k essence leads to a
breakdown of screening [72]. Indeed, due to black-hole
no-hair theorems [113–117], the star’s scalar “charge”must
be radiated away [72], producing a potentially observable
gravitational-wave signal. Another interesting problem is a

binary neutron star’s inspiral. In scalar-tensor theories, the
orbital energy of a binary decreases because of the emission
of both scalar and tensor gravitons. In FJBD, and related
perturbative theories where the screening does not operate,
the binary inspiral can be systematically studied within the
PN formalism [112,118–122]. However, in theories with
screening, such an approach is not straightforward. Thus
far, in theories with strong nonlinearities the inspiral has
been studied by perturbing the scalar field around the
background field generated by a fictitious isolated body
located at the center of mass of the system [69,75,123]. On
the other hand, numerical simulations have been performed
in cubic k essence (including GR), scanning the rsc=D ≈
1–6 range [73]. Both of these problems may benefit from (a
more systematic) analytic approach based on the Hodge-
Helmholtz decomposition.
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APPENDIX A: REGIME OF VALIDITY OF THE
EFFECTIVE FIELD THEORY

Naively, it might seem that the screening regime lies
outside the regime of validity of the EFT, as X ≳ Λ4 (see
Figs. 1 and 4). The right question, however, is whether
quantum effects can induce significant corrections to the
classical description of screening. This can be assessed
with the background field method [4], by comparing the
classical action, evaluated on the screening-inducing field,
and the one-loop effective action on top of the same
background field [44]. In spherical symmetry, nonlinear-
ities become more important as the radial coordinate
decreases (see Sec. II C). Thus, the EFT description is
valid as long as r ≫ rUV, where rUV is the scale where
quantum corrections become significant and consequently
the UV physics must play a role. These scales are given by

rpolyUV ∼
1

Λ
ðΛrscÞ−N=ðN−1Þ; ðA1Þ

rDBIUV ∼
1

Λ
ðΛrscÞ2=3; ðA2Þ

for the point-particle screening in polynomial k essence
[Eq. (35)] and DBI [Eq. (75)], in respective order [44]. Note
however that the scalar gradients do not grow arbitrarily,
because at some point the radius of the source (e.g. a star) is
reached. As we have seen in Sec. II C, the maximal value of
X is reached at the surface of the object, and X then
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decreases as one progresses toward the center, ultimately
entering the linear regime. Thus, a sufficient criterion to
assess whether one is in the EFT regime consists of
checking whether rUV ≈ R, where R is the effective radius
of the source. Let us focus for concreteness on quadratic k
essence. From Eqs. (30) and (A1) one has

rðN¼2Þ
UV ≈ 10−43 km

�
α

0.1

�
−1
�

Λ
meV

�
−1
�

m
M⊙

�
−1
: ðA3Þ

For cosmologically motivated values of Λ and any astro-
physical object, one is clearly in the regime of validity of
the EFT. As an extreme example, let us consider the LISA
Pathfinder test mass (see Sec. III C), which is 2 kg and has a
size of 4.6 cm [124]. From Eq. (30), the screening radius is
rsc ≈ 10−4 km, while rUV ≈ 10−13 km. The rUV scale is
pushed to even smaller values as N ≫ 1 (and even further
for Galileons [44]). The presence of a second body will not
change this conclusion; see Sec. III.
Interestingly, the rUV scale for screening in opposite DBI

is significantly larger:

rðDBIÞUV ≈ 105 km
�

α

0.1

�
2=3

�
Λ

meV

�
−1
�

m
M⊙

�
2=3

: ðA4Þ

Thus, as alreadynoticed inRef. [86], the oppositeDBIEFTis
not appropriate for describing screening around the Sun
ðR⊙ ¼ 7 × 105 kmÞ, at least forΛ ≈ ΛDE. The case becomes
even worse for neutron stars, as RNS ∼ 10 km ≪ rDBIUV .
In the case of antiscreening12 i.e. 1=2 < N < 1 [see

Eq. (79)], based on the results of Ref. [44], the rough
condition for the regime of validity is ra−sc ≫ Λ−1, where
ra−sc is the antiscreening radius. This condition is easily
satisfied for any relevant astrophysical scenario. The
exception is the standard DBI antiscreening N ¼ 1=2,
where the classical description breaks down around the
antiscreening radius.

APPENDIX B: REGULARIZED
NEWTONIAN/FJBD POTENTIAL

The leading order energy for a system of two-point
particles can be found from Eq. (67), when N ¼ 1, by
integrating by parts to substitute X with the source T:

Eψ ¼ α

2MPl
½maψðzaÞ þmbψðzbÞ�: ðB1Þ

Substituting ψ [taking Λ → ∞ in Eq. (33)], this expression
diverges due to the self-energies of the two particles. Even
classically, however, these self-energy contributions are
actually finite due to the finite size of the two bodies (for
which point particles are just a model valid in the IR). If the

bodies have a finite size, the total binary energy is therefore
regular and reads as

Eψ ;ε ¼ −
1

4π

�
α

MPl

�
2
�
m2

a

ε
þm2

b

ε
þmamb

D

�
; ðB2Þ

where ϵ is a regularization parameter of the order of the size
of the two bodies. Note that the self-energy contributions
∝ 1=ϵ are constant and thus not observable, as the fifth
force is given by the energy’s gradient. For instance, in the
FJBD case the force reads as

dEψ ;ε

da
¼ 1

4π

�
α

MPl

�
2mamb

D2
; ðB3Þ

which is finite and manifestly independent of the regula-
tor ε.
For numerical purposes, however, we need to specify a

concrete “UV completion” of the point-particle model. The
Gaussian source that we use in this work admits an
analytical solution for the Poisson equation, i.e.

ψσi ¼ −
mα

4πMPl
Erf

�jr − rijffiffiffi
2

p
σi

�
: ðB4Þ

One of course needs to establish that the results do not
depend on the choice of σ, as the Gaussian distribution
above is not a physically motivated “UV model.”13 Indeed,
we find that the relative difference between the FJBD force
for Dirac-delta and Gaussian sources is less than 1%
when a=σ ≳ 2.

1. Calculation of the fifth force
in the irrotational approximation

As the integrals in Sec. III D have poles for the point-
particle source, we have used the aforementioned Gaussian
regularization to calculate them. Consider first the integral
INðqÞ of the fifth force in the deep screening regime
[Eq. (70)], which depends only on q. As the integrand
scales as ∼rð1þ2nÞ=ð1−2nÞ near infinity, we can formally
identify the screening region with the whole space. Using
the Gaussian regularization, we have INðqÞ → ĨNðq;RÞ,
and we have calculated ĨNðq;RÞ for a few values of R.
These results are well described by a functional form
ĨNðq;RÞ ¼ INðqÞRp when R ≪ 1. Using this fact, we
can extract INðqÞ, verifying that p ≈ 0 i.e. that our results
are independent of the details of the regularization.
Regarding the calculation of the full energy/force in the

irrotational approximation, the volume integral of Eq. (68)
can be split as

12We thank the authors of Ref. [69] for pointing out a small
error in the previous version of this manuscript.

13For example, in order to model a star, one would need to
solve the Einstein-Klein-Gordon system for a realistic matter
equation of state, as done e.g. in Refs. [42,48,69,72].
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E ≈ −
Z

dΩ
�Z

R

0

dr
XN
n¼1

�
2n − 1

2n

�
Xn þ 1

2

Z
∞

R
drXΨ

�
r2;

where we have assumed that X ¼ XðXΨÞ [given by
Eq. (50) for the quadratic kinetic function], R ≫ c2

ffiffiffi
κ

p
D

and dΩ ¼ sin θdθdϑ. The second integral can be found in
closed form using Mathematica [125]. Differentiating the
integrand with respect to D before fixing the scale D ¼ 1,
we obtain the magnitude of the fifth force. As we perform
all calculations with the Gaussian regularization, differ-
entiation with respect to D and the integral commute. In
order for these results to be independent of the details of the
regularization, one must consider the limit R ≪ 1. In
practice, we find that already at D ≃ 4R the relative
difference between the deep screening approximation
and the full calculation is smaller than 1%. This difference
then gradually increases with D=R, because of the wors-
ening of the deep screening approximation, up to ∼50%
when D ≈ rsc.

APPENDIX C: CLASSICAL DUAL VS
HELMHOLTZ DECOMPOSITION

In Ref. [91] it was shown that the theory described by
Eq. (1), with β ¼ −1 and γ ¼ 0 and in the decoupling limit
of the scalar and tensor degrees of freedom, can be
reformulated, at the classical level, as

Ldual ¼ −
1

2
ð∂φÞ2 þ 3

4
Λ4=3ðΓμΓμÞ2=3 − Γμ

∂μφ; ðC1Þ

where one has introduced the new vector field Γμ. The
equations of motion that follow from this action are

□φþ ∂μΓμ ¼ −
α

MPl
T; ðC2Þ

Λ4=3ðΓμΓμÞ−1=3Γμ ¼ ∂μφ: ðC3Þ

Using the latter, the auxiliary vector Γμ can be integrated
out, and the original action is recovered. The appeal of this
formulation is that none of the coupling constants in the
dual action given by Eq. (C1) have a negative mass
dimension (except for the scalar-matter coupling). This
in turn allows for a controlled perturbative expansion in the
nonlinear regime of the original theory. This formulation
was shown to originate from a Legendre transformation and
is generalizable to a large class of self-interacting theo-
ries [92].
Let us now Hodge-Helmholtz decompose the vector and

redefine the scalar as

Γμ ¼ ð−2ÞBμ þ ∂μΓ̃; ∂μBμ ¼ 0; φ¼ ψ − Γ̃; ðC4Þ

where Bμ;ψ are for now generic objects. Substituting this
decomposition into Eq. (C2) we obtain Eq. (12), i.e.

□ψ ¼ −
1

2MPl
T: ðC5Þ

Squaring Eq. (C3) and substituting the above decomposi-
tion, we reconstruct Eq. (10) for the quadratic k essence, i.e.

−
1

2

�
1þ X

Λ4

�
∂μφ ¼ −

1

2
∂μψ þ Bμ: ðC6Þ

Thus, the dual formulation of quadratic k essence is
equivalent to the Hodge-Helmholtz decomposition.
In Ref. [91] a different decomposition was used instead

of Eq. (C4):

Γi¼ð−2ÞBiþ∂iΓ̃; Γ0¼ω; ∂iBi¼ 0; φ¼ψ − Γ̃:

ðC7Þ

It is easy to show that in the static regime, this decom-
position is also equivalent to the R3 Helmholtz one in
Eq. (20). It was then argued in Ref. [91] that one can
consistently choose an ansatz where Bi ¼ 0. This however
is not the case, as we have elaborated upon in the main
body of this work. The reason why this inconsistency has
not been noticed in Ref. [91] is that the dual formulation
was applied to isolated systems in spherical and cylindrical
symmetry, where the solenoidal component vanishes as
argued in Secs. II B and II C.
Finally, let us note an advantage of the Helmholtz-

decomposition program over the perturbative expansion in
Γ̃ that was performed in Ref. [91], for scenarios where the
solenoidal component is zero. Instead of expanding, one
can solve for the square of the scalar gradient to all orders in
the perturbative expansion (see Sec. III A). If one is
interested in the fifth force or the force acting on test
bodies, the scalar gradient is the relevant object, and the full
scalar profile is not necessary (Sec. III D). However, the
dual formulation at the level of action can have other
advantages, e.g. allowing for constructing analogs of the
irrotational approximation in other types of theories, like
Galileons.

APPENDIX D: CODE VALIDATION

We start by testing our code against the known solution
for a single isolated body. Because our Newton-Raphson/
Broyden method needs an initial guess for the solution, we
start from the “linear” solution given by Eq. (B4), while the

TABLE I. Parameters of the systems considered for the
numerical tests, in units given by Eq. (38).

κ q R D=R ϱfin zfin

(i) 6 ∞ 1.6 4 6 12
(ii) 4.8 1 1.6 1.25 8.4 23.04

TWO-BODY PROBLEM IN THEORIES WITH KINETIC … PHYS. REV. D 108, 064033 (2023)

064033-19



exact solution to which we compare is known analytically
up to integration of the ordinary differential equation given
by Eq. (50). As a test of our nonlinear elliptic solver, we
have then solved numerically for the one-body system
(i) given in Table I, for different grid resolutions.
In Fig. 12, we show the relative difference between the

numerical and the semianalytic results as a function of ϱ,

with z ¼ zc fixed to the center of the matter source (where
the numerical error is the largest). Results for grid reso-
lutions h=R≲ 0.15 have subpercent errors with respect to
the semianalytic ones. The plot also shows that the relative
difference between the initial guess, i.e. the FJBD scalar
sourced by a Gaussian [Eq. (B4)], and the semianalytic
solution can be as large as ∼30%. Finally, we have checked
that the solenoidal vector B is zero (Sec. II C), up to a
numerical error.
We have also checked the convergence of our residuals

(from the semianalytic solution). In more detail, in Fig. 13
(left) we show the L2 norm of the residuals (throughout the
grid) vs the grid resolution, alongside a power law fit (red
line). The fitted power law exponent (p ¼ 1.91) is very
close to p ¼ 2, as expected from our discretization scheme.
By using instead the L1 norm of the residuals, we obtain
p ¼ 1.99.

In the two-body case, we do not have a semianalytic
exact solution to compare our numerical results with.
However, we can test convergence by considering three
different resolutions (h1 ¼ 0.32; h2 ¼ 0.16; h3 ¼ 0.08),
and estimating the convergence order as

p ¼ log2

�jϕ1 − ϕ3j
jϕ2 − ϕ3j

− 1

�
; ðD1Þ

where ϕ1, ϕ2 and ϕ3 are the numerical solutions. For the
scenario (ii) in Table I, Fig. 13 (right) shows pðϱ; zÞ at two
radial points and demonstrates that the results are consistent
with the expected second-order convergence.

FIG. 12. Relative difference of our numerical results ϕnum from
the semianalytic solution ϕ�, for a one-body system and four
different resolutions h=R ¼ f0.0375; 0.075; 0.15; 0.25g (corre-
sponding respectively to A, B, C, D), at the center of the source
and as a function of ϱ. The black long-dashed line represents the
difference between the initial guess (FJBD scalar sourced by a
Gaussian) and the semianalytic solution. The screening radius
rsc ¼ 2.47R is shown by a gray, long-dashed line, and the
effective radius of the Gaussian source is R ¼ 2σ (pink, short-
dashed line).

FIG. 13. Grid resolution convergence tests. Left: L2 norm of the residuals from the semianalytic solution for a single isolated object
(i) in Table I, as a function of the resolution. The fitted power law (solid line) corresponds to an exponent p ¼ 1.91. Right: effective
convergence order p for the two-body system (ii) in Table I, evaluated at ρ ¼ 0 and ρ ¼ 2R and as function of z, is consistent with the
implemented second-order convergence scheme.
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